JP2001023634A - Manufacture of graphite powder for lithium ion secondary battery negative electrode - Google Patents

Manufacture of graphite powder for lithium ion secondary battery negative electrode

Info

Publication number
JP2001023634A
JP2001023634A JP11190907A JP19090799A JP2001023634A JP 2001023634 A JP2001023634 A JP 2001023634A JP 11190907 A JP11190907 A JP 11190907A JP 19090799 A JP19090799 A JP 19090799A JP 2001023634 A JP2001023634 A JP 2001023634A
Authority
JP
Japan
Prior art keywords
powder
mesophase
carbon
carbonization
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11190907A
Other languages
Japanese (ja)
Inventor
Masato Kano
正人 鹿野
Toru Fujiwara
徹 藤原
Masayuki Nagamine
政幸 永峰
Tokuo Komaru
篤雄 小丸
Yusuke Fujishige
祐介 藤重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sony Corp
Original Assignee
Sony Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Sumitomo Metal Industries Ltd filed Critical Sony Corp
Priority to JP11190907A priority Critical patent/JP2001023634A/en
Publication of JP2001023634A publication Critical patent/JP2001023634A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance discharge capacity and charge/discharge efficiency by carbonizing and graphitizing a powder of a carbon powder having a specific particle diameter mixed with a mesophase powder. SOLUTION: By mixing a carbon powder with a mesophase powder to be carbonized, the fusion during the carbonization is suppressed. Since the carbon powder does not contain volatile matter, the fusion of the mesophase powder is significantly reduced when the carbon powder is mixed to lie between the mesophase powders. The carbon powder is to have an average primary particle diameter of 1 μm or above, preferably 10-100 μm. Additionally, a ratio of the carbon powder to the total of the carbon powder and the mesophase powder is preferably 5-40 wt.%. As the carbon powder, a carbonized powder obtained by carbonizing a mesophase and a graphitized powder obtained by carbonizing and graphitizing of the mesophase are preferably used. Furthermore, the mesophase as a raw material is preferably one not subject to the surface oxidization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池で
あるリチウムイオン二次電池の負極に用いる黒鉛粉末の
製造方法に関する。本発明により、比表面積が小さく、
従って充放電効率に優れ、放電容量も良好なリチウムイ
オン二次電池負極用黒鉛粉末を歩留まりよく製造するこ
とができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing graphite powder used for a negative electrode of a lithium ion secondary battery which is a non-aqueous secondary battery. According to the present invention, the specific surface area is small,
Accordingly, graphite powder for a negative electrode of a lithium ion secondary battery having excellent charge / discharge efficiency and good discharge capacity can be manufactured with high yield.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、正極にリチ
ウム化合物 (例、リチウムとNiやCo等の遷移金属との複
合酸化物) など、負極にリチウムイオンを可逆的に吸蔵
・放出できる炭素材料、電解質にリチウム化合物を有機
溶媒に溶解させた溶液を用いた、非水系二次電池であ
る。
2. Description of the Related Art A lithium ion secondary battery is a carbon material capable of reversibly occluding and releasing lithium ions in a negative electrode, such as a lithium compound (eg, a composite oxide of lithium and a transition metal such as Ni or Co). And a non-aqueous secondary battery using a solution in which a lithium compound is dissolved in an organic solvent in an electrolyte.

【0003】負極にリチウム金属またはリチウム合金を
用いたリチウム二次電池は、電池容量は非常に高くなる
ものの、充電時のリチウムのデンドライト状態での析出
や微粉化のためにサイクル寿命および安全性に問題を生
ずる。これに対し、負極を炭素材料から構成したリチウ
ムイオン二次電池では、電池内でリチウムが常にイオン
の形で存在し、金属として析出することが避けられるた
め、リチウム二次電池の上記問題点が解決できる。
[0003] A lithium secondary battery using a lithium metal or lithium alloy for the negative electrode has a very high battery capacity, but has a poor cycle life and safety due to precipitation and pulverization of lithium in a dendritic state during charging. Cause problems. On the other hand, in a lithium ion secondary battery in which the negative electrode is made of a carbon material, lithium is always present in the form of ions in the battery and is prevented from being precipitated as a metal. Solvable.

【0004】リチウムイオン二次電池は、安全性が高く
サイクル寿命が長い上、作動電圧とエネルギー密度が高
い、短時間で充電が可能、非水系電解液のためアルカリ
電解液に比べて耐漏液性に優れている、といった特長が
あり、小型二次電池として急速に普及しているのは周知
の通りである。さらに、電気自動車のバッテリー等の大
型電池としての利用についても研究が進んでいる。
[0004] Lithium-ion secondary batteries have high safety, long cycle life, high operating voltage and energy density, can be charged in a short time, and are non-aqueous electrolytes. It is well known that it is rapidly spreading as a small secondary battery. Furthermore, research is also being conducted on the use of large batteries such as batteries for electric vehicles.

【0005】リチウムイオン二次電池の負極に用いる炭
素材料には、結晶質の黒鉛、黒鉛の前駆体である易黒鉛
化性炭素 (ソフトカーボン) 、高温処理しても黒鉛に成
らない難黒鉛化性炭素 (ハードカーボン) がある。ピッ
チや樹脂等の有機物を、不活性雰囲気中1000℃程度にて
揮発分がなくなるまで熱処理することで、ソフトカーボ
ンやハードカーボンが得られるが、特にハードカーボン
は結晶性が低く非晶質な構造を持つ材料である。一方、
黒鉛はソフトカーボンを2500℃程度以上の温度で熱処理
することにより得られる。いずれの場合も、粉末化した
材料を通常は少量の結着剤 (通常は有機樹脂) を用いて
成形し、集電体となる電極基板に圧着させることにより
電極 (負極) が形成される。
[0005] Carbon materials used for the negative electrode of lithium ion secondary batteries include crystalline graphite, graphitizable carbon (soft carbon) which is a precursor of graphite, and non-graphitizable carbon which does not become graphite even at high temperature treatment. There is carbon (hard carbon). Soft carbon and hard carbon can be obtained by heat-treating organic substances such as pitch and resin in an inert atmosphere at about 1000 ° C until the volatile components disappear, but hard carbon has low crystallinity and an amorphous structure. Is a material with on the other hand,
Graphite can be obtained by heat-treating soft carbon at a temperature of about 2500 ° C. or higher. In any case, an electrode (negative electrode) is formed by molding a powdered material usually using a small amount of a binder (usually an organic resin) and pressing the material onto an electrode substrate serving as a current collector.

【0006】黒鉛からなる負極では、充電時には、層状
構造を持つ黒鉛結晶の層間に電解液からリチウムイオン
が吸蔵 (インターカレート) され、放電時にはその電解
液への放出 (デインターカレート) が起こる。層間に吸
蔵されうるリチウムイオンの量は最大でC6Liに相当する
量であり、その場合の容量は372 mAh/g となる。従っ
て、この容量が理論的な最大容量となる。
[0006] In a negative electrode made of graphite, lithium ions are absorbed (intercalated) from an electrolyte between layers of graphite crystals having a layered structure during charging, and released (deintercalated) into the electrolyte during discharging. Occur. The amount of lithium ions that can be inserted between the layers is a maximum amount corresponding to C 6 Li, and the capacity in that case is 372 mAh / g. Therefore, this capacity becomes the theoretical maximum capacity.

【0007】一方、より結晶性の低い炭素材を負極に用
いると、容量は大きく変化し、場合によっては黒鉛系負
極材料の理論最大容量 (372 mAh/g)を超える容量が得ら
れることも報告されている。炭素材は結晶が発達してい
ないため、層間へのリチウムイオンの吸蔵に加えて、層
間以外に結晶の格子欠陥等の部分にもリチウムイオンが
吸蔵されるためではないかと考えられる。しかし、炭素
材は黒鉛より密度が低いため、たとえ黒鉛より容量が高
くても、単位体積当たりで比べた容量は低くなり、体積
が決まっている電池用途では不利となる。以上より、黒
鉛の方がリチウムイオン二次電池の負極材料として有利
であると考えられる。
On the other hand, it has also been reported that when a carbon material having lower crystallinity is used for the negative electrode, the capacity greatly changes, and in some cases, a capacity exceeding the theoretical maximum capacity (372 mAh / g) of the graphite-based negative electrode material is obtained. Have been. It is considered that since the carbon material has not developed crystals, in addition to the intercalation of lithium ions between layers, lithium ions are intercalated not only between layers but also in parts such as lattice defects of crystals. However, since the carbon material has a lower density than graphite, even if the capacity is higher than graphite, the capacity per unit volume is low, which is disadvantageous in battery applications where the volume is fixed. From the above, it is considered that graphite is more advantageous as a negative electrode material of a lithium ion secondary battery.

