JP2001020034A - Non-heattreated type steel for low temperature use excellent in large heat input weldability - Google Patents

Non-heattreated type steel for low temperature use excellent in large heat input weldability

Info

Publication number
JP2001020034A
JP2001020034A JP11193845A JP19384599A JP2001020034A JP 2001020034 A JP2001020034 A JP 2001020034A JP 11193845 A JP11193845 A JP 11193845A JP 19384599 A JP19384599 A JP 19384599A JP 2001020034 A JP2001020034 A JP 2001020034A
Authority
JP
Japan
Prior art keywords
heat input
toughness
steel
large heat
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11193845A
Other languages
Japanese (ja)
Other versions
JP3719053B2 (en
Inventor
Katsuyuki Ichinomiya
克行 一宮
Noritsugu Itakura
教次 板倉
Fumimaru Kawabata
文丸 川端
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19384599A priority Critical patent/JP3719053B2/en
Publication of JP2001020034A publication Critical patent/JP2001020034A/en
Application granted granted Critical
Publication of JP3719053B2 publication Critical patent/JP3719053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide non-heat treated type high tensile strength steel having excellent weld zone toughness even in large heat input welding of >=200 kJ/cm heat input. SOLUTION: This steel contains, by weight, <=0.02% C, <=0.50% Si, 0.5 to 2.0% Mn, 0.005 to 0.10% Al, 0.010 to 0.10% Nb, 0.3 to 3.0% Ni, 0.0003 to 0.0040% B and <0.0050% N, and the ratio between the B content and the N content, i.e., B/N is also controlled to the range of 0.3 to 1.0. The steel may moreover contain one or >= two kinds among 0.05 to 0.70% Cu, 0.10 to 0.60% Cr, 0.10 to 0.50% Mo and 0.005 to 0.05% Ti and may further contain 0.0005 to 0.0100% Ca.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液化ガス貯槽用と
して好適な低温用鋼材に係り、とくに入熱200 kJ/cm 以
上の大入熱溶接を施しても、良好な溶接部靱性を有する
大入熱溶接性に優れた非調質型低温用鋼材に関する。
TECHNICAL FIELD The present invention relates to a low-temperature steel material suitable for a liquefied gas storage tank, and particularly to a large-sized steel material having good weld toughness even when subjected to large heat input welding of 200 kJ / cm or more. The present invention relates to a non-heat treated low temperature steel excellent in heat input weldability.

【0002】[0002]

【従来の技術】近年、環境への配慮から、よりクリーン
なエネルギーである液化ガスの利用が増加している。こ
のため、この種のガスの運搬船および貯蔵槽用部材とし
て用いて好適な低温用鋼材の開発が要望されてきた。ま
た、この種の低温用鋼材に対しては、安全性確保の観点
から、実施工において入熱を制限した溶接が行われてき
た。しかし、最近では、経済性の観点から、大入熱溶接
による溶接施工が指向され、大入熱溶接を行った場合で
も、優れた溶接部靱性を有する非調質型低温用鋼材が要
望されている。
2. Description of the Related Art In recent years, use of liquefied gas, which is cleaner energy, has been increasing in consideration of the environment. For this reason, there has been a demand for the development of a low-temperature steel material suitable for use as a member for such a gas carrier and storage tank. In addition, from the viewpoint of ensuring safety, welding with limited heat input has been performed on this type of low-temperature steel material from the viewpoint of ensuring safety. However, recently, from the viewpoint of economy, welding construction by large heat input welding has been directed, and even when large heat input welding is performed, a non-heat treated low temperature steel material having excellent weld toughness has been demanded. I have.

【0003】一般に、溶接部の靱性は母材の熱影響部、
とくにボンド部の靱性によって定まっている。ボンド部
は、溶融点直下の高温に加熱されるため結晶粒がもっと
も粗大化するため、引き続いての冷却により、脆弱なマ
ルテンサイト組織や上部べイナイト組織が生成して切欠
靱性が低下する。特に、エレクトロガス溶接やサブマー
ジアーク溶接などの、いわゆる大入熱溶接では、この傾
向が顕著に現れる。
In general, the toughness of a weld is determined by the heat-affected zone of the base metal,
In particular, it is determined by the toughness of the bond. Since the bond portion is heated to a high temperature just below the melting point, the crystal grains become the coarsest, so that the subsequent cooling produces a fragile martensite structure and an upper bainite structure, which lowers the notch toughness. In particular, in so-called large heat input welding such as electrogas welding and submerged arc welding, this tendency is remarkably exhibited.

【0004】このような溶接部の靱性劣化を防止する方
法として、大きくわけて次の3つの方法 (1)介在物、析出物を利用したオーステナイト粒の粗
大化抑制 (2)B/Nの制御 (3)変態後組織の高靱化 が考えられている。
[0004] As methods for preventing such toughness deterioration of the welded portion, there are roughly three methods: (1) suppression of coarsening of austenite grains using inclusions and precipitates (2) control of B / N (3) Toughening of the post-transformation structure is considered.

