JP2001017980A - Method for sterilizing microorganism and device therefor - Google Patents

Method for sterilizing microorganism and device therefor

Info

Publication number
JP2001017980A
JP2001017980A JP11192316A JP19231699A JP2001017980A JP 2001017980 A JP2001017980 A JP 2001017980A JP 11192316 A JP11192316 A JP 11192316A JP 19231699 A JP19231699 A JP 19231699A JP 2001017980 A JP2001017980 A JP 2001017980A
Authority
JP
Japan
Prior art keywords
microorganisms
electrodes
electric field
liquid
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11192316A
Other languages
Japanese (ja)
Other versions
JP4120098B2 (en
Inventor
Takaaki Tokutomi
孝明 徳富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP19231699A priority Critical patent/JP4120098B2/en
Publication of JP2001017980A publication Critical patent/JP2001017980A/en
Application granted granted Critical
Publication of JP4120098B2 publication Critical patent/JP4120098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Abstract

PROBLEM TO BE SOLVED: To sterilize microorganisms in a liq. with high efficiency without using chemicals, or the like, by allowing the liq. to be treated to flow between electrodes in parallel with the electrodes, impressing a high-voltage pulse of the same polarity between the electrodes, moving the microorganisms in the liq. by electrophoresis and dielectric migration, collecting the microorganisms at the throttled part of an electric field and sterilizing the microorganisms. SOLUTION: A high-voltage pulse of straight polarity or the pulse superimposed with the DC voltage is impressed between an anode 1 and a cathode 2, and a liq. to be treated is introduced into an electrode gap 7 from a passage 13 and treated while discharging the treated liq. from a passage 15. At this time, since an electric field is formed between the anode 1 and cathode 2, microorganisms are moved toward the electrode by electrophoresis. In this case, as a throttled part of the electric field at the openings 5a and 6a of insulating sheets 5 and 6 is formed, the fine grains in water are moved toward the throttled part. Further, on the inside of the throttled part, innumerable throttled parts are also formed in porous insulating sheets 3 and 4, the microorganisms are collected by the throttled parts, held and sterilized by the repeated impression of the voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液中に存在する微生
物を高電圧パルスにより殺菌するための方法および装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for disinfecting microorganisms present in a liquid by a high voltage pulse.

【0002】[0002]

【従来の技術】水は冷媒としてボイラー、熱交換器、冷
却塔などに広く用いられているが、それらにおいてはし
ばしば配管中に微生物スライムが発生し、熱交換効率、
冷却効率の低下を引き起こしている。純水、超純水等に
おいても微生物の存在が水質低下の原因となっている。
また製造工程においても使用する水中に微生物が繁殖す
ると製品の品質が落ちたり、目的とする製品が製造でき
なくなる場合もある。
2. Description of the Related Art Water is widely used as a refrigerant in boilers, heat exchangers, cooling towers, and the like.
This causes a decrease in cooling efficiency. Even in pure water, ultrapure water, etc., the presence of microorganisms causes a decrease in water quality.
In addition, when microorganisms propagate in the water used in the production process, the quality of the product may be degraded or the target product may not be produced.

【0003】水中で微生物が繁殖するのを防ぐために、
殺菌剤を用いる殺菌方法が広く普及しているが、殺菌に
用いる化学物質の安全性が問題になる。また熱による殺
菌方法は、残留性等の問題はないが、配管材料を耐熱性
にする必要があり、殺菌時はラインを止めなくてはなら
ない欠点がある。また膜ろ過によって水と菌体を分離す
る方法は膜が閉塞を起こすため定期的な洗浄、交換が必
要である。
In order to prevent the growth of microorganisms in water,
Although disinfection methods using disinfectants have become widespread, the safety of chemicals used for disinfection poses a problem. Further, the sterilization method using heat has no problem such as persistence, but has a drawback that the piping material needs to be heat-resistant, and the line must be stopped during sterilization. Further, the method of separating water and bacteria by membrane filtration requires periodic cleaning and replacement because the membrane causes blockage.

【0004】このほか高電圧パルスによって微生物の細
胞膜を破壊し殺菌を行う方法が提案されており、無薬注
で殺菌できるが、殺菌効率が低く実用化段階には入って
いない。このような方法において、高電圧パルスを用い
る殺菌効果を高めるために、被処理液を通過させる微孔
を有する絶縁隔壁を電極間に配設する方法(例えば実公
平4−38833号)、あるいは被処理液を高い圧力で
流す方法(例えば特開平2−245290号)が提案さ
れている。しかしこの方法によっても殺菌効果を大幅に
高めることは困難であった。
In addition, there has been proposed a method of destroying the cell membrane of microorganisms by high-voltage pulses for sterilization. The sterilization can be performed without chemical injection, but the sterilization efficiency is low and it is not in the stage of practical use. In such a method, in order to enhance the sterilization effect using a high-voltage pulse, an insulating partition having micropores through which the liquid to be treated passes is disposed between the electrodes (for example, Japanese Utility Model Publication No. 4-38833), A method of flowing a processing liquid at a high pressure (for example, Japanese Patent Application Laid-Open No. 2-245290) has been proposed. However, it has been difficult to significantly increase the bactericidal effect also by this method.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、簡単
な装置と操作により、薬剤等を使用することなく高効率
で液中の微生物を殺菌することが可能な液中微生物の殺
菌方法および装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for disinfecting microorganisms in a liquid capable of disinfecting microorganisms in a liquid with high efficiency by using a simple apparatus and operation without using chemicals and the like. It is to provide a device.

【0006】[0006]

【課題を解決するための手段】本発明は次の液中微生物
の殺菌方法および装置である。 (1) 対向する電極間に電界の絞り部を形成し、電極
間に電極と平行な方向に被処理液を流し、電極間に同じ
極性の高電圧パルスを印加し、電気泳動および誘電泳動
により液中の微生物を移動させ電界の絞り部で捕捉して
殺菌することを特徴とする液中微生物の殺菌方法。 (2) 電界の絞り部は開口部を有する絶縁シートおよ
び/または多孔質絶縁シートからなる上記(1)の方
法。 (3) 高電圧パルスに直流を重畳して印加し、電気泳
動および誘導泳動を行う上記(1)または(2)の方
法。 (4) 対向する電極と、電極間に形成される電界の絞
り部と、電極間に電極と平行な方向に被処理液を流す通
液装置と、電極間に同じ極性の高電圧パルスを印加する
電源装置とを含む液中微生物の殺菌装置。 (5) 電界の絞り部は開口部を有する絶縁シートおよ
び/または多孔質絶縁シートである上記(4)の装置。 (6) 電源装置は高電圧パルスと直流を重畳して印加
するものである上記(4)または(5)の装置。
SUMMARY OF THE INVENTION The present invention relates to the following method and apparatus for killing microorganisms in a liquid. (1) An electric field diaphragm is formed between opposing electrodes, a liquid to be treated is caused to flow between the electrodes in a direction parallel to the electrodes, a high-voltage pulse of the same polarity is applied between the electrodes, and electrophoresis and dielectrophoresis are performed. A method for disinfecting microorganisms in a liquid, comprising moving microorganisms in a liquid, capturing the microorganisms in a narrow portion of an electric field, and sterilizing the microorganisms. (2) The method according to the above (1), wherein the aperture portion of the electric field comprises an insulating sheet having an opening and / or a porous insulating sheet. (3) The method according to the above (1) or (2), wherein a direct current is superimposed on the high voltage pulse and applied to perform electrophoresis and induction migration. (4) A high-voltage pulse of the same polarity is applied between the electrodes, a flow-through device for flowing the liquid to be treated in a direction parallel to the electrodes, a narrowing portion of an electric field formed between the electrodes, a counterpart of the electric field formed between the electrodes. And a power supply device for disinfecting microorganisms in a liquid. (5) The apparatus according to the above (4), wherein the aperture portion of the electric field is an insulating sheet having an opening and / or a porous insulating sheet. (6) The device according to the above (4) or (5), wherein the power supply device applies the superimposed high voltage pulse and direct current.

【0007】本発明において処理の対象となる被処理液
は微生物を含む液である。このような被処理液は河川
水、地下水、工業用水、上水、排水、下水処理水など電
気泳動と誘電泳動が可能なものがすべて対象になるが、
特に純水、超純水のような比電導度の低い高純度水が対
象として適している。このような高純度水は比電導度1
00μS/cm以下のものが好ましい。
In the present invention, the liquid to be treated is a liquid containing microorganisms. Such liquids to be treated include all those capable of electrophoresis and dielectrophoresis, such as river water, groundwater, industrial water, tap water, drainage, and sewage treatment water.
In particular, high-purity water having low specific conductivity such as pure water and ultrapure water is suitable as a target. Such high-purity water has a specific conductivity of 1
It is preferably at most 00 μS / cm.

【0008】除去対象となる微生物は被処理液中に存在
する微生物であり、微生物としては細菌、かび、酵母、
藻類など、汚染の原因となるすべての微生物が含まれ
る。これらは元々被処理液に含まれているもののほか、
処理の途中で外部から混入あるいは生成したもの、なら
びに系内において器壁等から剥離等により混入したもの
などがある。
The microorganism to be removed is a microorganism present in the liquid to be treated. Examples of the microorganism include bacteria, mold, yeast,
Includes all microorganisms that cause contamination, such as algae. These are originally contained in the liquid to be treated,
Some of them are mixed or generated from outside during the process, and others are mixed in the system by peeling off from the vessel wall or the like.

【0009】本発明ではこのような微生物を殺菌するた
めに、対向する電極間に電界の絞り部を形成し、電極間
に電極と平行な方向に被処理液を流して電極間に同じ極
性の高電圧パルスを印加し、電気泳動および誘電泳動に
より液中の微生物を移動させ電界の絞り部で捕捉して殺
菌する。
In the present invention, in order to sterilize such microorganisms, an electric field restricting portion is formed between opposing electrodes, and a liquid to be treated is caused to flow between the electrodes in a direction parallel to the electrodes, so as to have the same polarity between the electrodes. A high-voltage pulse is applied, and the microorganisms in the liquid are moved by electrophoresis and dielectrophoresis, and the microorganisms are trapped and sterilized by a narrow portion of the electric field.

【0010】電気泳動は荷電粒子が電界中で反対の電荷
を持つ電極に向って移動する現象であり、均一電界中で
も不均一電界中でも起こるが、これに対して誘電泳動は
不均一電界中に置かれた誘電体が分極し、その誘起双極
子と電界との相互作用によって生じる力により粒子が移
動する現象である。この場合微粒子は電界の絞り部、す
なわち電気力線の集中する部分の移動して電極に集めら
れる。電気泳動は直流または同じ極性のパルスである必
要があるが、誘電泳動は交流であってもまたパルスであ
ってもよい。
Electrophoresis is a phenomenon in which charged particles move toward an electrode having an opposite charge in an electric field. The electrophoresis occurs in both a uniform electric field and a non-uniform electric field. In contrast, dielectrophoresis is performed in a non-uniform electric field. This is a phenomenon in which a dielectric material is polarized and particles move due to a force generated by the interaction between the induced dipole and an electric field. In this case, the fine particles move on the narrow portion of the electric field, that is, the portion where the lines of electric force concentrate, and are collected on the electrode. Electrophoresis needs to be direct current or pulses of the same polarity, while dielectrophoresis can be alternating or pulsed.