【0008】黒鉛を負極とするリチウムイオン二次電池
では、一般に負極の黒鉛化度(即ち、黒鉛結晶化度)が
高いほどLiイオン格納量が増大し、負極材料の放電容量
が増大することが知られている。黒鉛の結晶化度の指標
としては通常d002[層状構造の黒鉛結晶面 (002 面また
はc面) の層間距離] が使用されている。このd002
小さいほど (即ち、理想的な黒鉛結晶のd002 値である
0.3354 nm に近づくほど) 黒鉛の結晶化度は高くなる。
In a lithium ion secondary battery using graphite as a negative electrode, generally, the higher the degree of graphitization of the negative electrode (that is, the degree of crystallinity of graphite), the larger the Li ion storage capacity and the greater the discharge capacity of the negative electrode material. Are known. As an index of the degree of crystallinity of graphite, d 002 [interlayer distance between graphite crystal planes (002 plane or c plane) of a layered structure] is usually used. The smaller this d 002 is (that is, the ideal d 002 value of the graphite crystal)
The higher the crystallinity of graphite (closer to 0.3354 nm).

【0009】結晶化度が高く、放電容量の高い負極材料
が、タールやピッチの熱処理により生成する光学異方性
のメソフェーズを炭化および黒鉛化することにより得ら
れることは公知である (例、特開平7−223808号および
7−226204号公報参照) 。
It is known that a negative electrode material having a high crystallinity and a high discharge capacity can be obtained by carbonizing and graphitizing an optically anisotropic mesophase produced by heat treatment of tar or pitch (for example, See Japanese Unexamined Patent Publication Nos. 7-223808 and 7-226204).

【0010】例えば、特開平7−223808号公報には、加
熱下で軟化溶融するバルクメソフェーズピッチを3〜25
μmに粉砕した後、空気中 200〜350 ℃で熱処理して表
層を酸化処理して表面を不融化した後、 800〜3000℃で
熱処理して炭素または黒鉛粉末を製造することが提案さ
れている。
For example, JP-A-7-223808 discloses that a bulk mesophase pitch which is softened and melted under heating is 3 to 25.
It is proposed to produce carbon or graphite powder by pulverizing to a size of μm, heat-treating in air at 200 to 350 ° C to oxidize the surface layer to make the surface infusible, and then heat-treating to 800 to 3000 ° C. .

【0011】また、一般に負極の炭素材料の比表面積は
可及的に小さい方が有利である。比表面積が大きいと電
解液との反応性が高まり、充放電効率やサイクル寿命が
低下する傾向があるからである。
Generally, it is advantageous that the specific surface area of the carbon material of the negative electrode is as small as possible. If the specific surface area is large, the reactivity with the electrolytic solution increases, and the charge / discharge efficiency and the cycle life tend to decrease.

【0012】メソフェーズから比表面積の小さいリチウ
ムイオン二次電池負極用の炭素または黒鉛粉末を製造す
る方法として、特開平10−3922号公報には、メソフェー
ズ量が80wt%以上、揮発分が25wt%以下のバルクメソフ
ェーズピッチを平均粒子径3〜20μmに粉砕した後、酸
素含有率が2〜8wt%となるように軽度に酸化処理して
不融化させてから、加圧成形し、得られた成形体を必要
に応じてさらに酸化処理した後、炭素化または黒鉛化
し、粉砕・整粒することからなる方法が開示されてい
る。
As a method of producing carbon or graphite powder for a negative electrode of a lithium ion secondary battery having a small specific surface area from mesophase, Japanese Patent Application Laid-Open No. Hei 10-3922 discloses a method in which the amount of mesophase is 80% by weight or more and the volatile content is 25% by weight or less. After pulverizing the bulk mesophase pitch of the above to an average particle diameter of 3 to 20 μm, it is lightly oxidized so as to have an oxygen content of 2 to 8% by weight and made infusible, and then pressed and molded to obtain a molded product. Is further oxidized, if necessary, and then carbonized or graphitized, followed by grinding and sizing.

【0013】[0013]

【発明が解決しようとする課題】上述した特開平7−22
3808号および10−3922号公報では、いずれも、炭化時に
メソフェーズ粉末が融着するのを防止するため、炭化前
にメソフェーズ粉末の表面を軽度の酸化処理して、表面
を不融化させておく必要がある。炭化時に粒子の融着が
起こると、粒径が維持できず、最後にまた粉砕を行う必
要が出てくるためである。このように最後に粉砕を行う
と、粒内破壊により粉末の比表面積が著しく増大し、充
放電効率やサイクル寿命に悪影響がある。
SUMMARY OF THE INVENTION The above-mentioned JP-A-7-22
In both 3808 and 10-3922, in order to prevent the mesophase powder from fusing during carbonization, the surface of the mesophase powder must be lightly oxidized before carbonization to make the surface infusible. There is. This is because if particles are fused during carbonization, the particle size cannot be maintained, and it will be necessary to perform grinding again at the end. When the final pulverization is performed as described above, the specific surface area of the powder is significantly increased due to intragranular fracture, which has an adverse effect on charge / discharge efficiency and cycle life.

【0014】上記の表面酸化による不融化は、揮発性成
分をより多量に含んでいて融着がより顕著なメソフェー
ズ小球体についても同じ目的で一般に行われていること
からわかるように、炭化時の融着防止には有効である。
しかし、酸化処理という工程が別に加わるので、工程数
が増える上、表面酸化の程度を確実に制御することが必
ずしも容易ではなく、メソフェーズ粉末が過度に酸化さ
れてしまう場合もある。過度の酸化はメソフェーズ粉末
の結晶構造を変化させるため、最終的に得られる黒鉛粉
末の結晶化度が著しく低下し、放電容量が低下した黒鉛
粉末になる。
[0014] The infusibilization due to the surface oxidation described above is generally carried out for the same purpose even for mesophase spherules containing a larger amount of volatile components and more remarkably fused. It is effective for preventing fusion.
However, since the step of oxidation treatment is added separately, the number of steps is increased, and it is not always easy to control the degree of surface oxidation reliably, and the mesophase powder may be excessively oxidized. Excessive oxidation changes the crystal structure of the mesophase powder, so that the crystallinity of the finally obtained graphite powder is significantly reduced, resulting in a graphite powder having a reduced discharge capacity.

【0015】さらに、本発明者らは、表面酸化が過度で
なくても、表面酸化により粉末に導入された酸素が黒鉛
粉末の結晶化度に悪影響を及ぼすことを見出した。ま
た、表面酸化は、炭化歩留まりも低下させる。
Further, the present inventors have found that even if the surface oxidation is not excessive, the oxygen introduced into the powder by the surface oxidation adversely affects the crystallinity of the graphite powder. Surface oxidation also reduces the carbonization yield.

【0016】従って、表面酸化を利用せずに融着を防止
することが有利である。本発明の課題は、炭化時の融着
防止のための酸化処理を行わずに、結晶化度が高く、比
表面積が小さく、従って、放電容量と充放電効率のいず
れにも優れた、黒鉛粉末を製造することができる方法を
開発することである。
Accordingly, it is advantageous to prevent fusing without utilizing surface oxidation. An object of the present invention is to provide a graphite powder having a high degree of crystallinity and a small specific surface area without performing an oxidation treatment for preventing fusion during carbonization, and thus having excellent discharge capacity and charge / discharge efficiency. The goal is to develop a method that can be manufactured.

【0017】[0017]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく検討を重ねた結果、メソフェーズ粉を炭化
粉または黒鉛化粉といった炭素粉と混合して炭化および
黒鉛化することにより、融着を最小限にして、比表面積
の小さい黒鉛粉末を歩留りよく得ることができることを
見出した。
Means for Solving the Problems As a result of repeated studies to solve the above problems, the present inventors have found that a mesophase powder is mixed with a carbon powder such as a carbonized powder or a graphitized powder and carbonized and graphitized. It has been found that graphite powder having a small specific surface area can be obtained with high yield while minimizing fusion.

【0018】ここに、本発明は、メソフェーズ粉に平均
一次粒子径1μm以上の炭素粉を混合した混合粉末を炭
化および黒鉛化することを特徴とする、リチウムイオン
二次電池負極用黒鉛粉末の製造方法である。
Here, the present invention provides a method for producing graphite powder for a negative electrode of a lithium ion secondary battery, characterized by carbonizing and graphitizing a mixed powder obtained by mixing mesophase powder with carbon powder having an average primary particle diameter of 1 μm or more. Is the way.

【0019】メソフェーズ粉は好ましくは表面酸化処理
を受けていないものである。炭素粉は、平均一次粒子径
が10〜100 μmであり、混合粉末中の炭素粉の割合が5
〜40wt%であることが好ましい。炭素粉は炭化粉または
黒鉛化粉のいずれでよく、好ましくはメソフェーズの炭
化または炭化と黒鉛化を経て得られたものである。
The mesophase powder is preferably not subjected to a surface oxidation treatment. The carbon powder has an average primary particle diameter of 10 to 100 μm, and the ratio of the carbon powder in the mixed powder is 5%.
It is preferably about 40% by weight. The carbon powder may be either carbonized powder or graphitized powder, and is preferably obtained through carbonization of mesophase or carbonization and graphitization.