【0005】上記(1)の例として、例えば、特開昭60
−184663号公報には、Tiの窒化物や希土類元素(RE
M)の硫酸化物などを有効に微細分散させることによ
り、入熱100kJ/cm以上の溶接においても十分な溶接部の
低温靱性が得られるとした技術が開示されている。ま
た、上記(2)の例として、例えば、特公昭55−31820
号公報には、REMとBを共存させ、かつB含有量とN
含有量の比、B/Nを0.3 〜1.0 に制御した大入熱溶接
用鋼が提案され、これにより、入熱60kJ/cm 以上の単層
溶接ボンド部の組織が微細なフェライト+パーライト組
織となり、溶接部の切欠靱性が向上するとされる。
[0005] As an example of the above (1), for example,
No. 184663 discloses Ti nitrides and rare earth elements (RE
A technique has been disclosed in which sufficient low-temperature toughness of a welded portion can be obtained even when welding with a heat input of 100 kJ / cm or more by effectively finely dispersing the sulfated oxide of M). As an example of the above (2), for example, Japanese Patent Publication No. 55-31820
In the publication, REM and B coexist, and B content and N
A large heat input welding steel in which the content ratio, B / N is controlled to 0.3 to 1.0, has been proposed, and as a result, the structure of the single-layer weld bond having a heat input of 60 kJ / cm or more becomes a fine ferrite + pearlite structure. It is said that the notch toughness of the weld is improved.

【0006】また、特開昭52−41111 号公報には、(B
(%)−0.77N(%))×103 を−2.2 〜1.0 に制限す
る大入熱溶接部靱性に優れる調質型低合金高張力鋼が提
案されている。特開昭52−41111 号公報に記載された技
術では、Bを固溶Bとして十分な焼入れ性を確保するこ
とで、熱影響部の組織を下部ベイナイトとし、優れた靱
性を得ることができるとしている。
Japanese Patent Application Laid-Open No. 52-41111 discloses (B
(%) - 0.77N (%) ) × 10 3 to -2.2 tone excellent high heat input weld toughness for limiting the 1.0 quality type low alloy high strength steel have been proposed. In the technique described in Japanese Patent Application Laid-Open No. 52-41111, it is considered that B can be used as solid solution B to secure sufficient quenchability, thereby making the structure of the heat-affected zone lower bainite and obtaining excellent toughness. I have.

【0007】また、上記(3)の例として、例えば、特
公昭59−11658 号公報には、Cを0.03%以下にして、大
入熱溶接継手HAZ部の島状マルテンサイト量を一定量
以下に押さえるとともに、低温靱性に特に有効なNiを添
加することにより、優れた低温靱性を有し、高能率溶接
が可能な鋼を製造し得るとした技術が開示されている。
As an example of the above (3), for example, Japanese Patent Publication No. 59-11658 discloses that C is set to 0.03% or less and the amount of island-like martensite in the HAZ portion of the large heat input welded joint is set to a certain amount or less. In addition, a technique has been disclosed in which a steel having excellent low-temperature toughness and capable of high-efficiency welding can be manufactured by adding Ni that is particularly effective for low-temperature toughness.

【0008】また、特開昭56−150157号公報には、Cを
0.03%以下にし、かつBによる焼入れ効果を利用し、引
張強さで40〜70kgf/mm2 の強度を有する溶接部靱性に優
れた低温用鋼が提案されている。また、特開昭59−5363
53号公報には、Cを0.03%以下にし、かつBを添加しさ
らにNiを2.0 〜4.0 %添加した溶接部靱性の優れた極厚
低温用鋼が提案されている。
Japanese Patent Application Laid-Open No. 56-150157 discloses that C is
A low-temperature steel excellent in weld toughness having a strength of 40 to 70 kgf / mm 2 in tensile strength utilizing the quenching effect of B and making use of the quenching effect of B is proposed. Also, JP-A-59-5363
No. 53 proposes an ultra-thin low-temperature steel having excellent weld toughness in which C is made 0.03% or less, B is added, and Ni is added in an amount of 2.0 to 4.0%.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、特開昭
60−184663号公報に記載された技術におけるように、Ti
の窒化物や希土類元素(REM)の硫酸化物などの析出
物を有効に微細分散させ、大入熱溶接時のオーステナイ
ト粒の粗大化を防止して溶接部靱性の劣化を防止する方
法には、以下の2つの問題があった。
SUMMARY OF THE INVENTION However, Japanese Patent Application Laid-Open
As in the technique described in US Pat.
Precipitates such as nitrides and sulfates of rare earth elements (REMs) are effectively and finely dispersed to prevent coarsening of austenite grains during large heat input welding and to prevent deterioration of weld toughness. There were the following two problems.

【0010】1つは、REMを添加する場合に、REM
の硫酸化物等のREM介在物が凝集粗大化を起こしやす
く、破壊の起点となり靱性を劣化させるという問題であ
る。また、他の一つは、TiN の一部が高温で再溶解する
ため、熱影響部に固溶Nが増加し、靱性が低下するとい
う問題である。また、特公昭55−31820 号公報に記載さ
れた技術では、REMを含有し、B/Nを制御して、溶
接ボンド部を微細なフェライト+パーライト組織にして
溶接ボンド部の靱性を向上させているが、さらにオース
テナイト粒の粗大化が進行する入熱200kJ/cm以上の大入
熱溶接では微細なフェライト+パーライト組織を得るこ
とは不可能となり、溶接部靱性が劣化するという問題が
あった。
One is that when adding REM, REM
The problem is that REM inclusions such as sulfated oxides tend to cause agglomeration and coarsening, and serve as a starting point for fracture, deteriorating toughness. Another problem is that since a part of TiN is redissolved at a high temperature, solute N increases in the heat-affected zone, and the toughness decreases. Further, in the technique described in Japanese Patent Publication No. 55-31820, REM is contained, B / N is controlled, and the weld bond is made into a fine ferrite + pearlite structure to improve the toughness of the weld bond. However, there is a problem that it is impossible to obtain a fine ferrite + pearlite structure by large heat input welding at a heat input of 200 kJ / cm or more in which the austenite grains become coarser, and the toughness of the weld is deteriorated.

【0011】特開昭52−41111 号公報に記載された技術
では、より冷速の遅い200kJ/cm以上の大入熱溶接に際し
ては、BがBNとして析出し、固溶Bの焼入れ効果が十分
に発揮できないという問題があった。また、さらにこの
技術は、調質処理を行うため経済的に不利となる。ま
た、特公昭59−11658 号公報に記載された技術では、高
価なNiを多量に添加しており、製造コストが増加し経済
的に不利となるという問題があった。
According to the technology described in Japanese Patent Application Laid-Open No. 52-41111, B is precipitated as BN at the time of a large heat input welding of 200 kJ / cm or more at a slower cooling speed, and the quenching effect of solid solution B is sufficient. There was a problem that it could not be demonstrated. In addition, this technology is disadvantageous in terms of economy because it performs a refining process. Further, the technique described in Japanese Patent Publication No. 11658/1984 has a problem that a large amount of expensive Ni is added, which increases the production cost and is disadvantageous economically.

【0012】また、特開昭56−150157号公報および特開
昭59−53653 号公報に記載された技術ではCを0.03%以
下とすることで、入熱50kJ/cm の溶接で非常に優れた溶
接部靱性が得られるとしているが、近年はさらに大入熱
での溶接可能な鋼材が求められている。本発明は、上記
した従来技術の問題を有利に解決し、焼入れ焼戻し処理
を必要としない、熱間圧延のままの非調質型低温用鋼材
であって、入熱200kJ/cm以上の大入熱溶接継手部におい
ても優れた靱性を有する大入熱溶接性に優れた非調質型
低温用鋼材を提案することを目的とする。
Further, in the techniques described in JP-A-56-150157 and JP-A-59-53653, by setting C to 0.03% or less, very excellent welding can be achieved at a heat input of 50 kJ / cm. It is said that welded toughness can be obtained, but in recent years there has been a demand for a steel material that can be welded with even higher heat input. The present invention advantageously solves the above-mentioned problems of the prior art and is a hot-rolled non-heat treated low-temperature steel material that does not require quenching and tempering, and has a large heat input of 200 kJ / cm or more. It is an object of the present invention to propose a non-heat treated low temperature steel material having excellent heat input weldability having excellent toughness even in a heat welded joint portion.

【0013】[0013]

【課題を解決するための手段】本発明者らは、上記した
課題を達成するため、介在物、析出物を利用したオース
テナイト粒の粗大化抑制手段によることなく、また、溶
接熱影響部の組織としてフェライト+パーライト組織を
指向することなく大入熱溶接継手部靱性を向上させる方
法について鋭意検討した。その結果、本発明者らは、Ni
量をできるだけ低減した系で、入熱200kJ/cm以上の大入
熱溶接継手部の靱性に及ぼすN、B等の合金元素の影響
について検討した。その結果、べイナイト組織となる大
入熱溶接継手部の靱性に対し、B/Nに最適範囲が存在
することを見いだした。さらに、本発明者らはB/Nを
適正範囲とし、0.02wt%以下の極低炭素とすることによ
り、母材および溶接部で一様な極低炭素べイナイト組織
が得られNiの多量添加を必要とすることなく、大入熱溶
接継手部の靱性低下を防止することができるという知見
を得た。
Means for Solving the Problems The present inventors have achieved the above-mentioned object without using the means for suppressing austenite grain coarsening utilizing inclusions and precipitates, and further, the structure of the weld heat affected zone. A method for improving the toughness of a large heat input welded joint without directing a ferrite + pearlite structure was intensively studied. As a result, the present inventors
The effect of alloying elements such as N and B on the toughness of a large heat input welded joint with a heat input of 200 kJ / cm or more was studied in a system with the amount reduced as much as possible. As a result, it has been found that there is an optimum range of B / N with respect to the toughness of the large heat input welded joint having a bainite structure. Furthermore, the present inventors set the B / N to an appropriate range and set the ultra-low carbon of 0.02 wt% or less to obtain a uniform ultra-low carbon bainite structure in the base material and the welded portion, and added a large amount of Ni It has been found that it is possible to prevent a decrease in toughness of a large heat input welded joint portion without the need for a steel sheet.

【0014】また、本発明者らは、さらに、Mn、Nbを適
正量含有させることにより、490 MPa 以上の引張強さを
有し、入熱200kJ/cm以上の大入熱溶接施工が可能な低温
用鋼を、熱間圧延のままで製造し得ることを見出した。
まず、本発明の基礎になった実験結果について、説明す
る。0.2 wt%Si−1.4 wt%Mn−1.0 wt%Ni−0.025 wt%
Nbを基本成分とし、Cを0.05wt%以下で変化させるとと
もに、B、N含有量を変化させた厚鋼板(20mm厚)を製
造した。これら鋼板から再現熱サイクル試験片を採取
し、入熱200kJ/cmのエレクトロガスアーク溶接ボンド部
相当の熱サイクルを付与したのち、JIS 4 号衝撃試験片
を採取し、試験温度-50 ℃におけるシャルピー吸収エネ
ルギー値を求めた。
Further, the present inventors have found that, by adding an appropriate amount of Mn and Nb, it has a tensile strength of 490 MPa or more and is capable of performing a large heat input welding with a heat input of 200 kJ / cm or more. It has been found that low temperature steel can be produced as hot rolled.
First, the experimental results on which the present invention is based will be described. 0.2 wt% Si-1.4 wt% Mn-1.0 wt% Ni-0.025 wt%
Thick steel plates (20 mm thick) were produced in which Nb was a basic component, C was changed at 0.05 wt% or less, and B and N contents were changed. A reproducible heat cycle test specimen was collected from these steel sheets, subjected to a heat cycle equivalent to the bond of an electrogas arc welded joint with a heat input of 200 kJ / cm, and then a JIS No. 4 impact test specimen was collected and subjected to Charpy absorption at a test temperature of -50 ° C. Energy values were determined.

【0015】− 50 ℃におけるシャルピー吸収エネルギ
ー(vE-50 )とB/Nとの関係(C:0.01〜0.02wt%)
を図1に、C含有量との関係を図2に示す。なお、図2
は、B/Nが0.4 〜0.8 の範囲内の鋼板についてのもの
である。図1から、入熱200kJ/cmのエレクトロガスアー
ク溶接ボンド部相当のvE-50 は、B/Nが0.3 〜1.0 の
場合にはじめて、41J以上と高靱性となることがわか
る。また、図2から、C含有量を0.02wt%以下とするこ
とにより、入熱200kJ/cmのエレクトロガスアーク溶接ボ
ンド部相当のvE-50 が41J以上と、高靱性となるとなる
ことがわかる。これらの結果をまとめ、B/NとC量の
関係で図3に示す。図3から、B/Nが0.3 〜1.0 でか
つC量が0.02wt%以下で優れた溶接部靱性(vE-50 )が
得られることがわかる。
Relationship between Charpy absorbed energy (vE -50 ) at 50 ° C. and B / N (C: 0.01 to 0.02 wt%)
Is shown in FIG. 1 and the relationship with the C content is shown in FIG. Note that FIG.
Is for steel sheets having a B / N in the range of 0.4 to 0.8. From FIG. 1, it can be seen that the vE- 50 equivalent to the bond portion of the electrogas arc welding with a heat input of 200 kJ / cm has a high toughness of 41 J or more only when the B / N is 0.3 to 1.0. From FIG. 2, it can be seen that by setting the C content to 0.02 wt% or less, the vE -50 corresponding to the bond portion of the electrogas arc welding with a heat input of 200 kJ / cm becomes 41 J or more, and high toughness is obtained. These results are summarized and shown in FIG. 3 in the relationship between B / N and C amount. FIG. 3 shows that excellent weld toughness (vE -50 ) can be obtained when the B / N is 0.3 to 1.0 and the C content is 0.02 wt% or less.

【0016】本発明は、上記した知見に基づいて構成さ
れたものである。すなわち、本発明は、C:0.02wt%以
下、Si:0.50wt%以下、Mn:0.5 〜2.0wt%、Al:0.005
〜0.10wt%、Nb:0.010 〜 0.10 wt%、Ni:0.3 〜3.0
wt%、B:0.0003〜0.0040wt%、N:0.0050wt%未満
を含有し、かつB含有量とN含有量の比、B/Nが0.3
〜1.0 の範囲であり、残部Feおよび不可避不純物からな
る組成を有することを特徴とする大入熱溶接性に優れた
非調質型低温用鋼材である。また、本発明では、前記組
成に加えて、さらに、Cu:0.05〜0.70wt%、Cr:0.10〜
0.60wt%、Mo:0.10〜 0.50 wt%、Ti:0.005 〜0.05wt
%のうちの1種または2種以上を含有する組成としても
よい。また、本発明では、前記各組成に加えてさらに、
Ca:0.0005〜0.0100wt%を含有してもよい。
The present invention has been made based on the above findings. That is, in the present invention, C: 0.02 wt% or less, Si: 0.50 wt% or less, Mn: 0.5 to 2.0 wt%, Al: 0.005 wt%
~ 0.10wt%, Nb: 0.010 ~ 0.10wt%, Ni: 0.3 ~ 3.0
wt%, B: 0.0003 to 0.0040 wt%, N: less than 0.0050 wt%, and the ratio of B content to N content, B / N is 0.3
A non-heat treated low temperature steel excellent in large heat input weldability, characterized by having a composition of the balance of Fe and unavoidable impurities. Further, in the present invention, in addition to the above composition, Cu: 0.05 to 0.70 wt%, Cr: 0.10 to
0.60wt%, Mo: 0.10 ~ 0.50wt%, Ti: 0.005 ~ 0.05wt
%, One or more of them may be used. Further, in the present invention, in addition to each of the above compositions,
Ca: 0.0005 to 0.0100 wt% may be contained.

【0017】[0017]

【発明の実施の形態】まず、本発明鋼材の化学成分の限
定理由について説明する。 C:0.02wt%以下 Cは、溶接熱影響部の組織を支配する重要な元素であ
り、本発明では、平衡状態でパーライト相の生成をなく
し、かつ溶接熱影響部においても靱性を劣化させる島状
マルテンサイトの生成を抑制するために、Cは0.02wt%
以下の極低炭素とした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the reasons for limiting the chemical components of the steel material of the present invention will be described. C: 0.02 wt% or less C is an important element that governs the structure of the weld heat affected zone. In the present invention, the island that eliminates the formation of the pearlite phase in the equilibrium state and deteriorates the toughness even in the weld heat affected zone. C is 0.02wt% to suppress the formation of martensite
The following extremely low carbon was used.

【0018】Si:0.50wt%以下 Siは、精錬時の脱酸元素として作用し、不可欠な元素で
あるが、0.50wt%を超えて含有すると、母材靱性が著し
く劣化する。このため、Siは0.50wt%以下に限定した。 Mn:0.5 〜2.0 wt% Mnは、極低炭素域の鋼材の連続冷却変態挙動に大きく影
響する元素であり、溶接熱影響部で靱性に富むグラニュ
ラ・ベイニティック・フェライト組織(αB )を得るた
めには0.5 wt%以上の含有を必要とする。しかし、2.0
wt%を超えて含有すると、靱性の低いベイニティック・
フェライト組織(α°B )を生成する。このため、Mnは
0.5 〜2.0 wt%の範囲に限定した。
Si: 0.50 wt% or less Si acts as a deoxidizing element at the time of refining and is an indispensable element. However, if it exceeds 0.50 wt%, the base material toughness is significantly deteriorated. For this reason, Si was limited to 0.50 wt% or less. Mn: 0.5 to 2.0 wt% Mn is an element that greatly affects the continuous cooling transformation behavior of steel materials in an extremely low carbon region, and has a granular bainitic ferrite structure (α B ) that is rich in toughness in the weld heat affected zone. In order to obtain it, a content of 0.5 wt% or more is required. But 2.0
If the content exceeds wt%, bainitic
Produces a ferrite structure (α ° B ). For this reason, Mn
It was limited to the range of 0.5 to 2.0 wt%.

【0019】Al:0.005 〜0.10wt% Alは、脱酸剤として作用し、本発明では、0.005wt %以
上の含有を必要とする。一方、0.10wt%を超えて含有す
ると、鋼中に酸化物系介在物が増加し、表面欠陥の増
加、および母材靱性の低下の原因となる。このため、Al
は0.005 〜0.10wt%の範囲に限定した。
Al: 0.005 to 0.10 wt% Al acts as a deoxidizing agent, and the present invention requires a content of 0.005 wt% or more. On the other hand, if the content exceeds 0.10 wt%, oxide inclusions increase in the steel, which causes an increase in surface defects and a decrease in base material toughness. For this reason, Al
Was limited to the range of 0.005 to 0.10 wt%.

【0020】Nb:0.010 〜0.10wt% Nbは、Mnと同様、極低炭素域の鋼材の連続冷却変態挙動
に大きく影響する元素であり、溶接熱影響部で靱性に富
むグラニュラ・ベイニティック・フェライト組織
(αB )を得るために重要な元素で、本発明では0.010w
t %以上の含有を必要とする。しかし、0.10wt%を超え
て含有すると、靱性の低いベイティック・フェライト組
織(α°B )を生成する。このため、Nbは0.010 〜0.10
wt%の範囲に限定した。
Nb: 0.010 to 0.10 wt% Nb, like Mn, is an element that greatly affects the continuous cooling transformation behavior of steel materials in an extremely low carbon region. An important element for obtaining a ferrite structure (α B ).
Requires a content of at least t%. However, when the content exceeds 0.10 wt%, a baitic ferrite structure (α ° B ) having low toughness is generated. Therefore, Nb is 0.010 to 0.10
Limited to the wt% range.

【0021】Ni:0.3 〜3.0 wt% Niは、強度の増加、および溶接熱影響部の靱性の向上に
極めて有効な元素であり、低温用鋼には不可欠な元素で
ある。しかし、0.3 wt%未満では、このような効果がほ
とんど認められないため、Ni含有量の下限とした。一
方、Niは、高価な元素であり、3.0 wt%を超えて含有し
ても、靱性向上効果が飽和する傾向を示し、含有量に見
合う効果が期待できない。このため、本発明では3.0wt
%をNi含有量の上限とした。
Ni: 0.3 to 3.0 wt% Ni is an element that is extremely effective in increasing the strength and improving the toughness of the heat affected zone, and is an essential element in low-temperature steel. However, when the content is less than 0.3 wt%, such an effect is hardly recognized, and therefore, the lower limit of the Ni content is set. On the other hand, Ni is an expensive element, and even if contained in excess of 3.0 wt%, the effect of improving toughness tends to be saturated, and an effect commensurate with the content cannot be expected. Therefore, in the present invention, 3.0wt
% Is the upper limit of the Ni content.

【0022】B:0.0003〜0.0040wt% Bは、焼入れ性を向上させる元素であり、極低炭素鋼に
おいては組織を均一なベイナイト組織とし、強度を増加
させるために重要な元素である。溶接熱影響部の組織
を、靱性に富むグラニュラ・ベイニティック・フェライ
ト組織(αB )とするためには、Bは0.0003wt%以上の
含有を必要とする。しかし、0.0040wt%を超えて含有し
ても、強度上昇効果は飽和する傾向を示し、多量の固溶
Bのため、かえって靱性を劣化させる。このため、Bは
0.0003〜0.0040wt%の範囲に限定した。
B: 0.0003 to 0.0040 wt% B is an element that improves the hardenability, and is an important element in ultra-low carbon steel for forming a uniform bainite structure and increasing the strength. In order to make the structure of the weld heat affected zone a granular bainitic ferrite structure (α B ) rich in toughness, B needs to be contained in an amount of 0.0003 wt% or more. However, even if the content exceeds 0.0040 wt%, the strength increasing effect tends to be saturated, and the toughness is rather deteriorated due to a large amount of solid solution B. For this reason, B
It was limited to the range of 0.0003 to 0.0040 wt%.

【0023】N:0.0050wt%未満 Nは、鋼中に必ず存在して固溶するか、あるいは窒化物
として析出し、強度を増加させる元素であるが、鋼中に
過剰に固溶すると靱性を劣化させる。このようなことか
ら、固溶Nを低減し入熱200kJ/cm以上の大入熱溶接継手
部の靱性劣化を防止するために、本発明では、Nを0.00
50%wt未満に限定する。Nを0.0050wt%以上含有する
と、とくに入熱200kJ/cm以上の大入熱溶接継手部の靱性
が著しく劣化する。
N: less than 0.0050 wt% N is an element which is always present in steel and forms a solid solution or precipitates as a nitride to increase the strength. Deteriorate. Therefore, in order to reduce solid solution N and prevent toughness deterioration of a large heat input welded joint having a heat input of 200 kJ / cm or more, N is set to 0.00 in the present invention.
Limited to less than 50% wt. When N is contained in an amount of 0.0050 wt% or more, the toughness of a large heat input welded joint having a heat input of 200 kJ / cm or more is significantly deteriorated.

【0024】B/N:0.3 〜1.0 溶接熱影響部の靱性劣化を防止するために、靱性に悪影
響を及ぼす固溶Nを低減することが重要であり、本発明
では、固溶N源となるN含有量を低減するとともに、一
度溶解した窒化物を再析出させるために、拡散速度の速
いBを有効に利用する。そのために、B/Nを0.3 〜1.
0 の適正範囲とする。B/Nが0.3 未満では、固溶Nが
過剰となり、一方、B/Nが1.0 を超える場合には、固
溶Bが過剰となり靱性が劣化する。
B / N: 0.3 to 1.0 It is important to reduce the solute N which adversely affects toughness in order to prevent the toughness deterioration of the heat affected zone by welding, and in the present invention, it becomes a solute N source. In order to reduce the N content and reprecipitate the nitride once dissolved, B having a high diffusion rate is effectively used. Therefore, B / N is set to 0.3 to 1.
0 is an appropriate range. If B / N is less than 0.3, solid solution N becomes excessive, while if B / N exceeds 1.0, solid solution B becomes excessive and the toughness deteriorates.

【0025】Cu:0.05〜0.70wt%、Cr:0.10〜0.60wt
%、Mo:0.10〜0.50wt%、Ti:0.005〜0.05wt%のうち
の1種または2種以上 Cu、Cr、Mo、Tiは、いずれも極低炭素鋼において、鋼の
強度を増加させる作用を有している。本発明では、上記
した成分に加えて、Cu、Cr、Moのうちの1種または2種
以上を、必要に応じ含有できる。これら元素は、極低炭
素鋼のベイナイト組織である、グラニュラ・ベイニティ
ック・フェライト組織(αB )形成時に生じる変態歪を
増加させる。変態歪が増加し、転位密度が増加する結
果、鋼の強度が上昇する。このような効果は、Cuで0.05
wt%以上、Crで0.10wt%以上、Moで0.10wt%以上、Tiで
0.005 wt%以上の含有で認められる。一方、Cuが0.70wt
%を、Crが0.60wt%を、Moが0.50wt%を、Tiが0.05wt%
を超えて含有してもそれ以上の強度上昇が望めず、逆に
靱性の劣化を招く。このため、Cuは0.05〜0.70wt%、Cr
は0.10〜0.60wt%、Moは0.10〜0.50wt%、Tiは0.005 〜
0.05wt%の範囲に限定するのが好ましい。
Cu: 0.05-0.70 wt%, Cr: 0.10-0.60 wt%
%, Mo: 0.10 to 0.50 wt%, Ti: 0.005 to 0.05 wt%, one or more of them Cu, Cr, Mo, and Ti all act to increase the strength of ultra-low carbon steel. have. In the present invention, one or more of Cu, Cr, and Mo can be contained as necessary, in addition to the above-described components. These elements increase the transformation strain that occurs during the formation of the granular bainitic ferrite structure (α B ), which is the bainitic structure of ultra-low carbon steel. As the transformation strain increases and the dislocation density increases, the strength of the steel increases. Such an effect is 0.05% for Cu.
wt% or more, Cr 0.10wt% or more, Mo 0.10wt% or more, Ti
It is recognized at a content of 0.005 wt% or more. On the other hand, Cu is 0.70wt
%, Cr is 0.60wt%, Mo is 0.50wt%, Ti is 0.05wt%
If the content exceeds the above range, no further increase in strength can be expected, and conversely, toughness is deteriorated. Therefore, 0.05 to 0.70 wt% of Cu, Cr
Is 0.10 ~ 0.60wt%, Mo is 0.10 ~ 0.50wt%, Ti is 0.005 ~
It is preferable to limit the range to 0.05 wt%.

【0026】Ca:0.0005〜0.0100wt% Caは、硫化物形成元素として作用し、溶接熱影響部の靱
性に悪影響のあるSを固定化する働きを有する。本発明
では、靱性向上の目的で、必要に応じ添加できる。この
ような効果は、0.0005wt%以上の含有で認められる。し
かし、0.0100wt%を超えて含有すると、クラスター状の
介在物を形成し、むしろ靱性に悪影響を及ぼす。このた
め、Caは0.0005〜0.0100wt%の範囲に限定するにのが好
ましい。
Ca: 0.0005 to 0.0100 wt% Ca acts as a sulfide forming element and has a function of fixing S which has an adverse effect on the toughness of the weld heat affected zone. In the present invention, it can be added as needed for the purpose of improving toughness. Such an effect is recognized when the content is 0.0005 wt% or more. However, when the content exceeds 0.0100 wt%, cluster-like inclusions are formed, which adversely affects toughness. For this reason, Ca is preferably limited to the range of 0.0005 to 0.0100 wt%.

【0027】上記した成分以外の残部はFeおよび不可避
的不純物である。不可避的不純物としては、P:0.020
%以下、S:0.005 %以下が許容できる。本発明の鋼材
は、通常の方法で製造すればよい。すなわち、例えば上
記した組成の溶鋼を、転炉、電気炉、真空溶解炉等通常
公知の溶製方法で溶製し、ついで連続鋳造法、造塊法等
の通常公知の鋳造方法で、スラブ等の圧延用鋼素材に鋳
造する。ついで、圧延用鋼素材は、1000〜1300℃の温度
に再加熱されるか、あるいは再加熱されることなく熱間
圧延を施され、750℃以上で圧延を終了し、空冷あるい
は加速冷却が施される。
The balance other than the above components is Fe and inevitable impurities. As unavoidable impurities, P: 0.020
% Or less, S: 0.005% or less is acceptable. The steel material of the present invention may be manufactured by a usual method. That is, for example, a molten steel having the above-described composition is smelted by a commonly known smelting method such as a converter, an electric furnace, and a vacuum smelting furnace. Cast into rolling steel material. Next, the steel material for rolling is reheated to a temperature of 1000 to 1300 ° C. or hot rolled without being reheated, the rolling is completed at 750 ° C. or more, and air cooling or accelerated cooling is performed. Is done.

【0028】[0028]

【実施例】つぎに、本発明の効果を実施例に基づいて以
下に説明する。表1に示す組成の鋼塊を1150℃に加熱し
たのち、未再結晶域で累積圧下率50%以上の圧下を加
え、800 ℃以上で圧延を終了し、直ちに水冷による加速
冷却を行い600 ℃以降は空冷し、板厚38mmの鋼板とし
た。
Next, the effects of the present invention will be described based on examples. After heating a steel ingot having the composition shown in Table 1 to 1150 ° C, applying a reduction of 50% or more in the unrecrystallized region, rolling is completed at 800 ° C or more, and accelerated cooling by water cooling is immediately performed to 600 ° C. Thereafter, it was air-cooled to obtain a steel plate having a thickness of 38 mm.

【0029】得られた鋼板について、母材の引張試験、
シャルピー衝撃試験を実施した。なお、シャルピー衝撃
試験により、母材のエネルギー遷移温度(V T E )を求
めた。また、これら鋼板に、図4に示す形状の開先加工
を施し、入熱量200kJ/cmのエレクトロガスアーク溶接に
より大入熱溶接継手を作製した。溶接継手部(ボンド
部)からシャルピー衝撃試験片(JIS 4号試験片)を採
取し、試験温度:−50℃でのシャルピー吸収エネルギー
(vE-50 )を求め、大入熱溶接ボンド部の靱性を評価し
た。
The obtained steel sheet was subjected to a tensile test of a base material,
A Charpy impact test was performed. Incidentally, the Charpy impact test to determine the energy transition temperature of the base material (V T E). In addition, these steel sheets were subjected to beveling in the shape shown in FIG. 4, and large heat input welded joints were produced by electrogas arc welding with a heat input of 200 kJ / cm. A Charpy impact test specimen (JIS No. 4 specimen) was sampled from the welded joint (bond part), and the Charpy absorbed energy (vE- 50 ) at a test temperature of -50 ° C was determined. Was evaluated.

【0030】これらの結果を表2に示す。The results are shown in Table 2.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表2から、本発明例は、入熱200kJ/cmのエ
レクトロガスアーク溶接継手の溶接ボンド部のvE-50
41J 以上と、優れた大入熱溶接部靱性を有する低温用鋼
材となっている。これに対し、本発明の範囲を外れる比
較例は、溶接ボンド部のvE-5 0 は41J 未満と、低い靱性
しか示していない。
From Table 2, it can be seen that the present invention shows that the vE- 50 of the weld bond portion of the electrogas arc welded joint having a heat input of 200 kJ / cm is
This is a low-temperature steel material with excellent large heat input weld toughness of 41J or more. In contrast, comparative examples out of the scope of the present invention, vE -5 0 of the weld bond portion and less than 41J, not only shows a low toughness.

【0034】[0034]

【発明の効果】本発明によれば、入熱200kJ/cm以上の大
入熱溶接を施しても、良好な溶接部靱性が得られ、溶接
施工の能率を顕著に向上できるという産業上格段の効果
を奏する。
According to the present invention, even when a large heat input welding of a heat input of 200 kJ / cm or more is performed, good weld toughness can be obtained and the efficiency of welding can be significantly improved. It works.

【図面の簡単な説明】[Brief description of the drawings]

【図1】再現溶接ボンド部のvE-50 とB/Nとの関係を
示すグラフである。
FIG. 1 is a graph showing a relationship between vE- 50 and B / N of a reproduced weld bond portion.

【図2】再現溶接ボンド部のvE-50 とC含有量との関係
を示すグラフである。
FIG. 2 is a graph showing a relationship between vE- 50 and C content of a reproduced weld bond portion.

【図3】再現溶接ボンド部のvE-50 におよぼすB/Nと
C量の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between B / N and C content on vE- 50 of a reproduced weld bond portion.

【図4】開先形状を示す説明図である。FIG. 4 is an explanatory view showing a groove shape.

フロントページの続き (72)発明者 川端 文丸 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 天野 虔一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内Continued on the front page (72) Inventor Bunmaru Kawabata 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. (Without address) Inside Mizushima Works, Kawasaki Steel Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.02wt%以下、 Si:0.50wt%以下、 Mn:0.5 〜2.0 wt%、 Al:0.005 〜0.10wt%、 Nb:0.010 〜 0.10 wt%、 Ni:0.3 〜3.0 wt%、 B:0.0003〜0.0040wt%、 N:0.0050wt%未満 を含有し、かつB含有量とN含有量の比、B/Nが0.3
〜1.0 の範囲であり、残部Feおよび不可避不純物からな
る組成を有することを特徴とする大入熱溶接性に優れた
非調質型低温用鋼材。
C: 0.02 wt% or less, Si: 0.50 wt% or less, Mn: 0.5 to 2.0 wt%, Al: 0.005 to 0.10 wt%, Nb: 0.010 to 0.10 wt%, Ni: 0.3 to 3.0 wt% , B: 0.0003 to 0.0040 wt%, N: less than 0.0050 wt%, and the ratio of B content to N content, B / N is 0.3
Non-heat treated low temperature steel excellent in large heat input weldability, characterized by having a composition consisting of the balance of Fe and unavoidable impurities.
【請求項2】 前記組成に加えて、さらに、 Cu:0.05〜0.70wt%、Cr:0.10〜0.60wt%、Mo:0.10〜
0.50 wt%、Ti:0.005 〜0.05wt%、Ca:0.0005〜0.01
00wt%のうちの1種または2種以上含有することを特徴
とする請求項1に記載の大入熱溶接性に優れた非調質型
低温用鋼材。
2. In addition to the above composition, Cu: 0.05-0.70 wt%, Cr: 0.10-0.60 wt%, Mo: 0.10-0
0.50 wt%, Ti: 0.005 to 0.05 wt%, Ca: 0.0005 to 0.01
The non-heat-treated low-temperature steel material excellent in large heat input weldability according to claim 1, characterized in that it contains one or more of 00wt%.
JP19384599A 1999-07-08 1999-07-08 Non-tempered low temperature steel with excellent heat input weldability Expired - Fee Related JP3719053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19384599A JP3719053B2 (en) 1999-07-08 1999-07-08 Non-tempered low temperature steel with excellent heat input weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19384599A JP3719053B2 (en) 1999-07-08 1999-07-08 Non-tempered low temperature steel with excellent heat input weldability

Publications (2)

Publication Number Publication Date
JP2001020034A true JP2001020034A (en) 2001-01-23
JP3719053B2 JP3719053B2 (en) 2005-11-24

Family

ID=16314711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19384599A Expired - Fee Related JP3719053B2 (en) 1999-07-08 1999-07-08 Non-tempered low temperature steel with excellent heat input weldability

Country Status (1)

Country Link
JP (1) JP3719053B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172242A (en) * 2011-02-24 2012-09-10 Jfe Steel Corp High-tensile steel sheet having superior toughness and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172242A (en) * 2011-02-24 2012-09-10 Jfe Steel Corp High-tensile steel sheet having superior toughness and method for manufacturing the same

Also Published As

Publication number Publication date
JP3719053B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP4410836B2 (en) Method for producing 780 MPa class high strength steel sheet having excellent low temperature toughness
EP1777315A1 (en) Steel for welded structure excellent in low temperature toughness of heat affected zone of welded part, and method for production thereof
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JP2003166017A (en) Method for manufacturing thick high-tension steel material superior in toughness at high heat-input weld
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPS6352090B2 (en)
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP3644398B2 (en) Manufacturing method of non-tempered thick high-tensile steel sheet with excellent weld heat-affected zone toughness
JP4433844B2 (en) Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone
JP2000104116A (en) Production of steel excellent in strength and toughness
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JP2001020034A (en) Non-heattreated type steel for low temperature use excellent in large heat input weldability
JP2005220379A (en) Method for producing non-heat treated high strength thick steel plate excellent in toughness at extra-large heat input weld heat-affected zone
JP5659949B2 (en) Thick steel plate excellent in toughness of weld heat affected zone and method for producing the same
JP3546820B2 (en) Steel with excellent weld heat affected zone toughness
JPH1121625A (en) Production of thick steel plate excellent in strength and toughness
JPH1025535A (en) High tensile strength steel for large heat input welding, and its production
JP3568710B2 (en) 590 N / mm2 grade steel sheet for welded structure having excellent HAZ toughness during large heat input welding and yield ratio of 80% or less and method for producing the same
JP3335509B2 (en) Method for producing high-strength thick steel plate excellent in toughness of base metal and heat-affected zone of multilayer welding

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees