JPH073450B2 - Fault location method for DC electric railway feeder circuit - Google Patents

Fault location method for DC electric railway feeder circuit

Info

Publication number
JPH073450B2
JPH073450B2 JP59033692A JP3369284A JPH073450B2 JP H073450 B2 JPH073450 B2 JP H073450B2 JP 59033692 A JP59033692 A JP 59033692A JP 3369284 A JP3369284 A JP 3369284A JP H073450 B2 JPH073450 B2 JP H073450B2
Authority
JP
Japan
Prior art keywords
current
time
δib
detected
currents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59033692A
Other languages
Japanese (ja)
Other versions
JPS60177276A (en
Inventor
梓 三浦
喬 木下
久吉 内田
哲三 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP59033692A priority Critical patent/JPH073450B2/en
Publication of JPS60177276A publication Critical patent/JPS60177276A/en
Publication of JPH073450B2 publication Critical patent/JPH073450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は直流電鉄き電回路の故障点標定方法に関する。The present invention relates to a fault point locating method for a DC electric railway feeding circuit.

この種の故障点標定方法は原理的にはよく知られてい
る。これを第1図の原理図に基づき説明すれば、今、P
点で短絡故障が起つたとすると、故障点をはさむ両変電
所A,Bの高速度遮断器54Fが開極するまでは次式が成立す
る。
This type of fault location method is well known in principle. This will be explained based on the principle diagram of FIG.
If a short-circuit fault occurs at a point, the following equation holds until the high-speed circuit breakers 54F of both substations A and B that sandwich the fault point open.

但し、a=r/L …(3) ここで、iAは変電所Aにおいて流れる故障電流、iBは変
電所Bにおいて流れる故障電流、Eoはき電々圧、rは単
位長当りの抵抗、Lは単位長当りのインダクダンス、l
は変電所Aから故障点pまでの距離、Dは両変電所間の
距離である。
However, a = r / L (3) where iA is the fault current flowing in the substation A, iB is the fault current flowing in the substation B, Eo is the feeding voltage, r is the resistance per unit length, and L is the Inductance per unit length, l
Is the distance from the substation A to the fault point p, and D is the distance between both substations.

一方、各変電所から故障点pまでの距離とiA,iBとの間
には変電所の内部抵抗を省略すれば次の関係がある。
On the other hand, the following relationship exists between the distance from each substation to the fault point p and iA, iB if the internal resistance of the substation is omitted.

l:(D−l)=iB:iA …(4) 従つて、(1)〜(4)より、lを求めると、 となり、この式より故障点pまでの距離lを求めること
ができる。この場合、iA,iBの代りにその平均値▲
▼,▲▼を用いても同じ関係が成立する。
l: (D-1) = iB: iA (4) Therefore, when l is obtained from (1) to (4), Therefore, the distance l to the failure point p can be obtained from this equation. In this case, the average value of iA and iB instead of ▲
The same relationship holds even if ▼ and ▲ ▼ are used.

できれば、電流の検出誤差等を少なくするために電流の
平均値による標定式(6)を用いる方が精度が高い。
If possible, it is more accurate to use the orientation formula (6) based on the average value of the current in order to reduce the current detection error.

説明を簡単にするため、変電所の内部抵抗を省略して述
べたが、変電所に内部抵抗がある場合は計測される電流
分担比 に変電所内部抵抗による補正係数を乗ずれば容易に正し
い標定が可能となる。
For simplicity of explanation, the internal resistance of the substation was omitted, but when the substation has internal resistance, the measured current sharing ratio is measured. By multiplying by a correction factor due to the internal resistance of the substation, correct orientation can be easily achieved.