【0020】本発明の方法では、炭化後は実質的な粉砕
を行わないことが好ましい。「実質的な粉砕」とは、粒
内破壊を生ずる粉砕を意味し、解砕は「実質的な粉砕」
には含まれない。
In the method of the present invention, it is preferable that substantial pulverization is not performed after carbonization. "Substantial grinding" means grinding that causes intragranular fracture, and crushing is "substantial grinding".
Is not included.

【0021】[0021]

【発明の実施の形態】本発明に係るリチウムイオン二次
電池負極用黒鉛粉末の製造方法で用いる原料はメソフェ
ーズ粉である。メソフェーズは、タールおよび/または
ピッチを熱処理することにより得られる。タール (常温
で液状) と、その蒸留残渣であるピッチ (常温で固体ま
たは半固体) は、石炭系と石油系のものがあり、いずれ
も本発明に使用できるが、芳香族成分に富む石炭系のも
のが好ましい。タールやピッチは、樹脂に比べて著しく
安価である上、樹脂より易黒鉛化性であるので、黒鉛化
用途に適している。
DETAILED DESCRIPTION OF THE INVENTION The raw material used in the method for producing graphite powder for a negative electrode of a lithium ion secondary battery according to the present invention is a mesophase powder. Mesophase is obtained by heat treating tar and / or pitch. Tar (liquid at normal temperature) and its distillation residue, pitch (solid or semi-solid at normal temperature), are classified into coal-based and petroleum-based ones, and both can be used in the present invention. Are preferred. Tar and pitch are remarkably inexpensive compared to resins and are more easily graphitizable than resins, so they are suitable for graphitization applications.

【0022】タールやピッチを加熱しながら偏光顕微鏡
で観察すると、ピッチではまず溶融して液状化した後、
温度が400 ℃以上になると液相中に光学異方性の球形粒
子が現れる。この粒子がメソフェーズ小球体である。加
熱を続けると、メソフェーズ小球体の量が増加し、つい
にはそれらが合体して光学異方性のマトリックスが生
じ、最終的には全体が光学異方性となる。この光学異方
性のマトリックス材料または全体的に光学異方性となっ
た材料をバルクメソフェーズと呼んでいる。
Observation with a polarizing microscope while heating the tar and pitch shows that the pitch first melts and liquefies,
When the temperature exceeds 400 ° C., optically anisotropic spherical particles appear in the liquid phase. These particles are mesophase microspheres. With continued heating, the amount of mesophase spherules increases and eventually coalesce to form an optically anisotropic matrix, which ultimately becomes entirely optically anisotropic. This matrix material having optical anisotropy or a material having optical anisotropy as a whole is called bulk mesophase.

【0023】原料のメソフェーズ粉としては、メソフェ
ーズ小球体とバルクメソフェーズを粉砕した粉末のどち
らも使用できる。しかし、メソフェーズ小球体は、光学
的に等方性のマトリックスから溶媒抽出により分離する
必要があり、分離に多量の有機溶媒が必要である上、マ
トリックスは廃棄されるので原料の利用率が低い。従っ
て、工業的にはバルクメソフェーズの粉砕粉を原料とす
る方が好ましい。
As the mesophase powder as a raw material, both mesophase microspheres and powder obtained by pulverizing bulk mesophase can be used. However, the mesophase microspheres need to be separated from the optically isotropic matrix by solvent extraction, which requires a large amount of organic solvent for separation, and the matrix is discarded, so that the raw material utilization is low. Therefore, industrially, it is preferable to use a bulk mesophase pulverized powder as a raw material.

【0024】タールおよび/またはピッチからメソフェ
ーズを得るための熱処理条件は特に制限されないが、通
常は 400〜600 ℃、好ましくは 450〜550 ℃で行われ
る。この熱処理中に油分が揮発するので、その揮発を促
進するため、熱処理を10〜100Torr程度の減圧下で行う
ことが好ましい。大気圧で熱処理する場合には、油分の
除去の促進と熱処理中の材料の酸化防止のために、窒素
ガスなどの不活性ガスの流通下で熱処理を行うことが好
ましい。
The heat treatment conditions for obtaining the mesophase from the tar and / or the pitch are not particularly limited, but are usually at 400 to 600 ° C, preferably 450 to 550 ° C. Since the oil evaporates during this heat treatment, the heat treatment is preferably performed under a reduced pressure of about 10 to 100 Torr in order to promote the volatilization. When heat treatment is performed at atmospheric pressure, it is preferable to perform heat treatment under a flow of an inert gas such as nitrogen gas in order to promote removal of oil and prevent oxidation of the material during the heat treatment.

【0025】熱処理時間は、所望のメソフェーズ化 (メ
ソフェーズ小球体またはバルクメソフェーズの生成) が
起こるように選択する。当然ながら、他の条件が同じで
あれば、バルクメソフェーズの生成には、メソフェーズ
小球体の生成より長い熱処理時間が必要である。しか
し、十分な減圧と適切な温度を選択すれば、数時間の熱
処理時間でバルクメソフェーズを得ることができる。
The heat treatment time is selected so that the desired mesophase formation (formation of mesophase microspheres or bulk mesophase) takes place. Of course, if other conditions are the same, the bulk mesophase generation requires a longer heat treatment time than the generation of mesophase microspheres. However, if sufficient pressure reduction and an appropriate temperature are selected, a bulk mesophase can be obtained in a heat treatment time of several hours.

【0026】このメソフェーズ化の熱処理前に、出発物
質のタールおよび/またはピッチをニトロ化剤の存在下
で加熱することにより予備処理してもよい。この予備処
理により、原料分子の芳香環にニトロ基が導入され、さ
らにニトロ基同士が縮合反応(ニトロ基の脱離を伴う)
して原料が二量体化、さらたは多量体化する。即ち、原
料が重縮合を受けて高分子量化する。その結果、メソフ
ェーズ化と次の炭化における揮発分の量が減少し、最終
的に得られる黒鉛粉末の歩留りが増大する。
Prior to the mesophase heat treatment, the starting tar and / or pitch may be pretreated by heating in the presence of a nitrating agent. By this pretreatment, a nitro group is introduced into the aromatic ring of the raw material molecule, and a nitro group condensation reaction occurs (with elimination of the nitro group).
As a result, the raw material is dimerized and further multimerized. That is, the raw material undergoes polycondensation to increase the molecular weight. As a result, the amount of volatiles in the mesophase formation and subsequent carbonization decreases, and the yield of the graphite powder finally obtained increases.

【0027】ニトロ化剤は、メソフェーズ化の熱処理中
に添加することも考えられるが、そうすると熱処理で生
成したメソフェーズの組織 (偏光顕微鏡で観察される模
様)が変化することがある上、上記の高分子量化による
収量増大の効果はほとんど得られなくなる。従って、ニ
トロ化剤による処理はメソフェーズ化熱処理の前に予備
処理として行うことが好ましい。
It is conceivable that the nitrating agent is added during the heat treatment for mesophase formation. However, this may change the structure of the mesophase formed by the heat treatment (pattern observed by a polarizing microscope). The effect of increasing the yield by increasing the molecular weight can hardly be obtained. Therefore, the treatment with the nitrating agent is preferably performed as a preliminary treatment before the mesophase heat treatment.

【0028】この予備処理に用いるニトロ化剤の例とし
ては、これらに限られないが、硝酸、硝酸アンモニウ
ム、硝酸アセチル、ニトロベンゼン、ニトロトルエン、
ニトロナフタレンなどが挙げられる。ニトロ化剤の添加
量は、一般に出発原料 (タールおよび/またはピッチ)
の 0.1〜15wt%の範囲である。この量が 0.1wt%以下で
は高分子量化がほとんど進まず、15wt%を超える量のニ
トロ化剤を添加すると、黒鉛化に悪影響を生じ、最終的
に得られる黒鉛粉末の結晶化度が低くなり、従って放電
容量が低下する。ニトロ化剤の添加量の好ましい範囲は
0.5〜10wt%、より好ましい範囲は1〜5wt%である。
Examples of the nitrating agent used in this pretreatment include, but are not limited to, nitric acid, ammonium nitrate, acetyl nitrate, nitrobenzene, nitrotoluene,
Nitronaphthalene and the like can be mentioned. The amount of nitrating agent added generally depends on the starting material (tar and / or pitch)
Is in the range of 0.1 to 15% by weight. If the amount is less than 0.1 wt%, the increase in molecular weight hardly progresses, and if the amount of nitrating agent exceeds 15 wt%, the graphitization will be adversely affected and the crystallinity of the final graphite powder will decrease. Therefore, the discharge capacity decreases. The preferred range of the addition amount of the nitrating agent is
0.5 to 10% by weight, more preferably 1 to 5% by weight.

