JP2001021913A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JP2001021913A
JP2001021913A JP11195149A JP19514999A JP2001021913A JP 2001021913 A JP2001021913 A JP 2001021913A JP 11195149 A JP11195149 A JP 11195149A JP 19514999 A JP19514999 A JP 19514999A JP 2001021913 A JP2001021913 A JP 2001021913A
Authority
JP
Japan
Prior art keywords
signal
voltage applying
light
liquid crystal
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11195149A
Other languages
Japanese (ja)
Inventor
Tatsuro Matsuda
達郎 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11195149A priority Critical patent/JP2001021913A/en
Publication of JP2001021913A publication Critical patent/JP2001021913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To substantially reduce the number of connecting points and realize highly reliable signal transmission, without generating unwanted electromagnetic wave radiation even in the case of a high-density and high-definition display, or even in the case of a large-scale display. SOLUTION: Signal voltage applying elements 4a-4d and scanning voltage applying elements 7a-7d are directly mounted on a glass substrate 2a, respectively. Light-emitting means 22, 23 convert input electric signals into light signals for light signal transmission. Consequently, even in the case of high density and high definition display for which a high transmission frequency and a high rate data transmission are required, and even in the case of a large-scale screen for which a long-length transmission path is required, it is possible to eliminate in principle unnecessary radiation in the transmission line of control clock signals or display data signals to the signal voltage applying elements 4a-4d, and also substantially reduce the number of electric wiring and connecting points, and thus improve mountability and reliability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は複数本の信号電極
と、複数本の走査電極とを有する液晶表示素子を使用し
た液晶表示装置における信号の伝送方式とその形態に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal transmission system and its form in a liquid crystal display device using a liquid crystal display element having a plurality of signal electrodes and a plurality of scanning electrodes.

【0002】[0002]

【従来の技術】従来の液晶表示装置では、信号電圧印加
素子に表示データ信号、制御信号などを伝送するため、
または走査電圧印加素子に制御信号などを伝送するた
め、プリント配線板、フレキシブル基板、TCP(Tape
Carrier Package)等を利用し、銅などの金属を配線材
料にした電気的信号伝送を行っている。
2. Description of the Related Art In a conventional liquid crystal display device, a display data signal, a control signal, and the like are transmitted to a signal voltage applying element.
Alternatively, a printed circuit board, a flexible substrate, a TCP (Tape)
Carrier Package) is used to perform electrical signal transmission using metal such as copper as wiring material.

【0003】図17にその一例を示す。図17におい
て、複数本の信号電極(図示せず)と複数本の走査電極
(図示せず)とを有するガラス基板2、対向するガラス
基板3から構成され、波線で示す有効表示領域を持つ液
晶表示素子1がある。信号電圧印加素子4、走査電圧印
加素子7がTCP5,8の上にそれぞれマウントされて
いる。
FIG. 17 shows an example. In FIG. 17, a liquid crystal is composed of a glass substrate 2 having a plurality of signal electrodes (not shown) and a plurality of scanning electrodes (not shown), and an opposing glass substrate 3, and having an effective display area indicated by wavy lines. There is a display element 1. A signal voltage applying element 4 and a scanning voltage applying element 7 are mounted on TCPs 5 and 8, respectively.

【0004】この図17は各印加素子数4個の例である
が、液晶表示素子1のサイズ、表示画素数、表示密度
(画素ピッチ)等により任意に決定されるものである。
信号電圧印加素子4の一般的な内部構成は図18に示す
ように、シフトレジスタ30、データラッチ31、D/
A変換部32からなる。外部から電源電圧入力33、表
示データ信号34、制御クロック信号35、スタート信
号36、データロード信号37が与えられると、スター
ト信号36が到来した直後の制御クロック信号毎に表示
データ信号34がデータラッチ31に取り込まれ、所定
のチャンネル数の信号が取り込まれた後にキャリア信号
38を出し、次段の信号電圧印加素子4のスタートを掛
ける。
FIG. 17 shows an example in which each of the number of applied elements is four, which is arbitrarily determined by the size of the liquid crystal display element 1, the number of display pixels, the display density (pixel pitch), and the like.
The general internal configuration of the signal voltage applying element 4 is, as shown in FIG.
An A conversion unit 32 is provided. When a power supply voltage input 33, a display data signal 34, a control clock signal 35, a start signal 36, and a data load signal 37 are given from outside, the display data signal 34 is latched for each control clock signal immediately after the start signal 36 arrives. The carrier signal 38 is output after a predetermined number of channels have been captured by the controller 31, and the signal voltage application element 4 at the next stage is started.

【0005】次段の信号電圧印加素子4では、前段から
のスタート信号を受けた直後の制御クロック信号毎に表
示データ信号34がデータラッチ31に取り込まれ、所
定のチャンネル数の信号が取り込まれた後にキャリア信
号38を出し、更に次段の信号電圧印加素子4のスター
トを掛ける。このようにして一走査期間分の表示データ
信号が全ての信号電圧印加素子のデータラッチに取り込
まれた後に到来するデータロード信号37により、表示
データ信号はD/A変換部32でアナログ変換されて出
力端子39を経て液晶表示素子の信号電極に加えられ
る。
In the signal voltage applying element 4 at the next stage, the display data signal 34 is taken into the data latch 31 every control clock signal immediately after receiving the start signal from the preceding stage, and a signal of a predetermined number of channels is taken. Thereafter, the carrier signal 38 is output, and the signal voltage application element 4 at the next stage is started. In this manner, the display data signal is analog-converted by the D / A converter 32 by the data load signal 37 arriving after the display data signal for one scanning period is taken into the data latches of all the signal voltage applying elements. The signal is applied to the signal electrode of the liquid crystal display element via the output terminal 39.

【0006】走査電圧印加素子7の場合は、前記信号電
圧印加素子の場合と類似の動作により、走査電圧印加素
子の複数の出力端子より一走査期間毎に走査電圧パルス
が順次、走査電極に印加される。そして、この動作が後
続の走査電圧印加素子で繰り返されて、一画面の走査が
完了する。この動作についての詳細な説明は省略する。
In the case of the scanning voltage applying element 7, a scanning voltage pulse is sequentially applied to the scanning electrodes every scanning period from a plurality of output terminals of the scanning voltage applying element by an operation similar to that of the signal voltage applying element. Is done. Then, this operation is repeated by the subsequent scanning voltage application element, and the scanning of one screen is completed. A detailed description of this operation is omitted.

【0007】信号線バス配線基板6及び走査線バス配線
基板9には、入力コネクタ11、DC/DCコンバータ
などの電源装置12、信号処理LSI13等を組み込ん
だコントローラ基板10より、接続手段14,15を通
して液晶表示素子1の駆動に必要な電源、制御信号、表
示データ信号が供給される。図中16は信号電極駆動の
ための複数の電源線を、また17は複数の表示データ信
号と、クロックなどの複数の制御信号線を、また18は
複数の信号電圧印加素子4を順次動作させるためのスタ
ート信号線あるいはキャリア信号線を表している。また
同じく、図中19は走査電極駆動のための複数の電源線
を、また20は制御クロックなどの複数の制御信号線
を、また21は複数の走査電圧印加素子7を順次動作さ
せるためのスタート信号線あるいはキャリー信号線をそ
れぞれ表している。
The signal line bus wiring board 6 and the scanning line bus wiring board 9 are provided with connecting means 14 and 15 from a controller board 10 incorporating an input connector 11, a power supply device 12 such as a DC / DC converter, a signal processing LSI 13, and the like. A power supply, a control signal, and a display data signal required for driving the liquid crystal display element 1 are supplied through the power supply. In the figure, reference numeral 16 denotes a plurality of power supply lines for driving signal electrodes, 17 denotes a plurality of display data signals and a plurality of control signal lines such as clocks, and 18 denotes a plurality of signal voltage applying elements 4 to operate sequentially. Signal lines or carrier signal lines. Similarly, in the figure, reference numeral 19 denotes a plurality of power supply lines for driving the scanning electrodes, reference numeral 20 denotes a plurality of control signal lines such as a control clock, and reference numeral 21 denotes a start for sequentially operating the plurality of scanning voltage applying elements 7. A signal line or a carry signal line is shown.

【0008】信号電圧印加素子4及び走査電圧印加素子
7は、これらのバス配線より受けた電源、信号を処理し
て液晶表示装置を駆動する。従来の技術では、これら一
連の伝達には、前記説明のようにプリント配線板、フレ
キシブル基板、TCP等を利用し、一貫して電気的信号
の伝送を行っている。
The signal voltage applying element 4 and the scanning voltage applying element 7 process power and signals received from these bus lines to drive the liquid crystal display. In the related art, a series of these transmissions uses a printed wiring board, a flexible substrate, a TCP, or the like, as described above, and consistently transmits electric signals.

【0009】[0009]

【発明が解決しようとする課題】このような従来の構成
では、信号電圧印加素子への表示データ伝送経路、特に
信号線バス配線基板6からの不要輻射という課題があ
る。不要輻射を実用的に問題のないレベルにまで軽減す
るためにフィルタやシールド材などの対策部材を付加す
るためにコストがかかっているのが現状である。
In such a conventional configuration, there is a problem of unnecessary radiation from the display data transmission path to the signal voltage applying element, particularly from the signal line bus wiring board 6. At present, it is costly to add a countermeasure member such as a filter or a shield material in order to reduce unnecessary radiation to a level at which there is no practical problem.

【0010】今後、液晶表示パネルの表示画素数が20
0万画素乃至500万画素と増大し、かつ表示階調数も
RGB各色8ビット構成の256階調、10ビット構成
の1024階調といった高階調化が進展すると予測され
る中で、フレーム周波数60Hz以上が要求される液晶
パネルにおいては、データ伝送レートがますます高くな
ると同時に伝送線数も増大する傾向にあり、さらには大
画面化の進展の中での電送路の長尺化から、上記従来技
術の電気的信号伝送方式では、画面分割駆動や表示デー
タ伝送の並列化などの処理技術を駆使してデータ伝送周
波数の高周波化をある程度押さえる事ができたとして
も、配線数の増加や、伝送路の長尺対応から、不要輻射
のエネルギーが増大し、対策部材に費やすコストが増大
するという問題がある。
In the future, the number of display pixels of the liquid crystal display panel will be 20
It is expected that the number of display gradations will increase from 100,000 pixels to 5 million pixels, and the number of display gradations will increase to 256 gradations of 8-bit configuration for each color of RGB and 1024 gradations of 10-bit configuration. In LCD panels that require the above, the data transmission rate tends to increase and the number of transmission lines tends to increase at the same time. In the electrical signal transmission method of technology, even if the data transmission frequency can be suppressed to some extent by making full use of processing technology such as screen division drive and parallelization of display data transmission, the number of wires and transmission There is a problem that the energy required for unnecessary radiation increases due to the length of the road, and the cost for the countermeasure members increases.

【0011】また一方、伝送経路を構成するための部材
の高密度化、高精細度化が必要であり、高密度化に応じ
て構成部材の接続精度が厳しくなり、取り付け難度が高
まり信頼性が低下するという問題もある。また、伝送経
路の高密度化が充分にできないと電送経路が肥大化し、
所望の機器サイズに納まらないという課題がある。
On the other hand, it is necessary to increase the density and definition of the members for forming the transmission path, and as the density increases, the connection accuracy of the components becomes stricter, the mounting difficulty increases, and the reliability increases. There is also the problem of lowering. Also, if the transmission path cannot be made dense enough, the transmission path will be enlarged,
There is a problem that the size does not fit in a desired device size.

【0012】走査電圧系については、信号電圧系に比べ
て、周波数が低いこと、バス配線数が少ないことから、
重大な課題はないものの、大画面化に伴い長尺のバス配
線基板が必要であり、コスト高になりつつある。本発明
は信号電圧印加素子への表示データ伝送経路からの不要
輻射を軽減するためにフィルタやシールド材などの対策
部材を付加する必要が無く、接続点数を大幅に低減で
き、信頼性の高い信号伝送を実現できる液晶表示装置を
提供することを目的とする。
The scanning voltage system has a lower frequency and a smaller number of bus lines than the signal voltage system.
Although there is no serious problem, a long bus wiring board is required as the screen becomes larger, and the cost is increasing. The present invention eliminates the need to add countermeasures such as filters and shielding materials to reduce unnecessary radiation from the display data transmission path to the signal voltage applying element, greatly reducing the number of connection points, and providing a highly reliable signal. It is an object to provide a liquid crystal display device capable of realizing transmission.

【0013】[0013]

【課題を解決するための手段】これらの問題を解決する
ために、本発明は信号電圧印加素子への表示データ伝送
などを電線を使用せずに光による信号伝送で実現するこ
とを特徴とする。この本発明の構成によると、表示デー
タ信号または問題のある一部の制御信号を、信号処理L
SIより信号電圧印加素子または走査電圧印加素子まで
の空間を一定の方向性を持つ伝送経路を構成した伝送手
段の中で、光で伝送する事により、高い伝送周波数と多
くのデータ伝送が要求される高密度・高精細表示の場合
であっても、長尺の伝送経路が要求される大型画面の場
合であっても、電磁波の不要輻射を発生させることな
く、接続点数を大幅に低減でき、信頼性の高い信号伝送
を実現できる。
In order to solve these problems, the present invention is characterized in that display data transmission to a signal voltage applying element is realized by signal transmission using light without using an electric wire. . According to the configuration of the present invention, the display data signal or a part of the problematic control signal is processed by the signal processing L.
A high transmission frequency and a large amount of data transmission are required by transmitting light with light in a transmission means that configures a transmission path with a fixed direction from the SI to the signal voltage application element or scanning voltage application element. Whether it is a high-density, high-definition display or a large screen that requires a long transmission path, the number of connection points can be greatly reduced without generating unnecessary radiation of electromagnetic waves. Highly reliable signal transmission can be realized.

【0014】[0014]

【発明の実施の形態】本発明の請求項1記載の液晶表示
装置は、複数本の信号電極および複数本の走査電極を有
する液晶表示素子と、前記信号電極に接続され信号電圧
を印加する複数の信号電圧印加素子と、前記走査電極に
接続され走査電圧を印加する複数の走査電圧印加素子と
を有する液晶表示装置であって、光伝送によって前記信
号電圧印加素子あるいは前記走査電圧印加素子に信号を
伝送するよう構成したことを特徴とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A liquid crystal display device according to a first aspect of the present invention includes a liquid crystal display element having a plurality of signal electrodes and a plurality of scanning electrodes, and a plurality of liquid crystal display elements connected to the signal electrodes for applying a signal voltage. And a plurality of scanning voltage applying elements connected to the scanning electrode and applying a scanning voltage, wherein the signal voltage applying element or the scanning voltage applying element is transmitted to the signal voltage applying element by optical transmission. Is transmitted.

【0015】本発明の請求項2記載の液晶表示装置は、
請求項1において、複数個の信号電圧印加素子または走
査電圧印加素子に、互いに向き合う2個一対の反射面を
少なくとも一対以上有する光伝送手段を通して、光信号
を順次、従属的に伝送するよう構成したことを特徴とす
る。本発明の請求項3記載の液晶表示装置は、請求項1
において、複数個の信号電圧印加素子または走査電圧印
加素子に、複数個の同一方向に反射面を有する光伝送手
段を通して、光信号を並列的に伝送するように構成した
ことを特徴とする。
According to a second aspect of the present invention, there is provided a liquid crystal display device.
In claim 1, optical signals are sequentially and subordinately transmitted to a plurality of signal voltage applying elements or scanning voltage applying elements through an optical transmission means having at least one pair of two reflecting surfaces facing each other. It is characterized by the following. The liquid crystal display device according to the third aspect of the present invention is the first aspect.
Wherein the optical signal is transmitted in parallel to a plurality of signal voltage applying elements or scanning voltage applying elements through a plurality of optical transmitting means having reflecting surfaces in the same direction.

【0016】本発明の請求項4記載の液晶表示装置は、
請求項2または請求項3において、前記信号電圧印加素
子または走査電圧印加素子が、受光素子または一対の受
光素子と発光素子を備えたことを特徴とする。本発明の
請求項5記載の液晶表示装置は、請求項2または請求項
3において、前記光伝送手段が一個の光透過性の樹脂材
料からなり、複数個の金属製の反射面を有する個片を信
号電圧印加素子あるいは走査電圧印加素子の配列に合わ
せて、前記樹脂材料に填め込み法あるいは一体成形法に
て形成したことを特徴とする。
According to a fourth aspect of the present invention, there is provided a liquid crystal display device.
According to Claim 2 or Claim 3, the signal voltage applying element or the scanning voltage applying element includes a light receiving element or a pair of light receiving elements and a light emitting element. According to a fifth aspect of the present invention, in the liquid crystal display device according to the second or third aspect, the light transmission means is made of one light-transmitting resin material and has a plurality of metal reflecting surfaces. In accordance with the arrangement of the signal voltage applying element or the scanning voltage applying element, and is formed by a filling method or an integral molding method in the resin material.

【0017】以下、各実施の形態を図1〜図16に基づ
いて説明する。図1に本発明のシステム構成図を示す。
複数本の信号電極(図示せず)と、複数本の走査電極
(図示せず)とを有するガラス基板2a、対向するガラ
ス基板3aから構成され、波線で示す有効表示領域を持
つ液晶表示素子1aがある。
Hereinafter, each embodiment will be described with reference to FIGS. FIG. 1 shows a system configuration diagram of the present invention.
A liquid crystal display element 1a comprising a glass substrate 2a having a plurality of signal electrodes (not shown) and a plurality of scanning electrodes (not shown), and an opposing glass substrate 3a and having an effective display area indicated by a wavy line. There is.

【0018】信号電圧印加素子4a〜4d、及び走査電
圧印加素子7a〜7dが、ガラス基板2aにそれぞれ直
接にマウントされている。この形態はCOG( Chip On
Glass)と称され、従来から実用化されているが、従来
のCOGでは、電源、表示データ、制御信号など全ての
バス配線としては別個のフレキシブル基板などの材料が
使用されている。
The signal voltage applying elements 4a to 4d and the scanning voltage applying elements 7a to 7d are directly mounted on the glass substrate 2a, respectively. This form is COG (Chip On
Glass), which has been put into practical use, but in the conventional COG, a material such as a separate flexible substrate is used for all bus wirings such as a power supply, display data, and control signals.

【0019】本発明では、線数が少なく、また低周波で
あるため不要輻射への影響が少ないことから、前述の課
題とならない電源線や低周波の制御信号線については従
来通りの金属材料使用の伝送路をガラス基板上に形成す
るとか、または従来同様の別個の形態で実施するものと
して、実装上の説明を省略する。これらに含まれるもの
として、図1の電源線16a,19a、スタート信号あ
るいはキャリア信号線18a,21a、これらの接続手
段14a,15aなどがある。
In the present invention, since the number of wires is small and the frequency is low, the influence on unnecessary radiation is small. The transmission path is formed on a glass substrate, or is implemented in a separate form similar to that of the related art, and a description on mounting is omitted. These include the power supply lines 16a and 19a, the start signal or carrier signal lines 18a and 21a of FIG. 1, and the connection means 14a and 15a.

【0020】コントローラ基板10aは、従来例と同様
に入力コネクタ11、電源装置12、信号処理LSI1
3aからなるが、信号処理LSI13aは従来の表示デ
ータ信号をシリアル信号に変換して出力する以外は基本
的に従来と同じである。また制御クロック信号や表示デ
ータなど高速の信号については、差動信号として出力
し、シールドされたケーブルにより発光手段22,23
へ伝送する事が推奨されるが、本発明の必要条件ではな
い。
The controller board 10a includes an input connector 11, a power supply 12, a signal processing LSI 1
The signal processing LSI 13a is basically the same as the conventional one except that the conventional display data signal is converted into a serial signal and output. High-speed signals such as control clock signals and display data are output as differential signals, and the light emitting units 22 and 23 are connected by shielded cables.
Is recommended but not a requirement of the present invention.

【0021】発光手段22,23は、図2に示すように
ドライバ27と電気信号を光信号に変換する発光素子2
8より構成され、入力電気信号26を光信号29に変換
する。信号電圧印加素子4a〜4dの一例は、図3に示
すように、図18の従来の信号電圧印加素子4に受光素
子40、バッファアンプ41、シリアル/パラレル変換
部42を追加した構成とする。
As shown in FIG. 2, the light emitting means 22 and 23 are provided with a driver 27 and a light emitting element 2 for converting an electric signal into an optical signal.
8, and converts the input electric signal 26 into an optical signal 29. As shown in FIG. 3, one example of the signal voltage applying elements 4a to 4d has a configuration in which a light receiving element 40, a buffer amplifier 41, and a serial / parallel converter 42 are added to the conventional signal voltage applying element 4 of FIG.

【0022】図3の信号電圧印加素子4aの場合、制御
クロック信号、表示データ信号を含む光信号43が受光
素子40で電気信号に変換され、バッファアンプ41で
増幅される。その後は、制御クロック信号35は従来同
様、シフトレジスタ30に導かれ、表示データ信号はシ
リアル/パラレル変換部42でパラレル信号に変換さ
れ、従来と同様にデータラッチ31に導かれる。以降の
液晶表示素子を駆動する動作は従来と同様である。
In the case of the signal voltage application element 4 a shown in FIG. 3, the light signal 43 including the control clock signal and the display data signal is converted into an electric signal by the light receiving element 40 and amplified by the buffer amplifier 41. Thereafter, the control clock signal 35 is guided to the shift register 30 as in the conventional case, the display data signal is converted to a parallel signal by the serial / parallel converter 42, and then to the data latch 31 as in the conventional case. Subsequent operations for driving the liquid crystal display element are the same as those in the related art.

【0023】また他の構成として、図3の構成に、さら
にドライバ44、発光素子45を加えた構成を図4に示
す。これは縦列接続のための次段への光信号46を生成
する手段を持たせた構成であり、バファアンプ41を出
た電気信号がシフトレジスタ30およびシリアル/パラ
レル変換部42に導かれると同時にドライバ44にも導
かれ、発光素子45でもとの光信号46に変換される。
これらの使い方については後述する。
FIG. 4 shows another configuration in which a driver 44 and a light emitting element 45 are added to the configuration of FIG. This is a configuration in which means for generating an optical signal 46 to the next stage for cascade connection is provided, and the electric signal output from the buffer amplifier 41 is guided to the shift register 30 and the serial / parallel converter 42, and at the same time, a driver is provided. The light is also guided to 44 and is converted into the original optical signal 46 by the light emitting element 45.
How to use them will be described later.

【0024】また走査電圧印加素子7aなどについて
も、同様である。図1の24,25は後述する構成を持
つ光伝送手段であり、発光手段22または23から発射
された光信号29を複数の信号電圧印加素子4a〜4d
または走査電圧印加素子7a〜7dに伝送する。次に、
光伝送手段24,25について図5で説明する。
The same applies to the scanning voltage applying element 7a and the like. Reference numerals 24 and 25 in FIG. 1 denote optical transmission means having a configuration which will be described later, and convert the optical signal 29 emitted from the light emitting means 22 or 23 into a plurality of signal voltage applying elements 4a to 4d.
Alternatively, the signal is transmitted to the scanning voltage applying elements 7a to 7d. next,
The optical transmission means 24, 25 will be described with reference to FIG.

【0025】図5(a)中の50は光透過性の固体材料
による柱状の光伝送路の一部で、反射面51a、51b
は反射板を張り付ける、あるいは金属膜蒸着などの方法
により形成した光反射性を持たせた。52a,52b,
52cは、それぞれ入射,反射,出射された光を表し、
光伝送路の内部の光の伝送状態を示している。図5
(b)に示す53は一つの反射面51bを有する光伝送
路の一部である。
In FIG. 5A, reference numeral 50 denotes a part of a columnar optical transmission line made of a light-transmitting solid material, and the reflecting surfaces 51a and 51b.
Has a light reflectivity formed by a method such as attaching a reflector or depositing a metal film. 52a, 52b,
52c represents light incident, reflected, and emitted, respectively.
2 illustrates a transmission state of light inside an optical transmission line. FIG.
Reference numeral 53 shown in (b) denotes a part of an optical transmission line having one reflecting surface 51b.

【0026】図6は、図5の光伝送路50,53と反射
面を持たない、かつ光透過性を問わない材料からなる補
助材54,55とを、図6(a)のように一列に並べて
図6(b)のように一体化した構成の光伝送路56を表
している。同一方向を向いている反射面間の寸法は、図
1における信号電圧印加素子4a〜4dまたは走査電圧
印加素子7a〜7dの配置ピッチに等しく、これら電圧
印加素子が持つ受光素子40、発光素子45に対応する
配置となる。
FIG. 6 shows the optical transmission lines 50 and 53 of FIG. 5 and the auxiliary members 54 and 55 made of a material having no reflection surface and having any light transmittance as shown in FIG. 6B shows an optical transmission path 56 having an integrated configuration as shown in FIG. The dimension between the reflecting surfaces facing in the same direction is equal to the arrangement pitch of the signal voltage applying elements 4a to 4d or the scanning voltage applying elements 7a to 7d in FIG. 1, and the light receiving element 40 and the light emitting element 45 of these voltage applying elements are provided. It becomes the arrangement corresponding to.

【0027】図7は光伝送手段24,25の別の構成を
示している。図7では図5(b)の光伝送路53と同じ
構成の光伝送路57と、光透過性を持つが反射面を持た
ない補助材58とを図7(a)のように一列に並べかつ
上下方向に積み重ねて図7(b)のように一体化して光
伝送路59とした構成である。反射面間の寸法は図1に
おける信号電圧印加素子4a〜4dまたは走査電圧印加
素子7a〜7dの配置ピッチに等しくこれら電圧印加素
子が持つ受光素子40に対応する配置となる。
FIG. 7 shows another configuration of the optical transmission means 24, 25. In FIG. 7, an optical transmission line 57 having the same configuration as the optical transmission line 53 of FIG. 5B and an auxiliary member 58 having light transmittance but having no reflection surface are arranged in a line as shown in FIG. In addition, the optical transmission path 59 is stacked vertically and integrated as shown in FIG. The dimension between the reflecting surfaces is equal to the arrangement pitch of the signal voltage applying elements 4a to 4d or the scanning voltage applying elements 7a to 7d in FIG. 1 and corresponds to the light receiving element 40 of these voltage applying elements.

【0028】図8は光伝送手段24,25の更に別の構
成を示している。図8では図5(b)に示した光伝送路
53と同様の光伝送路60と反射面を持たず光透過性を
問わない材料からなる補助材61を、図8(a)のよう
に一列に並べ、かつ図8(b)のように側面方向に重ね
合わせて一体化した構成の光伝送路62を表している。
反射面間の寸法は図1における信号電圧印加素子4a〜
4dまたは走査電圧印加素子7a〜7dの配置ピッチに
等しく、これら電圧印加素子が持つ受光素子40に対応
する配置となる。
FIG. 8 shows still another configuration of the optical transmission means 24, 25. 8A and 8B, an optical transmission line 60 similar to the optical transmission line 53 shown in FIG. 5B and an auxiliary member 61 made of a material having no reflection surface and having any light transmittance are used as shown in FIG. 8A. The optical transmission lines 62 are arranged in a line, and are superposed and integrated in a lateral direction as shown in FIG. 8B.
The dimensions between the reflection surfaces are the signal voltage application elements 4a to 4a in FIG.
4d or the arrangement pitch of the scanning voltage applying elements 7a to 7d, which is an arrangement corresponding to the light receiving elements 40 of these voltage applying elements.

【0029】図9は光伝送手段24,25の更に別の構
成を示している。図9(a)は一部拡大図に示すように
金属板または金属膜蒸着による反射特性を持つ板状の個
片63を、光透過性の固体材料64に設けたスリット6
5に挿入するか、または一体成型技術で形成する構造と
なし、複数個の出射光側反射面63a〜63d、及び入
射光側反射面63a’〜63c’を持つ光伝送路67で
ある。52a,52b,52cは入射,反射,出射され
た光を表し、光伝送路67の内部の光の伝送状態を示
す。
FIG. 9 shows still another configuration of the optical transmission means 24, 25. FIG. 9A is a partially enlarged view of a slit 6 in which a plate-shaped piece 63 having a reflection characteristic by metal plate or metal film deposition is provided in a light-transmitting solid material 64.
5 is an optical transmission path 67 having a structure of a plurality of outgoing light-side reflecting surfaces 63a to 63d and a plurality of incoming light-side reflecting surfaces 63a 'to 63c'. Reference numerals 52a, 52b, and 52c denote incident, reflected, and emitted light, and indicate the transmission state of light inside the optical transmission line 67.

【0030】更に図9(b)には、図9(a)と同様の
構造であるが、高さの異なる反射面66a〜66dが一
方向にのみ配置されている一体構造の光伝送路68を示
す。52a,52cは光の伝送状態を示す。次に、図5
〜図9の何れかに示す光伝送路を使用した液晶表示装置
の実装概念図を示す。
FIG. 9B shows an optical transmission line 68 having a structure similar to that of FIG. 9A, but having reflecting surfaces 66a to 66d having different heights arranged only in one direction. Is shown. 52a and 52c show the light transmission state. Next, FIG.
10 is a mounting conceptual diagram of a liquid crystal display device using the optical transmission line shown in any of FIGS.

【0031】図10〜図12は図6に示した光伝送路5
6を使用した具体例を示している。図10は図6に示し
た光伝送路56を遮光フィルム71を挟んで液晶表示装
置のバックライトシステムの導光板70の一辺に近接し
て配置される過程を示している。図11は複数本の信号
電極からなる信号電極ブロック73a〜73dと複数本
の走査電極(図11に図示せず)とを有するガラス基板
72の上に、図4に示す4a’の構成を持つ信号電圧印
加素子74a〜74dがCOG方式でマウントされ、複
数本の信号電極ブロック73a〜73dと対をなして、
各信号電圧印加素子の各出力端子(図4の出力端子39
に相当)が各信号電極にACF(Anisotropic Conducti
ve Film )等によって接続されている状態を示す。
FIGS. 10 to 12 show the optical transmission line 5 shown in FIG.
6 shows a specific example using. FIG. 10 shows a process in which the light transmission path 56 shown in FIG. 6 is arranged close to one side of the light guide plate 70 of the backlight system of the liquid crystal display device with the light shielding film 71 interposed therebetween. FIG. 11 shows a configuration 4a ′ shown in FIG. 4 on a glass substrate 72 having signal electrode blocks 73a to 73d composed of a plurality of signal electrodes and a plurality of scanning electrodes (not shown in FIG. 11). The signal voltage applying elements 74a to 74d are mounted by the COG method, and are paired with a plurality of signal electrode blocks 73a to 73d.
Each output terminal of each signal voltage applying element (output terminal 39 in FIG. 4)
ACF (Anisotropic Conducti) is applied to each signal electrode.
ve Film).

【0032】ガラス基板72はこの工程では、実際には
図1の液晶表示素子1aそのものであり、対向するガラ
ス基板3aがガラス基板2aと一体化された構造である
が、ここでは図面を見やすくするため、対向ガラス基板
3aに相当する部分の図示を省略している。図12は、
図10と図11を上下に組み合わせて、光伝送路56の
反射板80a〜80gが信号電圧印加素子74a〜74
dの受光素子75a〜75d、及び発光素子76a〜7
6cに対向する関係位置に固定されている状態を示す。
In this step, the glass substrate 72 is actually the liquid crystal display element 1a itself in FIG. 1 and has a structure in which the opposing glass substrate 3a is integrated with the glass substrate 2a. Therefore, illustration of a portion corresponding to the counter glass substrate 3a is omitted. FIG.
By combining FIGS. 10 and 11 vertically, the reflection plates 80a to 80g of the optical transmission path 56 are used as signal voltage applying elements 74a to 74g.
d light receiving elements 75a to 75d and light emitting elements 76a to 76d
6C shows a state in which it is fixed at a related position facing 6c.

【0033】更に、信号ケーブルなどの電気的伝送手段
78と図2の構成をもつ発光素子77が光伝送路56の
入射口に対向する位置に固定されている。図1のコント
ローラ基板10aから電気的伝送手段78で導かれた制
御クロック信号あるいは表示データ信号は発光素子77
で光信号79aに変換される。光伝送路56に入った光
信号79aは最初の反射面80aで直角に反射されて、
光信号79bとなり、光伝送路56を抜け、ガラス基板
72を貫通し、信号電圧印加素子74aの受光素子75
aに到達する。受光素子75aに入った光信号79b
は、図3及び図4における説明のように、受光素子75
aで電気信号に変換される。
Further, an electric transmission means 78 such as a signal cable and a light emitting element 77 having the structure shown in FIG. 2 are fixed at a position facing the entrance of the optical transmission path 56. The control clock signal or the display data signal guided by the electric transmission means 78 from the controller board 10a of FIG.
Is converted into an optical signal 79a. The optical signal 79a entering the optical transmission path 56 is reflected at a right angle by the first reflecting surface 80a,
It becomes an optical signal 79b, passes through the optical transmission path 56, penetrates the glass substrate 72, and receives the light receiving element 75 of the signal voltage applying element 74a.
reaches a. Optical signal 79b entering the light receiving element 75a
Is a light receiving element 75 as described in FIGS.
is converted into an electric signal at a.

【0034】次いでバッファアンプ41で増幅され、制
御クロック信号はシフトレジスタ30へ、また表示デー
タ信号は次段のシリアル/パラレル変換部でもとのパラ
レル信号に変換された後、データラッチ回路に取り込ま
れる。また同時にバッファアンプを出た電気信号はドラ
イバ、発光素子を通ってもとの光信号79cに変換され
る。光信号79cはガラス基板72を貫通し、光伝送路
56に入り、反射面80bで直角に反射されて、光信号
79dとなり、光伝送路の中を次の反射面80cに向か
って進行する。ここでまた直角に反射された光信号79
eは次段の信号電圧印加素子74bの受光素子75bに
到達する。以降、同様の過程を経て最終段の信号電圧印
加素子74dまでもとの光信号79aが伝送される。
Next, the signal is amplified by the buffer amplifier 41, the control clock signal is converted to the shift register 30, and the display data signal is converted to the original parallel signal in the next serial / parallel conversion section, and then is taken into the data latch circuit. . At the same time, the electric signal output from the buffer amplifier is converted into an original optical signal 79c through a driver and a light emitting element. The optical signal 79c penetrates the glass substrate 72, enters the optical transmission path 56, is reflected at a right angle by the reflection surface 80b, becomes an optical signal 79d, and travels through the optical transmission path toward the next reflection surface 80c. Here again, the light signal 79 reflected at right angles
e reaches the light receiving element 75b of the signal voltage applying element 74b in the next stage. Thereafter, through the same process, the original optical signal 79a is transmitted to the final-stage signal voltage application element 74d.

【0035】このようにして全信号電圧印加素子におい
て、光信号が電気信号に変換され、従来と同様の一定の
制御と信号処理により信号電圧がそれぞれの信号電極に
与えられる。図13と図14は図7に示した光伝送路5
9を使用した具体例を示している。図13は、図7の光
伝送路59を遮光フィルム71を挟んで液晶表示装置の
バックライトシステムの導光板70の一辺に近接して配
置される過程を示している。
As described above, in all the signal voltage applying elements, the optical signal is converted into the electric signal, and the signal voltage is applied to each signal electrode by the same constant control and signal processing as in the prior art. FIGS. 13 and 14 show the optical transmission line 5 shown in FIG.
9 shows a specific example in which 9 is used. FIG. 13 shows a process in which the light transmission path 59 of FIG. 7 is disposed close to one side of the light guide plate 70 of the backlight system of the liquid crystal display device with the light shielding film 71 interposed therebetween.

【0036】図14は図12と同様であるが、信号電圧
印加素子として図3に示す4aの構成を持つ信号電圧印
加素子83a〜83dがCOG方式でマウントされ、複
数本の信号電極ブロック82a〜82dと対をなして、
前記同様に接続されている構成の液晶表示素子81が図
13との組み合わせで、光伝送路59の反射板87a〜
87dが信号電圧印加素子83a〜83dの受光素子8
4a〜84dに対向する関係位置に固定されている状態
を示す。更に、信号ケーブルなどの電気的伝送手段85
と図2の構成をもつ発光素子の複合体86が光伝送路5
9の入射口に対向する位置に固定されている。
FIG. 14 is the same as FIG. 12 except that signal voltage applying elements 83a to 83d having the configuration of 4a shown in FIG. 3 are mounted by a COG method as signal voltage applying elements, and a plurality of signal electrode blocks 82a to 82d are provided. Paired with 82d,
The liquid crystal display element 81 having the same connection structure as described above is combined with the liquid crystal display element 81 shown in FIG.
87d is the light receiving element 8 of the signal voltage applying elements 83a to 83d
It shows a state where it is fixed at a related position facing 4a to 84d. Further, an electric transmission means 85 such as a signal cable is used.
The light emitting element composite 86 having the configuration of FIG.
9 is fixed at a position facing the entrance 9.

【0037】図1のコントローラ基板10aから電気的
85で導かれた制御クロック信号あるいは表示データ信
号は発光素子複合体86で光信号88a〜88dに変換
される。コントローラ基板10aから発光素子複合体8
6に送られる電気信号は図12の場合と同じであり、発
光素子複合体86の各発光素子は同じタイミングの同じ
情報を持つ光信号88a〜88dを発生し、光伝送路5
9に放射する。
A control clock signal or a display data signal guided by the electric circuit 85 from the controller board 10a of FIG. 1 is converted into light signals 88a to 88d by the light emitting element composite 86. Light emitting element complex 8 from controller board 10a
12 is the same as that in FIG. 12, each light emitting element of the light emitting element composite 86 generates optical signals 88a to 88d having the same information at the same timing, and
Radiate to 9.

【0038】光伝送路59に入った光信号88aは反射
面87aで直角に反射されて、光信号89aとなり、光
伝送路59を抜け、液晶表示素子81のガラス基板部を
突き抜け、信号電圧印加素子83aの受光素子84aに
到達する。受光素子84aに入った光信号89aは、図
3における説明のように、受光素子84aで電気信号に
変換される。次いでバッファアンプで増幅され、制御ク
ロック信号はシフトレジスタへ、また表示データ信号は
次段のシリアル/パラレル変換部でもとのパラレル信号
に変換された後、データラッチ回路に取り込まれる。他
の光信号88b〜88dも、反射面87b〜87dで直
角に反射された後、上層の光透過性のある補助材と液晶
表示素子81のガラス基板部を貫通し、信号電圧印加素
子83b〜83dに伝送され、前記同様の過程を経て、
光信号が電気信号に変換される。こうして従来と同様の
一定の制御と信号処理により信号電圧がそれぞれの信号
電極に与えられる。
The optical signal 88a entering the optical transmission line 59 is reflected at a right angle by the reflection surface 87a to become an optical signal 89a, passes through the optical transmission line 59, penetrates the glass substrate of the liquid crystal display element 81, and applies a signal voltage. The light reaches the light receiving element 84a of the element 83a. The light signal 89a that has entered the light receiving element 84a is converted into an electric signal by the light receiving element 84a as described in FIG. Next, the signal is amplified by a buffer amplifier, the control clock signal is converted to a shift register, and the display data signal is converted to an original parallel signal by a serial / parallel conversion unit at the next stage, and then is captured by a data latch circuit. The other optical signals 88b to 88d are also reflected at right angles by the reflection surfaces 87b to 87d, and then penetrate the upper transparent auxiliary material and the glass substrate portion of the liquid crystal display element 81 to form signal voltage applying elements 83b to 83d. 83d, and through the same process as above,
Optical signals are converted to electrical signals. In this manner, a signal voltage is applied to each signal electrode by the same constant control and signal processing as in the related art.

【0039】図15と図16は図8に示した光伝送路6
2を使用した具体例を示している。図15は、図8の光
伝送路62を遮光フィルム71を挟んで液晶表示装置の
バックライトシステムの導光板70の一辺に近接して配
置される過程を示している。図16は図14と同様であ
るが、信号電圧印加素子92a〜92dが光伝送路62
の横並びピッチで段違い状にCOG方式でマウントさ
れ、複数本の信号電極ブロック91a〜91dと対をな
して、前記同様に接続されている構成の液晶表示素子9
0が図15との組み合わせで、光伝送路62の反射板9
5a〜95dが信号電圧印加素子92a〜92dの受光
素子93a〜93dに対向する関係位置に固定されてい
る状態を示す。更に、信号ケーブルなどの電気的伝送手
段85と図2の構成をもつ発光素子の複合体94が光伝
送路62の入射口に対向する位置に固定されている。
FIGS. 15 and 16 show the optical transmission line 6 shown in FIG.
2 shows a specific example using. FIG. 15 shows a process in which the light transmission path 62 of FIG. 8 is arranged close to one side of the light guide plate 70 of the backlight system of the liquid crystal display device with the light shielding film 71 interposed therebetween. FIG. 16 is the same as FIG. 14 except that the signal voltage applying elements 92a to 92d
The liquid crystal display element 9 is mounted in the COG system in a stepwise manner at a horizontal arrangement pitch, paired with a plurality of signal electrode blocks 91a to 91d, and connected in the same manner as described above.
0 is a combination of FIG. 15 and the reflector 9 of the optical transmission line 62.
5A to 95D show a state where the signal voltage applying elements 92a to 92d are fixed at the positions facing the light receiving elements 93a to 93d. Further, a composite 94 of an electric transmission means 85 such as a signal cable and a light emitting element having the configuration shown in FIG. 2 is fixed at a position facing the entrance of the optical transmission path 62.

【0040】前記同様に、発光素子複合体94で生成さ
れた光信号96a〜96dは、光伝送路62に放射さ
れ、図14の場合と同様の過程を経るので、説明は省略
する。また、図12の実装構成において、光伝送路56
の代わりに、図9(a)に示す光伝送路67を使用して
も、図14の実装構成において、光伝送路59の代わり
に、図9(b)に示す光伝送路68を使用しても同等の
構成、動作となる。
As described above, the optical signals 96a to 96d generated by the light emitting element composite 94 are radiated to the optical transmission line 62 and undergo the same process as in FIG. Further, in the mounting configuration of FIG.
Instead of using the optical transmission line 67 shown in FIG. 9A, the optical transmission line 68 shown in FIG. Even so, the configuration and operation are the same.

【0041】導光板70と各種の光伝送路を遮光フィル
ム71によって光学的に分離し、バックライトの光が光
信号伝送に悪影響を及ぼさないように処置しているが、
バックライトの光または外光の回り込みなど、光伝送を
妨害するおそれのある信号以外の光がある場合は、追加
の遮光手段を講ずる必要があることは言うまでもない。
The light guide plate 70 and various light transmission paths are optically separated by a light shielding film 71 so as to prevent the light of the backlight from affecting the optical signal transmission.
If there is light other than a signal that may interfere with light transmission, such as light from the backlight or outside light, it is needless to say that additional light blocking means must be provided.

【0042】また、以上は信号電圧印加系を主に説明し
てきたが、走査電圧印加系についても同様の構成が可能
であり、信号電圧印加系と実装形態を同一にすること
で、実装の合理化や信頼性の向上を図ることができる
が、説明は類似するので省略する。
Although the signal voltage application system has mainly been described above, a similar configuration can be applied to the scanning voltage application system. However, since the description is similar, the description is omitted.

【0043】[0043]

【発明の効果】以上のように本発明の構成によると、複
数の信号電圧印加素子が順次・従属的に光信号を受信す
る構成と、並列的に光信号を受信する実施例を挙げた
が、いずれの場合も、表示データ信号または問題のある
一部の制御信号を、信号処理LSIより信号電圧印加素
子または走査電圧印加素子までの空間を一定の方向性を
持つ伝送経路を構成した伝送手段の中で、シリアルに変
換された光信号で伝送する事により、高い伝送周波数と
多くのデータ伝送が要求される高密度・高精細表示の場
合であっても、長尺の伝送経路が要求される大型画面の
場合であっても、信号電圧印加素子への制御クロック信
号あるいは表示データ信号の伝送路における不要輻射を
原理的に解消することができると同時に、電気的配線数
及び接続点数を大幅に低減でき、実装性の改良、信頼性
の向上を図ることが出来る。また走査電圧印加系におい
ても同様の光伝送方式を採用することで実装形態の簡略
化、信頼性の向上を図ることが出来る。
As described above, according to the configuration of the present invention, the configuration in which a plurality of signal voltage applying elements sequentially and subordinately receive optical signals and the embodiment in which optical signals are received in parallel have been described. In either case, a transmission means having a transmission path having a fixed direction in a space from the signal processing LSI to the signal voltage applying element or the scanning voltage applying element is used to transmit the display data signal or a part of the problematic control signal. In the case of high-density and high-definition display requiring high transmission frequency and a large amount of data transmission by transmitting optical signals converted to serial, a long transmission path is required. Even in the case of large screens, unnecessary radiation in the transmission path of the control clock signal or display data signal to the signal voltage application element can be eliminated in principle, and the number of electrical wirings and connection points is greatly reduced. Reduction can, implementation of the improvement, it is possible to improve the reliability. Also, by adopting a similar optical transmission method in the scanning voltage application system, the mounting form can be simplified and the reliability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液晶表示装置の駆動システム構成図FIG. 1 is a configuration diagram of a drive system of a liquid crystal display device of the present invention.

【図2】本発明に使用の発光手段のブロック図FIG. 2 is a block diagram of a light emitting means used in the present invention.

【図3】本発明の信号電圧印加素子の電気的構成を示す
ブロック図
FIG. 3 is a block diagram showing an electrical configuration of the signal voltage applying element of the present invention.

【図4】本発明の信号電圧印加素子の他の電気的構成を
示すブロック図
FIG. 4 is a block diagram showing another electrical configuration of the signal voltage applying element of the present invention.

【図5】光伝送路を構成する一部材の図と光伝送路を構
成する他の一部材の図
FIG. 5 is a diagram of one member constituting the optical transmission line and a diagram of another member constituting the optical transmission line.

【図6】光伝送路の部材展開図と一体化された光伝送路
を示す図
FIG. 6 is a diagram showing an optical transmission line integrated with a member development view of the optical transmission line.

【図7】光伝送路の他の例を示す部材展開図と一体化さ
れた光伝送路を示す図
FIG. 7 is a diagram showing an optical transmission line integrated with a member development view showing another example of the optical transmission line.

【図8】光伝送路の他の例を示す部材展開図と一体化さ
れた光伝送路を示す図
FIG. 8 is a diagram showing an optical transmission line integrated with a member development view showing another example of the optical transmission line.

【図9】光伝送路の他の例を示す部分図と説明図FIG. 9 is a partial view and an explanatory view showing another example of the optical transmission line.

【図10】光伝送路が導光板に近接して配置される過程
を示す図
FIG. 10 is a diagram showing a process in which an optical transmission line is arranged close to a light guide plate.

【図11】ガラス基板の上に信号電圧印加素子がマウン
トされ信号電極が信号電圧印加素子の出力端子に接続さ
れている状態図
FIG. 11 is a diagram showing a state in which a signal voltage applying element is mounted on a glass substrate and a signal electrode is connected to an output terminal of the signal voltage applying element.

【図12】図10と図11を合成して光伝送の過程を示
す図
FIG. 12 is a diagram showing the process of optical transmission by combining FIGS. 10 and 11;

【図13】他の光伝送路が導光板に近接して配置される
過程を示す図
FIG. 13 is a diagram showing a process in which another optical transmission line is arranged close to the light guide plate.

【図14】他の光伝送路の実装例で光伝送の過程を示す
FIG. 14 is a diagram showing a process of optical transmission in another implementation example of an optical transmission line.

【図15】更に他の光伝送路が導光板に近接して配置さ
れる過程を示す図
FIG. 15 is a diagram showing a process in which still another optical transmission line is arranged close to the light guide plate.

【図16】更に他の光伝送路の実装例で光伝送の過程を
示す図
FIG. 16 is a diagram showing a process of optical transmission in still another optical transmission line mounting example.

【図17】従来の液晶表示装置の駆動システム構成の一
例を示す図
FIG. 17 is a diagram illustrating an example of a drive system configuration of a conventional liquid crystal display device.

【図18】従来の信号電圧印加素子の電気的構成を示す
ブロック図
FIG. 18 is a block diagram showing an electrical configuration of a conventional signal voltage applying element.

【符号の説明】[Explanation of symbols]

1a 液晶表示素子 2a 電極を有するガラス基板 3a 対向するガラス基板 4a〜4d 信号電圧印加素子 74a〜74d,83a〜83d,92a〜92d
信号電圧印加素子 5,8 TCP(Tape Carrier Package) 6 信号線バス配線基板 7,7a 走査電圧印加素子 9 走査線バス配線基板 10,10a コントロール基板 11 入力コネクタ 12 電源装置 13,13a 信号処理LSI 14a,15a 接続手段 16a,19a 電源線 17a 信号線 18a,21a スタート信号線またはキャリア信号
線 20 制御信号線 22,23 発光手段 24,25 光伝送手段 26 入力電気信号 27,44 ドライバ 28,45,76a〜76d,77,86,94 発
光素子 29 光信号 30 シフトレジスタ 31 データラッチ 32 D/A変換部 33 電源電圧入力 34 表示データ信号 35 制御クロック信号 36 スタート信号 37 データロード信号 38 キャリア信号 39 出力端子 40,75a〜75d,84a〜84d,93a〜93
d 受光素子 41 バッファアンプ 42 シリアル/パラレル変換部 43,79a〜79k,88a〜88d,89a〜89
d,96a〜96d,97a〜97d 光信号 50,53,56,57,59,60,62,67,6
8 光伝送路 51a,51b,63a〜63d,63a’〜63
c’,66a〜66d,80a〜80g,87a〜87
d,95a〜95d 反射面 52a,52b,52c 光 54,55,58,61 光伝送路補助材 63 反射用個片 64 固体材料 65 スリット 70 バックライト導光板 71 遮光フィルム 72,81,90 ガラス基板 73a〜73d,82a〜82d,91a〜91d
信号電極ブロック 78,85 電気的伝送手段
1a Liquid crystal display element 2a Glass substrate having electrodes 3a Opposite glass substrate 4a-4d Signal voltage applying elements 74a-74d, 83a-83d, 92a-92d
Signal voltage applying element 5, 8 TCP (Tape Carrier Package) 6 signal line bus wiring board 7, 7a scanning voltage applying element 9 scanning line bus wiring board 10, 10a control board 11 input connector 12 power supply 13, 13a signal processing LSI 14a , 15a Connecting means 16a, 19a Power supply line 17a Signal line 18a, 21a Start signal line or carrier signal line 20 Control signal line 22, 23 Light emitting means 24, 25 Optical transmission means 26 Input electric signal 27, 44 Driver 28, 45, 76a To 76d, 77, 86, 94 Light emitting element 29 Optical signal 30 Shift register 31 Data latch 32 D / A converter 33 Power supply voltage input 34 Display data signal 35 Control clock signal 36 Start signal 37 Data load signal 38 Carrier signal 39 Output terminal 40, 75a-75 d, 84a-84d, 93a-93
d Light receiving element 41 Buffer amplifier 42 Serial / parallel converter 43, 79a to 79k, 88a to 88d, 89a to 89
d, 96a to 96d, 97a to 97d Optical signal 50, 53, 56, 57, 59, 60, 62, 67, 6
8 Optical transmission lines 51a, 51b, 63a to 63d, 63a 'to 63
c ', 66a to 66d, 80a to 80g, 87a to 87
d, 95a to 95d Reflecting surface 52a, 52b, 52c Light 54, 55, 58, 61 Light transmission path auxiliary material 63 Reflection piece 64 Solid material 65 Slit 70 Backlight light guide plate 71 Light shielding film 72, 81, 90 Glass substrate 73a to 73d, 82a to 82d, 91a to 91d
Signal electrode block 78,85 Electrical transmission means

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H091 FA45Y FA48Y FA50Y FB09 FC02 FC26 FC30 FD12 FD21 GA13 LA11 LA13 MA10 2H092 GA45 GA60 GA64 JA24 MA04 NA25 PA06 PA07 2H093 NA16 NA80 NC23 NC24 NC26 NC34 NC73 NC81 NC90 ND32 ND40 ND55 NE06 NE07 NH15 NH16 5C094 AA05 AA14 AA31 AA41 AA48 AA53 AA56 AA60 BA43 CA19 DA09 DA13 DB01 DB02 EA04 ED01 ED11 ED20 FA01 FA02 FB01 GA10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H091 FA45Y FA48Y FA50Y FB09 FC02 FC26 FC30 FD12 FD21 GA13 LA11 LA13 MA10 2H092 GA45 GA60 GA64 JA24 MA04 NA25 PA06 PA07 2H093 NA16 NA80 NC23 NC24 NC26 NC34 NC73 NC81 NC90 ND32 NE40 ND40 NH15 NH16 5C094 AA05 AA14 AA31 AA41 AA48 AA53 AA56 AA60 BA43 CA19 DA09 DA13 DB01 DB02 EA04 ED01 ED11 ED20 FA01 FA02 FB01 GA10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数本の信号電極および複数本の走査電極
を有する液晶表示素子と、 前記信号電極に接続され信号電圧を印加する複数の信号
電圧印加素子と、 前記走査電極に接続され走査電圧を印加する複数の走査
電圧印加素子とを有する液晶表示装置であって、 光伝送によって前記信号電圧印加素子あるいは前記走査
電圧印加素子に信号を伝送するよう構成した液晶表示装
置。
A liquid crystal display element having a plurality of signal electrodes and a plurality of scanning electrodes; a plurality of signal voltage applying elements connected to the signal electrodes for applying a signal voltage; and a scanning voltage connected to the scanning electrodes. A liquid crystal display device comprising: a plurality of scanning voltage applying elements for applying a signal; and wherein the signal is transmitted to the signal voltage applying element or the scanning voltage applying element by optical transmission.
【請求項2】複数個の信号電圧印加素子または走査電圧
印加素子に、互いに向き合う2個一対の反射面を少なく
とも一対以上有する光伝送手段を通して、光信号を順
次、従属的に伝送するよう構成した請求項1記載の液晶
表示装置。
2. An optical signal is sequentially and subordinately transmitted to a plurality of signal voltage applying elements or scanning voltage applying elements through optical transmission means having at least one pair of two reflecting surfaces facing each other. The liquid crystal display device according to claim 1.
【請求項3】複数個の信号電圧印加素子または走査電圧
印加素子に、複数個の同一方向に反射面を有する光伝送
手段を通して、光信号を並列的に伝送するように構成し
た請求項1記載の液晶表示装置。
3. An optical signal is transmitted in parallel to a plurality of signal voltage applying elements or scanning voltage applying elements through a plurality of optical transmission means having reflecting surfaces in the same direction. Liquid crystal display device.
【請求項4】前記信号電圧印加素子または走査電圧印加
素子が、受光素子または一対の受光素子と発光素子を備
えた請求項2または請求項3記載の液晶表示装置。
4. The liquid crystal display device according to claim 2, wherein said signal voltage applying element or scanning voltage applying element comprises a light receiving element or a pair of light receiving elements and a light emitting element.
【請求項5】前記光伝送手段が一個の光透過性の樹脂材
料からなり、複数個の金属製の反射面を有する個片を信
号電圧印加素子あるいは走査電圧印加素子の配列に合わ
せて、前記樹脂材料に填め込み法あるいは一体成形法に
て形成した請求項2または請求項3記載の液晶表示装
置。
5. The optical transmission means is made of one light-transmissive resin material, and a piece having a plurality of metal reflecting surfaces is arranged in accordance with an arrangement of a signal voltage applying element or a scanning voltage applying element. 4. The liquid crystal display device according to claim 2, wherein the liquid crystal display device is formed by a filling method or an integral molding method in a resin material.
JP11195149A 1999-07-09 1999-07-09 Liquid crystal display device Pending JP2001021913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11195149A JP2001021913A (en) 1999-07-09 1999-07-09 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11195149A JP2001021913A (en) 1999-07-09 1999-07-09 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2001021913A true JP2001021913A (en) 2001-01-26

Family

ID=16336259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11195149A Pending JP2001021913A (en) 1999-07-09 1999-07-09 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2001021913A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928489B1 (en) * 2003-06-26 2009-11-26 엘지디스플레이 주식회사 Line on glass liquid crystal display
KR100949494B1 (en) 2003-06-25 2010-03-24 엘지디스플레이 주식회사 Liquid crystal display of line-on-glass type
JP2010266660A (en) * 2009-05-14 2010-11-25 Sharp Corp Transmission system for image display device, and electronic equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949494B1 (en) 2003-06-25 2010-03-24 엘지디스플레이 주식회사 Liquid crystal display of line-on-glass type
KR100928489B1 (en) * 2003-06-26 2009-11-26 엘지디스플레이 주식회사 Line on glass liquid crystal display
JP2010266660A (en) * 2009-05-14 2010-11-25 Sharp Corp Transmission system for image display device, and electronic equipment
US8364044B2 (en) 2009-05-14 2013-01-29 Sharp Kabushiki Kaisha Transmission system for image display device and electronic equipment

Similar Documents

Publication Publication Date Title
US5640216A (en) Liquid crystal display device having video signal driving circuit mounted on one side and housing
CN1949055A (en) Backlight assembly and liquid crystal display having the same
CN1991495A (en) Liquid crystal display apparatus and method for dust prevention of liquid crystal display apparatus
JP3247793B2 (en) Liquid crystal display
US11181777B2 (en) Backlight unit and display device using the same
JP2000148038A (en) Matrix type display device
US4713762A (en) Vehicle-mounted electronic display gauge board with serial data transfer
US6380918B1 (en) Liquid crystal display device
JP2001021913A (en) Liquid crystal display device
KR100295078B1 (en) Display device
JP2007047352A (en) Lighting device, display device, and data transfer method
CN210467105U (en) Double-sided display assembly, display device, display assembly and vehicle
JPH07281183A (en) Liquid crystal display device and information processor
JPH0887002A (en) Liquid crystal display device
KR100544817B1 (en) LCD Module
KR100512090B1 (en) Liquid crystal display device
JP2573365B2 (en) Liquid crystal display
CN112305814A (en) Backlight unit and display device including the same
CN211349391U (en) Under-screen fingerprint identification device, LCD fingerprint identification system and electronic equipment
JP3200536B2 (en) Liquid crystal display device and liquid crystal driving IC
CN216286072U (en) Camera screen lower fixing structure of automobile instrument
JP2005208129A (en) Liquid crystal apparatus and electronic device
EP4012255A1 (en) Backlight unit and display device
US11579497B2 (en) Substrate for display device and display device
JP3313236B2 (en) Liquid crystal display