ところで上記(6)にて故障点の標定を行なう場合にお
いて注意すべきことは、▲▼,▲▼は同時刻の
値でなければならないことである。もし、同時刻の値で
ないなら上記理論式は成り立たないので故障点標定がで
きない。このため、従来より同時刻のiA,iBを測定する
ために研究がなされている。特公昭53−12058号公報に
示された技術は同時刻のiA,iBを測定するための一つの
解決手段である。しかしながら、この従来技術は、隣接
変電所間に連絡線を張り、この連絡線を通じてiA,iBの
同時刻性を確保しようとするものであるため、隣接変電
所間の距離が長いことと関連して連絡線を張るための経
費が膨大となり、実用化するには問題があつた。
By the way, what should be noted when locating the failure point in the above (6) is that ▲ ▼ and ▲ ▼ must be values at the same time. If the values are not at the same time, the above theoretical formula does not hold and the fault point cannot be located. For this reason, research has been conventionally performed to measure iA and iB at the same time. The technique disclosed in Japanese Patent Publication No. 53-12058 is one solution for measuring iA and iB at the same time. However, since this conventional technique is to connect a connecting line between adjacent substations and to secure iA and iB at the same time through this connecting line, it is related to the long distance between adjacent substations. The cost for establishing a communication line has become enormous, and there was a problem in putting it to practical use.

そこで本発明は、変電所間に全く連絡線を張らなくて
も、iA,iBを同時刻性を確保できるという極めて有用な
方法を提供するものである。
Therefore, the present invention provides an extremely useful method in which iA and iB can be synchronized at the same time without connecting any connecting line between the substations.

而して、本発明は、故障点をはさむ両変電所A,Bのき電
線に電流検出器を設けて、遮断器が開極する前の同一時
間帯における検出電流の平均値▲▼,▲▼から
故障点を標定する方法であつて、前記各電流検出器に各
別に記憶演算処理回路を接続して、この回路によつて、
電流検出器の検出電流iA(t),iB(t)を記憶し、ま
た一定時間遅延させて、検出電流と遅延した電流との差
の電流ΔiA(t),ΔiB(t)を求めさせると共に、遮
断器が開極する前における前記のΔiA(t),ΔiB
(t)の最大となる時点Tmを探索し、更にその時点Tmか
ら所定時間To過去に至る間の検出電流の平均値▲
▼,▲▼を計算させ、もつて、各記憶演算処理回路
から出力される前記平均値▲▼,▲▼のデータ
によつて故障点標定を行なうようにしたことを要旨とし
ている。
Thus, in the present invention, the current detectors are provided on the feeders of both substations A and B that sandwich the fault point, and the average value of the detected current in the same time period before the breaker is opened ▲ ▼, ▲ A method of locating a failure point from ▼, wherein a storage operation processing circuit is separately connected to each of the current detectors, and by this circuit,
The detected currents iA (t) and iB (t) of the current detector are stored and delayed for a predetermined time to obtain the currents ΔiA (t) and ΔiB (t) which are the difference between the detected current and the delayed current. , ΔiA (t) and ΔiB before the circuit breaker opens
The maximum time point Tm of (t) is searched for, and the average value of the detected current from that time point Tm to the predetermined time To past is further calculated.
The gist is to calculate ▼ and ▲ ▼, and to perform the fault point localization based on the data of the average values ▲ ▼ and ▲ ▼ output from each storage operation processing circuit.

以下に本発明方法を図面に示す実施例によつて説明す
る。第2図において、1は母線、2A,2Bはき電線、3は
電車線、4A,4Bは各き電線に挿入された高速度遮断器
(以下単に遮断器という。)、5A,5Bは各き電線の電流
を検出する電流検出器として例えばホール発電器を用い
た検出器である。6A,6Bは故障時の電流変化を検出する
不飽和変成器、RA,RBはこの変成器6A,6Bの検出信号に基
づき起動信号を作る故障検出リレー、7A,7Bは記憶演算
処理回路で、電流検出器5A,5Bの検出電流iA(t),iB
(t)をデイジタル信号化するA−D変換器ADCと、次
に述べる各種演算処理を行なうコンピュータCPUと、こ
のCPUで演算処理された▲▼,▲▼を標定セン
ター8に送出する送出部Fと、発振部OSCとから成つて
いる。発振器OSCは両演算回路7A,7Bとも発振周波数の等
しくて、安定したものを用いる必要がある。前記コンピ
ュータCPUはこの発振器OSCの発振周波数によつて定まる
周期で検出電流iA(t),iB(t)を記憶している。発
振器OSCの周期はこの実施例では1mSとし、コンピュータ
CPUは過去100mSの間の検出電流iA(t),iB(t)を記
憶するようにしている。そして、1mS単位で新しい検出
電流に書き換えている。この記憶動作は故障が起つてい
ない平常時にも行なわれている。而して、今、き電回路
に短絡故障が起つたとすると、コンピュータCPUは次の
如く動作し▲▼,▲▼を計算する。
The method of the present invention will be described below with reference to the embodiments shown in the drawings. In FIG. 2, 1 is a bus bar, 2A and 2B feeders, 3 is a train line, 4A and 4B are high-speed circuit breakers (hereinafter simply referred to as circuit breakers) inserted in the feeders, and 5A and 5B are As a current detector for detecting the current of the feeder, for example, a Hall generator is used. 6A and 6B are unsaturated transformers that detect current changes at the time of failure, RA and RB are failure detection relays that generate start signals based on the detection signals of these transformers 6A and 6B, and 7A and 7B are memory operation processing circuits. Detection current iA (t), iB of the current detector 5A, 5B
An AD converter ADC for converting (t) into a digital signal, a computer CPU for performing the various arithmetic processes described below, and a sending section F for sending ▲ ▼, ▲ ▼ processed by the CPU to the orientation center 8. And an oscillating unit OSC. It is necessary to use a stable oscillator OSC with the same oscillation frequency in both arithmetic circuits 7A and 7B. The computer CPU stores the detected currents iA (t) and iB (t) in a cycle determined by the oscillation frequency of the oscillator OSC. The period of the oscillator OSC is 1 mS in this embodiment, and
The CPU stores the detected currents iA (t) and iB (t) in the past 100 mS. Then, it is rewritten to a new detection current in units of 1 mS. This storage operation is also performed during normal times when no failure has occurred. If a short circuit failure occurs in the feeder circuit, the computer CPU operates as follows and calculates ▲ ▼ and ▲ ▼.

先ず、き電回路に故障が起こると、各き電線2A,2Bに流
れる電流iA(t),iB(t)が第3図(イ)及び(ニ)
に実線で示す如く変化する。つまり、それぞれ勾配は異
なるが、故障発生による大電流が同時に流れはじめる。
図中のTk,Tlは各遮断器4A,4Bが開極する時点である。コ
ンピュータCPUはこの電流の値を記憶していると共に、
故障の検出をする故障検出リレーRA,RBからの故障認識
信号〔第3図(ハ)及び(ヘ)に示す信号〕を受ける。
First, when a failure occurs in the feeder circuit, the currents iA (t) and iB (t) flowing in the feeders 2A and 2B are changed to the values shown in FIGS. 3 (a) and 3 (d).
Changes as shown by the solid line. That is, although the gradients are different, a large current due to the occurrence of a failure starts to flow simultaneously.
Tk and Tl in the figure are the times when the circuit breakers 4A and 4B are opened. The computer CPU stores the value of this current,
Receiving the fault recognition signals [the signals shown in FIGS. 3 (c) and 3 (f)] from the fault detection relays R A and R B for detecting faults.

このときCPUは、ある一定時間(事故発生時より故障検
出リレーRA,RBからの故障認識信号がでるまでの期間の
最大値より長い時間)逆上って記憶されている前記検出
電流iA(t),iB(t)の値を呼び出すと共に、さらに
一定時間遅らせた電流iA(t−ΔT),iB(t−ΔT)
の値を呼び出す。そして、前記検出電流iA(t),iB
(t)の値から前記遅延させた電流iA(t−ΔT),iB
(t−ΔT)の値の差を求め、これを差の電流ΔiA
(t),ΔiB(t)の値とする。第3図(イ)及び
(ニ)の仮想線は、それぞれ前記遅延させた電流iA(t
−ΔT),iB(t−ΔT)の値を、第3図(ロ)及び
(ホ)はそれぞれ差の電流ΔiA(t),ΔiB(t)の値
を図示したものである。〔これらの電流iA(t−Δ
T),iB(t−ΔT),ΔiA(t),ΔiB(t)は実際
の電流ではなく、CPU内部の処理を解説するため図示し
たものである〕 ΔiA(t)=iA(t)−iA(t−ΔT) …(7) ΔiB(t)=iB(t)−iB(t−ΔT) …(8) ここで遅延時間ΔTは適宜に定めることはできるが、い
かなる場合も故障発生から遮断器が開極するまでの時間
Tkおよび時間Tlより長くしてはいけない。つまり、この
遅延時間ΔTは故障発生から遅延時間ΔTを過ぎるまで
の間に測定した電流iA(t),iB(t)の値が常に増加
するように定められており、本実施例では一例として10
mSに定めている。
At this time, the CPU reversely stores the detection current iA stored for a certain period (longer than the maximum value of the period from the occurrence of an accident until the fault recognition signals from the fault detection relays R A and R B occur). Currents iA (t-ΔT) and iB (t-ΔT) delayed by a certain time while calling the values of (t) and iB (t).
Call the value of. Then, the detected currents iA (t), iB
The delayed current iA (t−ΔT), iB from the value of (t)
The difference between the values of (t−ΔT) is calculated, and this is the difference current ΔiA.
(T) and ΔiB (t). The phantom lines in FIGS. 3 (a) and 3 (d) respectively represent the delayed current iA (t
-[Delta] T), iB (t- [Delta] T), and FIGS. 3 (b) and (e) show the values of the difference currents [Delta] iA (t) and [Delta] iB (t), respectively. [These currents iA (t-Δ
T), iB (t−ΔT), ΔiA (t), ΔiB (t) are not actual currents, but are shown to explain the internal processing of the CPU] ΔiA (t) = iA (t) − iA (t-ΔT) (7) ΔiB (t) = iB (t) -iB (t-ΔT) (8) Here, the delay time ΔT can be set as appropriate, but in any case, the failure occurs. Time to open the circuit breaker
Do not be longer than Tk and time Tl. That is, the delay time ΔT is set so that the values of the currents iA (t) and iB (t) measured from the occurrence of the failure until the delay time ΔT passes are always increased. In the present embodiment, as an example, Ten
stipulated in mS.

遅延時間ΔTを上記のように定めると、前記差の電流Δ
iA(t),ΔiB(t)は同図(ロ),(ホ)に示す如く
なり、必ず遮断器4A,4Bの開極前の故障発生時から検出
電流iA(t),iB(t)の増加の影響で増加しはじめ故
障発生より遅延時間ΔTが経過した時点まで増加しつづ
けて大きな値となる。そして故障発生時から遅延時間Δ
Tが経過した時に、該差の電流ΔiA(t),ΔiB(t)
は遅延させた電流iA(t−ΔT),iB(t−ΔT)引き
算の影響で減少しはじめ、故郷発生時よりちょうど遅延
時間ΔTが経過した時点で最大値を生じることになる。
When the delay time ΔT is set as described above, the difference current Δ
iA (t) and ΔiB (t) are as shown in (b) and (e) in the same figure, and the detected current iA (t), iB (t) must be detected from the occurrence of the failure of the circuit breakers 4A, 4B before opening. Will start to increase due to the influence of the increase of .tau. And the delay time Δ
When T has elapsed, the difference currents ΔiA (t) and ΔiB (t)
Starts to decrease under the influence of the delayed current iA (t-ΔT) and iB (t-ΔT) subtraction, and reaches a maximum value when the delay time ΔT has just passed from the time when the hometown was generated.

従って、コンピュータCPUは、この差の電流ΔiA
(t),ΔiB(t)が単なる負荷電流の変動ではなく故
障電流であることを認識できる一定値以上になると共に
最大値となる時刻Tmを検出すればよい。つまり、この時
刻Tmは両変電所A,Bの何方においても事故発生時より遅
延時間ΔTが経過した時点であるので、この時刻Tmの判
断は、両変電所A,Bにおいて独立して行ったとしても、
各変電所A,Bにおいて確実にかつ容易に故障発生時より
遅延時間ΔTが経過した時刻を判断することができる。
Therefore, the computer CPU determines that the difference current ΔiA
It suffices to detect the time Tm at which (t) and ΔiB (t) become a maximum value and a certain value or more at which it can be recognized that the current is a fault current, not just a change in the load current. In other words, this time Tm is the time when the delay time ΔT has elapsed from the time of the accident at any of the substations A and B, so the determination of the time Tm was made independently at both substations A and B. Even if
At each substation A, B, the time at which the delay time ΔT has elapsed can be determined reliably and easily from the time of failure occurrence.

そして、この遅延時間ΔTは両変電所A,Bのコンピュー
タCPUとも同一であるから、両コンピュータCPUによって
算定される差の電流ΔiA(t),ΔiB(t)の最大値が
生じる時刻Tmを同時刻とすることができる。これによつ
て、両変電所A,Bに連絡線を張らなくても検出電流の同
時刻性が確保されたことになる。そして、コンピータCP
Uは更に、この時刻Tmから所定時間Toだけ過去における
間の検出電流iA(t),iB(t)を積算し、平均値▲
▼,▲▼を求める。各電流の平均値▲▼,▲
▼は夫々送出部Fから標定センター8に送られる。
標定センター8では、これらの平均電流▲▼,▲
▼のデータを(6)式に基づいて処理し、故障点標定
を行なう。尚、この実施例ではコンピュータCPUの起動
振動としてリレーRA,RBからの信号を用いているが、他
の信号、例えば遮断器4A,4Bの開極動作を開極時のアー
クを検知する受光器等で検知した信号等を用いることも
できる。
Since this delay time ΔT is the same in the computer CPUs of both substations A and B, the time Tm at which the maximum value of the difference currents ΔiA (t) and ΔiB (t) calculated by both computer CPUs is the same. It can be the time. As a result, the same time property of the detected current is ensured even if the substations A and B are not connected. And the computer CP
U further integrates the detected currents iA (t) and iB (t) in the past for a predetermined time To from this time Tm, and the average value ▲
Ask for ▼ and ▲ ▼. Average value of each current ▲ ▼, ▲
▼ are respectively sent from the sending section F to the orientation center 8.
At the orientation center 8, these average currents ▲ ▼, ▲
The data of ▼ is processed based on the equation (6) and the fault point is located. In this embodiment, the signals from the relays RA and RB are used as the starting vibration of the computer CPU, but other signals, for example, the photodetector that detects the arc at the time of opening the opening operation of the circuit breakers 4A and 4B. It is also possible to use a signal or the like detected by, for example.

次に、上記実施例では、iA(t),iB(t)とも遮断器
が開極するまでは単調増加するという一般的な場合を取
扱つている、例えば一方の変電所の近くで有抵抗故障が
生じた場合には、遠方側の変電所において流れる事故電
流iB(t)が単調増加とはならず、第4図に示すように
増加途中に節をもつことがある。このため検出電流と遅
延電流の差の電流ΔiB(t)が同図に示すように2つの
極大値をもつこととなり、このうち2番目と極大値が最
初の極大値より大きな値となつた場合が問題となる。即
ちこの場合は単にΔiB(t)が最大となる時点を探索し
たのでは、iA(t)とiB(t)の同時刻性が確保でき
ず、(6)式の理論式が成り立たなくなるのである。し
かしΔiB(t)の最初の極大値を把えればiA(t)とiB
(t)の同時刻性は確保できるのであるから、常に最初
の極大値を把えることができるコンピュータCPUのプロ
グラムを調整しておけばよいといえる。それには、コン
ピュータCPU内でΔiA(t),ΔiB(t)の各瞬時にお
ける変化Ii(後述する。)を判別しその変化Iiが最初に
正から負に転じた時点を把えるようにすればよい。詳論
すれば、今、時刻tiにおけるΔiB(t)の変化Iiは、 Ii=ΔiB(ti)−ΔiB(ti−Δt) …(7) で表わされる。もし、ΔiB(t)が最初の極大値まで達
さず、増加しているとすると、 Ii>0 となる。そして極大値を通過すれば、ある程度の期間は
減少するから、Ii<0となる。
Next, the above embodiment deals with a general case where both iA (t) and iB (t) increase monotonically until the circuit breaker opens, for example, a resistive fault near one of the substations. In the case of occurrence, the fault current iB (t) flowing in the substation on the far side does not increase monotonously, and may have a node in the middle of the increase as shown in FIG. Therefore, the current ΔiB (t), which is the difference between the detected current and the delay current, has two local maxima as shown in the figure, and when the second and local maxima are larger than the first local maxima. Is a problem. That is, in this case, if the time point at which ΔiB (t) becomes the maximum is simply searched for, it is not possible to secure the same-time property of iA (t) and iB (t), and the theoretical formula (6) cannot be established. . However, if we grasp the first maximum value of ΔiB (t), iA (t) and iB
Since the same time property of (t) can be secured, it can be said that the program of the computer CPU that can always grasp the first maximum value should be adjusted. To do this, the change Ii (described later) at each instant of ΔiA (t) and ΔiB (t) is determined in the computer CPU, and the time when the change Ii first changes from positive to negative can be grasped. Good. More specifically, the change Ii of ΔiB (t) at time ti is now represented by Ii = ΔiB (ti) −ΔiB (ti−Δt) (7). If ΔiB (t) does not reach the first maximum value and is increasing, then Ii> 0. Then, when the maximum value is passed, Ii <0 because it decreases for a certain period.

従つて、コンピュータ内でのこのIiの変化を検出し、Ii
が最初に正から負に転じた時点を把えるようにしておけ
ばよいのである。
Therefore, this change in Ii in the computer is detected and Ii
It suffices to be able to grasp the time when is first turned from positive to negative.

尚、第4図中(リ)はリレーRAからの起動信号、(オ)
はリレーRBからの起動信号を示す。
In addition, (i) in FIG. 4 is a start signal from the relay RA, (e)
Indicates a start signal from the relay RB.

本発明に係る直流き電回路の故障転標定方法は以上述べ
た如く遂行されるものであるから、故障点をはさむ両変
電所A,B側で各別にき電線の電流を検出し、記憶演算処
理回路7A,7Bで各別に処理されるものでありながら、各
き電線の遮断器が開極する前における同一時間帯の検出
電流の平均値▲▼,▲▼を計算することがで
き、従つて両変電所間に連絡線を張らなくても正確に故
障点標定を行なうことができるという顕著な効果を奏す
る。
Since the fault locating method of the DC feeder circuit according to the present invention is performed as described above, the electric currents of feeder cables are separately detected at both substations A and B, which sandwich the fault point, and the storage operation is performed. Although the processing circuits 7A and 7B process the signals separately, the average values ▲ ▼ and ▲ ▼ of the detected current during the same time period before the breaker of each feeder is opened can be calculated. As a result, it is possible to accurately locate a fault point without establishing a connecting line between both substations.

【図面の簡単な説明】[Brief description of drawings]

第1図は、故障点標定法の原理図、第2図は本発明方法
を実施するための装置の一例を示す図、第3図は第2図
の装置の動作を説明するための波形図、第4図はA変電
所の近くで有抵抗故障を起した場合の装置の動作を説明
するための波形図である。 2A,2B……き電線、4A,4B……遮断器、5A,5B……電流検
出器、RA,RB……故障検出リレー、7A,7B……記憶演算処
理回路。
FIG. 1 is a principle diagram of the fault location method, FIG. 2 is a diagram showing an example of an apparatus for carrying out the method of the present invention, and FIG. 3 is a waveform diagram for explaining the operation of the apparatus of FIG. , FIG. 4 is a waveform diagram for explaining the operation of the apparatus when a resistive failure occurs near the A substation. 2A, 2B: Feeder, 4A, 4B: Circuit breaker, 5A, 5B: Current detector, RA, RB: Fault detection relay, 7A, 7B: Memory arithmetic processing circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北川 哲三 大阪府箕面市瀬川4丁目4番10号 津田電 気計器株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuzo Kitagawa 4-4-10 Segawa, Minoh City, Osaka Prefecture Tsuda Denki Keiki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】故障点をはさむ両変電所A,Bのき電線に電
流検出器を設けて、遮断器が開極する前の同一時間帯に
おける検出電流の平均値▲▼,▲▼から故障点
を標定する方法であつて、前記各電流検出器に各別に記
憶演算処理回路を接続して、この回路によつて、電流検
出器の検出電流iA(t),iB(t)を記憶し、また一定
時間遅延させて、検出電流と遅延した電流との差の電流
ΔiA,ΔiBを求め、遮断器が開極する直前におけるΔiA
およびΔiBが最大となる時点Tmを探索し、更にその時点
Tmから所定時間To過去に至る間の検出電流の平均値▲
▼,▲▼を計算させ、もつて、各記憶演算処理回
路から出力される前記平均値▲▼,▲▼のデー
タによつて故障点標定を行なうようにしたことを特徴と
する直流電鉄き電回路の故障点標定方法。
1. A current detector is provided on the feeders of both substations A and B sandwiching a fault point, and the average current ▲ ▼, ▲ ▼ of the detected current during the same time period before the breaker is opened breaks down. A method for locating a point, in which a storage operation processing circuit is separately connected to each of the current detectors, and the detected currents iA (t) and iB (t) of the current detector are stored by this circuit. Also, after delaying for a certain period of time, the currents ΔiA and ΔiB of the difference between the detected current and the delayed current are obtained, and
And search for the time point Tm where ΔiB becomes maximum, and
Average value of detected current from Tm to the specified time To past ▲
DC electric railway feeders characterized by causing ▼ and ▲ ▼ to be calculated, and by using the data of the average values ▲ ▼ and ▲ ▼ output from each storage operation processing circuit Circuit fault location method.
JP59033692A 1984-02-22 1984-02-22 Fault location method for DC electric railway feeder circuit Expired - Lifetime JPH073450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59033692A JPH073450B2 (en) 1984-02-22 1984-02-22 Fault location method for DC electric railway feeder circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59033692A JPH073450B2 (en) 1984-02-22 1984-02-22 Fault location method for DC electric railway feeder circuit

Publications (2)

Publication Number Publication Date
JPS60177276A JPS60177276A (en) 1985-09-11
JPH073450B2 true JPH073450B2 (en) 1995-01-18

Family

ID=12393467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59033692A Expired - Lifetime JPH073450B2 (en) 1984-02-22 1984-02-22 Fault location method for DC electric railway feeder circuit

Country Status (1)

Country Link
JP (1) JPH073450B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6785069B2 (en) * 2016-06-02 2020-11-18 西日本旅客鉄道株式会社 Feeder circuit failure point identification system for electric railways and feeder circuit failure point identification method for electric railways
JP7005301B2 (en) * 2017-11-13 2022-01-21 株式会社東芝 Single point of failure identification system
WO2023175985A1 (en) * 2022-03-18 2023-09-21 日本電信電話株式会社 Estimation device, estimation method, and program
CN115993507B (en) * 2023-03-23 2023-05-30 成都交大运达电气有限公司 Fault distance measurement method of electrified railway traction power supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754873A (en) * 1980-08-15 1982-04-01 Bbc Brown Boveri & Cie Method of and apparatus for detecting direction in short-circuiting of electric device
JPS58117467A (en) * 1982-01-05 1983-07-13 Japanese National Railways<Jnr> Fault point identification system for dc line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754873A (en) * 1980-08-15 1982-04-01 Bbc Brown Boveri & Cie Method of and apparatus for detecting direction in short-circuiting of electric device
JPS58117467A (en) * 1982-01-05 1983-07-13 Japanese National Railways<Jnr> Fault point identification system for dc line

Also Published As

Publication number Publication date
JPS60177276A (en) 1985-09-11

Similar Documents

Publication Publication Date Title
US4251766A (en) Method and apparatus for determining the direction of a fault on a power transmission line
CN101355248B (en) Protective relay system
CN108597962B (en) Miniature circuit breaker and control method and system thereof
JPH05157783A (en) Apparatus for monitoring and measuring insulation of power supply system
JPH073450B2 (en) Fault location method for DC electric railway feeder circuit
US4208692A (en) Method and apparatus for detecting fault currents in electrical networks
US5710542A (en) Method of measuring the A.C. current in a conductor in an A.C. power transmission network
JPS6165829U (en)
JP2001305176A (en) Grounding point standardizing method for power distribution line
JP2001013196A (en) One terminal decision type accident point estimation device
JP3535395B2 (en) Short-circuit direction relay
JP3436775B2 (en) Discharger electrode wear rate measuring device
JPS5857059B2 (en) Distribution line short circuit protection method
JPS5917601B2 (en) DC feeding circuit high resistance ground fault detection device
JPH0299431A (en) Detecting relay for dc variation
JP2001033495A (en) Maximum current measuring device for electric power system
JP3183957B2 (en) Fault location device
JP3266962B2 (en) Excitation inrush current detection circuit
JPS6215009B2 (en)
JPS6051408A (en) Protecting relaying method
JP2001169457A (en) Electronic circuit breaker
JP2597653B2 (en) Fault location device
JPH06275432A (en) Quench detector of superconducting coil
JP2002027662A (en) Ground fault distance relay
JPS633536B2 (en)