【0011】本発明ではこのような誘電泳動を行うため
に対向する電極間に電界の絞り部を形成する。電界の絞
り部は電界が集中する部分であって、この部分で電気力
線の密度が高くなり、この部分に向って粒子が移動して
集められる。板状の電極を対向させる場合、特に平板状
の電極を平行に対向させる場合は、絶縁体例えばテトラ
フルオロエチレン樹脂のパンチングシート、網、スリッ
ト、格子等の開口部を有する絶縁シートを電極間に介在
させると、開口部に電界が集中し絞り部が形成される。
このような開口部を有する絶縁シートに替えて、あるい
はこれらの絶縁シートとともに、電極面または電極間に
濾紙、濾布等の多孔質絶縁シートを設けて電界の絞り部
を形成させることができる。このような多孔質絶縁シー
トは微細な開口部が多いので、集まった微生物の保持部
としても用いることができるが、開口部が多いと電界の
絞り効果が大きくならない場合があるため、前記開口部
を有する絶縁シートと組合せて使用するのが好ましい。
In the present invention, in order to perform such dielectrophoresis, an aperture portion for an electric field is formed between opposing electrodes. The aperture portion of the electric field is a portion where the electric field is concentrated, where the density of the lines of electric force is increased, and the particles move toward this portion and are collected. When plate-shaped electrodes are opposed to each other, particularly when plate-shaped electrodes are opposed to each other in parallel, an insulating sheet having openings such as a punching sheet of a tetrafluoroethylene resin, a mesh, a slit, and a grid is provided between the electrodes. When it is interposed, the electric field concentrates on the opening to form a diaphragm.
Instead of the insulating sheets having such openings, or together with these insulating sheets, a porous insulating sheet such as filter paper or filter cloth may be provided on the electrode surface or between the electrodes to form the aperture portion of the electric field. Since such a porous insulating sheet has many fine openings, it can be used also as a holding portion for collected microorganisms. However, if the number of openings is large, the effect of restricting the electric field may not be large. It is preferable to use in combination with an insulating sheet having

【0012】これらの絶縁シートは電極の近くに配置さ
れるのが好ましい。絶縁シートは片側の電極近くのみで
も、両側の電極近くに配置させてもよいが、両側に配置
した方が両側に絞り部が形成されて好ましい。このよう
な絶縁シートは、電極近傍だけではなく、電極間の空間
に濾紙、絶縁シートを設置しても絞り部が形成されるの
で好ましい。このほか絞り部としては一方の電極板に凹
凸を形成してエッジ部を設けることにより、エッジ部に
電界が集中し電界の絞り部が形成される。このような対
向電極としては平行平板電極のほか同心円筒状のシリン
ダタイプでもよい。板状電極に対向して針状電極を設け
たものは針状電極に電界が集中して絞り部が形成され
る。
These insulating sheets are preferably arranged near the electrodes. The insulating sheet may be disposed only near one electrode or near both electrodes, but it is preferable to dispose the insulating sheet on both sides since narrow portions are formed on both sides. Such an insulating sheet is preferable because a narrowed portion is formed even when a filter paper and an insulating sheet are provided not only in the vicinity of the electrodes but also in the space between the electrodes. In addition, as the constricted portion, by forming an uneven portion on one of the electrode plates and providing an edge portion, the electric field is concentrated on the edge portion, thereby forming a constricted portion for the electric field. Such a counter electrode may be a concentric cylindrical cylinder type in addition to a parallel plate electrode. In the case where the needle-shaped electrode is provided so as to face the plate-shaped electrode, the electric field is concentrated on the needle-shaped electrode to form a narrowed portion.

【0013】このような電界の絞り部は対向電極の電極
間隙に沿ってほぼ全域に均一に分散して配置されるのが
よく、例えば電極間に開口部を有する絶縁シートを介在
させる場合、絶縁シートに設けられる開口部が絶縁シー
トのほぼ全域にわたって均一に配置されるのが好まし
い。また一方の電極に凹凸部によりエッジ部を形成する
場合、あるいは一方の電極を針状電極とする場合も、こ
れらのエッジ部および針状電極は他方の電極面に対して
ほぼ全域にわたり均一に配置するのが好ましい。
It is preferable that such an electric field constricted portion is uniformly distributed over substantially the entire area along the electrode gap of the counter electrode. For example, when an insulating sheet having an opening is interposed between the electrodes, the electric field is narrowed. Preferably, the openings provided in the sheet are arranged uniformly over substantially the entire area of the insulating sheet. Also, when an edge portion is formed on one electrode by an uneven portion, or when one electrode is a needle-like electrode, the edge portion and the needle-like electrode are arranged uniformly over almost the entire area with respect to the other electrode surface. Is preferred.

【0014】電極の材質としては陽極、陰極ともにステ
ンレス鋼やトリウム合金を使用することができるが、液
体中への電極成分の溶出を防ぐためにはチタン酸バリウ
ムなどの強誘電体セラミックスを金属面にコーティング
した電極、あるいはカーボン電極等を利用することがで
きる。電極間に介在させる開口部を有する絶縁シートと
しては、フッ素樹脂(例えばポリテトラフルオロエチレ
ン)のほか、ガラス、セラミックスなどが使用できる。
また多孔質絶縁シートとして濾紙、濾布のような多孔質
材質が使用できる。
As the material of the electrode, stainless steel or thorium alloy can be used for both the anode and cathode. Coated electrodes or carbon electrodes can be used. As the insulating sheet having an opening interposed between the electrodes, besides a fluororesin (for example, polytetrafluoroethylene), glass, ceramics, and the like can be used.
A porous material such as filter paper and filter cloth can be used as the porous insulating sheet.

【0015】電極の形式としては、平行平板電極の他、
同心円筒状のシリンダタイプ、針対平板電極、平行平板
電極を巻いたスパイラルタイプ電極などが利用できる。
平行平板電極などの平等電界を形成する電極においては
前記絶縁シートを間に挟んで電界を絞ることによって局
所的に電界の集中した絞り部を作り、誘電泳動効果を利
用して捕集効率を上げることができる。
[0015] As the type of the electrode, in addition to the parallel plate electrode,
A concentric cylinder type cylinder, a needle-to-plate electrode, a spiral type electrode wound with a parallel plate electrode, and the like can be used.
In an electrode that forms a uniform electric field, such as a parallel plate electrode, the electric field is narrowed by sandwiching the insulating sheet to form a narrowed portion in which the electric field is locally concentrated, and the collection efficiency is increased by using the dielectrophoretic effect. be able to.

【0016】電極間に電圧を印加する電源装置として
は、同じ極性の高電圧パルスを印加できる電源が使用で
きるが、高電圧パルスに直流を重畳して印加できる電源
が好ましい。高電圧パルス電源の場合ピーク電圧1kV
〜100kV、好ましくは1kV〜50kV、パルス幅
10-9〜10-3秒、好ましくは10-6〜10-3秒、絞り
部における電界強度5〜50kV/cm、好ましくは5
〜25kV/cmとすることができる。電源は、ダイオ
ードを用いて半波整流したものでもよい。直流を重畳す
る場合、直流としては電圧50〜500V、好ましくは
70〜130Vのものが好ましい。電源装置は処理時に
ON、洗浄時および休止時にOFFになるように切換え
られるが、洗浄時は逆電圧印加するように構成すること
ができる。
As a power supply device for applying a voltage between the electrodes, a power supply capable of applying a high-voltage pulse of the same polarity can be used, but a power supply capable of applying a DC voltage superimposed on the high-voltage pulse is preferable. Peak voltage 1kV in case of high voltage pulse power supply
100100 kV, preferably 1 kV5050 kV, pulse width 10 -9秒 10 -3 seconds, preferably 10 -6秒 10 -3 seconds, electric field strength in the diaphragm portion 5 部 50 kV / cm, preferably 5
2525 kV / cm. The power supply may be a half-wave rectified diode. When a direct current is superimposed, a direct current having a voltage of 50 to 500 V, preferably 70 to 130 V is preferable. The power supply device is switched so as to be turned on during processing, and turned off during cleaning and at rest, but may be configured to apply a reverse voltage during cleaning.

【0017】電極間に被処理液を通液する通液装置は、
処理時に電極間隙の一端側の給液路から被処理液を導入
して電極を平行に流し、他端側の処理液路から処理液を
取出し、洗浄時には流路を切り換えて洗浄液路から洗浄
液を供給し、洗浄排液路から洗浄排液を排出するように
構成される。
The liquid passing device for passing the liquid to be treated between the electrodes includes:
During processing, the liquid to be treated is introduced from the liquid supply path at one end of the electrode gap to flow the electrodes in parallel, the processing liquid is taken out from the processing liquid path at the other end, and the cleaning liquid is switched from the cleaning liquid path by switching the flow path during cleaning. It is configured to supply and discharge the cleaning waste liquid from the cleaning drain path.

【0018】電源装置により各電極間に同極性の高電圧
パルス、またはこれに直流重畳して印加した状態で通液
装置により被処理液を電極間に通液すると、電気泳動と
誘電泳動により水中の微粒子が電界の絞り部に移動して
捕捉され、この状態で高電圧が繰り返し印加されるの
で、微生物は細胞膜が破壊されて殺菌される。微生物を
除去した処理液は処理液路から取出される。電界の絞り
部を形成しないで流動状態の被処理液に高電圧パルスを
印加しても、パルスの印加されている時間が短いため、
被処理液に含まれている微生物の殺菌は困難である。電
極間に電界の絞り部を形成する場合でも電界の絞り部付
近に存在する微生物のみが殺菌されるだけであり、他の
部分に存在する微生物は殺菌されない。これに対して絞
り部に微生物を捕捉し、保持した状態で高電圧パルスを
印加すると、捕捉された微生物に高電圧パルスが繰り返
し印加されるため、殺菌効率は高くなる。
When a liquid to be treated is passed between the electrodes by a liquid passing device with a high voltage pulse of the same polarity applied between the electrodes by the power supply device or a DC voltage superimposed thereon, the underwater is applied by electrophoresis and dielectrophoresis. The fine particles move to the narrow portion of the electric field and are trapped. In this state, a high voltage is repeatedly applied, so that the cell membrane of the microorganism is destroyed and sterilized. The processing liquid from which the microorganisms have been removed is taken out from the processing liquid path. Even if a high-voltage pulse is applied to the liquid to be processed in a flowing state without forming an electric field constriction, the time during which the pulse is applied is short,
It is difficult to sterilize microorganisms contained in the liquid to be treated. Even when an electric field constriction is formed between the electrodes, only microorganisms existing near the electric field constriction are sterilized, and microorganisms existing in other portions are not sterilized. On the other hand, when a high voltage pulse is applied while the microorganisms are captured and held in the narrowed portion, the high voltage pulse is repeatedly applied to the captured microorganisms, so that the sterilization efficiency is increased.

【0019】電極に集められた微生物は電界の絞り部を
構成する開口部に保持されるが、多量に蓄積すると処理
水とともに漏出するので、間欠的に洗浄を行う。洗浄は
電圧の印加を停止して洗浄液を流すことにより、電極付
近に蓄積した微生物を洗い流すことができるが、このと
き逆電圧を印加してもよい。洗浄液としては被処理液を
用いてもよく、また処理液を用いてもよい。
The microorganisms collected on the electrodes are held in the openings constituting the aperture portion of the electric field. However, if they accumulate in large amounts, they will leak together with the treated water, so that they are washed intermittently. In the washing, the microorganisms accumulated near the electrodes can be washed away by stopping the application of the voltage and flowing the washing liquid. At this time, a reverse voltage may be applied. A liquid to be treated may be used as the cleaning liquid, or a treatment liquid may be used.

【0020】100V程度の低電圧の直流電圧を印加し
ても電気泳動と誘電泳動によって微生物を移動および捕
捉することができるが、殺菌することはできない。殺菌
のためには高電圧の印加が必要であるが、この場合電気
分解によりガスが発生し、集まった微生物が分散する。
これに対して同じ極性の高電圧パルスを印加することに
よりガスの発生を防止して電気泳動と誘電泳動を行うこ
とができる。特に高電圧パルスに直流電圧を重畳して印
加すると、直流電圧による泳動効果が大きくなり、微生
物の捕捉が促進される。
Even when a low DC voltage of about 100 V is applied, microorganisms can be moved and trapped by electrophoresis and dielectrophoresis, but cannot be sterilized. For sterilization, a high voltage must be applied. In this case, gas is generated by electrolysis, and the collected microorganisms are dispersed.
On the other hand, by applying a high-voltage pulse of the same polarity, generation of gas can be prevented and electrophoresis and dielectrophoresis can be performed. In particular, when a DC voltage is superimposed on a high-voltage pulse and applied, the migration effect by the DC voltage is increased, and the capture of microorganisms is promoted.

【0021】[0021]

【発明の効果】以上の通り本発明によれば、電極泳動お
よび誘電泳動により水中の微生物を捕捉して殺菌するよ
うにしたので、少ない消費電力で水中に存在する微生物
を効率よく移動させて捕捉し、殺菌することが可能であ
る。この場合高電圧パルスを印加することにより、ガス
を発生させることなく、電気泳動および誘電泳動の併用
による微生物の捕捉と殺菌をさらに効率よく行うことが
でき、さらに直流の重畳により電気泳動による移動を促
進することができる。
As described above, according to the present invention, microorganisms in water are captured and killed by electrophoresis and dielectrophoresis, so that microorganisms present in water can be efficiently moved and captured with low power consumption. And can be sterilized. In this case, by applying a high-voltage pulse, the capture and sterilization of microorganisms by the combined use of electrophoresis and dielectrophoresis can be performed more efficiently without generating gas. Can be promoted.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態を図面
により説明する。図1は実施形態の液中微生物殺菌装置
を示す構成図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram illustrating a submerged microorganism sterilizing apparatus according to an embodiment.

【0023】図1において、10は液中微生物殺菌装置
であって、容器9内に陽極1および陰極2からなる平行
の平板電極が対向して設けられている。陽極1および陰
極2のそれぞれの対向する電極面1a、2aはそれぞれ
平滑面となっていて、濾紙からなる多孔質絶縁シート
3、4が密着して設けられている。そして一方の電極
(陽極1)に近接してポリテトラフルオロエチレンのパ
ンチングシートからなる開口部5aを有する絶縁シート
5が濾紙からなる多孔質絶縁シート3に密着して設けら
れ、他方の電極(陰極2)に近接して開口部6aを有す
る絶縁シート6が濾紙からなる多孔質絶縁シート4に密
着して設けられている。開口部5a、6aは電極間隙7
に沿って、電極1、2のほぼ全面にわたり均一に設けら
れ、電界の絞り部を形成している。
In FIG. 1, reference numeral 10 denotes an apparatus for disinfecting microorganisms in a liquid. A parallel plate electrode comprising an anode 1 and a cathode 2 is provided in a container 9 so as to face each other. The opposing electrode surfaces 1a and 2a of the anode 1 and the cathode 2 are respectively smooth surfaces, and porous insulating sheets 3 and 4 made of filter paper are provided in close contact with each other. An insulating sheet 5 having an opening 5a made of a punched sheet of polytetrafluoroethylene is provided in close contact with the porous insulating sheet 3 made of filter paper in the vicinity of one electrode (anode 1), and the other electrode (cathode) An insulating sheet 6 having an opening 6a in close proximity to 2) is provided in close contact with a porous insulating sheet 4 made of filter paper. The openings 5a and 6a are provided in the electrode gap 7.
Along the entire surface of the electrodes 1 and 2 to form an electric field aperture.

【0024】陽極1には、電源装置8が接続し、陰極2
側は接地され、正極性の高電圧パルスまたはこれに直流
電圧を重畳した電圧を印加するようになっている。電極
間隙7の一方の側には給排液路11が連絡し、他方の側
には給排液路12が連絡している。給排液路11は、流
路の切換により被処理液路13または洗浄排液路14と
なり、給排液路12は流路の切換により処理液路15ま
たは洗浄液路16となる。
A power supply device 8 is connected to the anode 1 and a cathode 2
The side is grounded so as to apply a positive high-voltage pulse or a voltage obtained by superimposing a DC voltage on the high-voltage pulse. One side of the electrode gap 7 is connected to a supply / drainage passage 11, and the other side is connected to a supply / drainage passage 12. The supply / drainage path 11 becomes the liquid path 13 to be processed or the cleaning drainage path 14 by switching the flow path, and the supply / drainage path 12 becomes the processing liquid path 15 or the cleaning liquid path 16 by switching the flow path.

【0025】上記の装置による液中微生物の殺菌方法
は、電源装置8により陽極1、陰極2間に正極性の高電
圧パルスまたはこれに直流電圧を重畳した電圧を印加
し、電極間隙7に被処理液路13から被処理液を導入
し、処理液路15から処理液を取出しながら処理を行
う。このとき陽極1、陰極2間には電界が形成されるた
め、電気泳動により微生物が電極に向って移動する。そ
の際、絶縁シート5、6の開口部5a、6aに電界の絞
り部が形成されるため、この部分に向って誘電泳動によ
り水中の微粒子が移動する。そしてその内側にさらに多
孔質絶縁シート3、4にも無数の絞り部が形成されるた
め、これらに捕捉されて保持され、電圧の繰り返し印加
により殺菌される。この場合誘電泳動は電極の極性に関
係なく電界密度の高い部分に粒子が移動するため両側の
絶縁シート5、6の開口部5a、6a付近に集まり、さ
らに電極側の絶縁シート3、4の多孔質の開口部付近に
集まり保持される。
In the method for killing microorganisms in a liquid by the above-described apparatus, a positive voltage pulse or a voltage obtained by superimposing a DC voltage on the high voltage pulse is applied between the anode 1 and the cathode 2 by the power supply device 8 to cover the electrode gap 7. The processing is performed while introducing the liquid to be processed from the processing liquid path 13 and extracting the processing liquid from the processing liquid path 15. At this time, since an electric field is formed between the anode 1 and the cathode 2, microorganisms move toward the electrodes by electrophoresis. At this time, since aperture portions for the electric field are formed in the openings 5a and 6a of the insulating sheets 5 and 6, fine particles in the water move toward the portions by dielectrophoresis. In addition, since a myriad of squeezed portions are further formed inside the porous insulating sheets 3 and 4, the squeezed portions are captured and held by these and are sterilized by repeatedly applying a voltage. In this case, dielectrophoresis moves near the openings 5a and 6a of the insulating sheets 5 and 6 on both sides because the particles move to a portion where the electric field density is high regardless of the polarity of the electrodes. Collected and held near the quality opening.

【0026】ここで正極性の高電圧パルスを印加するこ
とにより、電気泳動も起こり、負荷電を有する粒子が陽
極側に移動して捕捉され、直流を重畳することによりこ
れが促進される。このため陰極2側よりも陽極1側にマ
イナス帯電した微生物が移動して捕捉される。このよう
に誘電泳動と電気泳動の2つの現象が同時に起こること
により、効率よく微生物が移動し、一方の電極側の絶縁
シート3に捕捉される。一方電界の絞り部では電気力線
が集中するため、印加電圧よりもはるかに高電圧が得ら
れ、誘電泳動と殺菌が効率的に行われる。そしてパルス
により電圧を繰り返し印加することにより電気分解を防
止し、これによりガスの発生を防止して殺菌を行うこと
ができる。このような微生物の捕捉殺菌と同時に他の微
粒子の捕捉除去も行われる。
Here, by applying a high-voltage pulse of positive polarity, electrophoresis also occurs, particles having negative charge move to the anode side and are trapped, and this is promoted by superimposing a direct current. For this reason, the negatively charged microorganisms move toward the anode 1 side from the cathode 2 side and are captured. As described above, the two phenomena of dielectrophoresis and electrophoresis occur at the same time, whereby the microorganisms move efficiently and are captured by the insulating sheet 3 on one electrode side. On the other hand, since the lines of electric force are concentrated at the narrow portion of the electric field, a voltage much higher than the applied voltage is obtained, and dielectrophoresis and sterilization are efficiently performed. Electrolysis is prevented by repeatedly applying a voltage with a pulse, thereby preventing generation of gas and sterilizing. At the same time as the capture and sterilization of such microorganisms, capture and removal of other fine particles are performed.

【0027】このように被処理水中の微生物が陽極1お
よび陰極2側に移動して集められ、殺菌されて保持され
るため、これらの微生物が除去された処理水が処理液路
15から取り出される。処理が進行して微生物が大量に
捕捉されると、一部が処理水中に漏出するので処理を停
止して洗浄を行う。洗浄方法は電圧の印加を停止し、流
路を切換えて洗浄液路16から洗浄水を流し、洗浄排液
路14から洗浄排液を排出して行う。電圧印加の停止に
より電極の電気的な吸着力が消失するため、洗浄水によ
り容易に微生物体が洗い流される。このとき逆電圧を印
加することにより、微生物体の離脱を促進することがで
きる。洗浄水としては処理水を用いるのが好ましい。
As described above, the microorganisms in the water to be treated move toward the anode 1 and the cathode 2 and are collected, sterilized and held. . When the treatment proceeds and a large amount of microorganisms are trapped, a part of the microorganism leaks into the treated water, so the treatment is stopped and the washing is performed. The cleaning method is performed by stopping the application of the voltage, switching the flow path, flowing the cleaning water from the cleaning liquid path 16, and discharging the cleaning liquid from the cleaning liquid discharge path 14. Since the electric attraction force of the electrode is lost by stopping the voltage application, the microorganisms are easily washed away by the washing water. At this time, by applying the reverse voltage, the detachment of the microorganism can be promoted. It is preferable to use treated water as the washing water.

【0028】[0028]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0029】実施例1 図1の陽極1および陰極2として白金の平行平板電極
(大きさ5cm×10cm、電極間隔4mm)を用い、
それぞれに多孔質絶縁シート3、4として濾紙(厚さ1
0μm)を貼り付け、さらに電界を絞るために絶縁シー
ト5、6としてポリテトラフルオロエチレンのパンチン
グシート(厚さ1μm、開口部5a、6aは直径1m
m、ピッチ1.5mm)を貼り付けた。電源装置として
周波数26kHzのネオントランスを用い、その出力を
ダイオードで半波整流した高電圧パルスを陽極1に印加
し、陰極2を接地した。被処理液として大腸菌(生菌数
として1×106CFU/ml)を純水に懸濁させた模
擬処理水を100ml/minで流して、菌体の捕捉を
および殺菌を行った。
Example 1 A platinum parallel plate electrode (size 5 cm × 10 cm, electrode interval 4 mm) was used as the anode 1 and the cathode 2 in FIG.
Filter paper (thickness 1) was used as the porous insulating sheets 3 and 4 respectively.
0 μm), and a punching sheet of polytetrafluoroethylene (thickness 1 μm, openings 5a and 6a having a diameter of 1 m) as insulating sheets 5 and 6 to further reduce the electric field.
m, pitch 1.5 mm). A 26 kHz frequency neon transformer was used as a power supply device, a high voltage pulse whose output was half-wave rectified by a diode was applied to the anode 1, and the cathode 2 was grounded. Simulated treated water in which Escherichia coli (1 × 10 6 CFU / ml as a viable cell count) was suspended in pure water was flowed at 100 ml / min as a liquid to be treated, and the cells were captured and sterilized.

【0030】比較例1 実施例1において絶縁シート3、4、5、6を設けず、
陽極1、陰極2間に高電圧パルスを印加したところ、菌
体はほとんど捕集できず、殺菌もできなかった。
Comparative Example 1 In Example 1, the insulating sheets 3, 4, 5, and 6 were not provided.
When a high voltage pulse was applied between the anode 1 and the cathode 2, almost no cells could be collected and sterilization could not be performed.

【0031】比較例2 実施例1において高電圧パルスの絞りに100Vの直流
電圧を印加したところ、菌体は捕集されたが殺菌はでき
なかった。
COMPARATIVE EXAMPLE 2 When a DC voltage of 100 V was applied to the diaphragm of the high-voltage pulse in Example 1, the cells were collected but could not be sterilized.

【0032】上記実施例1および比較例1、2における
生菌数の経時変化を図2に示す。図2より、実施例1で
は通水開始5分後には殺菌効果が表われ、これが安定的
に持続するか、比較例1、2では殺菌効果が認められな
いことがわかる。
FIG. 2 shows the time-dependent changes in the viable cell count in Example 1 and Comparative Examples 1 and 2. From FIG. 2, it can be seen that in Example 1, a bactericidal effect appears 5 minutes after the start of water passage, and this stably persists, or Comparative Examples 1 and 2 show no bactericidal effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例形態の液中微生物の殺菌装置の断面図で
ある。
FIG. 1 is a cross-sectional view of an apparatus for sterilizing microorganisms in a liquid according to an embodiment.

【図2】実施例1および比較例1、2の生菌数の経時変
化を示すグラフである。
FIG. 2 is a graph showing the change over time in the viable cell count of Example 1 and Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1 陽極 2 陰極 3、4 多孔質絶縁シート 5、6 開口部を有する絶縁シート 5a、6a 開口部 7 電極間隙 8 電源装置 9 容器 10 液中微生物殺菌装置 11、12 給排液路 13 被処理液路 14 洗浄排液路 15 処理液路 16 洗浄液路 DESCRIPTION OF SYMBOLS 1 Anode 2 Cathode 3, 4 Porous insulating sheet 5, 6 Insulating sheet 5a, 6a opening 7 Electrode gap 8 Power supply 9 Container 10 Microorganism sterilizing device in liquid 11, 12 Supply / drainage liquid 13 Treatment liquid Path 14 Cleaning drainage path 15 Processing liquid path 16 Cleaning liquid path

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 対向する電極間に電界の絞り部を形成
し、電極間に電極と平行な方向に被処理液を流し、電極
間に同じ極性の高電圧パルスを印加し、電気泳動および
誘電泳動により液中の微生物を移動させ電界の絞り部で
捕捉して殺菌することを特徴とする液中微生物の殺菌方
法。
An electric field diaphragm is formed between opposing electrodes, a liquid to be treated is caused to flow between the electrodes in a direction parallel to the electrodes, and a high-voltage pulse of the same polarity is applied between the electrodes to perform electrophoresis and dielectric electrophoresis. A method for disinfecting microorganisms in a liquid, comprising moving microorganisms in a liquid by electrophoresis, capturing the microorganisms in a narrow portion of an electric field, and sterilizing the microorganisms.
【請求項2】 電界の絞り部は開口部を有する絶縁シー
トおよび/または多孔質絶縁シートからなる請求項1の
方法。
2. The method according to claim 1, wherein the electric field diaphragm comprises an insulating sheet having an opening and / or a porous insulating sheet.
【請求項3】 高電圧パルスに直流を重畳して印加し、
電気泳動および誘導泳動を行う請求項1または2の方
法。
3. A high voltage pulse superimposed with a direct current and applied.
3. The method according to claim 1, wherein electrophoresis and induction migration are performed.
【請求項4】 対向する電極と、 電極間に形成される電界の絞り部と、 電極間に電極と平行な方向に被処理液を流す通液装置
と、 電極間に同じ極性の高電圧パルスを印加する電源装置と
を含む液中微生物の殺菌装置。
4. An opposing electrode, a constricted portion of an electric field formed between the electrodes, a flow-through device for flowing a liquid to be treated between the electrodes in a direction parallel to the electrodes, and a high-voltage pulse having the same polarity between the electrodes. And a power supply device for applying a voltage.
【請求項5】 電界の絞り部は開口部を有する絶縁シー
トおよび/または多孔質絶縁シートである請求項4の装
置。
5. The apparatus according to claim 4, wherein the electric field diaphragm is an insulating sheet having an opening and / or a porous insulating sheet.
【請求項6】 電源装置は高電圧パルスと直流を重畳し
て印加するものである請求項4または5の装置。
6. The device according to claim 4, wherein the power supply device applies a high voltage pulse and a direct current in a superimposed manner.
JP19231699A 1999-07-06 1999-07-06 Method and apparatus for sterilizing microorganisms in liquid Expired - Fee Related JP4120098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19231699A JP4120098B2 (en) 1999-07-06 1999-07-06 Method and apparatus for sterilizing microorganisms in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19231699A JP4120098B2 (en) 1999-07-06 1999-07-06 Method and apparatus for sterilizing microorganisms in liquid

Publications (2)

Publication Number Publication Date
JP2001017980A true JP2001017980A (en) 2001-01-23
JP4120098B2 JP4120098B2 (en) 2008-07-16

Family

ID=16289266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19231699A Expired - Fee Related JP4120098B2 (en) 1999-07-06 1999-07-06 Method and apparatus for sterilizing microorganisms in liquid

Country Status (1)

Country Link
JP (1) JP4120098B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100086A1 (en) * 2002-05-23 2003-12-04 Fuji Electric Holdings Co., Ltd. Living cell counting method and device
JP2008018392A (en) * 2006-07-14 2008-01-31 Tokyo Metropolitan Univ Bacteria concentration and sterilization device and method
US7429761B2 (en) * 2003-12-19 2008-09-30 The United States Of America As Represented By The Secretary Of The Navy High power diode utilizing secondary emission
CN101798132A (en) * 2010-04-08 2010-08-11 大连理工大学 Large liquid phase high pressure pulse discharging water processor
JP2010179206A (en) * 2009-02-03 2010-08-19 Mitsubishi Electric Corp Purification device
JP2011506078A (en) * 2007-12-14 2011-03-03 ゼネラル・エレクトリック・カンパニイ How to reduce biofouling using electric fields
JP2012020264A (en) * 2010-07-16 2012-02-02 Mitsubishi Electric Corp Water sterilization method, water sterilizing device, and air conditioner, hand dryer and humidifier using the water sterilizing device
CN102807267A (en) * 2011-06-01 2012-12-05 陈小榴 Device for water treatment by means of frequency alternating pulse electrolytic process
JP2013504157A (en) * 2009-09-02 2013-02-04 コリア・ベーシック・サイエンス・インスティテュート Liquid medium plasma discharge generator
CN103954092A (en) * 2014-04-17 2014-07-30 合肥美的电冰箱有限公司 Refrigerator
CN106698685A (en) * 2016-12-05 2017-05-24 郭金宝 Compound strong electric field effect type electrochemical water treatment device and descaling method
KR20200059778A (en) * 2018-11-21 2020-05-29 유대현 Sterilizing electrode and method thereof and sterilizer using same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100086A1 (en) * 2002-05-23 2003-12-04 Fuji Electric Holdings Co., Ltd. Living cell counting method and device
US7429761B2 (en) * 2003-12-19 2008-09-30 The United States Of America As Represented By The Secretary Of The Navy High power diode utilizing secondary emission
JP2008018392A (en) * 2006-07-14 2008-01-31 Tokyo Metropolitan Univ Bacteria concentration and sterilization device and method
JP2011506078A (en) * 2007-12-14 2011-03-03 ゼネラル・エレクトリック・カンパニイ How to reduce biofouling using electric fields
JP2010179206A (en) * 2009-02-03 2010-08-19 Mitsubishi Electric Corp Purification device
JP2013504157A (en) * 2009-09-02 2013-02-04 コリア・ベーシック・サイエンス・インスティテュート Liquid medium plasma discharge generator
US8926914B2 (en) 2009-09-02 2015-01-06 Korea Basic Science Institute Liquid medium plasma discharge generating apparatus
CN101798132A (en) * 2010-04-08 2010-08-11 大连理工大学 Large liquid phase high pressure pulse discharging water processor
JP2012020264A (en) * 2010-07-16 2012-02-02 Mitsubishi Electric Corp Water sterilization method, water sterilizing device, and air conditioner, hand dryer and humidifier using the water sterilizing device
CN102807267A (en) * 2011-06-01 2012-12-05 陈小榴 Device for water treatment by means of frequency alternating pulse electrolytic process
CN103954092A (en) * 2014-04-17 2014-07-30 合肥美的电冰箱有限公司 Refrigerator
CN106698685A (en) * 2016-12-05 2017-05-24 郭金宝 Compound strong electric field effect type electrochemical water treatment device and descaling method
KR20200059778A (en) * 2018-11-21 2020-05-29 유대현 Sterilizing electrode and method thereof and sterilizer using same
KR102313539B1 (en) 2018-11-21 2021-10-15 이연주 Sterilizing electrode and method thereof and sterilizer using same

Also Published As

Publication number Publication date
JP4120098B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP4120098B2 (en) Method and apparatus for sterilizing microorganisms in liquid
CN101912761B (en) Dielectric discharge reactor of uniform electric field
JP2000093967A (en) Method and apparatus for liquid treatment
EP3268315B1 (en) System and method to treat fluids by sonoelectrochemistry
CA2166856C (en) Water purification process and its apparatus
JPH10151463A (en) Water treatment method
US5851375A (en) Apparatus for disinfecting fluids
CN106051918B (en) Plasma air purification device
JP2000061472A (en) Method and device for removing fine particles in water
JPH07328335A (en) Cleaning of filter
US11548799B2 (en) System and method for water treatment with pulsed electric fields
JP2008136996A (en) Apparatus and method for deodorizing paint booth circulating water
KR100445575B1 (en) Device for removing the inorganic materials and ion of elecdtrode cell
JP2002273442A (en) Pure water manufacturing apparatus and pure water manufacturing method
JP3664274B2 (en) Electrolytic treatment method of water to be treated
JP3161299B2 (en) Sterilizer
RU2043974C1 (en) Method of decontamination of liquids
KR102046475B1 (en) Apparatus for sterilizing pipes and water purifying apparatus havig the same
JPH11128943A (en) Water treatment apparatus
JP2000005755A (en) Treatment of water and device therefor
JP3180318B2 (en) Electrochemical treatment of treated water containing microorganisms
CN117819620A (en) Filter element cleaning method and device of water purifying equipment and water purifying equipment
EP2307322A2 (en) Electronic fluid treatment apparatus and method
JPH10305281A (en) Porous carbon electrode-regenerative water purifier
JPH10258280A (en) Pure water sterilization device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees