JP2001023633A - Manufacture of graphite powder for lithium ion secondary battery negative electrode - Google Patents

Manufacture of graphite powder for lithium ion secondary battery negative electrode

Info

Publication number
JP2001023633A
JP2001023633A JP11190906A JP19090699A JP2001023633A JP 2001023633 A JP2001023633 A JP 2001023633A JP 11190906 A JP11190906 A JP 11190906A JP 19090699 A JP19090699 A JP 19090699A JP 2001023633 A JP2001023633 A JP 2001023633A
Authority
JP
Japan
Prior art keywords
carbonization
mesophase
graphitization
graphite powder
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11190906A
Other languages
Japanese (ja)
Other versions
JP4403326B2 (en
Inventor
Toru Fujiwara
徹 藤原
Takeshi Jo
毅 城
Masayuki Nagamine
政幸 永峰
Tokuo Komaru
篤雄 小丸
Yusuke Fujishige
祐介 藤重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sony Corp
Original Assignee
Sony Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Sumitomo Metal Industries Ltd filed Critical Sony Corp
Priority to JP19090699A priority Critical patent/JP4403326B2/en
Publication of JP2001023633A publication Critical patent/JP2001023633A/en
Application granted granted Critical
Publication of JP4403326B2 publication Critical patent/JP4403326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the crystallinity of graphite and increase the discharge capacity of a negative electrode by conducting a crushing process before and/or after a carbonization process under a non-oxidizing atmosphere. SOLUTION: A graphite powder is produced through processes of carbonization, graphitization and crushing using a mesophase as a raw material. At this time, the crushing is conducted before and/or after the carbonization process under a non-oxidizing atmosphere and is not conducted after the graphitization. When the crushing is conducted after the graphitization, the graphite powder having a significantly large specific surface area is obtained, thus the charge/ discharge efficiency and the cycle lifetime of a negative electrode is shortened. Additionally, the mesophase of the raw material is preferably not subject to the surface oxidation. The time for crushing may be determined according to the fusion during the carbonization in the mesophase of the raw material. That is, when the fusion during the carbonization is great, the mesophase is crushed after the carbonization. When no or a little fusion is observed, the mesophase is better to be crushed before the carbonization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池で
あるリチウムイオン二次電池の負極に用いる、結晶化度
が高く、優れた放電容量を与えることができる黒鉛粉末
の製造方法に関する。
The present invention relates to a method for producing a graphite powder having a high crystallinity and capable of giving an excellent discharge capacity, which is used for a negative electrode of a lithium ion secondary battery which is a non-aqueous secondary battery.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、正極にリチ
ウム化合物 (例、リチウムとNiやCo等の遷移金属との複
合酸化物) など、負極にリチウムイオンを可逆的に吸蔵
・放出できる炭素材料、電解質にリチウム化合物を有機
溶媒に溶解させた溶液を用いた、非水系二次電池であ
る。
2. Description of the Related Art A lithium ion secondary battery is a carbon material capable of reversibly occluding and releasing lithium ions in a negative electrode, such as a lithium compound (eg, a composite oxide of lithium and a transition metal such as Ni or Co). And a non-aqueous secondary battery using a solution in which a lithium compound is dissolved in an organic solvent in an electrolyte.

【0003】負極にリチウム金属またはリチウム合金を
用いたリチウム二次電池は、電池容量は非常に高くなる
ものの、充電時のリチウムのデンドライト状態での析出
や微粉化のためにサイクル寿命および安全性に問題を生
ずる。これに対し、負極を炭素材料から構成したリチウ
ムイオン二次電池では、電池内でリチウムが常にイオン
の形で存在し、金属として析出することが避けられるた
め、リチウム二次電池の上記問題点が解決できる。
[0003] A lithium secondary battery using a lithium metal or lithium alloy for the negative electrode has a very high battery capacity, but has a poor cycle life and safety due to precipitation and pulverization of lithium in a dendritic state during charging. Cause problems. On the other hand, in a lithium ion secondary battery in which the negative electrode is made of a carbon material, lithium is always present in the form of ions in the battery and is prevented from being precipitated as a metal. Solvable.

【0004】リチウムイオン二次電池は、安全性が高く
サイクル寿命が長い上、作動電圧とエネルギー密度が高
い、短時間で充電が可能、非水系電解液のためアルカリ
電解液に比べて耐漏液性に優れている、といった特長が
あり、小型二次電池として急速に普及しているのは周知
の通りである。さらに、電気自動車のバッテリー等の大
型電池としての利用についても研究が進んでいる。
[0004] Lithium-ion secondary batteries have high safety, long cycle life, high operating voltage and energy density, can be charged in a short time, and are non-aqueous electrolytes. It is well known that it is rapidly spreading as a small secondary battery. Furthermore, research is also being conducted on the use of large batteries such as batteries for electric vehicles.

【0005】リチウムイオン二次電池の負極に用いる炭
素材料には、結晶質の黒鉛、黒鉛の前駆体である易黒鉛
化性炭素 (ソフトカーボン) 、高温処理しても黒鉛に成
らない難黒鉛化性炭素 (ハードカーボン) がある。ピッ
チや樹脂等の有機物を、不活性雰囲気中1000℃程度にて
揮発分がなくなるまで熱処理することで、ソフトカーボ
ンやハードカーボンが得られるが、特にハードカーボン
は結晶性が低く非晶質な構造を持つ材料である。一方、
黒鉛はソフトカーボンを2500℃程度以上の温度で熱処理
することにより得られる。いずれの場合も、粉末状態の
炭素材料を通常は少量の結着剤 (通常は有機樹脂) を用
いて成形し、集電体となる電極基板に圧着させることに
より電極 (負極) が形成される。
[0005] Carbon materials used for the negative electrode of lithium ion secondary batteries include crystalline graphite, graphitizable carbon (soft carbon) which is a precursor of graphite, and non-graphitizable carbon which does not become graphite even at high temperature treatment. There is carbon (hard carbon). Soft carbon and hard carbon can be obtained by heat-treating organic substances such as pitch and resin in an inert atmosphere at about 1000 ° C until the volatile components disappear, but hard carbon has low crystallinity and an amorphous structure. Is a material with on the other hand,
Graphite can be obtained by heat-treating soft carbon at a temperature of about 2500 ° C. or higher. In each case, an electrode (negative electrode) is formed by molding a powdered carbon material using a small amount of a binder (usually an organic resin) and then pressing it on an electrode substrate that serves as a current collector. .

【0006】黒鉛からなる負極では、充電時には、層状
構造を持つ黒鉛結晶の層間に電解液からリチウムイオン
が吸蔵 (インターカレート) され、放電時にはその電解
液への放出 (デインターカレート) が起こる。層間に吸
蔵されうるリチウムイオンの量は最大でC6Liに相当する
量であり、その場合の容量は372 mAh/g となる。従っ
て、この容量が理論的な最大容量となる。
[0006] In a negative electrode made of graphite, lithium ions are absorbed (intercalated) from an electrolyte between layers of graphite crystals having a layered structure during charging, and released (deintercalated) into the electrolyte during discharging. Occur. The amount of lithium ions that can be inserted between the layers is a maximum amount corresponding to C 6 Li, and the capacity in that case is 372 mAh / g. Therefore, this capacity becomes the theoretical maximum capacity.

【0007】一方、より結晶性の低い炭素材を負極に用
いると、容量は大きく変化し、場合によっては黒鉛系負
極材料の理論最大容量 (372 mAh/g)を超える容量が得ら
れることも報告されている。炭素材は結晶が発達してい
ないため、層間へのリチウムイオンの吸蔵に加えて、層
間以外に結晶の格子欠陥等の部分にもリチウムイオンが
吸蔵されるためではないかと考えられる。しかし、炭素
材は黒鉛より密度が低いため、たとえ黒鉛より容量が高
くても、単位体積当たりで比べた容量は低くなり、体積
が決まっている電池用途では不利となる。以上より、黒
鉛の方がリチウムイオン二次電池の負極材料として有利
であると考えられる。
On the other hand, it has also been reported that when a carbon material having lower crystallinity is used for the negative electrode, the capacity greatly changes, and in some cases, a capacity exceeding the theoretical maximum capacity (372 mAh / g) of the graphite-based negative electrode material is obtained. Have been. It is considered that since the carbon material has not developed crystals, in addition to the intercalation of lithium ions between layers, lithium ions are intercalated not only between layers but also in parts such as lattice defects of crystals. However, since the carbon material has a lower density than graphite, even if the capacity is higher than graphite, the capacity per unit volume is low, which is disadvantageous in battery applications where the volume is fixed. From the above, it is considered that graphite is more advantageous as a negative electrode material of a lithium ion secondary battery.

【0008】負極材料に黒鉛粉末を用いたリチウムイオ
ン二次電池では、一般に黒鉛粉末の黒鉛化度(即ち、黒
鉛結晶化度)が高いほどLiイオン格納量が増大し、負極
材料の放電容量が増大する。黒鉛の結晶化度の指標とし
ては通常d002[層状構造の黒鉛結晶面 (002 面またはc
面) の層間距離] が使用されている。このd002 が小さ
いほど (即ち、理想的な黒鉛結晶のd002 値である3.35
4 Åに近づくほど) 黒鉛の結晶化度は高くなる。
In a lithium ion secondary battery using graphite powder as a negative electrode material, generally, the higher the degree of graphitization (ie, the degree of graphite crystallization) of the graphite powder, the greater the Li ion storage capacity and the higher the discharge capacity of the negative electrode material. Increase. As an index of the degree of crystallinity of graphite, usually d 002 [graphite crystal plane having a layered structure (002 plane or c plane)
Plane) interlayer distance is used. As this d 002 becomes smaller (that is, 3.35 which is the d 002 value of an ideal graphite crystal)
The crystallinity of graphite increases as the temperature approaches 4Å.

【0009】結晶化度が高く、放電容量の高い負極材料
が、タールやピッチの熱処理で生成する光学異方性のメ
ソフェーズ(メソフェーズ小球体又はバルクメソフェー
ズ)を炭化および黒鉛化することにより得られることが
知られている。メソフェーズは層状構造が発達している
ため、黒鉛の層状結晶構造が発達し易いためであると考
えられる。
A negative electrode material having a high degree of crystallinity and a high discharge capacity can be obtained by carbonizing and graphitizing an optically anisotropic mesophase (mesophase small sphere or bulk mesophase) generated by heat treatment of tar or pitch. It has been known. It is considered that the mesophase is because the layered structure is developed, and the layered crystal structure of graphite is easily developed.

【0010】特開平7−223808号公報には、加熱下で軟
化溶融するバルクメソフェーズピッチを3〜25μmに粉
砕した後、空気中 200〜350 ℃で熱処理して表層を酸化
処理して表面を不融化した後、 800〜3000℃で熱処理し
て、球状の炭素または黒鉛粉末を製造することが提案さ
れている。メソフェーズ粉末の表層を酸化処理して不融
化するのは、次の 800〜3000℃での熱処理中に粉末が融
着するのを防止するためである。得られた黒鉛粉末は結
晶化性が高く、球状であるので充填性に優れていると説
明されている。
Japanese Patent Application Laid-Open No. Hei 7-223808 discloses that a bulk mesophase pitch which is softened and melted under heating is pulverized to 3 to 25 μm, and then heat-treated at 200 to 350 ° C. in air to oxidize the surface layer to make the surface non-conductive. It has been proposed that after melting, heat treatment at 800-3000 ° C. to produce spherical carbon or graphite powder. The reason why the surface layer of the mesophase powder is oxidized and made infusible is to prevent the powder from being fused during the next heat treatment at 800 to 3000 ° C. It is described that the obtained graphite powder has high crystallinity and is spherical, and thus has excellent filling properties.

【0011】[0011]

【発明が解決しようとする課題】上記の特開平7−2238
08号公報に記載の方法によりメソフェーズ粉末を黒鉛化
して得た黒鉛粉末は、結晶化度の指標となるd002 値が
3.368 Å以上であり、結晶化度が十分に高いとはいえな
い。この公報には放電容量の値は示されていないが、こ
のd002 値からは高い放電容量が得られるとは考えられ
ない。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. Hei 7-2238.
Graphite powder obtained by graphitizing the mesophase powder according to the method described in JP 08 Publication has a d 002 value as an index of crystallinity.
The crystallinity is not sufficiently high. Although this publication does not show the value of the discharge capacity, it is not considered that a high discharge capacity can be obtained from this d 002 value.

【0012】本発明は、d002 値が小さく、放電容量が
増大したリチウムイオン二次電池の負極を形成すること
ができる黒鉛粉末を製造する方法を確立することを課題
とする。
An object of the present invention is to establish a method for producing a graphite powder capable of forming a negative electrode of a lithium ion secondary battery having a small d 002 value and an increased discharge capacity.

【0013】[0013]

【課題を解決するための手段】本発明者らは、リチウム
イオン二次電池の負極に用いる黒鉛粉末の結晶化につい
て検討した結果、放電容量を大きく左右する黒鉛粉末の
結晶化が、酸素により阻害されることを究明した。
The present inventors have studied the crystallization of graphite powder used for the negative electrode of a lithium ion secondary battery. As a result, the crystallization of graphite powder, which greatly affects the discharge capacity, is inhibited by oxygen. I decided to be.

【0014】つまり、上記の特開平7−223808号公報に
記載の方法で製造された黒鉛粉末でd002 値が十分に小
さくならないのは、炭化中の融着防止のためにメソフェ
ーズ粉末を予め表面酸化することに原因の少なくとも一
部があると考えられる。この表面酸化により粉末に導入
された酸素が、黒鉛化時の結晶化を阻害するため、黒鉛
が十分に結晶化しないのである。
That is, the reason that the graphite powder produced by the method described in the above-mentioned Japanese Patent Application Laid-Open No. 7-223808 does not have a sufficiently small d 002 value is that the mesophase powder is preliminarily coated on the surface to prevent fusing during carbonization. It is believed that there is at least part of the cause of the oxidation. Oxygen introduced into the powder by this surface oxidation inhibits crystallization during graphitization, so that graphite does not sufficiently crystallize.

【0015】さらに検討したところ、粉砕時の表面酸化
も黒鉛の結晶化を著しく阻害し、粉砕を非酸化性雰囲気
中で行って、粉砕時の表面酸化を防止すると、d002
が小さく、放電容量が増大した黒鉛粉末が歩留まりよく
得られることが判明した。
Further investigation revealed that surface oxidation during grinding also significantly inhibited crystallization of graphite. If grinding was performed in a non-oxidizing atmosphere to prevent surface oxidation during grinding, the d 002 value was small, and It has been found that graphite powder with increased capacity can be obtained with good yield.

【0016】水素吸蔵合金のように易酸化性の材料とは
異なり、メソフェーズや炭化材は室温付近では酸化され
にくいので、従来は特に粉砕中の雰囲気を制御せずに、
大気中 (つまり、酸化性雰囲気中) で粉砕を行ってい
た。しかし、この大気中での粉砕により表面が酸化され
てしまい、この酸素が黒鉛の結晶化を阻害していたので
ある。
Unlike easily oxidizable materials such as hydrogen storage alloys, mesophases and carbonized materials are hardly oxidized at around room temperature.
Grinding was performed in the atmosphere (that is, in an oxidizing atmosphere). However, the surface was oxidized by the pulverization in the atmosphere, and this oxygen inhibited the crystallization of graphite.

【0017】ここに、本発明は、メソフェーズから、炭
化、黒鉛化、および粉砕の各工程を経てリチウムイオン
二次電池負極用黒鉛粉末を製造する方法であって、前記
粉砕工程を炭化工程前および/または炭化工程後に非酸
化性雰囲気中で行うことを特徴とする方法である。
Here, the present invention is a method for producing graphite powder for a negative electrode of a lithium ion secondary battery from a mesophase through carbonization, graphitization, and pulverization steps, wherein the pulverization step is performed before and after the carbonization step. And / or after the carbonization step, in a non-oxidizing atmosphere.

【0018】本発明は、酸素による黒鉛結晶化の阻害を
防止するものであるから、原料のメソフェーズは、融着
防止のために行われる表面酸化処理を受けていないもの
であることが好ましい。
Since the present invention prevents the inhibition of graphite crystallization by oxygen, it is preferable that the mesophase of the raw material has not been subjected to surface oxidation treatment for preventing fusion.

【0019】[0019]

【発明の実施の形態】本発明に係るリチウムイオン二次
電池負極用黒鉛粉末の製造方法で用いる原料はメソフェ
ーズである。メソフェーズは、タールおよび/またはピ
ッチを熱処理することにより得られる。タール (常温で
液状) と、その蒸留残渣であるピッチ(常温で固体また
は半固体) は、石炭系と石油系のものがあり、いずれも
本発明に使用できるが、芳香族成分に富む石炭系のもの
が好ましい。タールやピッチは、樹脂に比べて著しく安
価である上、樹脂より易黒鉛化性であるので、黒鉛化原
料に適している。
DETAILED DESCRIPTION OF THE INVENTION The raw material used in the method for producing graphite powder for a negative electrode of a lithium ion secondary battery according to the present invention is mesophase. Mesophase is obtained by heat treating tar and / or pitch. Tar (liquid at room temperature) and its distillation residue, pitch (solid or semi-solid at room temperature), are classified into coal-based and petroleum-based ones, all of which can be used in the present invention. Are preferred. Tar and pitch are remarkably inexpensive compared to resins and are more easily graphitizable than resins, so they are suitable for graphitizing raw materials.

【0020】タールやピッチを加熱しながら偏光顕微鏡
で観察すると、ピッチではまず溶融して液状化した後、
温度が400 ℃以上になると液相中に光学異方性の球形粒
子が現れる。この粒子がメソフェーズ小球体である。加
熱を続けると、メソフェーズ小球体の量が増加し、つい
にはそれらが合体して光学異方性のマトリックスが生
じ、最終的には全体が光学異方性となる。この光学異方
性のマトリックス材料または全体的に光学異方性となっ
た材料をバルクメソフェーズと呼んでいる。
When the tar and the pitch are observed with a polarizing microscope while heating, the pitch is first melted and liquefied,
When the temperature exceeds 400 ° C., optically anisotropic spherical particles appear in the liquid phase. These particles are mesophase microspheres. With continued heating, the amount of mesophase spherules increases and eventually coalesce to form an optically anisotropic matrix, which ultimately becomes entirely optically anisotropic. This matrix material having optical anisotropy or a material having optical anisotropy as a whole is called bulk mesophase.

【0021】メソフェーズとしては、メソフェーズ小球
体とバルクメソフェーズのどちらも使用できる。しか
し、メソフェーズ小球体は、光学的に等方性のマトリッ
クスから溶媒抽出により分離する必要があり、分離に多
量の有機溶媒が必要である上、マトリックスは廃棄され
るので原料の利用率が低い。従って、工業的にはバルク
メソフェーズを原料とする方が好ましい。
As the mesophase, both mesophase microspheres and bulk mesophase can be used. However, the mesophase microspheres need to be separated from the optically isotropic matrix by solvent extraction, which requires a large amount of organic solvent for separation, and the matrix is discarded, so that the raw material utilization is low. Therefore, it is industrially preferable to use bulk mesophase as a raw material.

【0022】タールおよび/またはピッチからメソフェ
ーズを得るための熱処理条件は特に制限されないが、通
常は 400〜600 ℃、好ましくは 450〜550 ℃で行われ
る。この熱処理中に油分が揮発するので、その揮発を促
進するため、熱処理を10〜100Torr程度の減圧下で行う
ことが好ましい。大気圧で熱処理する場合には、油分の
除去の促進と熱処理中の材料の酸化防止のために、窒素
ガスなどの不活性ガスの流通下で熱処理を行うことが好
ましい。
The heat treatment conditions for obtaining the mesophase from the tar and / or pitch are not particularly limited, but are usually at 400 to 600 ° C, preferably 450 to 550 ° C. Since the oil evaporates during this heat treatment, the heat treatment is preferably performed under a reduced pressure of about 10 to 100 Torr in order to promote the volatilization. When heat treatment is performed at atmospheric pressure, it is preferable to perform heat treatment under a flow of an inert gas such as nitrogen gas in order to promote removal of oil and prevent oxidation of the material during the heat treatment.

【0023】熱処理時間は、所望のメソフェーズ化 (メ
ソフェーズ小球体またはバルクメソフェーズの生成) が
起こるように選択する。当然ながら、他の条件が同じで
あれば、バルクメソフェーズの生成には、メソフェーズ
小球体の生成より長い熱処理時間が必要である。しか
し、十分な減圧と適切な温度を選択すれば、数時間の熱
処理時間でバルクメソフェーズを得ることができる。
The heat treatment time is selected so that the desired mesophase formation (formation of mesophase microspheres or bulk mesophase) takes place. Of course, if other conditions are the same, the bulk mesophase generation requires a longer heat treatment time than the generation of mesophase microspheres. However, if sufficient pressure reduction and an appropriate temperature are selected, a bulk mesophase can be obtained in a heat treatment time of several hours.

【0024】このメソフェーズ化の熱処理前に、出発物
質のタールおよび/またはピッチをニトロ化剤の存在下
で加熱することにより予備処理してもよい。この予備処
理により、原料分子の芳香環にニトロ基が導入され、さ
らにニトロ基同士が縮合反応(ニトロ基の脱離を伴う)
して原料が二量体化、さらたは多量体化する。即ち、原
料が重縮合を受けて高分子量化する。その結果、メソフ
ェーズ化と次の炭化における揮発分の量が減少し、最終
的に得られる黒鉛粉末の歩留りが増大する。
Prior to this mesophase heat treatment, the starting tar and / or pitch may be pretreated by heating in the presence of a nitrating agent. By this pretreatment, a nitro group is introduced into the aromatic ring of the raw material molecule, and a nitro group condensation reaction occurs (with elimination of the nitro group).
As a result, the raw material is dimerized and further multimerized. That is, the raw material undergoes polycondensation to increase the molecular weight. As a result, the amount of volatiles in the mesophase formation and subsequent carbonization decreases, and the yield of the graphite powder finally obtained increases.

【0025】ニトロ化剤は、メソフェーズ化の熱処理中
に添加することも考えられるが、そうすると熱処理で生
成したメソフェーズの組織 (偏光顕微鏡で観察される模
様)が変化することがある上、上記の高分子量化による
収量増大の効果はほとんど得られなくなる。従って、ニ
トロ化剤による処理はメソフェーズ化熱処理の前に予備
処理として行うことが好ましい。
It is conceivable that the nitrating agent is added during the heat treatment for mesophase formation. However, the structure of the mesophase formed by the heat treatment (pattern observed by a polarizing microscope) may be changed. The effect of increasing the yield by increasing the molecular weight can hardly be obtained. Therefore, the treatment with the nitrating agent is preferably performed as a preliminary treatment before the mesophase heat treatment.

【0026】この予備処理に用いるニトロ化剤の例とし
ては、これらに限られないが、硝酸、硝酸アンモニウ
ム、硝酸アセチル、ニトロベンゼン、ニトロトルエン、
ニトロナフタレンなどが挙げられる。ニトロ化剤の添加
量は、一般に出発原料 (タールおよび/またはピッチ)
の 0.1〜15wt%の範囲である。この量が 0.1wt%以下で
は高分子量化がほとんど進まず、15wt%を超える量のニ
トロ化剤を添加すると、黒鉛化に悪影響を生じ、最終的
に得られる黒鉛粉末の結晶化度が低くなり、従って放電
容量が低下する。ニトロ化剤の添加量の好ましい範囲は
0.5〜10wt%、より好ましい範囲は1〜5wt%である。
Examples of the nitrating agent used in this pretreatment include, but are not limited to, nitric acid, ammonium nitrate, acetyl nitrate, nitrobenzene, nitrotoluene,
Nitronaphthalene and the like can be mentioned. The amount of nitrating agent added generally depends on the starting material (tar and / or pitch)
Is in the range of 0.1 to 15% by weight. If the amount is less than 0.1 wt%, the increase in molecular weight hardly progresses, and if the amount of nitrating agent exceeds 15 wt%, the graphitization will be adversely affected and the crystallinity of the final graphite powder will decrease. Therefore, the discharge capacity decreases. The preferred range of the addition amount of the nitrating agent is
0.5 to 10% by weight, more preferably 1 to 5% by weight.

【0027】ニトロ化剤の存在下での加熱は、300 ℃以
上、400 ℃未満の温度で行う。この温度範囲では、ニト
ロ化と重縮合による出発原料の高分子量化が短時間で進
行する。加熱温度が300 ℃より低いと重縮合が十分に進
まず、400 ℃以上ではメソフェーズ化が進行するように
なる。ニトロ化剤の添加の前に 100〜300 ℃の範囲内の
温度で予備加熱してもよい。この予備加熱により原料の
ニトロ化がより進行する。加熱時間は、全体で数時間以
内とすることが好ましく、予備加熱を行う場合には、い
ずれの加熱も2時間以内でよい場合が多い。加熱中の表
面酸化を避けるため、加熱は不活性ガス流通下で行うこ
とが好ましい。なお、導入されたニトロ基あるいは窒素
分は、最終的に黒鉛化すると完全に除去される。
The heating in the presence of the nitrating agent is performed at a temperature of 300 ° C. or more and less than 400 ° C. In this temperature range, the high molecular weight of the starting material by nitration and polycondensation proceeds in a short time. If the heating temperature is lower than 300 ° C., polycondensation does not proceed sufficiently, and if the heating temperature is higher than 400 ° C., mesophase formation proceeds. Prior to the addition of the nitrating agent, it may be preheated at a temperature in the range of 100-300 ° C. This preheating further promotes nitration of the raw material. The heating time is preferably within several hours as a whole, and in the case of performing preheating, it is often sufficient that any heating be performed within two hours. In order to avoid surface oxidation during heating, the heating is preferably performed under a flow of an inert gas. The introduced nitro group or nitrogen content is completely removed when it is finally graphitized.

【0028】原料のメソフェーズから、炭化、黒鉛化、
および粉砕の各工程を経て黒鉛粉末を製造することがで
きる。本発明では、粉砕を炭化工程の前および/または
後に非酸化性雰囲気中で行う。粉砕は黒鉛化後には行わ
ない。黒鉛化後に粉砕すると、比表面積が著しく大きい
黒鉛粉末が得られるからである。黒鉛粉末の比表面積
は、負極の充放電効率やサイクル寿命に影響を及ぼし、
比表面積が大きいほど充放電効率とサイクル寿命が低く
なる傾向がある。
From the raw material mesophase, carbonization, graphitization,
Through each of the steps of pulverization and pulverization, a graphite powder can be produced. In the present invention, the grinding is performed in a non-oxidizing atmosphere before and / or after the carbonization step. Grinding is not performed after graphitization. This is because, when pulverized after graphitization, graphite powder having an extremely large specific surface area can be obtained. The specific surface area of the graphite powder affects the charge and discharge efficiency and cycle life of the negative electrode,
The larger the specific surface area, the lower the charge / discharge efficiency and cycle life tend to be.

【0029】前述したように、原料のメソフェーズは、
表面酸化処理を受けていないものであることが好まし
い。しかし、表面酸化処理を受けたメソフェーズであっ
ても、本発明に従って非酸化性雰囲気中で粉砕を行う
と、同じ表面酸化処理されたメソフェーズから出発して
粉砕を大気中で行うことにより得られた黒鉛粉末に比べ
て、結晶化度の高い黒鉛粉末を得ることができる。従っ
て、表面酸化処理を施したメソフェーズも原料として使
用可能である。
As described above, the mesophase of the raw material is
Preferably, it has not been subjected to a surface oxidation treatment. However, even in the case of a mesophase subjected to a surface oxidation treatment, when pulverization is performed in a non-oxidizing atmosphere according to the present invention, the pulverization is obtained by starting the same surface oxidation treatment in the mesophase and performing the pulverization in the atmosphere. It is possible to obtain a graphite powder having a higher crystallinity than graphite powder. Therefore, a mesophase subjected to a surface oxidation treatment can also be used as a raw material.

【0030】粉砕の時期は、原料メソフェーズの炭化中
の融着性に応じて決めればよい。つまり、炭化中に融着
がひどく起こる場合には、炭化後のいずれかの時点で粉
砕する必要があるが、前述したように、黒鉛化後の粉砕
は好ましくないので、炭化工程後に粉砕を行うことにな
る。一方、炭化中に融着が全く、または少ししか起きな
い場合には、炭化前に粉砕しておくことが好ましい。こ
の場合も炭化後に粉砕することも可能であるが、炭化前
に粉砕した方が、炭化が円滑に進み、また炭化中に比表
面積が低減するため、炭化後に粉砕する場合より比表面
積の小さい黒鉛粉末が得られる。もちろん、炭化前と炭
化後の両方で粉砕を行ってもよい。黒鉛化前に粉砕を2
回以上行う場合には、本発明の効果を十分に達成するに
は、全ての粉砕を非酸化性雰囲気中で行うことが好まし
い。しかし、少なくとも1回の粉砕を非酸化性雰囲気中
で行い、他の粉砕を空気中で行う場合も本発明の範囲内
である。
The timing of pulverization may be determined according to the fusibility during carbonization of the raw mesophase. In other words, in the case where the fusion occurs severely during carbonization, it is necessary to pulverize at some point after carbonization, but as described above, pulverization after graphitization is not preferable, and pulverization is performed after the carbonization step. Will be. On the other hand, when no or little fusion occurs during carbonization, it is preferable to grind before carbonization. In this case, it is also possible to pulverize after carbonization.However, pulverization before carbonization facilitates carbonization and reduces the specific surface area during carbonization. A powder is obtained. Of course, pulverization may be performed both before and after carbonization. 2 grinding before graphitization
When the pulverization is performed more than once, it is preferable that all pulverization is performed in a non-oxidizing atmosphere in order to sufficiently achieve the effects of the present invention. However, it is also within the scope of the present invention if at least one milling is performed in a non-oxidizing atmosphere and the other milling is performed in air.

【0031】例えば、原料がメソフェーズ小球体の場合
は、最初から粉末であるので、炭化前に粉砕する必要は
ない。しかし、バルクメソフェーズに比べて揮発分を多
く含むメソフェーズ小球体は、炭化中に融着が非常に起
こり易い (そのため、市販のメソフェーズ小球体は、融
着を防ぐための表面酸化処理が施してある) 。従って、
表面酸化処理していないメソフェーズ小球体の場合は、
炭化後に融着した炭化材を粉砕することが好ましい。表
面酸化処理してあるメソフェーズ小球体は、表面酸化の
程度が著しいので、本発明の方法における原料として好
ましくない。
For example, when the raw material is mesophase spherules, it is not necessary to pulverize it before carbonization because it is a powder from the beginning. However, the mesophase spheres, which contain more volatile components than the bulk mesophase, are very likely to fuse during carbonization. (Therefore, commercially available mesophase spheres have been subjected to surface oxidation treatment to prevent fusion. ). Therefore,
For mesophase microspheres that have not been surface oxidized,
It is preferable to pulverize the carbonized material fused after carbonization. Mesophase microspheres that have been subjected to surface oxidation are not preferable as raw materials in the method of the present invention because the degree of surface oxidation is remarkable.

【0032】原料がバルクメソフェーズの場合、その揮
発分が15wt%以下であれば、炭化中にひどく融着するこ
とはほとんどない。従って、炭化前に、黒鉛粉末に求め
られる最終粒度まで粉砕しておき、その後は実質的な粉
砕 (平均粒径が実質的に変化するような粉砕) を行わな
いようにすることができる。こうすると、比表面積が非
常に小さい黒鉛粉末が得られる。
When the raw material is a bulk mesophase, if the volatile content is 15 wt% or less, there is almost no severe fusion during carbonization. Therefore, it is possible to pulverize the graphite powder to the final particle size required before carbonization, and to prevent subsequent pulverization (pulverization in which the average particle diameter substantially changes). Thus, a graphite powder having a very small specific surface area is obtained.

【0033】バルクメソフェーズの揮発分が多く、炭化
中のかなりの融着が避けられない場合には、通常は、炭
化前に軽く粉砕して粉末化し、炭化後に融着した粉末を
再度粉砕することが好ましい。その場合、前述したよう
に2回の粉砕をいずれも非酸化性雰囲気中で行うことが
好ましいが、一方の粉砕を大気中で行ってもよい。後者
の場合、炭化前の粉砕を大気中で行い、炭化後の粉砕は
非酸化性雰囲気中で行う方が、黒鉛の結晶化への悪影響
が少ない。
If the bulk mesophase has a large amount of volatiles and considerable fusion during carbonization is unavoidable, it is usually necessary to pulverize the powder by lightly pulverizing it before carbonization, and then pulverize the fused powder again after carbonization. Is preferred. In this case, it is preferable that both of the pulverizations are performed in a non-oxidizing atmosphere as described above, but one of the pulverizations may be performed in the air. In the latter case, grinding before carbonization in the air and grinding after carbonization in a non-oxidizing atmosphere has less adverse effect on the crystallization of graphite.

【0034】負極材料に適した黒鉛粉末の平均粒径は一
般に5〜35μmの範囲内が好ましいので、粉砕は平均粒
径がこの範囲内になるように行えばよい。炭化中および
黒鉛化中に粒径はいくらか減少するが、それほど大きな
変動ではない。必要であれば、炭化および黒鉛化時の粒
径の減少を実験で求め、その減少を見込んで、粉砕を行
ってもよい。
The average particle size of the graphite powder suitable for the negative electrode material is generally preferably in the range of 5 to 35 μm. Therefore, the pulverization may be performed so that the average particle size falls within this range. The particle size decreases somewhat during carbonization and graphitization, but not significantly. If necessary, a reduction in the particle size during carbonization and graphitization may be determined by experiment, and pulverization may be performed in anticipation of the reduction.

【0035】粉砕は適当な粉砕機を用いて行うことがで
きる。例えば、ハンマーミル、ボールミル、ロッドミル
などの衝撃または衝撃/摩砕が主に作用する粉砕機、或
いはディスククラッシャー等の剪断が主に作用する粉砕
機が使用できる。2種以上の粉砕機を併用してもよい。
The pulverization can be performed using a suitable pulverizer. For example, a crusher mainly acting on impact or impact / milling such as a hammer mill, a ball mill, a rod mill, or a crusher mainly acting on shear such as a disk crusher can be used. Two or more pulverizers may be used in combination.

【0036】本発明では、粉砕を非酸化性雰囲気中で行
って、粉砕された粉末の表面酸化を防止する。非酸化性
雰囲気中での粉砕は、例えば、不活性ガス(例、窒素、
またはアルゴンなどの希ガス)を導入した密閉チャンバ
ー内で粉砕する、不活性ガス気流を流したチャンバー内
で粉砕する、不活性ガスの微正圧下で粉砕する、真空中
または減圧空気中で粉砕するといった手段により実現す
ることができる。減圧空気の圧力は100 torr以下である
ことが好ましい。
In the present invention, the pulverization is performed in a non-oxidizing atmosphere to prevent surface oxidation of the pulverized powder. Grinding in a non-oxidizing atmosphere is performed, for example, by using an inert gas (eg, nitrogen,
Or a rare gas such as argon), pulverize in a chamber with an inert gas flow, pulverize under a slight positive pressure of an inert gas, pulverize in vacuum or reduced-pressure air. Such means can be realized. The pressure of the decompressed air is preferably 100 torr or less.

【0037】炭化および黒鉛化は常法に従って実施すれ
ばよい。炭化は炭素以外の元素をほぼ完全に熱分解させ
て除去する工程であり、黒鉛化は黒鉛の層状結晶構造を
発達させる工程である。一般に炭化に必要な温度は 700
〜1100℃であり、黒鉛化に必要な温度は2500℃以上であ
る。炭化と黒鉛化は、同じ炉を使って1工程の焼成で実
施することも不可能ではないが、黒鉛化温度が非常に高
く、特殊な炉が必要になるため、通常は別工程で行う。
The carbonization and graphitization may be performed according to a conventional method. Carbonization is a step of almost completely thermally decomposing and removing elements other than carbon, and graphitization is a step of developing a layered crystal structure of graphite. Generally, the temperature required for carbonization is 700
11100 ° C., and the temperature required for graphitization is 2500 ° C. or more. Although it is not impossible to carry out carbonization and graphitization in a single step using the same furnace, the carbonization and graphitization are usually performed in separate steps because the graphitization temperature is extremely high and a special furnace is required.

【0038】炭化と黒鉛化の熱処理はいずれも一般に非
酸化性雰囲気中で行われる。熱処理雰囲気は、不活性ガ
ス (例、窒素、アルゴン等の希ガス) と還元性ガス
(例、水素と不活性ガスの混合ガス) のいずれでもよ
い。炭素の酸化は黒鉛化後の結晶化度の低下や比表面積
の増大の原因となるため、雰囲気中の酸素、水蒸気、二
酸化炭素等の酸化性ガスの濃度は極力低くすることが好
ましい。黒鉛化温度では、水素等の還元性ガスや場合に
よっては窒素も炭素と反応する可能性があるため、黒鉛
化時の熱処理雰囲気は、アルゴン等の希ガスが好まし
い。
Both the heat treatments for carbonization and graphitization are generally performed in a non-oxidizing atmosphere. The heat treatment atmosphere is an inert gas (eg, a rare gas such as nitrogen or argon) and a reducing gas.
(Eg, a mixed gas of hydrogen and an inert gas). Since oxidation of carbon causes a decrease in crystallinity and an increase in specific surface area after graphitization, it is preferable to reduce the concentration of oxidizing gas such as oxygen, water vapor, and carbon dioxide in the atmosphere as much as possible. At the graphitization temperature, since a reducing gas such as hydrogen and possibly nitrogen may also react with carbon, the atmosphere for the heat treatment at the time of graphitization is preferably a rare gas such as argon.

【0039】炭化は、前述したように一般に 700〜1100
℃、好ましくは 800〜1000℃の温度で行われる。炭化時
間は、有機物が実質的に完全に除去されるように設定す
ればよく、通常は1〜50時間の範囲である。この炭化時
には、有機物の分解が起こり、ガスが発生するので、フ
ァンなどのガス排出手段を備えた加熱炉で熱処理するこ
とが好ましい。加熱炉として通常は電気炉が使用され
る。炭化中の融着が起こった場合には、炭化後に粉砕を
行う。融着物が少量である場合には、粉砕せずに、分級
(ふるい分け) によって融着物を除去してもよい。
The carbonization is generally performed at 700 to 1100 as described above.
C., preferably at a temperature of 800-1000.degree. The carbonization time may be set so that organic substances are substantially completely removed, and is usually in the range of 1 to 50 hours. At the time of this carbonization, decomposition of organic matter occurs and gas is generated. Therefore, it is preferable to perform heat treatment in a heating furnace provided with a gas discharging means such as a fan. Usually, an electric furnace is used as the heating furnace. If fusion occurs during carbonization, grinding is performed after carbonization. If the amount of cohesion is small, classify without grinding
The fused material may be removed by (sieving).

【0040】黒鉛化は、高周波加熱炉や炭素の直接通電
により高温に抵抗加熱するアチソン型抵抗加熱炉で行わ
れる。炭素材料を2500℃以上に加熱すると、炭素が結晶
化して黒鉛になる。黒鉛化温度は高いほど結晶化が促進
され望ましいが、あまり温度が高すぎると黒鉛粉末が昇
華する。好ましい黒鉛化温度は、2800〜3200℃であり、
黒鉛化熱処理時間は 0.1〜10時間である。黒鉛化工程ま
でに行われてきた粉砕によって粉末表面が酸化されてい
ないため、酸素による結晶化の妨害がなく、結晶化度の
高い黒鉛粉末を比較的短い黒鉛化時間で得ることができ
る。
Graphitization is carried out in a high-frequency heating furnace or an Acheson-type resistance heating furnace in which resistance is heated to a high temperature by direct energization of carbon. When a carbon material is heated to 2500 ° C. or more, the carbon is crystallized into graphite. The higher the graphitization temperature, the more the crystallization is promoted, which is desirable. However, if the temperature is too high, the graphite powder will sublime. A preferred graphitization temperature is 2800-3200 ° C,
Graphitization heat treatment time is 0.1 to 10 hours. Since the powder surface is not oxidized by the pulverization performed up to the graphitization step, crystallization is not hindered by oxygen, and a graphite powder having a high crystallinity can be obtained in a relatively short graphitization time.

【0041】炭化後や黒鉛化後に、必要であれば解砕を
行ってもよい。解砕は非酸化性雰囲気中で行う必要はな
い。また、炭化後および/または黒鉛化後に、粗大粒子
や微粒子の除去、或いは粒度調整のために、分級および
/または整粒を行うこともできる。
After carbonization or graphitization, crushing may be performed if necessary. Crushing need not be performed in a non-oxidizing atmosphere. After carbonization and / or graphitization, classification and / or sizing can also be performed for the purpose of removing coarse particles or fine particles or adjusting the particle size.

【0042】本発明の方法により、表面酸化がほとんど
ない状態で、従って酸素による黒鉛の結晶化への妨害を
受けずに、黒鉛化させることができる。そのため、d
002 が3.360 Å付近またはそれ以下と小さく、放電容量
の大きい黒鉛粉末を製造することができる。また、表面
酸化はその後に行われる熱処理 (炭化または黒鉛化) の
歩留りも減少させるので、本発明により表面酸化を極力
避けることで、歩留まりの向上も達成される。
The method of the present invention allows graphitization with little surface oxidation, and thus without interfering with the crystallization of graphite by oxygen. Therefore, d
002 is as small as about 3.360 ° or less, and a graphite powder having a large discharge capacity can be produced. In addition, since surface oxidation also reduces the yield of heat treatment (carbonization or graphitization) performed thereafter, the present invention achieves an improvement in yield by minimizing surface oxidation.

【0043】本発明の方法で製造された黒鉛粉末を用い
て、常法に従って電極を作製し、リチウムイオン二次電
池に負極として組み込むことができる。一般的な電極の
製造方法は、黒鉛粉末を少量の適当な結着剤 (例、ポリ
テトラフルオロエチレン、ポリフッ化ビニリデン、ポリ
エチレン、ヘキサフルホロポリプロピレン、ポリビニル
アルコール、カルボキシメチルセルロース等) と一緒に
湿式または乾式で成形し、集電体となる電極基板 (例、
銅箔などの金属箔) と一体化させる方法である。湿式成
形の場合は、スラリーを電極基板上にスクリーン印刷ま
たは塗布し、ロール加圧して圧密化する方法が普通であ
る。乾式成形の場合はホットプレス等により別に成形し
てから電極基板に熱圧着させる方法が採用できる。本発
明の方法で製造された粉末と他の黒鉛粉末と併用して電
極を製造することもできる。
Using the graphite powder produced by the method of the present invention, an electrode can be prepared according to a conventional method, and can be incorporated as a negative electrode in a lithium ion secondary battery. A common method of manufacturing electrodes is to wet or dry graphite powder with a small amount of a suitable binder (e.g., polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, hexafluropolypropylene, polyvinyl alcohol, carboxymethyl cellulose, etc.). An electrode substrate that is formed in a dry process and becomes a current collector (eg,
(Metal foil such as copper foil). In the case of wet molding, a method of screen-printing or applying a slurry on an electrode substrate, and pressing the roll to consolidate the slurry is common. In the case of dry molding, a method of separately molding by hot pressing or the like and then thermocompression bonding to the electrode substrate can be adopted. An electrode can also be produced by using the powder produced by the method of the present invention together with another graphite powder.

【0044】[0044]

【実施例】(実施例1)減圧蒸留装置にコールタールを入
れ、ニトロ化剤として表1に示す量の濃硝酸を添加し、
攪拌しながら80Torrの減圧下で 350℃に1時間加熱して
重縮合による高分子量化を図った。得られたピッチ様の
原料を、冷却せずに同じ蒸留装置内で攪拌しながら80To
rrの減圧下で 500℃でメソフェーズ化熱処理を行って、
揮発分10wt%のバルクメソフェーズを得た。
EXAMPLES (Example 1) Coal tar was placed in a vacuum distillation apparatus, and concentrated nitric acid in an amount shown in Table 1 was added as a nitrating agent.
The mixture was heated at 350 ° C. for 1 hour under a reduced pressure of 80 Torr with stirring to increase the molecular weight by polycondensation. While stirring the obtained pitch-like raw material in the same distillation apparatus without cooling,
Perform a mesophase heat treatment at 500 ° C under reduced pressure of rr,
A bulk mesophase with a volatile content of 10 wt% was obtained.

【0045】得られたバルクメソフェーズを、適当なチ
ャンバーに入れたハンマーミルを用いて、8000 rpmで平
均粒径が約15μmになるように非酸化性雰囲気中で粉砕
した。非酸化性雰囲気は、チャンバーを密閉して窒素ガ
スを導入するか、または窒素ガスもしくはアルゴンガス
を1 l/min の流量で流すことにより達成した。比較のた
めに、大気中でも粉砕を行った。
The obtained bulk mesophase was pulverized in a non-oxidizing atmosphere at 8000 rpm using a hammer mill placed in an appropriate chamber so that the average particle size became about 15 μm. The non-oxidizing atmosphere was achieved by closing the chamber and introducing nitrogen gas, or by flowing nitrogen gas or argon gas at a flow rate of 1 l / min. For comparison, pulverization was performed in the atmosphere.

【0046】これらの粉砕で得られた各バルクメソフェ
ーズ粉末を、窒素ガスを流通させた電気炉に入れ、50℃
/hrの昇温速度で1000℃に加熱し、その温度に5時間保
持して炭化させた。得られた炭化材の重量を測定し、そ
のメソフェーズ装入量に対する割合として炭化歩留まり
を算出した。
Each of the bulk mesophase powders obtained by these pulverizations was placed in an electric furnace through which nitrogen gas was passed, and heated at 50 ° C.
The mixture was heated to 1000 ° C. at a heating rate of / hr, and kept at that temperature for 5 hours to carbonize. The weight of the obtained carbonized material was measured, and the carbonization yield was calculated as a ratio to the charged amount of the mesophase.

【0047】この炭化材は融着していなかったので、黒
鉛化炉 (黒鉛ヒーターを用いた抵抗加熱炉) に移し、ア
ルゴン雰囲気下、10℃/分の昇温速度で3000℃に加熱
し、この温度に1時間保持して黒鉛化した。得られた黒
鉛粉末のd002 を、その粉末の粉末法X線回折図から国
際公開番号WO98/29335と同様にして求めた。
Since this carbonized material was not fused, it was transferred to a graphitization furnace (a resistance heating furnace using a graphite heater) and heated to 3000 ° C. at a rate of 10 ° C./min in an argon atmosphere. This temperature was maintained for 1 hour to graphitize. The d 002 of the resulting graphite powder was obtained in the same manner as International Publication No. WO98 / twenty-nine thousand three hundred thirty-five from powder method X-ray diffraction pattern of the powder.

【0048】この黒鉛粉末を、以下の方法による電極の
作製に用いた。黒鉛粉末90重量部とポリフッ化ビニリデ
ン粉末10重量部を溶剤のN−メチルピロリドン中で混合
し、ペースト状にした。得られたペースト状の負極材料
を、電極基板の厚さ20μmの銅箔上にドクターブレード
を用いて均一厚さに塗布し、乾燥させて1ton/cm2 の冷
間プレスで圧縮後、真空中120 ℃で乾燥した。ここから
切り出した面積1cm2 の試験片を電極 (負極) として使
用した。
This graphite powder was used for producing an electrode by the following method. 90 parts by weight of graphite powder and 10 parts by weight of polyvinylidene fluoride powder were mixed in N-methylpyrrolidone as a solvent to form a paste. The obtained paste-like negative electrode material is applied to a uniform thickness using a doctor blade on a 20-μm-thick copper foil of an electrode substrate, dried, compressed by a cold press of 1 ton / cm 2 , and then vacuumed. Dry at 120 ° C. A test piece having an area of 1 cm 2 cut out from this was used as an electrode (negative electrode).

【0049】負極特性の評価は、対極、参照極に金属リ
チウムを用いた3極式定電流充放電試験により行った。
電解液にはエチレンカーボネートとジメチルカーボネー
トの体積比1:1 の混合溶媒に1M濃度でLiClO4を溶解し
た非水溶液を使用した。このセルを、0.3 mA/cm2の電流
密度でLi参照極に対して0.0 V まで充電して負極中にLi
を格納させた後、同じ電流密度でLi参照極に対して1.50
Vまで放電 (Liイオンの放出) を行う充放電サイクルを
10サイクル行った。2〜10サイクルの9回の放電容量の
平均値をとって放電容量とした。得られた結果を、炭化
歩留まり、黒鉛粉末のd002 の値と一緒に表1に示す。
The evaluation of the negative electrode characteristics was performed by a three-electrode constant current charge / discharge test using lithium metal as a counter electrode and a reference electrode.
As the electrolyte, a non-aqueous solution in which LiClO 4 was dissolved at a concentration of 1 M in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 1 was used. Li this cell, the negative electrode during charging to 0.0 V vs. Li reference electrode at a current density of 0.3 mA / cm 2
Is stored, and 1.50 with respect to the Li reference electrode at the same current density.
Charge / discharge cycle to discharge (discharge Li ions) to V
10 cycles were performed. The average value of 9 discharge capacities in 2 to 10 cycles was taken as the discharge capacity. The results obtained are shown in Table 1 together with the carbonization yield and the value of d 002 of the graphite powder.

【0050】[0050]

【表1】 [Table 1]

【0051】表1からわかるように、本発明に従って、
メソフェーズの粉砕を非酸化性雰囲気中で行うと、d
002 が3.360 Å付近またはそれ以下と小さく (即ち、結
晶化度が高く) 、放電容量が340 mAh/g 以上と高い黒鉛
粉末が得られた。また、炭化歩留まりは91.7〜91.9%と
高かった。
As can be seen from Table 1, according to the present invention,
When the mesophase is crushed in a non-oxidizing atmosphere, d
002 was as small as about 3.360 ° or less (ie, high in crystallinity), and a graphite powder having a high discharge capacity of 340 mAh / g or more was obtained. The carbonization yield was as high as 91.7 to 91.9%.

【0052】一方、メソフェーズの粉砕を大気中で行っ
た比較例では、d002 は3.3634 nmと大きく、放電容量
は315 mAh/g と低くなった。さらに、表面酸化のために
炭化時の減量が大きく、炭化歩留まりは87.6%であり、
本発明の場合に比べて約4%も低下した。
On the other hand, in the comparative example in which the mesophase was pulverized in the air, d 002 was as large as 3.3634 nm, and the discharge capacity was as low as 315 mAh / g. Furthermore, the weight loss during carbonization is large due to surface oxidation, and the carbonization yield is 87.6%.
This is about 4% lower than in the case of the present invention.

【0053】(実施例2)コールタールピッチをニトロ化
処理せずに 500℃で熱処理して得たバルクメソフェーズ
(揮発分23wt%) を、窒素気流中5000 rpmのハンマーミ
ルで粉砕した後、実施例1と同様に炭化および黒鉛化し
た。但し、炭化後に粉末が融着していたので、炭化材を
8000 rpmのハンマーミルで、窒素気流中、アルゴン気流
中、または大気中で平均粒径が約15μmになるように粉
砕してから、黒鉛化を行った。得られた黒鉛粉末の試験
結果を表2に示す。
(Example 2) Bulk mesophase obtained by heat treatment of coal tar pitch at 500 ° C without nitration treatment
(Volatile content 23 wt%) was pulverized by a hammer mill at 5000 rpm in a nitrogen stream, and carbonized and graphitized in the same manner as in Example 1. However, since the powder was fused after carbonization,
Using a hammer mill of 8000 rpm, pulverization was performed in a nitrogen stream, an argon stream, or the atmosphere to an average particle size of about 15 μm, and then graphitized. Table 2 shows the test results of the obtained graphite powder.

【0054】[0054]

【表2】 [Table 2]

【0055】炭化後に粉砕を行った場合も、炭化前に粉
砕した実施例1と同様に、粉砕雰囲気が非酸化性雰囲気
であると、炭化歩留まりが高く、d002 が小さく、放電
容量が高くなった。
When pulverization is performed after carbonization, similarly to Example 1 in which pulverization is performed before carbonization, if the pulverization atmosphere is a non-oxidizing atmosphere, the carbonization yield is high, d 002 is small, and the discharge capacity is high. Was.

【0056】[0056]

【発明の効果】本発明によれば、安価なタールおよび/
またはピッチから得られたメソフェーズを原料として、
結晶化度が高く、従って高い放電容量を与えるリチウム
イオン二次電池の負極用黒鉛粉末を高い歩留まりで製造
することができる。
According to the present invention, inexpensive tar and / or
Or, using the mesophase obtained from the pitch as a raw material,
Graphite powder for a negative electrode of a lithium ion secondary battery having a high crystallinity and thus providing a high discharge capacity can be produced with a high yield.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 城 毅 東京都台東区池之端1丁目2番18号 住友 金属工業株式会社電子部品事業部内 (72)発明者 永峰 政幸 福島県郡山市日和田町高倉字下杉下1−1 株式会社ソニー・エナジー・テック郡山 工場内 (72)発明者 小丸 篤雄 福島県郡山市日和田町高倉字下杉下1−1 株式会社ソニー・エナジー・テック郡山 工場内 (72)発明者 藤重 祐介 福島県郡山市日和田町高倉字下杉下1−1 株式会社ソニー・エナジー・テック郡山 工場内 Fターム(参考) 4G046 EA02 EB01 EB04 EC02 EC06 5H003 AA02 BA01 BA04 BB01 BC01 5H014 AA01 BB01 EE08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takeshi Shiro 1-2-2, Ikenoba, Taito-ku, Tokyo Sumitomo Metal Industries, Ltd. Electronic Components Division (72) Inventor Masayuki Nagamine Character of Takakura, Hiwadacho, Koriyama-shi, Fukushima 1-1 Shimosugishita, Sony Energy Tech Koriyama Factory (72) Inventor Atsushi Komaru 1-1, Takakura, Hiwada-cho, Koriyama-shi, Fukushima Prefecture Sony Energy Tech Koriyama Factory (72) Invention Person Yusuke Fujishige 1-1 Shimosugishita, Takakura, Hiwada-cho, Koriyama-shi, Fukushima Prefecture F-term in Sony Energy Tech Koriyama Factory 4G046 EA02 EB01 EB04 EC02 EC06 5H003 AA02 BA01 BA04 BB01 BC01 5H014 AA01 BB01 EE08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 メソフェーズから、炭化、黒鉛化、およ
び粉砕の各工程を経てリチウムイオン二次電池負極用黒
鉛粉末を製造する方法であって、前記粉砕工程を炭化工
程前および/または炭化工程後に非酸化性雰囲気中で行
うことを特徴とする方法。
1. A method for producing graphite powder for a negative electrode of a lithium ion secondary battery from a mesophase through carbonization, graphitization, and pulverization steps, wherein the pulverization step is performed before and / or after the carbonization step. A method characterized in that the method is performed in a non-oxidizing atmosphere.
【請求項2】 前記メソフェーズが表面酸化処理を受け
ていないメソフェーズである、請求項1記載の方法。
2. The method according to claim 1, wherein the mesophase is a mesophase that has not been subjected to a surface oxidation treatment.
JP19090699A 1999-07-05 1999-07-05 Method for producing graphite powder for negative electrode of lithium ion secondary battery and lithium ion secondary battery Expired - Fee Related JP4403326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19090699A JP4403326B2 (en) 1999-07-05 1999-07-05 Method for producing graphite powder for negative electrode of lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19090699A JP4403326B2 (en) 1999-07-05 1999-07-05 Method for producing graphite powder for negative electrode of lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2001023633A true JP2001023633A (en) 2001-01-26
JP4403326B2 JP4403326B2 (en) 2010-01-27

Family

ID=16265694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19090699A Expired - Fee Related JP4403326B2 (en) 1999-07-05 1999-07-05 Method for producing graphite powder for negative electrode of lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4403326B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007248A (en) * 2008-08-15 2009-01-15 Sumitomo Electric Ind Ltd Diamond polycrystal body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007248A (en) * 2008-08-15 2009-01-15 Sumitomo Electric Ind Ltd Diamond polycrystal body

Also Published As

Publication number Publication date
JP4403326B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
US8974968B2 (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
EP1906472B1 (en) Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
KR100567113B1 (en) Lithium secondary battery
EP1801903B1 (en) Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
JP4403327B2 (en) Graphite powder for negative electrode of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5064728B2 (en) Graphite composite particles for non-aqueous secondary battery, negative electrode active material containing the same, negative electrode and non-aqueous secondary battery
JP2002216751A (en) Composite material for lithium secondary battery negative electrode and lithium secondary battery
KR101615439B1 (en) Manufacturing mehtod of carbon-silicon composite
JP2001023638A (en) Manufacture of graphite powder for lithium ion secondary battery negative electrode
CN111225888A (en) Method for preparing negative active material and lithium secondary battery comprising same
JP2012046419A (en) Method for producing carbon material
JP5061718B2 (en) Carbon material powder and method for producing the same
JP2004196609A (en) Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
JP6746918B2 (en) Carbon material for non-aqueous secondary battery and lithium ion secondary battery
JP6584975B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery
WO2021053956A1 (en) Method for manufacturing graphite material
JP4403324B2 (en) Method for producing graphite powder for negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP2003176115A (en) Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery
JP3309701B2 (en) Method for producing carbon powder for negative electrode of lithium ion secondary battery
JP4403325B2 (en) Method for producing graphite powder for negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP4470235B2 (en) Method for producing powder for negative electrode of lithium ion secondary battery
JP3698181B2 (en) Negative electrode material for lithium ion secondary battery
JP4403326B2 (en) Method for producing graphite powder for negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP2001023634A (en) Manufacture of graphite powder for lithium ion secondary battery negative electrode
JP4179720B2 (en) Method for producing carbon material and graphite material, and material for negative electrode of lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070301

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees