JP2001021309A - Individual body authentication method and individual person authentication method - Google Patents

Individual body authentication method and individual person authentication method

Info

Publication number
JP2001021309A
JP2001021309A JP11197512A JP19751299A JP2001021309A JP 2001021309 A JP2001021309 A JP 2001021309A JP 11197512 A JP11197512 A JP 11197512A JP 19751299 A JP19751299 A JP 19751299A JP 2001021309 A JP2001021309 A JP 2001021309A
Authority
JP
Japan
Prior art keywords
individual
value
threshold
calculated
biometric information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11197512A
Other languages
Japanese (ja)
Inventor
Kazunori Murakami
和則 村上
Kenichi Ide
賢一 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba TEC Corp
Original Assignee
Toshiba Corp
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba TEC Corp filed Critical Toshiba Corp
Priority to JP11197512A priority Critical patent/JP2001021309A/en
Publication of JP2001021309A publication Critical patent/JP2001021309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lock And Its Accessories (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Collating Specific Patterns (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable always accurate individual person authentication by setting a threshold value in accordance with individual characteristic. SOLUTION: In this individual person authentication method, unevenness information of wrinkles of an identical person identical finger to be authenticated is read m-times, each error is calculated from the combination mC2 in which arbitrary two are selected, similarity is calculated from a plurality of calculated errors, a characteristic curve of an FRR (principal rejection rate) and a characteristic curve of an FAR (others rejection rate) of the person are obtained from the similarity, and a threshold value peculiar to the individual person is set. The unevenness information of a finger of an individual person to be authenticated is compared with the unevenness information of a finger of the individual person which is previously registered, and individual person authentication is performed by using the threshold value peculiar to the individual person.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、個体認証を行う個
体認証方法及び個人認証を行う個人認証方法に関する。
The present invention relates to an individual authentication method for performing individual authentication and an individual authentication method for performing individual authentication.

【0002】[0002]

【従来の技術】個人を識別する方式として、例えば、バ
イオメトリクス方式、すなわち、生体認証方式と呼ばれ
るものが知られている。これは、個人の身体的特徴を利
用した個人認証技術で、指紋、指の関節しわ、虹彩、網
膜、耳、顔、声などによって識別するようになってい
る。
2. Description of the Related Art As a system for identifying an individual, for example, a biometric system, that is, a system called a biometric authentication system is known. This is a personal authentication technique using the physical characteristics of an individual, and is identified by fingerprints, finger joint wrinkles, iris, retina, ears, face, voice, and the like.

【0003】例えば、指の関節しわから個人認証を行う
ものとしては、特開平10−261088号公報のもの
が知られている。これは、図19に示すように、被認証
者の照合すべき指1の長手方向と直交する方向に長い線
状の複数の出力電極2を指1の長手方向に沿って所定間
隔で配列した線状電極アレイ3を備えるとともに、この
線状電極アレイ3の指1の長手方向に沿った端部に指の
長手方向の幅が出力電極2よりも広い単一の入力電極4
を備えている。
For example, Japanese Patent Application Laid-Open No. H10-26088 discloses a method for performing personal authentication based on wrinkles of a finger joint. As shown in FIG. 19, a plurality of linear output electrodes 2 which are long in a direction orthogonal to the longitudinal direction of the finger 1 to be collated by the person to be authenticated are arranged at predetermined intervals along the longitudinal direction of the finger 1. A linear electrode array 3 is provided, and a single input electrode 4 having a finger whose width in the longitudinal direction is wider than the output electrode 2 is provided at an end of the linear electrode array 3 along the longitudinal direction of the finger 1.
It has.

【0004】そして、各出力電極2にアナログスイッチ
群5の各スイッチを接続するとともに、この各スイッチ
をタイミングパルス発生部6からのタイミングパルスに
より順次オン、オフ制御し、指1を線状電極アレイ3の
各出力電極2及び入力電極4に接触させている状態で発
振器7からアナログスイッチ群5の各スイッチを介して
各出力電極2に、例えば、1MHzの発振周波数信号を
供給し、同時に入力電極4からの電圧信号を検波回路8
で検波し、A/D変換器9でデジタル信号に変換して出
力するという構成になっている。
[0004] Each switch of the analog switch group 5 is connected to each output electrode 2, and each switch is sequentially turned on and off by a timing pulse from a timing pulse generator 6, and the finger 1 is moved to the linear electrode array. The oscillator 7 supplies an oscillation frequency signal of, for example, 1 MHz from the oscillator 7 to each output electrode 2 via each switch of the analog switch group 5 while being in contact with each output electrode 2 and input electrode 4 of the input electrode 3. The voltage signal from 4 is detected by a detection circuit 8
The A / D converter 9 converts the signal into a digital signal and outputs the digital signal.

【0005】この公報のものは、指1の第3関節部近傍
を入力電極4に接触させた状態で図20に示すように、
第1関節部及び第2関節部を線状電極アレイ3の各出力
電極2の上に接触させる操作を行う。このようにする
と、図中(a)の部分のように指1と出力電極2とが密着
している部分では指1と出力電極2との容量性結合が強
くなり、そのインピーダンスが小さくなるためにその部
分の信号V(i)の値は大きくなる。逆に図中(b)の第1関
節付近の横しわ、図中(c1)、(c2)の第2関節付近の横し
わの部分のように指1と出力電極2とが密着していない
部分では指1と出力電極2との容量性結合が弱くなり、
そのインピーダンスが大きくなるためにその部分の信号
V(i)の値は小さくなる。こうして指のしわの凹凸情報
を得ることができる。そして、この検出したしわの凹凸
情報を予め登録してある個人のしわの凹凸情報と比較照
合することで本人か否かの個人認証を行うことができ
る。
In this publication, as shown in FIG. 20, a state in which the vicinity of the third joint of the finger 1 is brought into contact with the input electrode 4 is shown in FIG.
An operation of bringing the first joint portion and the second joint portion into contact with each output electrode 2 of the linear electrode array 3 is performed. By doing so, the capacitive coupling between the finger 1 and the output electrode 2 becomes strong in the part where the finger 1 and the output electrode 2 are in close contact with each other, as shown in FIG. Then, the value of the signal V (i) in that portion increases. Conversely, the finger 1 and the output electrode 2 are not in close contact with each other, such as the side wrinkles near the first joint in the figure (b) and the side wrinkles near the second joint in the figures (c1) and (c2) in the figures. In the part, the capacitive coupling between the finger 1 and the output electrode 2 is weakened,
Since the impedance increases, the value of the signal V (i) in that portion decreases. Thus, it is possible to obtain the wrinkle unevenness information of the finger. Then, by comparing and comparing the detected wrinkle unevenness information with the previously registered wrinkle unevenness information of an individual, personal authentication as to whether or not the user is an individual can be performed.

【0006】[0006]

【発明が解決しようとする課題】この公報のものでは、
比較照合時に、しわの凹凸情報の位置合わせを行い、照
合率を任意の方法で計算して類似度を算出し、類似度が
設定した閾値を越えているか否かで本人か他人かを判別
している。通常、閾値は取込んだ多人数のデータからF
AR(False Acceptance Rate 他人受入率)とFRR(Fal
se Rejection Rate 本人拒否率)を算出し、任意の一定
値に決めておく。すなわち、沢山のサンプルから算出し
た平均的なFRR、FARの特性カーブから閾値を決め
ていた。なお、FARとは、他人を本人と間違えて受入
れてしまう確率を表わし、FRRとは、本人なのに拒絶
してしまう確率を表わす。従って、FARとFRRは相
反する特性であり、一方を厳しくすると他方が甘くな
り、閾値の設定次第で特性を変化させることが可能とな
る。また、個人毎にFAR、FRRを解析して見ると、
全体から計算したFAR、FRRの特性カーブとはかけ
離れたものとなり、全体から計算した閾値が個人毎には
不適切な値となってしまう場合がある。
In this publication,
At the time of comparison / matching, the position of the wrinkle unevenness information is aligned, the matching rate is calculated by an arbitrary method, the similarity is calculated, and it is determined whether the person is an individual or another person based on whether or not the similarity exceeds a set threshold. ing. Usually, the threshold is F
AR (False Acceptance Rate) and FRR (False Acceptance Rate)
Calculate se Rejection Rate) and set it to an arbitrary constant value. That is, the threshold is determined from the average FRR and the characteristic curve of FAR calculated from many samples. Note that FAR indicates the probability that another person will be mistakenly accepted as the person, and FRR indicates the probability that the person will be rejected. Therefore, FAR and FRR have contradictory characteristics. If one is strict, the other will be soft, and the characteristics can be changed depending on the setting of the threshold. Also, when analyzing and viewing FAR and FRR for each individual,
It may be far from the characteristic curve of FAR and FRR calculated from the whole, and the threshold calculated from the whole may be an inappropriate value for each individual.

【0007】従って、上述した公報のものにおいて、単
純に多数の人の沢山のデータを用いて算出した閾値を使
用して個人照合を行うと正確な個人認証ができなくなる
場合が生じる。
[0007] Therefore, in the above-mentioned publication, if personal verification is performed simply using a threshold calculated using a large amount of data of many people, accurate personal authentication may not be performed.

【0008】そこで、請求項1記載の発明は、個体の特
徴に合せて閾値を設定でき、これにより、常に正確な個
体認証ができる個体認証方法を提供する。また、請求項
2乃至6記載の発明は、個人の特徴に合せて閾値を設定
でき、これにより、常に正確な個人認証ができる個人認
証方法を提供する。
Therefore, the invention according to claim 1 provides an individual authentication method in which a threshold can be set in accordance with the characteristics of an individual, thereby always performing accurate individual authentication. The invention according to claims 2 to 6 provides a personal authentication method that can set a threshold value according to the characteristics of an individual, and thereby can always perform accurate personal authentication.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
個体の生体情報を基に個体特有の閾値を算出し、この閾
値を用いて個体を認証する場合に、認証すべき個体の生
体情報を複数回読込み、この中の任意の2つの生体情報
の組合わせで算出される誤差を組合わせを変えて幾つか
求め、これらの求めた誤差から類似度を算出し、この類
似度から統計値を算出して個体特有の閾値を設定し、こ
の閾値を認証すべき個体について予め登録した生体情報
と対応付けし、認証要求のある生体情報と予め登録した
生体情報を比較し、設定した閾値を用いて個体認証を行
う個体認証方法にある。
According to the first aspect of the present invention,
A threshold unique to an individual is calculated based on the biological information of the individual, and when the individual is authenticated using the threshold, the biological information of the individual to be authenticated is read a plurality of times, and a set of arbitrary two pieces of biological information among them is read. Some errors calculated by the combination are obtained by changing the combination, similarity is calculated from the obtained errors, a statistical value is calculated from the similarity, an individual-specific threshold is set, and the threshold is authenticated. There is an individual authentication method in which an individual to be associated is associated with biometric information registered in advance, biometric information for which authentication is required is compared with biometric information registered in advance, and individual authentication is performed using a set threshold.

【0010】請求項2記載の発明は、個人の生体情報を
基に個人特有の閾値を算出し、この閾値を用いて個人を
認証する場合に、認証すべき個人の生体情報を複数回読
込み、この中の任意の2つの生体情報の組合わせで算出
される誤差を組合わせを変えて幾つか求め、これらの求
めた誤差から類似度を算出し、この類似度から統計値を
算出して個人特有の閾値を設定し、この閾値を認証すべ
き個人について予め登録した生体情報と対応付けし、認
証要求のある生体情報と予め登録した生体情報を比較
し、設定した閾値を用いて個人認証を行う個人認証方法
にある。
According to a second aspect of the present invention, a threshold unique to an individual is calculated based on the individual's biometric information, and when the individual is authenticated using this threshold, the biometric information of the individual to be authenticated is read a plurality of times. Some of the errors calculated by combining any two of the biological information are obtained by changing the combination, a similarity is calculated from the obtained errors, and a statistical value is calculated from the similarity to obtain an individual. A specific threshold is set, this threshold is associated with biometric information registered in advance for an individual to be authenticated, biometric information with an authentication request is compared with biometric information registered in advance, and personal authentication is performed using the set threshold. The personal authentication method to be performed.

【0011】請求項3記載の発明は、請求項2記載の個
人認証方法において、閾値を、複数の類似度から求めた
統計値が、予め設定した任意の上限値を越える場合は第
1固定値に設定し、予め設定した任意の下限値を下回る
場合は第2固定値に設定し、かつ、上限値と下限値の間
の場合は特定の関数に従って算出した値に設定すること
にある。
According to a third aspect of the present invention, in the personal authentication method according to the second aspect, the threshold value is set to a first fixed value when a statistical value obtained from a plurality of similarities exceeds an arbitrary upper limit set in advance. Is set to a second fixed value when the value falls below an arbitrary lower limit set in advance, and is set to a value calculated according to a specific function when the value falls between the upper limit and the lower limit.

【0012】請求項4記載の発明は、請求項2又は3記
載の個人認証方法において、統計値を、認証すべき個人
の生体情報の登録時に複数回生体情報を読込んで算出す
ることにある。請求項5記載の発明は、請求項2又は3
記載の個人認証方法において、本人であることを認証で
きた生体情報を複数記憶し、この記憶した生体情報を該
当する個人の閾値設定に使用することにある。請求項6
記載の発明は、請求項2乃至5のいずれか1記載の個人
認証方法において、比較時に使用する閾値を算出した個
人特有の閾値を基に任意の範囲で可変することにある。
According to a fourth aspect of the present invention, in the personal authentication method according to the second or third aspect, a statistical value is calculated by reading biometric information a plurality of times when registering biometric information of an individual to be authenticated. The invention according to claim 5 is the invention according to claim 2 or 3
In the personal authentication method described above, a plurality of pieces of biometric information that can be authenticated as a person are stored, and the stored biometric information is used for setting a threshold value of a corresponding individual. Claim 6
According to the present invention, in the personal authentication method according to any one of claims 2 to 5, the threshold used in the comparison is varied in an arbitrary range based on the individual-specific threshold calculated.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を図面を参照
して説明する。なお、この実施の形態は本発明を指のし
わの凹凸情報を個人の生体情報として照合し認証する個
人認証装置に適用したものについて述べる。
Embodiments of the present invention will be described with reference to the drawings. In this embodiment, a description will be given of an embodiment in which the present invention is applied to a personal authentication apparatus for collating and authenticating finger wrinkle unevenness information as personal biometric information.

【0014】図1の(a)、(b)に示すように、被測定者の
指11の第1関節11a及び第2関節11bをカバーす
るように指の長手方向に沿って複数の電極を出力電極1
2として配列した電極アレイ13を設け、この電極アレ
イ13の外側である指の付根側に所定の間隔を開けて単
一電極である入力電極14を配置している。すなわち、
前記入力電極14は前記電極アレイ13に指11の長手
方向を沿わせて接触させた時、その指11の付根近傍が
接触するようになっている。前記電極アレイ13の各出
力電極12は、例えば、0.2mmピッチで200本配列
し、全体で長さが40mmで指11の第1関節11a及び
第2関節11bを充分にカバーできる長さになってい
る。
As shown in FIGS. 1A and 1B, a plurality of electrodes are provided along the longitudinal direction of the finger 11 of the subject so as to cover the first joint 11a and the second joint 11b of the finger. Output electrode 1
An electrode array 13 arranged as 2 is provided, and an input electrode 14 which is a single electrode is arranged at a predetermined interval on the outer side of the electrode array 13 at the base of the finger. That is,
When the input electrode 14 is brought into contact with the electrode array 13 along the longitudinal direction of the finger 11, the vicinity of the base of the finger 11 comes into contact. Each output electrode 12 of the electrode array 13 is arranged, for example, at a pitch of 0.2 mm, and has a total length of 40 mm and a length sufficient to cover the first joint 11 a and the second joint 11 b of the finger 11. ing.

【0015】そして、前記電極アレイ13及び入力電極
14に対して指11を接触している状態で前記電極アレ
イ13の各出力電極12に所定周波数の信号を択一的に
供給する駆動手段として出力電極ドライブ回路15を設
け、また、前記電極アレイ13及び入力電極14に対し
て指11を接触している状態で前記入力電極14から信
号検出する検出手段として検出回路16を設けている。
A driving means for selectively supplying a signal of a predetermined frequency to each output electrode 12 of the electrode array 13 while the finger 11 is in contact with the electrode array 13 and the input electrode 14 is output. An electrode drive circuit 15 is provided, and a detection circuit 16 is provided as detection means for detecting a signal from the input electrode 14 while the finger 11 is in contact with the electrode array 13 and the input electrode 14.

【0016】前記出力電極ドライブ回路15は、図2に
示すように、200個の2入力アンドゲートAND1,
AND2,AND3,…AND200を設け、この各アンド
ゲートAND1〜AND200の一方の入力端子に図3の
(b)に示すような電極選択信号SEL1,SEL2,SE
L3,…SEL200をそれぞれ順次択一的に供給すると共
に他方の入力端子に図3の(a)に示すような共通のキャ
リア信号を供給している。
As shown in FIG. 2, the output electrode drive circuit 15 includes 200 2-input AND gates AND1, AND2.
AND2, AND3,..., AND200 are provided, and one input terminal of each of the AND gates AND1 to AND200 is connected to one of the input terminals of FIG.
The electrode selection signals SEL1, SEL2, SE as shown in FIG.
L3,... SEL200 are sequentially and alternately supplied, and a common carrier signal as shown in FIG. 3A is supplied to the other input terminal.

【0017】前記キャリア信号は、数百kHz〜数MH
z程度の周波数、例えば、2MHzの周波数で所定振幅
の高周波信号で、前記電極選択信号SEL1,SEL2,
SEL3,…SEL200が前記アンドゲートAND1〜A
ND200に入力するタイミングで前記各出力電極12(1)
〜12(200)に順次択一的に供給するようになってい
る。例えば、図4に示すように、電極選択信号SEL1
がアンドゲートAND1に入力するタイミングでキャリ
ア信号がその期間だけ第1の出力電極12(1)に駆動信
号として供給することになる。
The carrier signal has a frequency of several hundred kHz to several MH.
The electrode selection signals SEL1, SEL2, and SEL2 are high-frequency signals having a frequency of about z, for example, a frequency of 2 MHz and a predetermined amplitude.
SEL3,... SEL200 are the AND gates AND1 to A
Each of the output electrodes 12 (1) at the timing of input to the ND200
12 to 200 (200). For example, as shown in FIG. 4, the electrode selection signal SEL1
Is supplied to the first output electrode 12 (1) as a drive signal at the timing when the signal is input to the AND gate AND1.

【0018】前記検出回路16は、図5に示すように、
増幅器17、検波回路18、A/D変換器19、発振器
20、制御回路21、I/F(インターフェース)回路
22からなり、前記入力電極14からの微弱信号を前記
増幅器17で増幅した後、前記検波回路18で検波し、
この検波出力を前記A/D変換器19でデジタル信号に
変換してから前記制御回路21に供給するようになって
いる。前記発振器20は前記検波回路18及びA/D変
換器19に動作クロックを供給してその動作タイミング
を作っている。
The detection circuit 16, as shown in FIG.
It comprises an amplifier 17, a detection circuit 18, an A / D converter 19, an oscillator 20, a control circuit 21, and an I / F (interface) circuit 22. After the weak signal from the input electrode 14 is amplified by the amplifier 17, the Detected by the detection circuit 18,
The detection output is converted into a digital signal by the A / D converter 19 and then supplied to the control circuit 21. The oscillator 20 supplies an operation clock to the detection circuit 18 and the A / D converter 19 to make the operation timing.

【0019】前記制御回路21はI/F回路22を制御
し、A/D変換器19からのデジタル信号をI/F回路
22を経由してパーソナルコンピュータ(PC)などの
外部装置23に送信するようになっている。
The control circuit 21 controls the I / F circuit 22 and transmits a digital signal from the A / D converter 19 to an external device 23 such as a personal computer (PC) via the I / F circuit 22. It has become.

【0020】このような構成においては、電極アレイ1
3及び入力電極14に指11を接触させた状態で電極選
択信号SEL1〜SEL200を各出力電極12に順次択一
的に供給すると、あるタイミングでは図6に示すように
出力電極12の1つからキャリア信号がその電極上の指
の位置から指の中を通って入力電極14に流れる。そし
て、入力電極14からキャリア信号に乗ったインピーダ
ンス情報が取出される。このときのインピーダンス情報
は、選択された出力電極12とその上の指11との間の
隙間で形成される静電容量と、選択された出力電極12
上の指11の位置から入力電極14上の指11の位置ま
での指11のインピーダンスと、入力電極14上の指1
1と入力電極14との間の隙間で形成される静電容量と
の直列成分となる。
In such a configuration, the electrode array 1
When the electrode selection signals SEL1 to SEL200 are sequentially and selectively supplied to the output electrodes 12 in a state where the finger 11 is in contact with the input electrode 3 and the input electrode 14, at a certain timing, as shown in FIG. A carrier signal flows from the location of the finger on that electrode, through the finger, to the input electrode 14. Then, impedance information on the carrier signal is extracted from the input electrode 14. The impedance information at this time includes the capacitance formed in the gap between the selected output electrode 12 and the finger 11 thereon, and the selected output electrode 12
The impedance of the finger 11 from the position of the upper finger 11 to the position of the finger 11 on the input electrode 14 and the finger 1 on the input electrode 14
It becomes a series component of the capacitance formed in the gap between the input electrode 1 and the input electrode 14.

【0021】キャリア信号の振幅はインピーダンスに応
じて上下する。入力電極14からのキャリア信号を検出
回路16で検出し、これを検出回路16において増幅器
17で増幅した後、検波回路18を通してキャリア成分
を除去し、A/D変換器19でデジタル信号に変換す
る。そして、外部装置23はこのデジタル信号を取込
む。このデジタル信号から指11の局所的なしわの凹凸
情報を得ることができる。
The amplitude of the carrier signal rises and falls according to the impedance. A carrier signal from the input electrode 14 is detected by a detection circuit 16, amplified by an amplifier 17 in the detection circuit 16, then a carrier component is removed through a detection circuit 18, and is converted into a digital signal by an A / D converter 19. . Then, the external device 23 takes in the digital signal. From this digital signal, it is possible to obtain local wrinkle unevenness information of the finger 11.

【0022】図7は指11を電極アレイ13と入力電極
14からなるセンサ部に載せるときの状態を示す斜視図
で、指11をセンサ面に置く毎に、センサ面の2次元方
向のずれと指11のセンサ面への押圧、指11の長手方
向を軸とする回転、センサ部の各電極の並びの方向に対
する指11の長手方向の角度のずれ等が生じ、これが誤
差として発生し得ることを示している。
FIG. 7 is a perspective view showing a state in which the finger 11 is placed on the sensor section composed of the electrode array 13 and the input electrode 14, and every time the finger 11 is placed on the sensor surface, the two-dimensional displacement of the sensor surface is changed. Pressing of the finger 11 on the sensor surface, rotation about the longitudinal direction of the finger 11 as an axis, deviation of the angle of the finger 11 in the longitudinal direction with respect to the direction in which the electrodes of the sensor section are arranged, and the like may occur, which may occur as an error. Is shown.

【0023】図8は検出回路16が検出するキャリア信
号に現れる指のしわの凹凸情報の特徴波形を示してい
る。第1関節部及び第2関節部におけるしわの顕著な部
分において信号レベルが大きく低下する特徴を有する。
FIG. 8 shows a characteristic waveform of finger wrinkle unevenness information appearing in the carrier signal detected by the detection circuit 16. The signal level is greatly reduced in a portion where wrinkles are noticeable in the first joint portion and the second joint portion.

【0024】このような信号波形を外部装置23がデジ
タル信号として取込んだ後、バンドパスフィルタ処理を
行ってDC成分や高周波成分を除去するデジタル処理で
行ってから振幅を規格化し最終的に個人のしわの凹凸情
報のデータとして取出す。そして、このデータを予め格
納してある各個人のデータと比較照合することで個人の
認証を行う。この比較照合時にはデータの位置合わせを
行う。比較照合する2つのデータ間の誤差を算出する方
法は各種あるが、例えば、位置合わせ後に単純に2つの
データの差の絶対値、さらには差の絶対値の二乗の累積
を計算して誤差を求める。
After such a signal waveform is captured as a digital signal by the external device 23, the signal is subjected to band-pass filter processing to perform digital processing for removing DC components and high-frequency components, and then the amplitude is normalized and finally personal information is obtained. Extract as wrinkle unevenness data. Then, the personal data is authenticated by comparing and comparing this data with the data of each personal data stored in advance. At the time of this comparison and collation, data alignment is performed. There are various methods for calculating an error between two data to be compared and matched. For example, after the alignment, the absolute value of the difference between the two data is simply calculated, and further, the accumulation of the square of the absolute value of the difference is calculated to calculate the error. Ask.

【0025】ところで、指11の長手方向に垂直なしわ
の凹凸情報を用いて個人認証を行う場合、入力電極14
から取込まれる複数回分のデータから個人のFRR(Fal
se Rejection Rate 本人拒否率)を算出し、これを基に
照合のための閾値を決定し、個人毎に閾値を設定する。
FRRの算出とは、複数回、例えば、m回取込んだ同一
人同一指のデータから任意の2個を選択するmC2通り
の組合わせから誤差、すなわち、類似度の逆を計算する
ことを意味する。
By the way, when personal authentication is performed using the wrinkle unevenness information perpendicular to the longitudinal direction of the finger 11, the input electrode 14
FRR (Fal
se Rejection Rate is calculated, and a threshold for collation is determined based on this, and a threshold is set for each individual.
The calculation of the FRR means that an error, that is, the inverse of the similarity is calculated from mC2 combinations of selecting arbitrary two pieces of data of the same finger taken a plurality of times, for example, the same person captured m times. I do.

【0026】図9に示すFAR(False Acceptance Rate
他人受入率)、FRRの特性カーブはこの誤差計算の結
果を度数分布で表わし、累積表現したものである。縦軸
は確率を示し、最大値を100%としてある。横軸は判
別のための閾値であり、8bitで0〜255の256
段階で表現している。図10及び図11は複数回の測定
において比較的同じように指のしわの凹凸情報を収集で
きた人のFRRとFARの特性カーブを示している。図
10の場合は閾値Th=147でFARが0.04%、
図11の場合は閾値Th=147でFARが3.97%
である。
The FAR (False Acceptance Rate) shown in FIG.
The characteristic curves of the FRR and the FRR are obtained by cumulatively expressing the result of the error calculation in a frequency distribution. The vertical axis indicates the probability, with the maximum value as 100%. The horizontal axis is a threshold value for discrimination, and is 8 bits and 256 from 0 to 255.
Expressed in stages. FIGS. 10 and 11 show characteristic curves of FRR and FAR of a person who was able to collect finger wrinkle unevenness information relatively similarly in a plurality of measurements. In the case of FIG. 10, the threshold value Th = 147, the FAR is 0.04%,
In the case of FIG. 11, the threshold value Th = 147 and the FAR is 3.97%.
It is.

【0027】これに対し、図12は複数回の測定におい
て常に同じように指のしわの凹凸情報を収集できない人
の例を示している。この場合、閾値Th=147でFA
Rが0.07%と低いがFRRは25.5%と高くなっ
てしまう。すなわち、本人拒否率が高くなる。
On the other hand, FIG. 12 shows an example of a person who cannot always collect the wrinkle unevenness information of the finger in the same manner in a plurality of measurements. In this case, the threshold Th = 147 and the FA
R is as low as 0.07%, but FRR is as high as 25.5%. That is, the personal rejection rate increases.

【0028】このように、FRRの特性カーブは指のし
わの凹凸情報の誤差が小さい場合には図13にカーブg
1として示すように閾値が小さめの値で既にFRRが略
0となり、急峻に立下がることが分かる。これに対し、
指のしわの凹凸情報の誤差が大きい場合にはFRRの特
性カーブは図13にカーブg2として示すように緩やか
に立下がりなかなか0に落ちない。従って、平均的なF
RR、FARの特性カーブからセンサ部の特性を決める
閾値を決めても個人毎にFRR、FARの特性カーブが
異なるという問題がある。
As described above, the characteristic curve of the FRR is shown by the curve g in FIG.
As indicated by 1, it can be seen that the FRR has already become substantially 0 at a small threshold value, and the value falls sharply. In contrast,
When the error of the finger wrinkle unevenness information is large, the FRR characteristic curve gradually falls and does not drop to 0 as shown by curve g2 in FIG. Therefore, the average F
Even if a threshold for determining the characteristics of the sensor unit is determined from the characteristic curves of RR and FAR, there is a problem that the characteristic curves of FRR and FAR are different for each individual.

【0029】図9のFRR、FARの特性カーブにおい
て閾値が小さい場合はFRR(本人拒否率)が高くな
り、本人であっても本人として受入れられないケースが
多々でてくる。また、閾値が大きい場合はFAR(他人
受入率)が高くなり他人を本人として受入れるケースが
多々でてくる。この場合は本人受入率も当然高くなる。
そして、セキュリティの高い用途で使用したい場合は閾
値を低く設定する必要がある。しかし、本人が拒絶され
る確立が上がるので使い勝手は悪くなる。図10乃至図
12は同じ値に閾値を設定した場合に個人毎にFARの
特性カーブが変化することを表わしている。このような
ことから、ここでは個人毎に指のしわの凹凸情報を複数
回取込み、このデータを基に個人毎にデータの誤差を算
出し、閾値を決定する。すなわち、図15に示すよう
に、外部装置23は検出回路16から個人毎に指のしわ
の凹凸情報を複数回取込み、このデータをフィルタリン
グ手段231にてフィルタリングしてDC成分と高周波
成分を取り除いた後、振幅、規格化手段232にて規格
化して辞書データ格納部233に辞書データとして格納
する。そして、比較照合時には、振幅、規格化手段23
2にて規格化したデータと辞書データ格納部233のデ
ータを位置合わせ手段234にて位置合わせを行ってか
ら照合/判別手段235にて比較照合し個人の認証判定
を行う。
In the characteristic curves of FRR and FAR shown in FIG. 9, when the threshold value is small, the FRR (person rejection rate) becomes high, and in many cases, even a person cannot be accepted as a person. When the threshold value is large, the FAR (others acceptance rate) becomes high, and in many cases, another person is accepted as the person. In this case, the acceptance rate of the principal naturally increases.
If the user wants to use the application in a high security application, the threshold value needs to be set low. However, since the probability of the person being rejected increases, the usability is reduced. FIGS. 10 to 12 show that the characteristic curve of the FAR changes for each individual when the threshold value is set to the same value. For this reason, here, the wrinkle unevenness information of the finger is fetched a plurality of times for each individual, and based on this data, the error of the data is calculated for each individual, and the threshold value is determined. That is, as shown in FIG. 15, the external device 23 takes in the information of the wrinkle of the finger for each individual a plurality of times from the detection circuit 16 and filters the data by the filtering means 231 to remove the DC component and the high frequency component. After that, the data is normalized by the amplitude and normalization means 232 and stored in the dictionary data storage unit 233 as dictionary data. At the time of comparison and collation, the amplitude and the normalizing means 23 are used.
The data standardized in step 2 and the data in the dictionary data storage unit 233 are aligned by the alignment unit 234, and then compared and collated by the collation / discrimination unit 235 to perform personal authentication determination.

【0030】また、FAR、FRRの特性カーブにおけ
る横軸はデータ間の誤差と解釈することもでき、左に行
くほどデータ同士が似ていて誤差が小さいことを意味し
ている。FAR、FRRの特性カーブは各データの誤差
計算の結果を度数分布で表わし累積で表現したものであ
り、図10乃至図12のFARの特性カーブの違いは個
人毎の各データ同士の誤差の違いを表すことになる。
The horizontal axis in the characteristic curves of FAR and FRR can also be interpreted as an error between data, meaning that data is similar and the error is small as going to the left. The characteristic curves of FAR and FRR are obtained by expressing the result of error calculation of each data in a frequency distribution and expressing the results in a cumulative manner. The difference between the characteristic curves of FAR in FIGS. 10 to 12 is the difference in error between the data for each individual. Will be represented.

【0031】図13のFRRの特性カーブにおいてカー
ブg1はカーブg2よりも自己相関値が高く、誤差が小さ
いことを示している。なお、自己相関値とは自己の複数
の関節しわ情報から2つ取出して計算した誤差の平均値
を示している。従って、自己相関値の高い人の場合は判
別に使用する閾値を小さくし、ある値よりも誤差が小さ
い場合には、閾値を限界値、例えば、0.3に固定す
る。すなわち、同一人同一指について複数回取込んだデ
ータの誤差が小さく類似度が高ければその個人の閾値を
低く設定する。
In the FRR characteristic curve of FIG. 13, the curve g1 has a higher autocorrelation value and a smaller error than the curve g2. The autocorrelation value indicates an average value of errors calculated by extracting two pieces of information from a plurality of pieces of wrinkle information of the self. Therefore, in the case of a person having a high autocorrelation value, the threshold used for discrimination is reduced, and when the error is smaller than a certain value, the threshold is fixed to a limit value, for example, 0.3. That is, if the error of the data captured a plurality of times for the same person and the same finger is small and the similarity is high, the threshold value of the individual is set low.

【0032】自己相関値の最大値を100で示すと、こ
の自己相関値が任意の値、例えば、85を越える人は閾
値を一律に0.3に設定する。また、自己相関値が任意
の値、例えば、60を下回る人は閾値を一律に0.7に
設定する。それ以外の自己相関値が60から85の範囲
の人は特定の関数に従って閾値を設定する。この設定内
容を図14に示す。なお、関数は必ずしも連続である必
要はない。また、ここでは直線近似として示したが、高
次の曲線であっても良く、また、自己相関値の値に応じ
て飛び飛びの閾値を設定しても良い。
When the maximum value of the autocorrelation value is indicated by 100, the threshold value is uniformly set to 0.3 for a person whose autocorrelation value exceeds an arbitrary value, for example, 85. In addition, a person whose autocorrelation value is below an arbitrary value, for example, 60, sets the threshold value to 0.7 uniformly. Other persons whose autocorrelation values are in the range of 60 to 85 set the threshold according to a specific function. FIG. 14 shows the setting contents. Note that the functions need not necessarily be continuous. In addition, although a straight-line approximation is shown here, a higher-order curve may be used, or a jump threshold may be set according to the value of the autocorrelation value.

【0033】このように判定のための閾値を個人毎のF
RRに応じて設定することで、より厳密にセンサ部の特
性を制御できる。従って、指のしわの凹凸情報が指11
のセンサ部に対する置き方で変わり易い人、安定して同
じような位置に指を置くことができない人、センサ面に
対する指の押圧力の加減がうまくできない人など、FR
Rの特性カーブが鋭く立ち上がらないタイプの人達につ
いては閾値を大きく設定することで、FARを多少犠牲
にしてもFRRが極端に大きくならない条件となるよう
に設定ができる。
As described above, the threshold value for determination is set to F
By setting according to RR, the characteristics of the sensor unit can be controlled more strictly. Therefore, the wrinkle unevenness information of the finger is
For example, a person who can easily change the position of the finger with respect to the sensor portion, a person who cannot stably place the finger at the same position, a person who cannot properly adjust the pressing force of the finger on the sensor surface, etc.
By setting a large threshold value for people of the type whose characteristic curve of R does not rise sharply, it is possible to set such that even if FAR is slightly sacrificed, the FRR does not become extremely large.

【0034】また、安定して毎回同じような指のしわの
凹凸情報を取得できる人達についてはFRRの特性カー
ブが鋭く立下がるので、閾値を小さく設定する。これに
より、FRRとFARの特性カーブがクロスする領域を
小さくでき、性能の高い条件で使用することが可能にな
る。
For those who can stably acquire the same finger wrinkle unevenness information every time, the characteristic curve of FRR falls sharply, so the threshold value is set small. As a result, the region where the characteristic curves of FRR and FAR cross can be reduced, and the device can be used under conditions of high performance.

【0035】なお、この実施の形態では予め個人毎の指
のしわの凹凸情報を複数回取込んで照合のためのデータ
として辞書データ格納部に格納し、この格納したデータ
に基づいて閾値を設定し、認証時に取込んだ指のしわの
凹凸情報のデータと辞書データ格納部に格納したデータ
を比較照合し、予め設定した閾値を使用して個人認証を
行うようにしたが必ずしもこれに限定するものではな
い。
In this embodiment, the wrinkle unevenness information of the finger of each individual is previously taken in plural times and stored in the dictionary data storage unit as data for collation, and a threshold value is set based on the stored data. Then, the data of the wrinkle unevenness information of the finger taken in at the time of authentication is compared with the data stored in the dictionary data storage unit, and personal authentication is performed using a preset threshold value, but this is not necessarily limited to this. Not something.

【0036】例えば、個人の認証を行う毎に取込んだそ
の個人における指のしわの凹凸情報のデータを辞書デー
タ格納部に格納してその都度類似度、FRRを計算して
新たな閾値を設定し、次回の個人認証にその新たな閾値
を使用するようにしても良い。このようにすれば、個人
認証を行う毎にその人の閾値を決定することができる。
また、最近認証できた各個人における任意回数の指のし
わの凹凸情報のデータを辞書データ格納部に格納して類
似度、FRRを計算して次回に使用する新たな閾値を設
定するようにしてもよい。
For example, every time the individual is authenticated, the data of the unevenness information of the wrinkles of the finger of the individual is stored in the dictionary data storage unit, and the similarity and FRR are calculated each time and a new threshold value is set. However, the new threshold may be used for the next personal authentication. In this way, every time personal authentication is performed, the threshold value of the person can be determined.
Also, the data of the finger wrinkle unevenness information of an arbitrary number of times for each individual who has recently been authenticated is stored in the dictionary data storage unit, the similarity and the FRR are calculated, and a new threshold value to be used next time is set. Is also good.

【0037】さらに、閾値を求めた個人の閾値を基準に
任意の範囲でユーザが調整できるようにしてもよい。例
えば、外部装置23にある表示器にユーザ設定画面を設
け、この設定画面に図16に示すような「LOW」、
「MID」、「HIGH」の照合閾値選択画面を表示
し、ユーザが画面上をマウス等で操作して「LOW」、
「MID」、「HIGH」のいずれかを選択して閾値を
選択する。この場合、「MID」は予め求めた元の閾値
を設定し、「LOW」は元の閾値に一定値を加算した閾
値を設定し、「HIGH」は元の閾値から一定値を減算
した閾値を設定する。元の閾値に一定値を加算すること
は照合レベルとしては低下し、逆に、元の閾値から一定
値を減算することは照合レベルとしては高くなる。
Further, the user may be allowed to adjust the threshold in an arbitrary range based on the threshold of the individual for whom the threshold has been obtained. For example, a user setting screen is provided on the display device of the external device 23, and “LOW” as shown in FIG.
A “MID”, “HIGH” collation threshold selection screen is displayed, and the user operates the screen with a mouse or the like to “LOW”,
One of “MID” and “HIGH” is selected and a threshold is selected. In this case, "MID" sets an original threshold obtained in advance, "LOW" sets a threshold obtained by adding a certain value to the original threshold, and "HIGH" sets a threshold obtained by subtracting a certain value from the original threshold. Set. Adding a constant value to the original threshold value lowers the collation level, and conversely, subtracting a constant value from the original threshold value increases the collation level.

【0038】例えば、図17に示すようなFRR、FA
Rの特性カーブを持つ個人の場合に、MIDの閾値Th
を「112」に設定するが、この閾値をユーザの選択操
作によって若干小さくしたり、大きくしたりできる。例
えば、「HIGH」を選択すると閾値が小さくなってF
RRが大きくなり、このことはセキュリティがより高め
られる。
For example, FRR, FA as shown in FIG.
In the case of an individual having an R characteristic curve, the MID threshold Th
Is set to “112”, but this threshold value can be slightly reduced or increased by the user's selection operation. For example, if "HIGH" is selected, the threshold value becomes smaller and F
The RR is larger, which increases security.

【0039】また、図18に示すようなFRR、FAR
の特性カーブを持つ個人の場合に、MIDの閾値Thを
「200」に設定するが、この閾値もユーザの選択操作
によって若干小さくしたり、大きくしたりできる。この
ように、求めた閾値に対してユーザが任意の範囲で調整
できるので、ユーザが個人認証を若干甘めにするとか辛
めにするとかの設定ができる。なお、前述した実施の形
態では個人の生体情報として指のしわの凹凸情報を使用
したが必ずしもこれに限定するものではなく、指の指紋
などであってもよい。
Further, as shown in FIG.
In the case of an individual having the characteristic curve of, the threshold value Th of the MID is set to “200”, and this threshold value can be slightly reduced or increased by the user's selection operation. As described above, since the user can adjust the obtained threshold value in an arbitrary range, it is possible to set whether the user slightly weakens or hardens personal authentication. In the above-described embodiment, the wrinkle unevenness information of the finger is used as the biometric information of the individual. However, the present invention is not limited to this, and may be a fingerprint of the finger.

【0040】[0040]

【発明の効果】請求項1記載の発明によれば、個体の特
徴に合せて閾値を設定でき、これにより、常に正確な個
体認証ができる個体認証方法を提供できる。また、請求
項2乃至6記載の発明によれば、個人の特徴に合せて閾
値を設定でき、これにより、常に正確な個人認証ができ
る個人認証方法を提供できる。
According to the first aspect of the present invention, a threshold can be set in accordance with the characteristics of an individual, thereby providing an individual authentication method capable of always performing accurate individual authentication. Further, according to the second to sixth aspects of the present invention, the threshold can be set in accordance with the characteristics of the individual, thereby providing a personal authentication method capable of always performing accurate personal authentication.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示すセンサ部を含むブロ
ック図。
FIG. 1 is a block diagram including a sensor unit according to an embodiment of the present invention.

【図2】同実施の形態における出力電極ドライブ回路の
回路構成図。
FIG. 2 is a circuit configuration diagram of an output electrode drive circuit in the embodiment.

【図3】同実施の形態における出力電極ドライブ回路か
らの入力信号を示す信号波形図。
FIG. 3 is a signal waveform diagram showing an input signal from an output electrode drive circuit in the embodiment.

【図4】同実施の形態における出力電極ドライブ回路か
らの入力信号例を示す信号波形図。
FIG. 4 is a signal waveform diagram showing an example of an input signal from an output electrode drive circuit in the embodiment.

【図5】同実施の形態における検出回路の構成を示すブ
ロック図。
FIG. 5 is a block diagram illustrating a configuration of a detection circuit in the embodiment.

【図6】同実施の形態におけるセンサ部への指の接触と
信号の流れを説明するための図。
FIG. 6 is a diagram for explaining contact of a finger with a sensor unit and a signal flow in the embodiment.

【図7】同実施の形態におけるセンサ部に指の載せると
きの各種状態を説明するための図。
FIG. 7 is a view for explaining various states when a finger is placed on the sensor unit in the embodiment.

【図8】同実施の形態における指のしわの凹凸情報の特
徴波形を示す図。
FIG. 8 is a view showing a characteristic waveform of finger wrinkle unevenness information according to the embodiment;

【図9】FAR及びFRRを説明するための図。FIG. 9 is a diagram for explaining FAR and FRR.

【図10】同実施の形態における個人のFAR、FRR
の特性カーブ例を示す図。
FIG. 10 shows an individual FAR and FRR in the embodiment.
The figure which shows the characteristic curve example of.

【図11】同実施の形態における個人のFAR、FRR
の特性カーブ例を示す図。
FIG. 11 shows the FAR and FRR of the individual in the embodiment.
The figure which shows the characteristic curve example of.

【図12】同実施の形態における個人のFAR、FRR
の特性カーブ例を示す図。
FIG. 12 shows an individual FAR and FRR according to the embodiment.
The figure which shows the characteristic curve example of.

【図13】同実施の形態におけるFRRの特性カーブ、
自己相関値及び閾値の関係を示す図。
FIG. 13 is a characteristic curve of FRR in the embodiment;
The figure which shows the relationship between an autocorrelation value and a threshold value.

【図14】同実施の形態における閾値の設定例を示す
図。
FIG. 14 is a diagram showing a setting example of a threshold according to the embodiment;

【図15】同実施の形態における外部装置の機能ブロッ
ク図。
FIG. 15 is a functional block diagram of an external device according to the embodiment.

【図16】本発明の他の実施の形態におけるユーザ設定
画面例を示す図。
FIG. 16 is a diagram showing an example of a user setting screen according to another embodiment of the present invention.

【図17】同実施の形態における個人のFAR、FRR
の特性カーブ例と閾値の調整範囲との関係を示す図。
FIG. 17 shows an individual FAR and FRR according to the embodiment.
FIG. 6 is a diagram showing a relationship between an example of the characteristic curve of FIG.

【図18】同実施の形態における個人のFAR、FRR
の特性カーブ例と閾値の調整範囲との関係を示す図。
FIG. 18 is an individual FAR and FRR according to the embodiment.
FIG. 6 is a diagram showing a relationship between an example of the characteristic curve of FIG.

【図19】従来例を示すブロック図。FIG. 19 is a block diagram showing a conventional example.

【図20】同従来例の指の凹凸情報検出動作を説明する
ための図。
FIG. 20 is a view for explaining the finger unevenness information detecting operation of the conventional example.

【符号の説明】[Explanation of symbols]

11…指 12…出力電極 14…入力電極 16…検出回路 23…外部装置 DESCRIPTION OF SYMBOLS 11 ... Finger 12 ... Output electrode 14 ... Input electrode 16 ... Detection circuit 23 ... External device

フロントページの続き (72)発明者 井手 賢一 神奈川県川崎市幸区柳町70番地 株式会社 東芝柳町工場内 Fターム(参考) 2E250 BB00 DD08 2F063 AA50 BA29 BD05 BD06 BD20 CA40 HA04 HA09 KA02 KA05 LA03 LA06 LA11 LA14 LA18 LA19 LA23 LA29 5B043 AA09 BA02 GA01 Continued on the front page (72) Inventor Kenichi Ide 70, Yanagicho, Saiwai-ku, Kawasaki-shi, Kanagawa F-term in Toshiba Yanagimachi Plant (reference) 2E250 BB00 DD08 2F063 AA50 BA29 BD05 BD06 BD20 CA40 HA04 HA09 KA02 KA05 LA03 LA06 LA11 LA14 LA18 LA19 LA23 LA29 5B043 AA09 BA02 GA01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 個体の生体情報を基に個体特有の閾値を
算出し、この閾値を用いて個体を認証する場合に、認証
すべき個体の生体情報を複数回読込み、この中の任意の
2つの生体情報の組合わせで算出される誤差を組合わせ
を変えて幾つか求め、これらの求めた誤差から類似度を
算出し、この類似度から統計値を算出して個体特有の閾
値を設定し、この閾値を認証すべき個体について予め登
録した生体情報と対応付けし、認証要求のある生体情報
と予め登録した生体情報を比較し、設定した閾値を用い
て個体認証を行うことを特徴とする個体認証方法。
1. A threshold unique to an individual is calculated based on the biological information of the individual, and when the individual is authenticated using the threshold, the biological information of the individual to be authenticated is read a plurality of times, and any two of the two are read out. Some errors calculated by combining the two pieces of biological information are obtained by changing the combination, similarity is calculated from the obtained errors, a statistical value is calculated from the similarity, and a threshold value unique to the individual is set. The threshold value is associated with biometric information registered in advance for an individual to be authenticated, biometric information with an authentication request is compared with biometric information registered in advance, and individual authentication is performed using the set threshold value. Individual authentication method.
【請求項2】 個人の生体情報を基に個人特有の閾値を
算出し、この閾値を用いて個人を認証する場合に、認証
すべき個人の生体情報を複数回読込み、この中の任意の
2つの生体情報の組合わせで算出される誤差を組合わせ
を変えて幾つか求め、これらの求めた誤差から類似度を
算出し、この類似度から統計値を算出して個人特有の閾
値を設定し、この閾値を認証すべき個人について予め登
録した生体情報と対応付けし、認証要求のある生体情報
と予め登録した生体情報を比較し、設定した閾値を用い
て個人認証を行うことを特徴とする個人認証方法。
2. Calculating a threshold peculiar to an individual based on the biometric information of the individual, and when authenticating the individual using the threshold, reading the biometric information of the individual to be authenticated a plurality of times, and selecting any two of them. Some errors calculated by combining the two pieces of biological information are obtained by changing the combination, similarity is calculated from these obtained errors, a statistical value is calculated from the similarity, and a threshold unique to an individual is set. The threshold value is associated with biometric information registered in advance for an individual to be authenticated, biometric information having an authentication request is compared with biometric information registered in advance, and personal authentication is performed using the set threshold value. Personal authentication method.
【請求項3】 閾値は、複数の類似度から求めた統計値
が、予め設定した任意の上限値を越える場合は第1固定
値に設定し、予め設定した任意の下限値を下回る場合は
第2固定値に設定し、かつ、前記上限値と下限値の間の
場合は特定の関数に従って算出した値に設定することを
特徴とする請求項2記載の個人認証方法。
3. The threshold value is set to a first fixed value when a statistical value obtained from a plurality of similarities exceeds an arbitrary upper limit set in advance, and is set to a first fixed value when the statistical value falls below an arbitrary lower limit set in advance. 3. The personal authentication method according to claim 2, wherein the value is set to a fixed value, and when the value is between the upper limit value and the lower limit value, the value is calculated according to a specific function.
【請求項4】 統計値は、認証すべき個人の生体情報の
登録時に複数回生体情報を読込んで算出することを特徴
とする請求項2又は3記載の個人認証方法。
4. The personal authentication method according to claim 2, wherein the statistical value is calculated by reading biometric information a plurality of times when registering biometric information of an individual to be authenticated.
【請求項5】 本人であることを認証できた生体情報を
複数記憶し、この記憶した生体情報を該当する個人の閾
値設定に使用することを特徴とする請求項2又は3記載
の個人認証方法。
5. The personal authentication method according to claim 2, wherein a plurality of pieces of biometric information that can be authenticated as the individual are stored, and the stored biometric information is used for setting a threshold value of the corresponding individual. .
【請求項6】 比較時に使用する閾値は、算出した個人
特有の閾値を基に任意の範囲で可変できることを特徴と
する請求項2乃至5のいずれか1記載の個人認証方法。
6. The personal authentication method according to claim 2, wherein the threshold value used in the comparison can be changed within an arbitrary range based on the calculated individual-specific threshold value.
JP11197512A 1999-07-12 1999-07-12 Individual body authentication method and individual person authentication method Pending JP2001021309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11197512A JP2001021309A (en) 1999-07-12 1999-07-12 Individual body authentication method and individual person authentication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11197512A JP2001021309A (en) 1999-07-12 1999-07-12 Individual body authentication method and individual person authentication method

Publications (1)

Publication Number Publication Date
JP2001021309A true JP2001021309A (en) 2001-01-26

Family

ID=16375711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11197512A Pending JP2001021309A (en) 1999-07-12 1999-07-12 Individual body authentication method and individual person authentication method

Country Status (1)

Country Link
JP (1) JP2001021309A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013183A2 (en) * 2003-08-03 2005-02-10 Müller, Markus Device for the biometric recognition, identification, and verification of persons based on the skin patterns line patterns on the bottom side of the phalanges
JP2007219865A (en) * 2006-02-17 2007-08-30 Hitachi Ltd Abnormal behavior detection device
WO2009104429A1 (en) 2008-02-19 2009-08-27 日本電気株式会社 Pattern matching device, pattern matching method, and program
US7623970B2 (en) 2001-04-17 2009-11-24 Panasonic Corporation Personal authentication method and device
JP2011076638A (en) * 2011-01-17 2011-04-14 Hitachi Ltd Abnormal behavior detection device
US7991204B2 (en) 2005-01-21 2011-08-02 Nec Corporation Threshold determining device, method and program, and personal authentication system
WO2011114520A1 (en) * 2010-03-19 2011-09-22 富士通株式会社 Identification device, identification method and program
US8694314B2 (en) 2006-09-14 2014-04-08 Yamaha Corporation Voice authentication apparatus
JP2014063251A (en) * 2012-09-20 2014-04-10 Toshiba Corp Person recognition device and method
JP2019167805A (en) * 2018-03-26 2019-10-03 株式会社Lixil Door and handle
JP2020066860A (en) * 2018-10-22 2020-04-30 株式会社デンソー Operation availability determination apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7623970B2 (en) 2001-04-17 2009-11-24 Panasonic Corporation Personal authentication method and device
WO2005013183A3 (en) * 2003-08-03 2005-08-11 Daniel Gross Device for the biometric recognition, identification, and verification of persons based on the skin patterns line patterns on the bottom side of the phalanges
WO2005013183A2 (en) * 2003-08-03 2005-02-10 Müller, Markus Device for the biometric recognition, identification, and verification of persons based on the skin patterns line patterns on the bottom side of the phalanges
US7991204B2 (en) 2005-01-21 2011-08-02 Nec Corporation Threshold determining device, method and program, and personal authentication system
JP2007219865A (en) * 2006-02-17 2007-08-30 Hitachi Ltd Abnormal behavior detection device
JP4701100B2 (en) * 2006-02-17 2011-06-15 株式会社日立製作所 Abnormal behavior detection device
US8694314B2 (en) 2006-09-14 2014-04-08 Yamaha Corporation Voice authentication apparatus
US8340370B2 (en) 2008-02-19 2012-12-25 Nec Corporation Pattern verification apparatus, pattern verification method, and program
WO2009104429A1 (en) 2008-02-19 2009-08-27 日本電気株式会社 Pattern matching device, pattern matching method, and program
WO2011114520A1 (en) * 2010-03-19 2011-09-22 富士通株式会社 Identification device, identification method and program
JP5660126B2 (en) * 2010-03-19 2015-01-28 富士通株式会社 Identification device, identification method, and program
US9129145B2 (en) 2010-03-19 2015-09-08 Fujitsu Limited Identification apparatus, identification method, and program
JP2011076638A (en) * 2011-01-17 2011-04-14 Hitachi Ltd Abnormal behavior detection device
JP2014063251A (en) * 2012-09-20 2014-04-10 Toshiba Corp Person recognition device and method
US9477876B2 (en) 2012-09-20 2016-10-25 Kabushiki Kaisha Toshiba Person recognition apparatus and method thereof
JP2019167805A (en) * 2018-03-26 2019-10-03 株式会社Lixil Door and handle
JP7169754B2 (en) 2018-03-26 2022-11-11 株式会社Lixil door and handle
JP2020066860A (en) * 2018-10-22 2020-04-30 株式会社デンソー Operation availability determination apparatus
JP7155865B2 (en) 2018-10-22 2022-10-19 株式会社デンソー Activation determination device

Similar Documents

Publication Publication Date Title
US7327861B2 (en) Organism authenticating apparatus
US7082214B2 (en) Authentication device, authentication system, and sensor
O’Gorman Fingerprint verification
EP0968484B1 (en) Method of gathering biometric information
O'Gorman An overview of fingerprint verification technologies
EP1183638B1 (en) Method and apparatus for creating a composite fingerprint image
US6160903A (en) Method of providing secure user access
US7272247B2 (en) Method and system for fingerprint authentication
JP5521276B2 (en) Authentication apparatus, authentication method, and authentication program
US7548636B2 (en) Organism recognition system
JP4027118B2 (en) User authentication method, program, and apparatus
US20100303311A1 (en) Fingerprint recognition apparatus and method thereof of acquiring fingerprint data
JP2001525067A (en) Capacitive fingerprint sensor with adjustable gain
JPH10165382A (en) Living body detector
JP2000048208A (en) Detection of fingerprints and finger movement
US10366271B2 (en) Method and apparatus for authenticating fingerprints using reflected wave
JP2001021309A (en) Individual body authentication method and individual person authentication method
KR20190087339A (en) Apparatus and method for recognizing fake finger, apparatus for sensing fingerprint
Aguilar et al. Fingerprint recognition
JP2002288642A (en) Palm print region dividing device nd method and palm print region dividing program
JP2002279413A (en) Device for identifying dummy fingerprint and device for collating fingerprint
JP2001017412A (en) Individual authentication device
JPH04123276A (en) Device for collating finger print
JP2003044858A (en) Device and method for personal identification
JP2002298127A (en) Fingerprint collating device, fingerprint registering method and fingerprint collating method