【0029】ニトロ化剤の存在下での加熱は、300 ℃以
上、400 ℃未満の温度で行う。この温度範囲では、ニト
ロ化と重縮合による出発原料の高分子量化が短時間で進
行する。加熱温度が300 ℃より低いと重縮合が十分に進
まず、400 ℃以上ではメソフェーズ化が進行するように
なる。ニトロ化剤の添加の前に 100〜300 ℃の範囲内の
温度で予備加熱してもよい。この予備加熱により原料の
ニトロ化がより進行する。加熱時間は、全体で数時間以
内とすることが好ましく、予備加熱を行う場合には、い
ずれの加熱も1時間以内でよい場合が多い。加熱中の表
面酸化を避けるため、加熱は不活性ガス流通下で行うこ
とが好ましい。なお、導入されたニトロ基あるいは窒素
分は、最終的に黒鉛化すると完全に除去される。
The heating in the presence of the nitrating agent is performed at a temperature of 300 ° C. or more and less than 400 ° C. In this temperature range, the high molecular weight of the starting material by nitration and polycondensation proceeds in a short time. If the heating temperature is lower than 300 ° C., polycondensation does not proceed sufficiently, and if the heating temperature is higher than 400 ° C., mesophase formation proceeds. Prior to the addition of the nitrating agent, it may be preheated at a temperature in the range of 100-300 ° C. This preheating further promotes nitration of the raw material. The heating time is preferably within a few hours in total, and in the case of performing preliminary heating, it is often sufficient to perform any heating within one hour. In order to avoid surface oxidation during heating, the heating is preferably performed under a flow of an inert gas. The introduced nitro group or nitrogen content is completely removed when it is finally graphitized.

【0030】メソフェーズがバルクメソフェーズの場合
は粉砕してメソフェーズ粉にする。メソフェーズ小球体
の場合は粉砕せずに使用できるが、所望により粉砕して
もよい。本発明の好適態様にあっては、炭化後には実質
的な粉砕を行わないので、この段階で最終製品である黒
鉛粉末に望まれる粒度になるように粉砕を行う。リチウ
ムイオン二次電池負極用の好ましい黒鉛粉末の平均粒径
は一般に5〜35μmの範囲内であるので、バルクメソフ
ェーズの平均粒径がこの範囲内になるように粉砕を行え
ばよい。
When the mesophase is a bulk mesophase, it is pulverized into a mesophase powder. In the case of mesophase spheres, they can be used without crushing, but may be crushed if desired. In a preferred embodiment of the present invention, since substantial pulverization is not performed after carbonization, pulverization is performed at this stage to obtain a desired particle size for the graphite powder as a final product. The average particle size of the preferred graphite powder for the negative electrode of the lithium ion secondary battery is generally in the range of 5 to 35 μm, so that the pulverization may be performed so that the average particle size of the bulk mesophase is in this range.

【0031】本発明では、炭化時のメソフェーズ粉の融
着を、炭素粉の混合により最小限にすることができるの
で、炭化前に最終粒度に粉砕を行うことが可能となる。
なお、炭化中の揮発分の除去と黒鉛化中の結晶化によ
り、粒径はいくらか変動するが、それほど大きな変動で
はない。必要であれば、炭化および黒鉛化時の粒径の変
動を実験で求め、その変動を見込んでメソフェーズの粉
砕を行ってもよい。
According to the present invention, the fusion of the mesophase powder during carbonization can be minimized by mixing the carbon powder, so that it is possible to pulverize to the final particle size before carbonization.
The particle size varies somewhat due to the removal of volatiles during carbonization and crystallization during graphitization, but not so large. If necessary, the variation in particle size during carbonization and graphitization may be determined by experiment, and the mesophase may be pulverized in consideration of the variation.

【0032】粉砕は適当な粉砕機を用いて行うことがで
きる。例えば、ハンマーミル、ボールミル、ロッドミル
などの衝撃または衝撃/摩砕が主に作用する粉砕機、或
いはディスククラッシャー等の剪断が主に作用する粉砕
機が使用できる。2種以上の粉砕機を併用してもよい。
The pulverization can be performed using a suitable pulverizer. For example, a crusher mainly acting on impact or impact / milling such as a hammer mill, a ball mill, a rod mill, or a crusher mainly acting on shear such as a disk crusher can be used. Two or more pulverizers may be used in combination.

【0033】前述したように、原料のメソフェーズは、
表面酸化処理を受けていないものであることが好まし
い。即ち、バルクメソフェーズ粉砕粉だけでなく、メソ
フェーズ小球体の場合も表面酸化処理していないものが
好ましい。
As described above, the mesophase of the raw material is
Preferably, it has not been subjected to a surface oxidation treatment. That is, not only bulk mesophase pulverized powder but also mesophase small spheres are preferably not subjected to surface oxidation treatment.

【0034】メソフェーズ粉を熱処理して炭化および黒
鉛化させると黒鉛粉末が得られる。炭化は炭素以外の元
素をほぼ完全に熱分解させて除去する工程であり、黒鉛
化は黒鉛の層状結晶構造を発達させる工程である。炭化
時には、メソフェーズ粉から揮発分の除去に伴って多量
のガスが発生する。その際に揮発分の少なくとも一部が
液体状態を経るため、メソフェーズ粉の揮発分が非常に
少ない場合あるいは表面酸化処理(これは前述したよう
に黒鉛の結晶化に悪影響がある)を施した場合を除い
て、メソフェーズ粉の融着が起こり、融着した炭化材料
が得られる。
When the mesophase powder is heat-treated and carbonized and graphitized, graphite powder is obtained. Carbonization is a step of almost completely thermally decomposing and removing elements other than carbon, and graphitization is a step of developing a layered crystal structure of graphite. At the time of carbonization, a large amount of gas is generated as volatile components are removed from the mesophase powder. At this time, at least a part of the volatile component is in a liquid state, so that the mesophase powder has a very small volatile component or a surface oxidation treatment (this has a negative effect on the crystallization of graphite as described above). Except for, fusion of the mesophase powder occurs, and a fused carbonized material is obtained.

【0035】本発明では、メソフェーズ粉に炭素粉を混
合して炭化させることにより、炭化中の融着を抑制す
る。炭素粉は揮発分を含まないため、炭素粉を混合し
て、メソフェーズ粉の間に炭素粉を介在させると、メソ
フェーズ粉の融着が著しく低減することが判明した。炭
素粉は、炭化粉 (黒鉛化していない炭素からなる粉末)
と黒鉛化粉のいずれでもよく、両者を併用することもで
きる。
In the present invention, the carbon powder is mixed with the mesophase powder and carbonized to suppress fusion during carbonization. Since carbon powder does not contain volatile matter, it has been found that when carbon powder is mixed and carbon powder is interposed between mesophase powders, fusion of the mesophase powder is significantly reduced. Carbon powder is carbonized powder (powder made of ungraphitized carbon)
And graphitized powder, and both may be used in combination.

【0036】混合する炭素粉は平均一次粒子径1μm以
上のものとする。これより平均一次粒子径が小さいと、
微粉すぎるため、黒鉛化後に得られた黒鉛粉末の比表面
積が著しく増大し、充放電効率が大きく低下する上、融
着の抑制効果が少なく、黒鉛化性も低下し、放電容量も
大きく低下する。混合する炭素粉の平均一次粒子径は好
ましくは10〜100 μmであり、より好ましくは25〜70μ
mである。
The carbon powder to be mixed has an average primary particle diameter of 1 μm or more. If the average primary particle size is smaller than this,
Because the powder is too fine, the specific surface area of the graphite powder obtained after the graphitization is significantly increased, and the charge / discharge efficiency is significantly reduced. In addition, the effect of suppressing fusion is small, the graphitization property is also reduced, and the discharge capacity is also significantly reduced. . The average primary particle diameter of the carbon powder to be mixed is preferably 10 to 100 μm, more preferably 25 to 70 μm.
m.

【0037】混合する炭素粉は、最後に黒鉛化を受ける
ので、黒鉛化性の高い炭素粉であることが好ましい。そ
の意味で、易黒鉛化性のメソフェーズから得られた炭化
粉、即ち、メソフェーズの炭化により得られた炭化粉
と、メソフェーズの炭化および黒鉛化により得られた黒
鉛化粉が好ましい炭素粉である。しかし、天然黒鉛、従
来の普通の人造黒鉛、樹脂の炭化で得られた炭化粉や炭
素繊維の粉砕物、といった他の炭素粉も使用できる。但
し、カーボンブラックは、平均一次粒子径が1μmより
微細であるので不適である。
Since the carbon powder to be mixed undergoes graphitization at the end, it is preferable that the carbon powder be highly graphitizable. In this sense, carbonized powder obtained from mesophase which is easily graphitizable, that is, carbonized powder obtained by carbonization of mesophase and graphitized powder obtained by carbonization and graphitization of mesophase are preferable carbon powders. However, other carbon powders such as natural graphite, conventional ordinary artificial graphite, carbonized powder obtained by carbonizing a resin, and crushed carbon fiber can also be used. However, carbon black is not suitable because the average primary particle diameter is smaller than 1 μm.

【0038】好ましい炭素粉としては、より具体的には
下記の炭素粉が挙げられる: バルクメソフェーズの粉砕粉および/またはメソフェ
ーズ小球体を炭化した炭化粉、 バルクメソフェーズの粉砕粉および/またはメソフェ
ーズ小球体を炭化し、黒鉛化した黒鉛化粉、 バルクメソフェーズを成形した後、炭化し、粉砕した
炭化粉、 バルクメソフェーズを成形した後、炭化し、粉砕し、
黒鉛化した黒鉛化粉、 バルクメソフェーズを成形した後、炭化し、黒鉛化
し、粉砕した黒鉛化粉、 バルクメソフェーズの粉砕粉および/またはメソフェ
ーズ小球体の炭化後または黒鉛化後の分級工程の篩い上
の粗大炭化または黒鉛化粉。
Preferable examples of the carbon powder include the following carbon powders: pulverized powder of bulk mesophase and / or carbonized powder of carbonized mesophase spheroid, pulverized powder of bulk mesophase and / or mesophase spheroid Carbonized and graphitized graphitized powder, after forming bulk mesophase, carbonized and pulverized carbonized powder, after forming bulk mesophase, carbonized and pulverized,
After forming graphitized graphitized powder, bulk mesophase, carbonized, graphitized, pulverized graphitized powder, pulverized powder of bulk mesophase and / or on a sieve in the classification process after carbonization of mesophase spheroids or graphitization Coarse carbonized or graphitized powder.

【0039】これらのうち、特に好ましいのは、お
よびである。これらの炭素粉は、本発明の黒鉛粉末の
製造過程で生成する粉末であり、混合用の炭素粉を外部
から用意する必要がない。即ち、およびの場合は、
炭化工程または黒鉛化工程で得られた炭化生成物または
黒鉛化生成物の一部を炭化工程に再循環するだけでよ
い。は、炭化または黒鉛化工程の後に行う分級で篩い
上に残った粗大な炭化粉または黒鉛化粉を炭化工程に再
循環させることなる。これらの粗大粉は、再粉砕すれ
ば、生成物として回収できるが、そうすると生成物の比
表面積が増大する。従って、特に黒鉛化粉については、
粉砕せずに混合することが好ましいが、配合量が少なけ
れば、粉砕してから混合してもよい。炭素粉の場合は、
粉砕してもよい。
Of these, and are particularly preferred. These carbon powders are powders generated during the production process of the graphite powder of the present invention, and there is no need to prepare a carbon powder for mixing from the outside. That is, and
It is only necessary to recycle part of the carbonized product or graphitized product obtained in the carbonization or graphitization step to the carbonization step. Means that coarse carbonized powder or graphitized powder remaining on the sieve in the classification performed after the carbonization or graphitization step is recycled to the carbonization step. These coarse powders can be recovered as a product by re-grinding, but this increases the specific surface area of the product. Therefore, especially for graphitized powder,
It is preferable to mix without pulverization, but if the amount is small, pulverization may be performed before mixing. In the case of carbon powder,
It may be ground.

【0040】混合する炭素粉の配合割合は、炭化中のメ
ソフェーズ粉の融着防止に必要な量であればよい。この
量は、メソフェーズ粉の融着の強さ、従って、メソフェ
ーズ粉の揮発分の含有量により異なり、揮発分の含有量
が多いほど炭素粉の配合割合を増大させることが好まし
い。通常は、メソフェーズ粉と炭素粉との合計に対する
炭素粉の割合を5〜40wt%の範囲内とすることが好まし
い。炭素粉が5wt%より少ないと、炭化中の融着防止の
効果が小さい。炭素粉の混合による融着防止効果は、炭
素粉の配合量が約40wt%で飽和するが、それより多量に
配合してもよく、それによる負極特性への悪影響はほと
んどない。但し、炭素粉の配合量の分だけ、1回の炭化
処理量が少なくなるので、配合量をあまりに多くするこ
とは好ましくない。
The mixing ratio of the carbon powder to be mixed may be an amount necessary for preventing fusion of the mesophase powder during carbonization. This amount depends on the strength of the fusion of the mesophase powder and, therefore, the volatile content of the mesophase powder, and it is preferable to increase the proportion of the carbon powder as the volatile content increases. Normally, the ratio of the carbon powder to the total of the mesophase powder and the carbon powder is preferably in the range of 5 to 40 wt%. If the carbon powder content is less than 5 wt%, the effect of preventing fusion during carbonization is small. The effect of preventing fusion by mixing carbon powder saturates when the blending amount of carbon powder is about 40 wt%, but it may be blended in a larger amount, and there is almost no adverse effect on negative electrode characteristics. However, since the amount of carbonization at one time is reduced by the amount of the carbon powder, it is not preferable to increase the amount of the carbon powder too much.

【0041】メソフェーズ粉と炭素粉をなるべく均一に
混合する。この混合は、例えばV型混合機、ドラムミキ
サー、アキシャルミキサー等の混合機により行うことが
できる。得られた混合粉末を炭化および黒鉛化熱処理し
て黒鉛粉末を得る。炭化と黒鉛化の熱処理は従来と同様
に実施すればよい。一般に炭化に必要な温度は 700〜11
00℃であり、黒鉛化に必要な温度は2500℃以上である。
炭化と黒鉛化は、同じ炉を使って1工程の焼成で実施す
ることも不可能ではないが、黒鉛化温度が非常に高く、
特殊な炉が必要になるため、通常は別工程で行う。
The mesophase powder and the carbon powder are mixed as uniformly as possible. This mixing can be performed by a mixer such as a V-type mixer, a drum mixer, and an axial mixer. The obtained mixed powder is heat-treated by carbonization and graphitization to obtain a graphite powder. The heat treatment for carbonization and graphitization may be performed in the same manner as in the prior art. Generally, the temperature required for carbonization is 700-11
00 ° C., and the temperature required for graphitization is 2500 ° C. or more.
It is not impossible to perform carbonization and graphitization in a single process using the same furnace, but the graphitization temperature is extremely high,
Usually, it is performed in a separate process because a special furnace is required.

【0042】炭化と黒鉛化の熱処理はいずれも非酸化性
雰囲気中で行うのが普通である。熱処理雰囲気は、不活
性ガス (例、窒素、アルゴン等の希ガス) と還元性ガス
(例、水素と不活性ガスの混合ガス) のいずれでもよ
い。炭素の酸化は黒鉛化後の結晶化度の低下や比表面積
の増大の原因となるため、雰囲気中の酸素、水蒸気、二
酸化炭素等の酸化性ガスの濃度は極力低くすることが好
ましい。黒鉛化温度では、水素等の還元性ガスや場合に
よっては窒素も炭素と反応する可能性があるため、黒鉛
化時の熱処理雰囲気は、アルゴン等の希ガスが好まし
い。
The heat treatment for carbonization and graphitization is usually performed in a non-oxidizing atmosphere. The heat treatment atmosphere is an inert gas (eg, a rare gas such as nitrogen or argon) and a reducing gas.
(Eg, a mixed gas of hydrogen and an inert gas). Since oxidation of carbon causes a decrease in crystallinity and an increase in specific surface area after graphitization, it is preferable to reduce the concentration of oxidizing gas such as oxygen, water vapor, and carbon dioxide in the atmosphere as much as possible. At the graphitization temperature, since a reducing gas such as hydrogen and possibly nitrogen may also react with carbon, the atmosphere for the heat treatment at the time of graphitization is preferably a rare gas such as argon.

【0043】炭化は、前述したように 700〜1100℃、好
ましくは 800〜1000℃の温度で行われる。炭化時間は、
炭素以外の元素がほぼ完全に除去されるように設定すれ
ばよく、通常は1〜50時間の範囲である。この炭化時に
は、揮発分からガスが発生するので、ガス排出手段を備
えた加熱炉で熱処理することが好ましい。加熱炉として
通常は電気炉が使用される。
The carbonization is performed at a temperature of 700 to 1100 ° C., preferably 800 to 1000 ° C. as described above. The carbonization time is
What is necessary is just to set so that elements other than carbon may be removed almost completely, and it is usually in the range of 1 to 50 hours. During this carbonization, a gas is generated from the volatile matter, so that it is preferable to perform a heat treatment in a heating furnace equipped with a gas discharging means. Usually, an electric furnace is used as the heating furnace.

【0044】本発明では、メソフェーズ粉に炭素粉を配
合して炭化するため、炭化時の粉末の融着が抑制され、
炭化後に粉砕を行う必要がない。多少の融着が見られた
場合には、分級により篩い上に残った融着粉末を除去す
ればよい。この融着粉末は、メソフェーズ粉に配合する
炭素粉として使用できる。炭化後に粉砕しないため、比
表面積が小さい黒鉛粉末を得ることができ、充放電効率
やサイクル寿命が良好となる。
In the present invention, since carbon powder is blended with mesophase powder and carbonized, fusion of the powder during carbonization is suppressed,
There is no need to grind after carbonization. If some fusion is observed, the fusion powder remaining on the sieve may be removed by classification. This fused powder can be used as carbon powder to be blended with the mesophase powder. Since it is not pulverized after carbonization, graphite powder having a small specific surface area can be obtained, and the charge / discharge efficiency and cycle life are improved.

【0045】黒鉛化は、高周波加熱炉や炭素の直接通電
により高温に抵抗加熱するアチソン型抵抗加熱炉で行わ
れる。炭素材料を2500℃以上に加熱すると、炭素が結晶
化して黒鉛になる。黒鉛化温度は高いほど結晶化が促進
され望ましいが、あまり温度が高くなりすぎると黒鉛粉
末が昇華する。好ましい黒鉛化温度は、2800〜3200℃で
あり、黒鉛化熱処理時間は 0.1〜10時間である。
Graphitization is performed in a high-frequency heating furnace or an Acheson-type resistance heating furnace in which resistance is heated to a high temperature by direct energization of carbon. When a carbon material is heated to 2500 ° C. or more, the carbon is crystallized into graphite. A higher graphitization temperature is desirable because crystallization is promoted, but if the temperature is too high, the graphite powder will sublime. The preferred graphitization temperature is 2800-3200 ° C., and the graphitization heat treatment time is 0.1-10 hours.

【0046】メソフェーズがニトロ化処理されたタール
および/またはピッチから得られたものである場合、こ
の黒鉛化中に、ニトロ化剤により導入された窒素分が完
全に除去されるので、ニトロ化剤の処理による負極材料
特性への悪影響はない。これに対し、このメソフェーズ
を黒鉛化せずに炭化だけで熱処理をとどめておくと、得
られた炭化材を用いた負極は、充放電効率が著しく低下
する。
If the mesophase is obtained from a nitrated tar and / or pitch, the nitrogen content introduced by the nitrating agent is completely removed during the graphitization. There is no adverse effect on the characteristics of the negative electrode material due to the treatment. On the other hand, if the heat treatment is stopped only by carbonization without graphitizing the mesophase, the negative electrode using the obtained carbonized material will have a remarkable decrease in charge / discharge efficiency.

【0047】黒鉛化後も融着粉末が生じた場合には、や
はり分級により除去し、除去された融着粉末を、炭化前
のメソフェーズ粉に融着防止用の炭素粉として配合する
ことができる。なお、炭化後と黒鉛化後に、軽度の粉砕
による解砕を行ってもよい。このような解砕は、本発明
で意味する「実質的な粉砕」には含まれない。
When the fused powder is formed even after graphitization, it is also removed by classification, and the removed fused powder can be blended with the mesophase powder before carbonization as carbon powder for preventing fusion. . After carbonization and graphitization, pulverization by light pulverization may be performed. Such pulverization is not included in the “substantial pulverization” in the present invention.

【0048】本発明の方法によれば、炭化中の融着が少
ないため、炭化後に必要により解砕した後、分級するこ
とで、篩い上に残る粗大粉の割合が少なく、分級された
炭化粉をそのまま粉砕せずに黒鉛化することで、高い歩
留まりで黒鉛粉末を製造することができる。また、この
粗大粉は、本発明では融着防止用の炭素粉として炭化工
程に再循環できるので、さらに歩留まりが向上する。こ
のような粗大粉は、一般にパイプでの吸い出しにより行
われる炭化粉の運搬中に詰まりを起こし易く、作業能率
の低下を生ずるが、上記のように分級することで、この
ような障害が発生しにくくなる。製造された黒鉛粉末
は、メソフェーズを原料とするため、結晶化度が高く、
放電容量が良好である。さらに、炭化中の融着が少な
く、炭化後には粉砕を行わないですむため、比表面積が
小さく、充放電効率やサイクル寿命に優れている。
According to the method of the present invention, since the fusion during carbonization is small, the carbonized powder which has been crushed as necessary after carbonization and classified is reduced in the proportion of coarse powder remaining on the sieve. By directly graphitizing the powder without pulverization, graphite powder can be produced with a high yield. In addition, in the present invention, the coarse powder can be recycled to the carbonization step as carbon powder for preventing fusion, thereby further improving the yield. Such coarse powder is liable to be clogged during the transportation of carbonized powder, which is generally performed by suction through a pipe, and causes a reduction in work efficiency.However, such classification is caused by classification as described above. It becomes difficult. The produced graphite powder uses mesophase as a raw material, so it has high crystallinity,
Good discharge capacity. Furthermore, since there is little fusion during carbonization and pulverization is not required after carbonization, the specific surface area is small, and charge / discharge efficiency and cycle life are excellent.

【0049】本発明の方法で製造された黒鉛粉末を用い
て、常法に従って電極を作製し、リチウムイオン二次電
池に負極として組み込むことができる。一般的な電極の
製造方法は、黒鉛粉末を少量の適当な結着剤 (例、ポリ
テトラフルオロエチレン、ポリフッ化ビニリデン、ポリ
エチレン、ヘキサフルホロポリプロピレン、ポリビニル
アルコール、カルボキシメチルセルロース等) と一緒に
湿式または乾式で成形し、集電体となる電極基板 (例、
銅箔などの金属箔) と一体化させる方法である。湿式成
形の場合は、スラリーを電極基板上にスクリーン印刷ま
たは塗布し、ロール加圧して圧密化する方法が普通であ
る。乾式成形の場合はホットプレス等により別に成形し
てから電極基板に熱圧着させる方法が採用できる。本発
明の方法で製造された粉末と他の黒鉛粉末と併用して電
極を製造することもできる。
Using the graphite powder produced by the method of the present invention, an electrode can be prepared according to a conventional method and incorporated into a lithium ion secondary battery as a negative electrode. A common method of manufacturing electrodes is to wet or dry graphite powder with a small amount of a suitable binder (e.g., polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, hexafluropolypropylene, polyvinyl alcohol, carboxymethyl cellulose, etc.). An electrode substrate that is formed in a dry process and becomes a current collector (eg,
(Metal foil such as copper foil). In the case of wet molding, a method of screen-printing or applying a slurry on an electrode substrate, and pressing the roll to consolidate the slurry is common. In the case of dry molding, a method of separately molding by hot pressing or the like and then thermocompression bonding to the electrode substrate can be adopted. An electrode can also be produced by using the powder produced by the method of the present invention together with another graphite powder.

【0050】[0050]

【実施例】コールタールピッチを熱処理して得たバルク
メソフェーズをハンマーミルで粉砕し、325 メッシュの
篩い (篩い目45μm) で分級して、平均粒径が約25μm
のメソフェーズ粉を得た。このメソフェーズ粉の揮発分
は約18wt%であった。
Example: A bulk mesophase obtained by heat-treating coal tar pitch was pulverized by a hammer mill, and classified by a 325 mesh sieve (mesh size: 45 μm) to have an average particle size of about 25 μm.
Of mesophase powder was obtained. The volatile content of this mesophase powder was about 18% by weight.

【0051】このメソフェーズ粉に、下記A〜Eのいず
れかの炭素粉 (平均一次粒子径は表1に記載) をドラム
ミキサーにより混合し、または混合せずに、窒素気流を
流通させた電気炉に入れ、50℃/hrの昇温速度で1000℃
まで加熱し、1000℃に5時間保持して炭化させた。
An electric furnace in which a nitrogen powder is flown into this mesophase powder by mixing a carbon powder of any of the following A to E (average primary particle diameter is described in Table 1) with a drum mixer or without mixing: 1000 ℃ at a heating rate of 50 ℃ / hr
And kept at 1000 ° C. for 5 hours to carbonize.

【0052】混合した炭素粉 A:バルクメソフェーズを粉砕し、炭化した炭素粉、
(炭化後に解砕) B:バルクメソフェーズを粉砕し、炭化し、3000℃で黒
鉛化した炭素粉、(炭化後黒鉛化前に解砕) C:バルクメソフェーズを粉砕した粉末をゴムラバーに
詰め、1ton/cm2 で成形した成形体を、炭化し、黒鉛化
し、粉砕した粉末、 D:人造黒鉛粉末、 E:カーボンブラック。
Mixed carbon powder A: carbon powder obtained by pulverizing bulk mesophase and carbonizing it.
(Pulverized after carbonization) B: Carbon powder obtained by pulverizing bulk mesophase, carbonized and graphitized at 3000 ° C, (crushed before graphitization after carbonization) C: Filling powder obtained by pulverizing bulk mesophase into rubber rubber, 1 ton / cm 2 , a powder obtained by carbonizing, graphitizing and pulverizing a molded product, D: artificial graphite powder, E: carbon black.

【0053】得られた炭化粉を、プレパラート上にアル
コール等で分散させ、倍率20倍で観察し、融着の有無を
確認した。融着小、中、大の炭化粉は、ハンマーミルの
回転数を粉砕時の1/10に落として解砕した。また、融着
なしの炭化粉と、それ以外の解砕した炭化粉を、それぞ
れ325 メッシュの篩いで分級し、篩い上の割合を求め
た。
The obtained carbonized powder was dispersed on a preparation with alcohol or the like, and observed at a magnification of 20 to confirm the presence or absence of fusion. The small, medium and large carbonized powders were crushed by reducing the rotation speed of the hammer mill to 1/10 of the grinding time. In addition, the carbonized powder without fusion and the crushed carbonized powder other than that were classified with a 325 mesh sieve, and the ratio on the sieve was determined.

【0054】篩い下の炭化粉を黒鉛化炉 (黒鉛ヒーター
を用いた抵抗加熱炉) に移し、アルゴン雰囲気下で10℃
/分の速度で3000℃に昇温させ、この温度に1時間保持
して黒鉛化して、黒鉛粉末を得た。この黒鉛粉末の比表
面積を、N2 置換法によるBET1点測定法により求め
た。
The carbonized powder under the sieve was transferred to a graphitization furnace (resistance heating furnace using a graphite heater), and was heated at 10 ° C. in an argon atmosphere.
The temperature was raised to 3000 ° C. at a rate of / min, and maintained at this temperature for 1 hour to graphitize to obtain a graphite powder. The specific surface area of the graphite powder was determined by a one-point BET measurement method using the N 2 substitution method.

【0055】得られた黒鉛粉末の負極特性を次のように
して調べた。黒鉛粉末を上記と同様に解砕した後、黒鉛
粉末90重量部とポリフッ化ビニリデン粉末10重量部を溶
剤のN−メチルピロリドン中で混合し、ペースト状にし
た。得られたペースト状の負極材料を、電極基板の厚さ
20μmの銅箔上にドクターブレードを用いて均一厚さに
塗布し、乾燥させて1ton/cm2 の冷間プレスで圧縮後、
真空中120 ℃で乾燥した。ここから切り出した面積1cm
2 の試験片を電極 (負極) として使用した。
The negative electrode characteristics of the obtained graphite powder were examined as follows. After pulverizing the graphite powder in the same manner as described above, 90 parts by weight of the graphite powder and 10 parts by weight of the polyvinylidene fluoride powder were mixed in N-methylpyrrolidone as a solvent to form a paste. The obtained paste-like negative electrode material is applied to the thickness of the electrode substrate.
It is applied to a uniform thickness on a 20μm copper foil using a doctor blade, dried and compressed by a 1 ton / cm 2 cold press.
Dry at 120 ° C. in vacuo. 1cm area cut out from here
The test piece of No. 2 was used as an electrode (negative electrode).

【0056】負極特性の評価は、対極、参照極に金属リ
チウムを用いた3極式定電流充放電試験により行った。
電解液にはエチレンカーボネートとジメチルカーボネー
トの体積比1:1 の混合溶媒に1M濃度でLiClO4を溶解し
た非水溶液を使用した。このセルを、0.3 mA/cm2の電流
密度でLi参照極に対して0.0 V まで充電して負極中にLi
を格納させた後、同じ電流密度でLi参照極に対して1.50
Vまで放電 (Liイオンの放出) を行う充放電サイクルを
10サイクル行い、2〜10サイクルの9回の放電容量の平
均値を放電容量とした。また、初回の充放電において充
電に要した電気量に対する放電時の電気量の割合 (%)
として充放電効率を算出した。これらの結果を、混合し
た炭素粉の種類、平均一次粒子径および配合量と、炭化
後の融着の程度、解砕の必要性、炭化粉の325 メッシュ
篩い上の割合、および黒鉛粉末の比表面積の値と一緒に
表1に示す。
The evaluation of the negative electrode characteristics was performed by a three-electrode constant current charge / discharge test using lithium metal as a counter electrode and a reference electrode.
As the electrolyte, a non-aqueous solution in which LiClO 4 was dissolved at a concentration of 1 M in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 1 was used. Li this cell, the negative electrode during charging to 0.0 V vs. Li reference electrode at a current density of 0.3 mA / cm 2
Is stored, and 1.50 with respect to the Li reference electrode at the same current density.
Charge / discharge cycle to discharge (discharge Li ions) to V
10 cycles were performed, and the average value of 9 discharge capacities of 2 to 10 cycles was defined as the discharge capacity. The ratio of the amount of electricity at the time of discharge to the amount of electricity required for charging in the first charge / discharge (%)
And the charge / discharge efficiency was calculated. Based on these results, the type of carbon powder mixed, the average primary particle size and blending amount, the degree of fusion after carbonization, necessity of crushing, the ratio of carbonized powder on a 325 mesh sieve, and the ratio of graphite powder The results are shown in Table 1 together with the surface area values.

【0057】[0057]

【表1】 [Table 1]

【0058】表1からわかるように、比較例2のよう
に、炭素粉を混合せずに、メソフェーズ粉だけを炭化し
た場合には、炭化中の融着がひどく、解砕した後でも32
5 メッシュの篩い上に25%もの粗大粉が残り、歩留まり
が低下した。
As can be seen from Table 1, when only the mesophase powder was carbonized without mixing the carbon powder as in Comparative Example 2, the fusion during carbonization was severe, and even after crushing,
As much as 25% of coarse powder remained on the 5-mesh sieve, reducing the yield.

【0059】本発明に従って、メソフェーズ粉に融着性
のない炭素粉を配合して炭化すると、炭化中のメソフェ
ーズ粉の融着を完全に防止できるか、大幅に抑制するこ
とができ、炭化後の解砕が不要か、解砕した後に、炭化
以後の粉砕を行わずに、比表面積が小さく、充放電効率
と放電量容量の高い黒鉛粉末を得ることができた。
According to the present invention, when carbon powder having no fusion property is blended with mesophase powder and carbonized, fusion of the mesophase powder during carbonization can be completely prevented or greatly suppressed, and carbonization after carbonization can be prevented. It was possible to obtain a graphite powder having a small specific surface area, a high charge / discharge efficiency and a high discharge capacity, without the necessity of crushing or without crushing after carbonization.

【0060】混合した炭素粉の平均一次粒子径が10μm
未満と小さいか、100 μm超と大きいと、融着が起こり
易くなった。また、平均一次粒子径が小さい炭素粉を配
合すると、黒鉛粉末の比表面積が増加し、充放電効率が
低下した。炭素粉の平均一次粒子径は、例えば40μmと
大きくても、融着防止効果は高かったが、325 メッシュ
の篩い上の粗大粉の量が増えた。但し、これを本発明に
従ってメソフェーズ粉に混合する炭素粉として使用すれ
ば、歩留まりへの悪影響はほとんどない。
The average primary particle diameter of the mixed carbon powder is 10 μm
If it is as small as less than 100 μm or as large as more than 100 μm, fusion is likely to occur. Further, when a carbon powder having a small average primary particle diameter was blended, the specific surface area of the graphite powder was increased, and the charge / discharge efficiency was reduced. Even if the average primary particle diameter of the carbon powder was as large as 40 μm, for example, the effect of preventing fusion was high, but the amount of coarse powder on a 325 mesh sieve increased. However, if this is used as carbon powder mixed with mesophase powder according to the present invention, there is almost no adverse effect on the yield.

【0061】炭素粉の配合量は5wt%と少なくても、あ
る程度の効果はあった。また、配合量を40wt%まで増や
すと、篩い上の割合が0% (即ち、融着が完全に防止)
となった。それ以上に配合量を増やしても効果は同じで
あるが、負極特性への影響はなかった。
Even if the compounding amount of the carbon powder was as small as 5 wt%, some effects were obtained. Also, when the blending amount is increased to 40 wt%, the ratio on the sieve is 0% (that is, fusion is completely prevented).
It became. The effect is the same when the blending amount is further increased, but there is no effect on the negative electrode characteristics.

【0062】炭素粉が人造黒鉛では、炭化中の融着防止
効果は高かったが、人造黒鉛の黒鉛化性 (結晶化度) が
あまり高くなく、比表面積が大きいため、得られた黒鉛
粉末の放電容量が低くなり、比表面積の増大と充放電効
率の低下も見られた。
When the carbon powder was artificial graphite, the effect of preventing fusion during carbonization was high, but the graphitizability (crystallinity) of artificial graphite was not so high, and the specific surface area was large. The discharge capacity decreased, and the specific surface area increased and the charge / discharge efficiency decreased.

【0063】炭素粉が、平均一次粒子径が1μmよりず
っと小さいカーボンブラックである比較例1では、融着
がほとんど抑制できない上、得られた黒鉛粉末は比表面
積が非常に大きく、充放電効率が非常に悪化し、また放
電容量も大きく低下した。
In Comparative Example 1 in which the carbon powder was carbon black having an average primary particle diameter much smaller than 1 μm, fusion was hardly suppressed, and the obtained graphite powder had a very large specific surface area, and the charge / discharge efficiency was low. It became very bad, and the discharge capacity was greatly reduced.

【0064】[0064]

【発明の効果】本発明によれば、安価なタールおよび/
またはピッチから得られるメソフェーズ粉を原料とし
て、結晶化度が良好で放電容量が高く、かつ比表面積が
小さく、充放電効率が改善された、リチウムイオン二次
電池の負極用黒鉛粉末を安定して歩留まりよく製造する
ことが可能となる。
According to the present invention, inexpensive tar and / or
Or, using the mesophase powder obtained from the pitch as a raw material, the crystallinity is good, the discharge capacity is high, the specific surface area is small, the charge and discharge efficiency is improved, and the graphite powder for the negative electrode of the lithium ion secondary battery is stably obtained. It can be manufactured with a high yield.

フロントページの続き (72)発明者 藤原 徹 東京都台東区池之端1丁目2番18号 住友 金属工業株式会社電子部品事業部内 (72)発明者 永峰 政幸 福島県郡山市日和田町高倉字下杉下1−1 株式会社ソニー・エナジー・テック郡山 工場内 (72)発明者 小丸 篤雄 福島県郡山市日和田町高倉字下杉下1−1 株式会社ソニー・エナジー・テック郡山 工場内 (72)発明者 藤重 祐介 福島県郡山市日和田町高倉字下杉下1−1 株式会社ソニー・エナジー・テック郡山 工場内 Fターム(参考) 4G046 EA02 EA05 EA06 EB01 EB13 EC02 EC06 4H058 FA40 GA16 HA03 HA13 5H003 AA02 AA08 BA01 BA03 BB01 BC01 BC06 BD02 BD04 5H014 AA01 BB01 BB06 EE08 HH00 HH01 HH06 Continued on the front page (72) Inventor Toru Fujiwara 1-2-18 Ikenohata, Taito-ku, Tokyo Sumitomo Metal Industries, Ltd. Electronic Components Division (72) Inventor Masayuki Nagamine 1 Shimosugishita, Takakura, Hiwada-cho, Koriyama-shi, Fukushima Prefecture -1 Inside Sony Energy Tech Koriyama Factory (72) Inventor Atsushi Komaru 1-1 Shimosugishita Takakura, Hiwadacho, Koriyama-shi, Fukushima Prefecture Inside Sony Energy Tech Koriyama Factory (72) Inventor Yusuke Fujishige 1-1, Shimosugishita, Takakura, Hiwada-cho, Koriyama-shi, Fukushima Prefecture F-term in Sony Energy Tech Koriyama Factory 4G046 EA02 EA05 EA06 EB01 EB13 EC02 EC06 4H058 FA40 GA16 HA03 HA13 5H003 AA02 AA08 BA01 BA03 BB01 BC01 BC06 BD02 BD04 5H014 AA01 BB01 BB06 EE08 HH00 HH01 HH06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 メソフェーズ粉に平均一次粒子径1μm
以上の炭素粉を混合した混合粉末を炭化および黒鉛化す
ることを特徴とする、リチウムイオン二次電池負極用黒
鉛粉末の製造方法。
1. An average primary particle diameter of 1 μm in a mesophase powder.
A method for producing graphite powder for a negative electrode of a lithium ion secondary battery, comprising carbonizing and graphitizing a mixed powder obtained by mixing the above carbon powder.
【請求項2】 前記メソフェーズ粉が表面酸化処理を受
けていないものである、請求項1記載のリチウムイオン
二次電池負極用黒鉛粉末の製造方法。
2. The method for producing graphite powder for a negative electrode of a lithium ion secondary battery according to claim 1, wherein the mesophase powder has not been subjected to a surface oxidation treatment.
【請求項3】 前記炭素粉の平均一次粒子径が10〜100
μmである、請求項1または2記載のリチウムイオン二
次電池負極用黒鉛粉末の製造方法。
3. The carbon powder has an average primary particle diameter of 10 to 100.
The method for producing a graphite powder for a negative electrode of a lithium ion secondary battery according to claim 1, wherein the particle size is μm.
【請求項4】 前記炭素粉の混合粉末中の割合が5〜40
wt%である、請求項1ないし3のいずれかに記載のリチ
ウムイオン二次電池負極用黒鉛粉末の製造方法。
4. The ratio of the carbon powder in the mixed powder is 5 to 40.
The method for producing graphite powder for a negative electrode of a lithium ion secondary battery according to any one of claims 1 to 3, which is wt%.
【請求項5】 前記炭素粉がメソフェーズの炭化または
炭化と黒鉛化を経て得られた炭化粉または黒鉛化粉であ
る、請求項1ないし4のいずれか1項に記載のリチウム
イオン二次電池負極用黒鉛粉末の製造方法。
5. The lithium ion secondary battery negative electrode according to claim 1, wherein the carbon powder is a carbonized powder or a graphitized powder obtained through carbonization or carbonization and graphitization of mesophase. Of producing graphite powder for use.
【請求項6】 前記炭化後は実質的な粉砕を行わない、
請求項1ないし5のいずれかに記載のリチウムイオン二
次電池負極用黒鉛粉末の製造方法。
6. No substantial pulverization is performed after the carbonization.
A method for producing the graphite powder for a negative electrode of a lithium ion secondary battery according to claim 1.
JP11190907A 1999-07-05 1999-07-05 Manufacture of graphite powder for lithium ion secondary battery negative electrode Withdrawn JP2001023634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11190907A JP2001023634A (en) 1999-07-05 1999-07-05 Manufacture of graphite powder for lithium ion secondary battery negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11190907A JP2001023634A (en) 1999-07-05 1999-07-05 Manufacture of graphite powder for lithium ion secondary battery negative electrode

Publications (1)

Publication Number Publication Date
JP2001023634A true JP2001023634A (en) 2001-01-26

Family

ID=16265711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11190907A Withdrawn JP2001023634A (en) 1999-07-05 1999-07-05 Manufacture of graphite powder for lithium ion secondary battery negative electrode

Country Status (1)

Country Link
JP (1) JP2001023634A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110158A (en) * 2000-09-29 2002-04-12 Kawasaki Steel Corp Carbon material for lithium ion secondary battery negative pole and ite manufacturing method
JP2005060150A (en) * 2003-08-08 2005-03-10 Jfe Chemical Corp Method of producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2005281099A (en) * 2004-03-30 2005-10-13 Jfe Chemical Corp Carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode, and rechargeable lithium-ion battery
EP4109599A4 (en) * 2020-10-30 2024-01-03 LG Energy Solution, Ltd. Negative electrode active material for lithium secondary battery, negative electrode, and lithium secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110158A (en) * 2000-09-29 2002-04-12 Kawasaki Steel Corp Carbon material for lithium ion secondary battery negative pole and ite manufacturing method
JP4554795B2 (en) * 2000-09-29 2010-09-29 Jfeケミカル株式会社 Carbon material for negative electrode of lithium ion secondary battery and method for producing the same
JP2005060150A (en) * 2003-08-08 2005-03-10 Jfe Chemical Corp Method of producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2005281099A (en) * 2004-03-30 2005-10-13 Jfe Chemical Corp Carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode, and rechargeable lithium-ion battery
JP4643165B2 (en) * 2004-03-30 2011-03-02 Jfeケミカル株式会社 Carbon material, negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
EP4109599A4 (en) * 2020-10-30 2024-01-03 LG Energy Solution, Ltd. Negative electrode active material for lithium secondary battery, negative electrode, and lithium secondary battery
JP7497828B2 (en) 2020-10-30 2024-06-11 エルジー エナジー ソリューション リミテッド Negative electrode active material for lithium secondary battery, negative electrode and lithium secondary battery

Similar Documents

Publication Publication Date Title
EP1906472B1 (en) Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
KR100567113B1 (en) Lithium secondary battery
KR101618386B1 (en) Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
JP4403327B2 (en) Graphite powder for negative electrode of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5081375B2 (en) Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same
JP6535467B2 (en) Graphite powder for lithium ion secondary battery negative electrode active material
KR20170103003A (en) Carbon material and nonaqueous secondary battery using carbon material
JP5064728B2 (en) Graphite composite particles for non-aqueous secondary battery, negative electrode active material containing the same, negative electrode and non-aqueous secondary battery
CN111225888A (en) Method for preparing negative active material and lithium secondary battery comprising same
WO2002071515A1 (en) Graphite material for negative pole of lithium secondary battery, method of manufacturing the graphite material, and lithium secondary battery
JP2001023638A (en) Manufacture of graphite powder for lithium ion secondary battery negative electrode
JP6746918B2 (en) Carbon material for non-aqueous secondary battery and lithium ion secondary battery
JP2004196609A (en) Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
JP6584975B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery
JP4403324B2 (en) Method for producing graphite powder for negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP3309701B2 (en) Method for producing carbon powder for negative electrode of lithium ion secondary battery
JP2000313609A (en) Material for lithium ion secondary battery, its production and battery
JP4470467B2 (en) Particulate artificial graphite negative electrode material, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2001023634A (en) Manufacture of graphite powder for lithium ion secondary battery negative electrode
JP3698181B2 (en) Negative electrode material for lithium ion secondary battery
JP4403325B2 (en) Method for producing graphite powder for negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP4470235B2 (en) Method for producing powder for negative electrode of lithium ion secondary battery
JP2001023636A (en) Manufacture of graphite powder for lithium ion secondary battery negative electrode
JP2002362913A (en) Method for producing graphite powder
JP4403326B2 (en) Method for producing graphite powder for negative electrode of lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905