JP2001013196A - One terminal decision type accident point estimation device - Google Patents

One terminal decision type accident point estimation device

Info

Publication number
JP2001013196A
JP2001013196A JP11185173A JP18517399A JP2001013196A JP 2001013196 A JP2001013196 A JP 2001013196A JP 11185173 A JP11185173 A JP 11185173A JP 18517399 A JP18517399 A JP 18517399A JP 2001013196 A JP2001013196 A JP 2001013196A
Authority
JP
Japan
Prior art keywords
branch
data
current
accident
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11185173A
Other languages
Japanese (ja)
Inventor
Minoru Seya
稔 瀬谷
Kiwamu Ito
究 伊藤
Shunsui Matsuoka
春水 松岡
Masanori Toshima
政憲 十島
Seiji Tanaka
清次 田中
Takashi Obe
孝 大部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP11185173A priority Critical patent/JP2001013196A/en
Publication of JP2001013196A publication Critical patent/JP2001013196A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately estimate an accident point of a power line having a branch line. SOLUTION: A slave station 110 is set to a branch terminal 134 branched from power lines 101, 102, while a master station 112 having a one terminal type accident point estimation device (FL) is set to a terminal 130. When a power line accident occurs, the slave station 110 and the master station 112 respectively take in voltage and current from their own terminals 134, 130, and detect the occurrence of the accident, such as a ground fault, a short circuit or the like, from the voltage states. The slave station 110 transmits an accident detection signal and the branch terminal current to the master station 112 through an exclusive line 114. The master station 112 synchronizes an abnormality detection signal of its own terminal 130 with the abnormality detection signal received from the slave station 110, and estimates an accident point by use of the synchronized its own terminal current and branch terminal current.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は送電線の一端判定型
事故点評定装置に係り、特に多端子送電系統において、
分岐線に電源又は負荷が存在する場合でも高精度な評定
を行うことのできる事故点評定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an accident point evaluation device for determining one end of a transmission line, and more particularly to a multi-terminal transmission system.
The present invention relates to an accident point rating device capable of performing a highly accurate rating even when a power supply or a load exists in a branch line.

【0002】[0002]

【従来の技術】従来の一端判定型事故点標定装置は分岐
端に電源がないことを条件に、分岐端における電流回り
込みを自端電流と分岐線インピ−ダンスにより推定し、
この推定値を用いて事故点評定演算を行っている。ま
た、分岐端負荷については予め想定される整定値を与え
て、事故点評定演算を固定的に補正していた。
2. Description of the Related Art A conventional one-end determination type fault locating device estimates current sneak current at a branch end based on a self-end current and a branch line impedance, provided that there is no power at the branch end.
Accident point rating calculation is performed using this estimated value. In addition, a setting value that is assumed in advance is provided for the branch end load, and the accident point rating calculation is fixedly corrected.

【0003】このような事故点標定装置には、自端から
故障点までの電圧降下を送電線の単位長当りの電圧降下
で除算して故障点を求めるインピーダンス方式と、自端
から故障点までの無効電力と単位長当りの無効電力の比
から故障点を求める無効電力方式がある。
[0003] Such an accident point locating device includes an impedance method for obtaining a fault point by dividing a voltage drop from a self end to a fault point by a voltage drop per unit length of a transmission line, and an impedance system for obtaining a fault point from the self end to a fault point. There is a reactive power method for finding a fault point from the ratio of the reactive power per unit length to the reactive power per unit length.

【0004】前者の例として、特開昭60−20422
0号では、送電線の電流の計測値を設定値の比率で配分
して各分岐負荷の電流を推定し、この推定値を送出端の
電流から順次差し引いて各区間の電流とみなし、これに
より分岐負荷の影響を除去して各区間の単位長当りの電
圧降下を求めて、故障点の距離を算出している。
[0004] As an example of the former, JP-A-60-20422
In No. 0, the measured value of the current of the transmission line is distributed at the ratio of the set value to estimate the current of each branch load, and the estimated value is sequentially subtracted from the current at the sending end to be regarded as the current of each section, thereby The influence of the branch load is removed, the voltage drop per unit length in each section is obtained, and the distance to the fault point is calculated.

【0005】後者の例として、特公平7−1295号で
は、FL設置端の故障発生後の各相の電流、電圧を取り
込み、これらの値から故障相の故障点までの無効電力を
故障点の電圧と零相電流(各相電流の和)の間の無効電
力として求め、また単位長当りの無効電力は故障相の自
己及び相互インピーダンスと電流から求めている。この
ときの分岐負荷電流には整定値を用いている。以下に、
図7の送電系統図を参照して本方式を補足説明する。
[0005] As an example of the latter, Japanese Patent Publication No. 7-1295 takes in the current and voltage of each phase after the occurrence of a fault at the FL installation end, and converts the reactive power from these values to the fault point of the fault phase into the fault point. The reactive power is calculated as the reactive power between the voltage and the zero-phase current (the sum of the phase currents). The reactive power per unit length is determined from the self and mutual impedances of the faulty phase and the current. At this time, a set value is used for the branch load current. less than,
This method will be supplementarily described with reference to the power transmission system diagram of FIG.

【0006】三相交流1回線を単線で示した送電線1に
負荷7、分岐負荷8が接続され、電源6から電力が供給
される。フォルトロケータ(FL)100は、CT2、
PT3から送電線1の電流値、電圧値を取り込む。FL
の設置点P0、負荷8の接続点P2、故障点Fとする
と、P0からFまでの距離LFが求める値である。IL
負荷7、IL2は分岐負荷8に流れる電流である。なお、
距離L1はP0からP2、距離LF2はP2からFの亘り
長である。
[0006] A load 7 and a branch load 8 are connected to a transmission line 1 in which one three-phase AC circuit is represented by a single line, and power is supplied from a power supply 6. Fault locator (FL) 100 is CT2,
The current value and voltage value of the transmission line 1 are taken in from PT3. FL
Is the installation point P0, the connection point P2 of the load 8, and the failure point F, the distance LF from P0 to F is a value to be obtained. I L is a current flowing through the load 7, and I L2 is a current flowing through the branch load 8. In addition,
The distance L 1 is P0 from P2, the distance L F2 is over the length of F from P2.

【0007】いま、点Fにおいてa相地絡が発生し、P
T3からの入力信号電圧をVa,Vb,Vc、CT2か
ら入力信号電流をIa,Ib,Icとする。このとき、
設置点P0の零相電流I0を基準にして点P0から分岐
点P2までの無効電力QFは(1)式で得られる。な
お、I0 は(2)式で与えられる。
Now, at the point F, an a-phase ground fault occurs, and P
The input signal voltages from T3 are Va, Vb, Vc, and the input signal currents from CT2 are Ia, Ib, Ic. At this time,
Reactive power Q F of the zero-phase current I 0 of the installation point P0 on the basis from the point P0 to the branch point P2 is obtained in the (1) formula. Note that I 0 is given by equation (2).

【0008】[0008]

【数1】 (Equation 1)

【0009】ここで、R1 は区間L1 の正相抵抗、X1
は区間L1 の正相リアクタンス、IL2は分岐負荷正相電
流で、(1)式の右辺第2項、第3項が分岐負荷電流I
L2による補正項で、積分によって実効値が得られる。な
お、tは信号の取り込み時間、Tは系統電源の周期で、
T/4の位相は無効分を示している。
Here, R 1 is the positive-phase resistance of the section L 1 , X 1
Positive-phase reactance of the section L 1 is, I L2 is branched load positive phase current, (1) the second term on the right side, the third term is a branch load current I
In the correction term by L2 , the effective value is obtained by integration. Here, t is the signal capture time, T is the cycle of the system power supply,
The phase of T / 4 indicates an invalid component.

【0010】また、送電線1の線路定数を一様分布とし
て、単位長(たとえば1km)当りの零相電流を基準に
した無効電力QUは(3)式で与えられる。なお、a相
の単位長当りの電圧降下Vauは(4)式で与えられる。
The reactive power Q U based on the zero-phase current per unit length (for example, 1 km) with the line constant of the transmission line 1 as a uniform distribution is given by equation (3). The voltage drop V au per unit length of the a-phase is given by equation (4).

【0011】[0011]

【数2】 (Equation 2)

【0012】ここで、Raa,Rab,Racはa相,ab相
間,ac相間の単位長当りの抵抗値、Xaa,Xab,Xac
は同じくリアクタンス値である。(4)式による電圧降
下は各相電流を分岐負荷電流IL2で補正して求めてい
る。なお、式中のaは、IL2に120°遅延(時間にし
て3/T)を与える演算子で、a2はIL2の240°遅
れを与える。
Here, R aa , R ab , and R ac are resistance values per unit length between a phase, ab phase, and ac phase, X aa , X ab , X ac
Is also a reactance value. The voltage drop by the equation (4) is obtained by correcting each phase current with the branch load current IL2 . Note that a in the equation is an operator that gives I L2 a 120 ° delay (3 / T in time), and a 2 gives I L2 a 240 ° delay.

【0013】これより、標定値LFはQFとQUの比とし
て、(5)式により求まる。
From this, the orientation value L F is obtained from the equation (5) as the ratio between Q F and Q U.

【0014】[0014]

【数3】 (Equation 3)

【0015】[0015]

【発明が解決しようとする課題】上記したように、従来
の分岐端を有する送電系統の一端判定型事故点標定装置
では、補正項の分岐負荷電流を予め負荷運用値のデータ
として設定している。このため、事故発生時に実際に通
電している負荷電流が、入力していた整定値との差が大
きくなるほど、事故点標定演算の誤差が増大する結果と
なっていた。
As described above, in the conventional fault locating device for one end determination of a transmission system having a branch end, the branch load current of the correction term is set in advance as load operating value data. . For this reason, as the difference between the load current actually energized at the time of occurrence of the accident and the input set value increases, the error of the accident point location calculation increases.

【0016】本発明の目的は、分岐線に負荷や電源を有
する場合の従来の問題点を克服し、高精度に事故点評定
を行い、また簡易に構成できる事故点評定装置を提供す
ることにある。
It is an object of the present invention to provide an accident point evaluation apparatus which can solve the conventional problems when a branch line has a load or a power supply, performs an accident point evaluation with high accuracy, and can be simply configured. is there.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するため
に、本発明は分岐線端子を有する送電線の一端判定型事
故点評定装置において、多端子送電線の前記標定装置の
設置端側に設けられた親局に、設置端側電流検出手段、
設置端側事故検出手段及び事故点標定演算手段を、分岐
線端子側に設けられた子局に分岐端側電流検出手段及び
分岐端側事故検出手段をそれぞれ設け、前記送電線の事
故発生時に、前記親局で前記設置端側事故検出手段によ
る事故検出デ−タと、前記設置端側電流検出手段による
設置端電流デ−タを取り込み、前記子局で前記分岐端側
事故検出手段による事故検出デ−タと、前記分岐端側電
流検出手段による分岐端電流デ−タを取り込み、前記子
局から前記親局に前記事故検出デ−タと前記分岐端電流
デ−タを送信し、前記親局で双方の事故検出デ−タを元
に同期を取り、前記事故点標定演算手段が同期の取れた
設置端電流デ−タと分岐端電流デ−タを用いて事故点標
定を行うことを特徴とする一端判定型事故点評定装置。
In order to achieve the above object, the present invention relates to an apparatus for determining one end of a transmission line having a branch line terminal and an accident point estimating apparatus for a multi-terminal transmission line. In the provided master station, the installation end side current detection means,
Installation end side accident detection means and accident point locating calculation means, branch end side current detection means and branch end side accident detection means are provided in the slave station provided on the branch line terminal side, respectively, when an accident of the transmission line occurs, The master station fetches the accident detection data by the installation end side accident detection means and the installation end current data by the installation end side current detection means, and the slave station detects the accident by the branch end accident detection means. The slave station fetches the data and the branch end current data from the branch end side current detecting means, and transmits the accident detection data and the branch end current data from the slave station to the master station. The station synchronizes based on both the fault detection data, and the fault point locating means performs fault point locating using the synchronized installation-end current data and branch-end current data. One-end judgment type accident point rating device.

【0018】また、前記分岐端側事故検出手段に、不足
電圧リレ−及び地絡過電圧リレ−を用いることを特徴と
する。これによれば、分岐端の電圧状態を取り込んで、
分岐端側から簡単に送電線事故を検出することができ
る。なお、設置端側事故検出手段も同様に構成すること
が可能である。ただし、事故検出を行ってCBを遮断す
る保護リレー装置が別置されている場合は、その事故検
出デ−タを利用してもよい。
Further, the branch end side fault detecting means is characterized by using an undervoltage relay and a ground fault overvoltage relay. According to this, the voltage state of the branch end is taken in,
Transmission line accidents can be easily detected from the branch end side. In addition, the installation end side accident detection means can be similarly configured. However, when a protection relay device that detects an accident and shuts off the CB is separately provided, the accident detection data may be used.

【0019】また、前記子局から前記親局に送信する前
記分岐端電流デ−タは、事故発生後の電源周期の少なく
とも1周期分の取り込みデータから実効値を求め、この
実効値を送信することを特徴とする。これにより、送信
データが圧縮でき、前記子局から親局への伝送線に低速
の電話回線を利用できる。
Further, the branch end current data transmitted from the slave station to the master station determines an effective value from data taken in at least one power supply cycle after the occurrence of the accident, and transmits the effective value. It is characterized by the following. Thereby, transmission data can be compressed, and a low-speed telephone line can be used for the transmission line from the slave station to the master station.

【0020】本発明によれば、分岐線の電流デ−タを使
用することで事故点評定の精度を高めることができる。
また、分岐線での事故検出デ−タを伝送して、分岐線電
流と設置端における送電線電流デ−タの同時性を容易に
確保できる。
According to the present invention, the accuracy of the fault point evaluation can be improved by using the current data of the branch line.
Further, by transmitting the fault detection data on the branch line, it is possible to easily secure the simultaneousness of the branch line current and the transmission line current data at the installation end.

【0021】[0021]

【発明の実施の形態】以下、本発明の一実施例を図面を
用いて説明する。図1は本発明の一実施例の保護対象と
なる電力系統の構成を示す。端子130と端子132の
間に1L系統の送電線101、2L系統の送電線102
が設けられ、かつ、各系統の途中から端子134に分岐
線103,104が設けられている。なお、1L,2L
系統は単純線で示しているが、それぞれ3相(a,b,
c相)の電力線で構成されている。端子130には電源
として発電機105が設けられ、また分岐端子134に
も発電機106が設けられている。各端には開閉器(C
B)121〜126が設けられ、系統事故発生時に別に
設けられる保護リレーからの指令で開放され、再閉路時
間が経過すると再閉される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration of a power system to be protected according to an embodiment of the present invention. Between the terminal 130 and the terminal 132, a 1L transmission line 101, a 2L transmission line 102
Are provided, and branch lines 103 and 104 are provided to the terminal 134 from the middle of each system. 1L, 2L
Although the system is shown by a simple line, each of the three phases (a, b,
c). The terminal 130 is provided with a generator 105 as a power source, and the branch terminal 134 is also provided with the generator 106. A switch (C
B) 121 to 126 are provided, which are opened by a command from a protection relay provided separately when a system fault occurs, and are closed again after a lapse of a re-closing time.

【0022】本実施例の一端判定型事故点標定装置は、
端子130に親局112、分岐端134に子局110を
設けている。親局112には1L,2L系統のCT14
0,141及びPT144,145のそれぞれから、3
相電流データ及び3相電圧データが入力される。また、
子局110にも1L,2L系統のCT142,143及
びPT146,147のそれぞれから、3相電流データ
と3相電圧データが入力される。そして、子局110か
ら親局112へ、分岐端子134の電流データ等が専用
回線114を経て伝送される。
The one-end determination type accident point locating apparatus of this embodiment is as follows.
The terminal 130 is provided with a master station 112, and the branch end 134 is provided with a slave station 110. The master station 112 has a CT 14 of a 1L or 2L system.
From each of 0, 141 and PT 144, 145
Phase current data and three-phase voltage data are input. Also,
The slave station 110 also receives three-phase current data and three-phase voltage data from the CTs 142 and 143 and PTs 146 and 147 of the 1L and 2L systems, respectively. Then, current data and the like at the branch terminal 134 are transmitted from the slave station 110 to the master station 112 via the dedicated line 114.

【0023】図2に、一端判定型事故点標定装置のシス
テム構成を示す。本システムでは、分岐端に設けられた
子局112から分岐線データを送信し、多端子送電系統
の一端に設けられた親局112で受信し、親局内の一端
型事故点標定装置220が分岐線データを併用して事故
点を標定する。子局112は1L,2L系統の分岐端1
34の電流状態データ等を分岐端データ検出手段201
で求め、これらのデータはモデム203を介して通信装
置205へと送られる。通信装置205は親局112へ
専用回線114を用いてデータを伝送する。専用回線1
14には後述するように、通常の4W方式(送信2本、
受信2本のシリアル伝送)の電話回線を使用している。
FIG. 2 shows a system configuration of the one-end determination type accident point locating apparatus. In this system, branch line data is transmitted from the slave station 112 provided at the branch end, received by the master station 112 provided at one end of the multi-terminal power transmission system, and the one-end type fault locating device 220 in the master station is branched. The accident point is located using the line data. The slave station 112 is a branch end 1 of a 1L or 2L system.
34, the current state data, etc.
, And these data are sent to the communication device 205 via the modem 203. Communication device 205 transmits data to master station 112 using dedicated line 114. Dedicated line 1
14, a normal 4W system (two transmissions,
(Two serial transmissions) are used.

【0024】親局112では通信装置207で子局11
0からのデータを受信すると、モデム209を介し、電
流検出回路211により分岐端134の電流データを出
力する。そして、通信異常検出装置212から異常検出
信号が出力していないことをAND回路213で判定し
て、分岐端電流回路214から1L,2L系統の電流状
態データなどを、一端型事故点標定装置220に出力す
る。
In the master station 112, the communication station 207 uses the slave station 11.
When the data from 0 is received, the current detection circuit 211 outputs the current data at the branch end 134 via the modem 209. Then, the AND circuit 213 determines that no abnormality detection signal is output from the communication abnormality detection device 212, and outputs the current state data of the 1L and 2L systems from the branch end current circuit 214 to the one-end type fault point locating device 220. Output to

【0025】事故点標定装置220は系統の異常発生に
より、事故点標定演算を起動するFL起動回路221
と、自端データ検出回路216から事故系統(1Lまた
は2L)の電流状態データ等を入力して事故点標定を行
う事故点標定演算回路222からなる。系統異常検出回
路215は、自端の電圧状態異常を検出する27リレー
や64リレーによって、簡易に構成されている。
The fault point locating device 220 is an FL starting circuit 221 for activating a fault point locating operation when a system abnormality occurs.
And an accident point locating operation circuit 222 for inputting current state data and the like of the accident system (1L or 2L) from the self-end data detection circuit 216 to perform accident point locating. The system abnormality detection circuit 215 is simply configured with 27 relays and 64 relays that detect an abnormal voltage state at the terminal.

【0026】事故点標定演算回路222は、自端の電流
状態と分岐端電流の整定値とから事故点標定演算を行
う。さらに、子局110から受信する分岐端134の電
流状態の実測値を用いて補正された事故点標定を行う、
補正演算回路223を有している。これにより、分岐端
での廻り込み電流も加味した標定演算を行うことができ
るので、分岐端について整定値を用いる従来の一端判定
型標定装置よりも正確な故障点標定が可能になる。本実
施例の事故点標定演算は前述した無効電力方式によった
が、インピーダンス方式にも適用可能である。
The fault point locating operation circuit 222 performs a fault point locating operation based on the current state of the terminal and the set value of the branch end current. Further, a corrected fault point locating is performed using the actually measured value of the current state of the branch end 134 received from the slave station 110.
A correction operation circuit 223 is provided. As a result, since it is possible to perform the location calculation in consideration of the sneak current at the branch end, it is possible to more accurately locate the fault point than the conventional one-side determination type location device using the set value at the branch end. Although the fault point locating calculation according to the present embodiment is based on the above-described reactive power method, it can be applied to an impedance method.

【0027】図3は一実施例における子局の構成で、分
岐端データの取り込みと送信の詳細な処理構成を示して
いる。子局110は分岐端134に接続された電力系統
380(1Lまたは2L)の電力状態を、PT300
(PT146またはPT147)で電圧状態、CT30
2(CT142またはCT143)により電流状態を検
出する。
FIG. 3 shows a detailed processing configuration of taking and transmitting branch end data in the configuration of the slave station in one embodiment. The slave station 110 changes the power state of the power system 380 (1L or 2L) connected to the branch end 134 to PT300.
(PT146 or PT147) at voltage state, CT30
2 (CT142 or CT143) to detect the current state.

【0028】分岐端データ検出回路201では、電力系
統の異常を不足電圧リレー308、地絡過電圧リレー3
10により検出して、地絡または短絡等の異常発生を判
定する。そして、電流取込回路322がCT302より
取り込んだ1相分の電流データと、図示していない他相
の電力系統から検出した電流データを取り込むことによ
り、a相〜c相の電流状態を検出する。これらは、異常
発生を検出してからCB304の開放までの期間(通
常、50〜60ミリ秒)に、電源周期(50Hzで20
ミリ秒)の少なくとも1周期分、通常は2〜3周期分に
ついて、所定のサンプリング周期(例えば1/12周
期)で行われる。
In the branch end data detection circuit 201, the abnormality of the power system is determined by the undervoltage relay 308, the ground fault overvoltage relay 3,
10 to determine the occurrence of an abnormality such as a ground fault or a short circuit. Then, the current state of the a-phase to the c-phase is detected by fetching the current data of one phase fetched from the CT 302 by the current fetch circuit 322 and the current data detected from the power system of the other phase (not shown). . These occur during a period (normally 50 to 60 milliseconds) from when an abnormality is detected to when the CB 304 is opened, and a power cycle (20 Hz at 50 Hz).
At least one cycle (millisecond), usually two to three cycles, is performed at a predetermined sampling cycle (for example, 1/12 cycle).

【0029】送信起動回路312は、分岐端データ検出
回路201から不足電圧リレー(以下、27リレーと呼
ぶ)308からの信号、地絡過電圧リレー(以下、64リ
レーと呼ぶ)310からリレー動作状態(オン/オフ)
で示される電圧状態を入力し、いずれかのリレーが異常
を示すときに送信を起動する起動信号と、そのときの電
圧異常状態信号(リレー動作状態)を出力する。
The transmission start circuit 312 receives a signal from the under-voltage relay (hereinafter referred to as 27 relay) 308 from the branch end data detection circuit 201 and a relay operation state (from the ground fault over-voltage relay (hereinafter referred to as 64 relay) 310). ON / OFF)
Are input, and a start signal for starting transmission when any of the relays indicates an abnormality and a voltage abnormal state signal (relay operation state) at that time are output.

【0030】実効値演算回路320は電流取込回路32
2から分岐端の電流データ(瞬時値)を取り込み、事故
発生後の系統電源の少なくとも1周期分データより分岐
端での電流実効値を求める。AND回路314は送信起
動回路312からの出力と、実効値演算回路320から
の信号を入力して、データ送信回路316へ電流状態デ
ータおよびリレー動作状態を出力する。データ送信回路
316は親局112に対し、電圧異常状態信号(リレー
動作状態)、分岐端子の各相の電流データの実効値、そ
れらから求めた零相電流データを伝送する。なお、零相
電流データは送信せず、親局側で演算するようにしても
よい。
The effective value calculating circuit 320 is a current taking circuit 32
2, the current data (instantaneous value) at the branch end is taken in, and the effective current value at the branch end is obtained from the data of at least one cycle of the system power supply after the occurrence of the accident. The AND circuit 314 receives an output from the transmission activation circuit 312 and a signal from the effective value calculation circuit 320 and outputs current state data and a relay operation state to the data transmission circuit 316. The data transmission circuit 316 transmits to the master station 112 a voltage abnormal state signal (relay operation state), an effective value of current data of each phase of the branch terminal, and zero-phase current data obtained therefrom. The zero-phase current data may not be transmitted, and may be calculated on the master station side.

【0031】図4は一実施例における親局の構成で、親
局112での標定演算の詳細な処理構成を示したもので
ある。親局112では通信装置207のデータ受信回路
330が子局110からのデータを受け取る。また、親
局112では自端子の送電線390に接続されたPT3
40(PT144/PT145)で電圧状態を、またC
T346(CT140/CT141)で電流状態を検出
する。
FIG. 4 shows the configuration of the master station in one embodiment, and shows the detailed processing configuration of the orientation calculation in the master station 112. In the master station 112, the data receiving circuit 330 of the communication device 207 receives data from the slave station 110. In the master station 112, PT3 connected to the transmission line 390 of its own terminal
40 (PT144 / PT145)
The current state is detected at T346 (CT140 / CT141).

【0032】不足電圧状態検出回路332と地絡過電圧
検出回路334は、送られてきた電圧異常データ(リレ
ー動作状態)から、子局側での事故内容(地絡、短絡な
ど)を判定する。電流受取回路336は子局から受け取
った電流データより、子局側のa相〜c相の電流状態
と、零相電流状態を求める。自端データ検出回路216
は自端の電力系統の異常を、自端の電圧状態より不足電
圧リレー348、地絡過電圧リレー350で検出し、自
端の電力系統に地絡または短絡等の異常が発生したこと
を判定する。電流取込回路354は自端の各相の電流デ
ータを、CB342の開放までの期間に取り込む。
The under-voltage state detection circuit 332 and the ground fault over-voltage detection circuit 334 determine the contents of an accident (ground fault, short circuit, etc.) on the slave station side from the transmitted abnormal voltage data (relay operation state). The current receiving circuit 336 obtains the current state of the a-phase to the c-phase and the zero-phase current state of the slave station from the current data received from the slave station. Own-end data detection circuit 216
Detects an abnormality in the power system at the own end by the undervoltage relay 348 and the ground fault overvoltage relay 350 from the voltage state at the own end, and determines that an abnormality such as a ground fault or a short circuit has occurred in the power system at the own end. . The current take-in circuit 354 takes in current data of each phase at its own end in a period until the CB 342 is opened.

【0033】事故点標定回路220では補正演算の際
に、親局112と子局110間でデータの同期をとるた
めの同時データ判定回路224を設けている。判定回路
224は不足電圧状態検出回路332、地絡過電圧検出
回路334による分岐端134の電圧異常データの受信
タイミングと、自端132での不足電圧リレー348、
地絡過電圧リレー350からの自端子における電圧異常
データの検出タイミングを比較することによって、分岐
端への電流廻り込みによる伝達遅延誤差や子局からのデ
ータ伝送による伝送遅延誤差の影響を取り除いている。
The accident point locating circuit 220 is provided with a simultaneous data determination circuit 224 for synchronizing data between the master station 112 and the slave station 110 at the time of correction calculation. The determination circuit 224 determines the reception timing of the abnormal voltage data at the branch end 134 by the undervoltage state detection circuit 332 and the ground fault overvoltage detection circuit 334, the undervoltage relay 348 at its own end 132,
By comparing the detection timing of abnormal voltage data at its own terminal from the ground fault overvoltage relay 350, the effects of transmission delay errors due to current sneaking around the branch end and transmission delay errors due to data transmission from slave stations are eliminated. .

【0034】すなわち、同一事故に対する子局と親局で
の事故検出(電圧異常状態の検出)は同時に行われてい
るので、子局110から最初に受信する電圧異常データ
と自端の電圧異常データは同期している。そこで、この
電圧異常データに続く電流状態データを用いれば、自端
の電流データとの同期が可能になる。もし、CB再閉路
時間までに2度目、3度目のデータが受信されるとき
は、それらのデータを廃棄する。これにより、親局と子
局のデータの同時性が確保される。なお、CB再閉路時
間を経過しても子局からのデータが受信されない場合、
分岐端データの取り込みを断念する。
That is, since the fault detection (detection of the abnormal voltage state) at the slave station and the master station for the same fault is performed simultaneously, the abnormal voltage data received first from the slave station 110 and the abnormal voltage data at its own end are detected. Are synchronized. Therefore, if the current state data following the abnormal voltage data is used, the current state data can be synchronized with its own current data. If the second and third data are received before the CB reclose time, those data are discarded. This ensures the data synchronization between the master station and slave stations. If no data is received from the slave station even after the CB reclose time elapses,
Abandon fetching branch end data.

【0035】具体的には、同時データ判定回路224で
受信データと自端データの同時性を判定し、最初に受信
する電圧異常データとそれに続く電流状態データの受信
期間T2に同期信号を出力し、この同期信号と電流受取
回路336からの電流状態データをAND回路225に
取り込み、分岐端の電流状態データを標定演算回路22
2に入力する。標定演算回路222ではAND回路22
5を介し、同期のとれた分岐端電流データを受け取り、
事故点標定の補正演算を行い、出力回路360から外部
に対して事故発生箇所を示すデータを出力する。
More specifically, the simultaneous data determination circuit 224 determines the synchronism between the received data and the self-end data, and outputs a synchronizing signal during the reception period T2 of the abnormal voltage data received first and the current state data subsequent thereto. The synchronization signal and the current state data from the current receiving circuit 336 are taken into the AND circuit 225, and the current state data at the branch end is taken into the orientation calculation circuit 22.
Enter 2 In the orientation calculation circuit 222, the AND circuit 22
5, receive the synchronized branch-end current data via
Correction calculation of the fault point location is performed, and data indicating the fault location is output from the output circuit 360 to the outside.

【0036】図5は、一実施例による一端型事故点標定
演算の手順を示すフローチャートである。本システムで
は、送電線事故の発生により、親局112と子局110
で同時に、以下の処理を開始する。
FIG. 5 is a flowchart showing the procedure of the one-end type accident point locating operation according to one embodiment. In this system, a master station 112 and a slave station 110
At the same time, the following processing is started.

【0037】子局110では分岐端の送電線の電圧異常
状態を27リレーまたは64リレーで検出すると(s1
01)、系統周期分のサンプリングデータから、FL標
定用の分岐端電流を演算する(s102)。FL標定用
とは、実効値換算やCT比から相手端と整合するCT2
次値の算出を指す。次に、27リレーまたは64リレー
の動作(異常状態)と、電流演算結果を親局112に伝
送する(s103)。
When the slave station 110 detects an abnormal voltage state of the transmission line at the branch end by using 27 relays or 64 relays (s1).
01), a branch end current for FL orientation is calculated from the sampling data for the system cycle (s102). For FL orientation, CT2 that matches with the other end from the effective value conversion and CT ratio
Indicates the calculation of the next value. Next, the operation (abnormal state) of the 27 relay or the 64 relay and the current calculation result are transmitted to the master station 112 (s103).

【0038】一方、親局112では自端の送電線の電圧
異常状態を27リレーまたは64リレーで検出すると
(s104)、このリレーの動作によりタイマーが起動
する(s105)。次に、FL標定用電流を演算し(s
106)、予め設定されている分岐端電流の整定値を元
に、事故内容(地絡/短絡など)に応じた事故点標定演
算を行い、結果(ロ)を一時保存する(s107)。こ
の結果(ロ)は、従来の標定演算によるもので、何らか
の事情で子局データが得られない場合に対処している。
On the other hand, when the master station 112 detects the abnormal voltage state of the transmission line at its own end by using 27 relays or 64 relays (s104), a timer is started by the operation of the relay (s105). Next, the FL locating current is calculated (s
106) Based on the preset setting value of the branch current, a fault point locating operation is performed according to the fault content (ground fault / short circuit, etc.), and the result (b) is temporarily stored (s107). This result (b) is based on the conventional orientation calculation, and deals with a case where the slave station data cannot be obtained for some reason.

【0039】次に、子局側から自端と同事故の電圧異常
データが受信されたかチエックし(s108)、受信さ
れていれば、電圧異常データの直後の分岐端電流を取り
込み、実測値により補正された事故点標定演算を行い
(s109)、結果(イ)を出力する(s110)。一
方、子局側から電圧異常データが受信されていないとき
は、タイマーの計時がT3を経過したか判定し(s11
1)、異常検出からT3を超えていなければ処理s10
8に戻る。T3を超えた場合は、子局110からのデー
タ受信を諦め、保存してある結果(ロ)を出力する(s
112)。T3はCB再閉路時間T4(通常、60秒)
より若干短く設定されている。
Next, it is checked whether or not the abnormal voltage data of the same accident as the own terminal has been received from the slave station (s108). If the abnormal voltage data has been received, the branch end current immediately after the abnormal voltage data is fetched and measured. The corrected accident point location calculation is performed (s109), and the result (a) is output (s110). On the other hand, when the abnormal voltage data is not received from the slave station side, it is determined whether or not the time measured by the timer has exceeded T3 (s11).
1) If the time does not exceed T3 from the abnormality detection, process s10
Return to 8. If T3 is exceeded, data reception from the slave station 110 is abandoned, and the stored result (b) is output (s).
112). T3 is the CB reclosing time T4 (normally 60 seconds)
It is set slightly shorter.

【0040】なお、分岐端電流の実効値換算は、例えば
系統電源周期(360°)の30°毎に行った12サン
プリングの瞬時値から、事故発生後1周期の実効値を演
算する。これにより、子局からのデータ伝送容量を1/
12に圧縮できる。
The effective value of the branch end current is calculated, for example, by calculating the effective value of one cycle after the occurrence of the accident from the instantaneous value of 12 samplings performed every 30 ° of the system power supply cycle (360 °). As a result, the data transmission capacity from the slave station can be reduced by 1 /
Can be compressed to 12.

【0041】子局から親局への伝送データは、27リレ
ーまたは64リレーの動作状態を示すリレー名と状態デ
ータ(1/0)と、それに続く(あるいは同一フレーム
による)分岐端電流の実効値(通常、10〜1000
(A)程度)である。したがって、A/D変換後のこれ
らデジタルデータも、伝送速度が600ボー程度の電話
回線(4W方式)で十分に伝送でき、システムコストを
低減できる。
The transmission data from the slave station to the master station includes a relay name indicating the operating state of 27 relays or 64 relays, state data (1/0), and an effective value of the branch end current following (or from the same frame). (Usually, 10 to 1000
(A)). Therefore, these digital data after the A / D conversion can be sufficiently transmitted through a telephone line (4W system) having a transmission speed of about 600 baud, and the system cost can be reduced.

【0042】図6は本システムの動作を示したタイムチ
ャートである。図1に示した系統構成において、送電線
101の位置Fに地絡事故が発生した場合、端子130
と分岐端子134の電圧状態から、各々の地絡事故検出
の64リレーが動作し(a,d)、タイマーが起動す
る。なお、(a,d)の波形で立ち下がりは、CBの開
放時点を示している。次に、CBの開放前に、子局と親
局の双方で電流データの取り込みが行われ(b,e)、
親局側では直ちに事故点標定装置220が起動して、分
岐端データを整定値とした標定演算が行われる(f)。
FIG. 6 is a time chart showing the operation of the present system. In the system configuration shown in FIG. 1, when a ground fault occurs at the position F of the transmission line 101, the terminal 130
Then, from the voltage state of the branch terminal 134, each of the 64 relays for detecting a ground fault is activated (a, d), and the timer is started. The falling edge of the waveform (a, d) indicates the time when the CB is released. Next, before the release of the CB, the current data is taken in both the slave station and the master station (b, e),
On the master station side, the accident point locating device 220 is started immediately, and the locating operation is performed using the branch end data as the set value (f).

【0043】子局側は分岐端データの取得や送信手続き
等に要したT1後、親局へ分岐端データ(64リレーオ
ン、分岐端電流実効値)の送信を開始し、1セットのデ
ータ送信時間T2後に終了する(c)。親局112は、
ほぼT1に分岐端データの受信を開始し、ほぼT2後に
受信を終了し(g)、分岐端電流を実測値で補正した事
故点標定演算を行う。
The slave station side starts transmitting branch end data (64 relays on, branch end current effective value) to the master station after T1 required for acquisition of branch end data and transmission procedure, and one set of data transmission time. The process ends after T2 (c). The master station 112
The reception of the branch end data is started substantially at T1, and the reception is ended substantially after T2 (g), and an accident point locating operation in which the branch end current is corrected with the actually measured value is performed.

【0044】T3までに、子局からのデータの受信がな
いときは、(f)の演算結果が代用される。また、T3
までに複数回の受信データがある場合は、第1回目のデ
ータが同時性のある正常な分岐端データであり、他のデ
ータは廃棄する。時間T3はCB再閉路時間T4より若
干短くし、この期間内に子局は分岐端データ送出を1回
のみ行い、再送出は行わない。親局もこの期間T3内で
は分岐端からのデータを1回のみ取り込んで、再取り込
みは行わない。そして、T4以降で再度、親局にて事故
点標定が起動したときは、再度、分岐端データを取り込
んで事故点標定の演算を行う。
If no data is received from the slave station by T3, the calculation result of (f) is substituted. Also, T3
If the received data has been received a plurality of times before, the first data is normal branch end data with synchronization, and the other data is discarded. The time T3 is slightly shorter than the CB re-closing time T4. During this period, the slave station transmits the branch end data only once and does not perform the re-transmission. The master station also takes in the data from the branch end only once during this period T3, and does not take in the data again. Then, when the fault location is started again at the master station after T4, the branch end data is fetched again to calculate the fault location.

【0045】[0045]

【発明の効果】本発明によれば、分岐端に子局を設けて
事故発生時の分岐端電流を親局に送信し、親局側では自
端の事故検出時の自端電流との同時性を確認して分岐端
電流を取り込み、自端電流と実測による分岐端電流を用
いて事故点標定演算を行うので、分岐端への廻り込み電
流分も考慮した事故点標定演算が可能になり、事故点標
定の精度を向上できる。
According to the present invention, a slave station is provided at a branch end to transmit a branch end current at the time of occurrence of an accident to the master station, and the master station simultaneously transmits the current with the own end current at the time of detection of an accident at the own end. The fault point locating calculation is performed using the current at the branch end and the current measured at the branch end, and the fault point locating calculation considering the sneak current to the branch end becomes possible. In addition, the accuracy of accident point location can be improved.

【0046】また、子局から親局へ送信する分岐端電流
は実効値を用いて送信データを圧縮しているので、低速
度かつ少ない通信線数の伝送路ですみ、通常の電話回線
等の使用により安価なシステム構成が可能になる。
Further, since the branch end current transmitted from the slave station to the master station uses an effective value to compress the transmission data, the transmission path can be operated at a low speed and with a small number of communication lines. The use enables an inexpensive system configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の保護対象となる電力系統の
構成図。
FIG. 1 is a configuration diagram of a power system to be protected according to an embodiment of the present invention.

【図2】本発明の一実施例による一端判定型事故点標定
装置のシステム構成図。
FIG. 2 is a system configuration diagram of a one-end determination type accident point locating apparatus according to an embodiment of the present invention.

【図3】一実施例による子局の構成図。FIG. 3 is a configuration diagram of a slave station according to one embodiment.

【図4】一実施例による親局の構成図。FIG. 4 is a configuration diagram of a master station according to one embodiment.

【図5】一実施例による一端型事故点標定演算の手順を
示すフローチャート。
FIG. 5 is a flowchart showing a procedure of a one-end accident point location calculation according to one embodiment.

【図6】一端判定型事故点標定装置の動作を示すタイム
チャート。
FIG. 6 is a time chart showing the operation of the one-end determination type accident point location device.

【図7】分岐線のある送電線の従来の事故点標定方式を
説明する送電系統図。
FIG. 7 is a power transmission system diagram for explaining a conventional fault locating method for a transmission line having a branch line.

【符号の説明】 101,102…送電線、103,104…分岐線、1
05,106…電源、110…子局、112…親局、1
14…専用線、121〜126…開閉器(CB)、13
0…端子(FL設置端)、132…端子、134…分岐
端子、140〜143…CT、144〜147…PT、
201…分岐端データ検出手段、203…モデム、20
5…通信装置、207…通信装置、209…モデム、2
11…電流検出回路、212…通信異常検出装置、21
3…AND回路、214…分岐端電流回路214、21
5…系統異常検出回路、216…自端データ検出回路、
220…一端型事故点標定装置、221…FL起動回
路、222…事故点標定演算回路、223…補正演算回
路、300…PT、302…CT、304…CB、30
8…不足電圧リレー308、310…地絡過電圧リレ
ー、312…送信起動回路、314…AND回路、31
6…データ送信回路、320…実効値演算回路、322
…電流取込回路、332…不足電圧状態検出回路、33
4…地絡過電圧検出回路、336…電流受取回路、34
0…PT、342…開閉器、346…CT、348…不
足電圧リレー、350…地絡過電圧リレー、354…電
流取込回路、360…出力回路。
[Description of Signs] 101, 102: Transmission line, 103, 104: Branch line, 1
05, 106: power supply, 110: slave station, 112: master station, 1
14: dedicated line, 121 to 126: switch (CB), 13
0 ... Terminal (FL installation end), 132 ... Terminal, 134 ... Branch terminal, 140-143 ... CT, 144-147 ... PT,
201: branch end data detecting means, 203: modem, 20
5 communication device, 207 communication device, 209 modem, 2
11: current detection circuit, 212: communication abnormality detection device, 21
3: AND circuit, 214: branch end current circuits 214, 21
5: system abnormality detection circuit, 216: self-end data detection circuit,
220: one-end type fault locating device, 221: FL starting circuit, 222: fault locating calculation circuit, 223: correction calculating circuit, 300 ... PT, 302 ... CT, 304 ... CB, 30
8 Undervoltage relays 308 and 310 Ground fault overvoltage relay 312 Transmission start circuit 314 AND circuit 31
6 data transmission circuit, 320 effective value calculation circuit, 322
… Current take-up circuit, 332… undervoltage state detection circuit, 33
4: ground fault overvoltage detection circuit, 336: current receiving circuit, 34
0: PT, 342: switch, 346: CT, 348: undervoltage relay, 350: ground fault overvoltage relay, 354: current intake circuit, 360: output circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 究 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 松岡 春水 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 十島 政憲 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 田中 清次 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 大部 孝 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 Fターム(参考) 2G033 AA02 AB01 AD22 AD25 AG12 AG14 5G058 EE03 EF02 EF03 5G064 AA04 AC09 CB19 DA03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuto Ito 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside the Kokubu Plant, Hitachi, Ltd. (72) Inventor Haruo Matsuoka 3-chome Nakanoshima, Kita-ku, Osaka-shi, Osaka No. 22 Kansai Electric Power Co., Inc. (72) Inventor Masanori Toshima 3-2-2 Nakanoshima, Kita-ku, Osaka-shi, Osaka-shi Kansai Electric Power Co., Inc. (72) Inventor Kiyoji Tanaka 3, Nakanoshima, Kita-ku, Osaka-shi, Osaka 3-22, Kansai Electric Power Co., Inc. (72) Takashi Obe 3-3-22, Nakanoshima, Kita-ku, Osaka-shi, Osaka Prefecture F-term within Kansai Electric Power Co., Inc. EF02 EF03 5G064 AA04 AC09 CB19 DA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 分岐線端子を有する送電線の一端判定型
事故点評定装置において、 多端子送電線の前記標定装置の設置端側に設けられた親
局に、設置端側電流検出手段、設置端側事故検出手段及
び事故点標定演算手段を、分岐線端子側に設けられた子
局に分岐端側電流検出手段及び分岐端側事故検出手段を
それぞれ設け、 前記送電線の事故発生時に、前記親局で前記設置端側事
故検出手段による事故検出デ−タと、前記設置端側電流
検出手段による設置端電流デ−タを取り込み、前記子局
で前記分岐端側事故検出手段による事故検出デ−タと、
前記分岐端側電流検出手段による分岐端電流デ−タを取
り込み、前記子局から前記親局に前記事故検出デ−タと
前記分岐端電流デ−タを送信し、前記親局で双方の事故
検出デ−タを元に同期を取り、前記事故点標定演算手段
が同期の取れた設置端電流デ−タと分岐端電流デ−タを
用いて事故点標定を行うことを特徴とする一端判定型事
故点評定装置。
The present invention relates to an accident point estimating apparatus for determining one end of a transmission line having a branch line terminal, wherein an installation end side current detecting means is provided at a master station provided at an installation end side of the locating device of the multi-terminal transmission line. The end-side accident detection means and the accident point locating calculation means are provided with branch-end-side current detection means and branch-end-side accident detection means, respectively, at a slave station provided on the branch line terminal side. The master station captures the accident detection data by the installation end side accident detection means and the installation end current data by the installation end side current detection means, and the slave station accident detection data by the branch end accident detection means. −
The branch end current data is fetched by the branch end side current detecting means, and the fault detection data and the branch end current data are transmitted from the slave station to the master station. One end determination wherein synchronization is performed based on the detected data, and the fault point locating operation means performs fault point locating using the synchronized installation-end current data and branch-end current data. Type accident point rating device.
【請求項2】 請求項1において、 前記分岐端側事故検出手段に、不足電圧リレ−及び地絡
過電圧リレ−を用いることを特徴とする一端判定型事故
点評定装置。
2. The one-side judgment type fault point rating device according to claim 1, wherein an undervoltage relay and a ground fault overvoltage relay are used as the branch end side fault detection means.
【請求項3】 請求項1または2において、 前記子局から前記親局に送信する前記分岐端電流デ−タ
は、事故発生後の電源周期の少なくとも1周期分の取り
込みデータから実効値を求め、この実効値を送信するこ
とを特徴とする一端判定型事故点評定装置。
3. The branch end current data transmitted from the slave station to the master station according to claim 1 or 2, wherein an effective value is obtained from data taken in at least one power supply cycle after the occurrence of the accident. A one-end determination type accident point rating device for transmitting the effective value.
JP11185173A 1999-06-30 1999-06-30 One terminal decision type accident point estimation device Pending JP2001013196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11185173A JP2001013196A (en) 1999-06-30 1999-06-30 One terminal decision type accident point estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11185173A JP2001013196A (en) 1999-06-30 1999-06-30 One terminal decision type accident point estimation device

Publications (1)

Publication Number Publication Date
JP2001013196A true JP2001013196A (en) 2001-01-19

Family

ID=16166121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11185173A Pending JP2001013196A (en) 1999-06-30 1999-06-30 One terminal decision type accident point estimation device

Country Status (1)

Country Link
JP (1) JP2001013196A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074947A (en) * 2001-09-05 2003-03-12 Daikin Ind Ltd Air conditioner and air conditioner with humidification function
CN104467190A (en) * 2014-12-25 2015-03-25 辽宁省电力有限公司 Intelligent processing method capable of protecting operation report of two ends of circuit in online management system
CN105158640A (en) * 2015-09-15 2015-12-16 江苏金智科技股份有限公司 Multi-power-source power supply system and fault positioning method based on GPS and current waveform
CN105186471A (en) * 2015-09-26 2015-12-23 国网山东省电力公司济南供电公司 Power distribution network line fault detection device and method
CN110829388A (en) * 2019-11-14 2020-02-21 国网湖南省电力有限公司 Single-phase earth fault judgment method and reclosing method of double-fed wind power plant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074947A (en) * 2001-09-05 2003-03-12 Daikin Ind Ltd Air conditioner and air conditioner with humidification function
CN104467190A (en) * 2014-12-25 2015-03-25 辽宁省电力有限公司 Intelligent processing method capable of protecting operation report of two ends of circuit in online management system
CN105158640A (en) * 2015-09-15 2015-12-16 江苏金智科技股份有限公司 Multi-power-source power supply system and fault positioning method based on GPS and current waveform
CN105158640B (en) * 2015-09-15 2018-07-20 江苏金智科技股份有限公司 Multi-power supply system and Fault Locating Method based on GPS and current waveform
CN105186471A (en) * 2015-09-26 2015-12-23 国网山东省电力公司济南供电公司 Power distribution network line fault detection device and method
CN110829388A (en) * 2019-11-14 2020-02-21 国网湖南省电力有限公司 Single-phase earth fault judgment method and reclosing method of double-fed wind power plant
CN110829388B (en) * 2019-11-14 2021-10-26 国网湖南省电力有限公司 Single-phase earth fault judgment method and reclosing method of double-fed wind power plant

Similar Documents

Publication Publication Date Title
US5272440A (en) Isolation monitors and measuring device for an electrical power system with isolated neutral
CA1099782A (en) Ground fault protective apparatus of field windings
KR100350722B1 (en) Apparatus and method for locating fault distance in a power double circuit transmision line
CN102484365A (en) A method of fault phase selection and fault type determination
JP3869616B2 (en) Monitoring system
CN1505862B (en) Protection of electrical power lines
CN106353646B (en) A kind of Insulation monitoring control method based on high voltage direct current power supply system
JP2001013196A (en) One terminal decision type accident point estimation device
CN101017188A (en) Detecting method for line breaking and circuit shorting of CT
CN109655681B (en) Transformer substation and switch station secondary measurement loop abnormity detection method and system
JPH095384A (en) Method and system for locating fault point of power system
US12062900B2 (en) Method for the detection of an arc fault in an electrical circuitry, and motor vehicle
WO2014094977A1 (en) A power-based method of out of step detection in electrical power network
CN115912282A (en) Master-slave differential protection method and system based on mobile communication
JP3457990B2 (en) Method and apparatus for determining disconnection point of high-voltage distribution line
TWI493200B (en) Smart feeder failure sensor system
FI115093B (en) Protection relay arrangement for short circuit and earth fault protection of power distribution network
JP2558350B2 (en) How to disconnect the faulty section of the distribution line
JP3279766B2 (en) Switch control device
US20240192285A1 (en) Method and apparatus for smart centralized arc fault detection in a system
JP3221342B2 (en) Automatic distribution line switchgear
US20240195165A1 (en) Centralized fault detection with fault recovery system and method
JPH073450B2 (en) Fault location method for DC electric railway feeder circuit
JP4391330B2 (en) Accident point location method and accident point location system
JPH0684380U (en) Ground fault relay operation test device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041019

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707