JP2001012262A - Variable valve system of internal combustion engine - Google Patents

Variable valve system of internal combustion engine

Info

Publication number
JP2001012262A
JP2001012262A JP11177164A JP17716499A JP2001012262A JP 2001012262 A JP2001012262 A JP 2001012262A JP 11177164 A JP11177164 A JP 11177164A JP 17716499 A JP17716499 A JP 17716499A JP 2001012262 A JP2001012262 A JP 2001012262A
Authority
JP
Japan
Prior art keywords
cam
engine
reaction torque
angle
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11177164A
Other languages
Japanese (ja)
Other versions
JP3975246B2 (en
Inventor
Naoki Okamoto
直樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP17716499A priority Critical patent/JP3975246B2/en
Publication of JP2001012262A publication Critical patent/JP2001012262A/en
Application granted granted Critical
Publication of JP3975246B2 publication Critical patent/JP3975246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit the fluctuation of an operating angle by setting and outputting the driving current on the basis of the reaction torque equivalent current acting on a control shaft from an engine side and operated on the basis of a cam angle of a cam shaft operated on the basis of the number of revolution of the engine, and the operated current control amount. SOLUTION: As the reaction torque is synchronized with a cam angle of a cam shaft, a calculated value of the reaction torque to the cam angle is stored in a reaction torque equivalent current operating means B7 in advance. The reaction torque at that time can be immediately judged on the basis of the cam angle of the cam shaft operated by the cam angle operating means B6 on the basis of the detected number of revolutions of the engine, and the reaction torque equivalent current value can be easily determined on the basis of the reaction torque. The necessary current control amount operated by a current control operating means B5 is corrected on the basis of the reaction torque equivalent current value to make a target control shaft operating angle determined by a target operating angle operating means B3 on the basis of the number of revolutions of the engine and the engine load agree with the control shaft actual operating angle detected by a operating angle detecting means B4, and the driving current to a DC servo motor is determined and output to a PWN output determining means B8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の吸・排
気弁のリフト量(制御軸の作動角)を機関運転状態に応
じて可変にできる内燃機関の可変動弁装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable valve operating device for an internal combustion engine that can vary the lift amount (operating angle of a control shaft) of an intake / exhaust valve of the internal combustion engine according to the operating state of the engine.

【0002】[0002]

【従来の技術】周知のように、機関低速低負荷時におけ
る燃費の改善や安定した運転性並びに高速高負荷時にお
ける吸気の充填効率の向上による十分な出力を確保する
等のために、吸気・排気弁の開閉時期とバルブリフト量
を機関運転状態に応じて可変制御する可変動弁装置は従
来から種々提供されており、その一例として特開昭55
−137305号公報等に記載されているものが知られ
ている。
2. Description of the Related Art As is well known, in order to improve fuel efficiency at low engine low speed and low load, to ensure stable driving performance, and to secure sufficient output by improving intake air filling efficiency at high speed and high load, intake air intake and air intake are controlled. Various variable valve devices for variably controlling the opening / closing timing of an exhaust valve and the valve lift amount according to the engine operating state have been conventionally provided.
Japanese Patent No. 137305 is known.

【0003】図17に基づきその概略を説明すれば、シ
リンダヘッド1のアッパデッキの略中央近傍上方位置に
カム軸2が設けられていると共に、該カム軸2の外周に
カム2aが一体に設けられている。また、カム軸2の側
部には制御軸3が平行に配置されており、この制御軸3
に偏心カム4を介してロッカアーム5が揺動自在に軸支
されている。
Referring to FIG. 17, the camshaft 2 is provided at a position substantially above the center of the upper deck of the cylinder head 1, and a cam 2 a is integrally provided on the outer periphery of the camshaft 2. ing. A control shaft 3 is arranged in parallel on the side of the cam shaft 2.
A rocker arm 5 is pivotally supported via an eccentric cam 4.

【0004】一方、シリンダヘッド1に摺動自在に設け
られた吸気弁6の上端部には、バルブリフター7を介し
て揺動カム8が配置されている。この揺動カム8は、バ
ルブリフター7の上方にカム軸2と並行に配置された支
軸9に揺動自在に軸支され、下端のカム面8aがバルブ
リフター7の上面に当接している。また、前記ロッカア
ーム5は、一端部5aがカム2aの外周面に当接してい
ると共に、他端部5bが揺動カム8の上端面8bに当接
して、カム2aのリフトを揺動カム8及びバルブリフタ
ー7を介して吸気弁6に伝達するようになっている。そ
して、この吸気弁6は、バルブスプリング6aにより閉
弁方向に付勢されている。
On the other hand, at the upper end of an intake valve 6 slidably provided on the cylinder head 1, a swing cam 8 is arranged via a valve lifter 7. The swing cam 8 is swingably supported by a support shaft 9 disposed above the valve lifter 7 in parallel with the cam shaft 2, and a lower cam surface 8 a is in contact with the upper surface of the valve lifter 7. . The rocker arm 5 has one end 5a abutting on the outer peripheral surface of the cam 2a and the other end 5b abutting on the upper end surface 8b of the swing cam 8, thereby lifting the lift of the cam 2a. And, it transmits to the intake valve 6 via the valve lifter 7. The intake valve 6 is urged in a valve closing direction by a valve spring 6a.

【0005】また、前記制御軸3は、図18に示すよう
に、DCサーボモータ等の電磁アクチュエータにより、
減速ギアを介して所定角度範囲で回転駆動されて、偏心
カム4の回動位置を制御し、これによってロッカアーム
5の揺動支点を変化させるようになっている。
Further, as shown in FIG. 18, the control shaft 3 is controlled by an electromagnetic actuator such as a DC servomotor.
The eccentric cam 4 is rotated and driven within a predetermined angle range via a reduction gear, thereby controlling the rotation position of the eccentric cam 4, thereby changing the swing fulcrum of the rocker arm 5.

【0006】そして、図17において、偏心カム4が正
逆の所定回動位置に制御されるとロッカアーム5の揺動
支点が変化して、他端部5bの揺動カム8の上端面8b
に対する当接位置が図中上下方向に変化し、これによっ
て揺動カム8のカム面8aのバルブリフター7上面に対
する当接位置の変化に伴い、揺動カム8の揺動軌跡が変
化することにより、吸気弁6の開閉時期とバルブリフト
量を制御軸3の作動角の変化に伴って可変制御するよう
になっている。なお、図中の符号10は、揺動カム8の
上端面8bを常時ロッカアーム5の他端部5bに弾接付
勢するスプリングを示す。
In FIG. 17, when the eccentric cam 4 is controlled to a predetermined rotation position in the normal and reverse directions, the swing fulcrum of the rocker arm 5 changes, and the upper end face 8b of the swing cam 8 at the other end 5b.
Is changed in the vertical direction in the figure, whereby the swing locus of the swing cam 8 changes with the change of the contact position of the cam surface 8a of the swing cam 8 with the upper surface of the valve lifter 7. The opening / closing timing of the intake valve 6 and the valve lift amount are variably controlled according to a change in the operating angle of the control shaft 3. Reference numeral 10 in the drawing indicates a spring that constantly biases the upper end surface 8b of the swing cam 8 against the other end 5b of the rocker arm 5.

【0007】また、上記のように、吸気弁6の開閉時期
及びバルブリフト量を、ロッカアーム5の揺動支点を変
化させることによって可変に制御する構成の可変動弁装
置においては、一般的に、図10のシステム図に示すよ
うに、前記揺動支点を変化させるための制御軸3の作動
角をポテンショメータ等の作動角センサによって検出
し、この検出された作動角信号に基づき、制御装置で
は、位置サーボコントローラ(線形コントローラ)にお
いて、検出された作動角信号と目標制御軸作動角とを比
較し、差が零になるように、PWM(パルスワイズモジ
ュレーション)出力設定手段を介してDCサーボモータ
に駆動電流を出力することにより、制御軸3の作動角を
目標のバルブ特性に対応する目標制御軸作動角に一致さ
せるような作動角をベースとしたフィードバック制御が
行われるようになっていた。
Further, as described above, in a variable valve operating apparatus having a configuration in which the opening / closing timing and valve lift of the intake valve 6 are variably controlled by changing the swing fulcrum of the rocker arm 5, As shown in the system diagram of FIG. 10, the operating angle of the control shaft 3 for changing the swing fulcrum is detected by an operating angle sensor such as a potentiometer, and based on the detected operating angle signal, the control device In the position servo controller (linear controller), the detected operating angle signal is compared with the target control axis operating angle, and the DC servo motor is connected to the DC servo motor via PWM (pulse width modulation) output setting means so that the difference becomes zero. By outputting the drive current, the operating angle of the control shaft 3 is adjusted to the target control shaft operating angle corresponding to the target valve characteristic. Scan and the feedback control had come to be carried out.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述の
従来装置では、上述のように、位置サーボコントローラ
において、目標制御軸作動角と検出作動角の情報のみを
基に、作動角をベースとしたフィードバックバック制御
を行うようにしたものであったため、以下に述べるよう
な問題点があった。
However, in the above-described conventional apparatus, as described above, the position servo controller uses the feedback based on the operating angle only based on the information on the target control axis operating angle and the detected operating angle. Since the back control is performed, there are problems as described below.

【0009】即ち、上述のように、制御軸3に偏心カム
4を介してロッカアーム5が揺動自在に軸支され、この
ロッカアーム5は、一端部5aがカム2aの外周面に当
接していると共に、他端部5bが揺動カム8の上端面8
bに当接して、カム2aのリフトを揺動カム8及びバル
ブリフター7を介して吸気弁6に伝達するようになって
いることから、バルブスプリング6aの反力等に起因す
る反力トルクが、バルブリフター7、揺動カム8および
ロッカアーム5を介して制御軸3に外乱として伝達され
る。
That is, as described above, the rocker arm 5 is pivotally supported by the control shaft 3 via the eccentric cam 4, and one end 5a of the rocker arm 5 is in contact with the outer peripheral surface of the cam 2a. At the same time, the other end 5b is connected to the upper end face 8 of the swing cam 8.
b, the lift of the cam 2a is transmitted to the intake valve 6 via the swing cam 8 and the valve lifter 7, so that the reaction force torque due to the reaction force of the valve spring 6a is reduced. Is transmitted to the control shaft 3 as disturbance via the valve lifter 7, the swing cam 8 and the rocker arm 5.

【0010】そして、制御軸作動角のフィードバック制
御において、作動角をベースとした制御は、制御遅れが
大きいため、作動角が所定角度位置に保持された状態に
ある定位置制御中において、図12に示すように、前記
反力トルクに基づく制御偏差が発生するもので、特に、
エンジン回転数が高回転数において反力トルクに基づく
制御偏差が顕著に現れ、このため、可変動弁装置として
の制御精度が損なわれ、十分なエンジン出力の向上効果
や、燃費低減効果が得られなくなる。
In the feedback control of the control shaft operating angle, since the control based on the operating angle has a large control delay, during the fixed position control in which the operating angle is maintained at the predetermined angle position, the control shown in FIG. As shown in the figure, a control deviation based on the reaction torque is generated.
When the engine speed is high, a control deviation based on the reaction torque appears remarkably, which impairs the control accuracy of the variable valve device, and provides a sufficient effect of improving the engine output and reducing the fuel consumption. Disappears.

【0011】本発明は、上述の従来の問題点に着目して
なされたもので、制御軸作動角の定位置制御中におい
て、カムやロッカアーム等を通じて制御軸に伝わるバル
ブスプリング反力等に起因する非線形特性である反力ト
ルク(エンジン回転数、作動角毎に変動)に基づいて発
生する作動角変動を抑制することで、制御精度の低下を
防止し、これにより、十分なエンジン出力向上効果およ
び燃費低減効果が得られる内燃機関の可変動弁装置を提
供することを目的とし、さらに、気筒毎に相違する反力
トルクによる制御ずれを吸収することで、より安定した
作動角変動抑制効果を得ることを追加の目的とするもの
である。
The present invention has been made in view of the above-mentioned conventional problems, and is caused by a valve spring reaction force transmitted to a control shaft through a cam, a rocker arm, or the like during control of the control shaft operating angle at a fixed position. By suppressing the fluctuation of the operating angle generated based on the reaction torque (variable for each engine speed and operating angle) which is a non-linear characteristic, it is possible to prevent a decrease in control accuracy, thereby achieving a sufficient engine output improving effect and It is an object of the present invention to provide a variable valve operating device for an internal combustion engine capable of reducing fuel consumption, and to obtain a more stable operation angle fluctuation suppressing effect by absorbing a control deviation due to a reaction torque different for each cylinder. It is for an additional purpose.

【0012】[0012]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明請求項1記載の内燃機関の可変動弁装置で
は、カム軸と略平行に配設された制御軸と、該制御軸の
外周に偏心して固定された制御カムと、該制御カムに揺
動自在に軸支されたロッカアームと、前記カム軸の回転
に応じて前記ロッカアームの一端部を揺動駆動する揺動
駆動手段と、前記ロッカアームの他端部に連係して揺動
して機関弁を開作動させる揺動カムと、前記機関弁を閉
じる方向に付勢するバルブスプリングと、前記制御軸の
作動角を検出する作動角検出手段と、前記制御軸を目標
制御軸作動角に回転駆動する電磁アクチュエータと、機
関の回転数を検出する機関回転数検出手段と、機関の運
転状態に応じた目標制御軸作動角を演算する目標作動角
演算手段と、該目標作動角演算手段で演算された目標制
御軸作動角と前記作動角検出手段で検出された制御軸実
作動角とを一致させるために必要な電流制御量を演算す
る電流制御量演算手段と、前記機関回転数検出手段で検
出された機関の回転数から前記カム軸のカム角を演算す
るカム角演算手段と、該カム角演算手段で演算されたカ
ム軸のカム角より機関側から制御軸に作用する反力トル
ク相当電流を演算する反力トルク相当電流演算手段と、
該反力トルク相当電流演算手段で演算された反力トルク
相当電流と前記電流制御量演算手段で演算された電流制
御量に基づき前記電磁アクチュエータに対する駆動電流
を設定出力する出力設定手段と、を備えている手段とし
た。
According to a first aspect of the present invention, there is provided a variable valve apparatus for an internal combustion engine, comprising: a control shaft disposed substantially parallel to a cam shaft; A control cam eccentrically fixed to the outer periphery of the shaft, a rocker arm pivotally supported by the control cam, and a rocking drive means for rocking one end of the rocker arm in accordance with the rotation of the cam shaft A swing cam that swings in association with the other end of the rocker arm to open the engine valve, a valve spring that biases the engine valve in a closing direction, and detects an operating angle of the control shaft. Operating angle detecting means, an electromagnetic actuator for rotating the control shaft to a target control axis operating angle, engine speed detecting means for detecting the engine speed, and a target control shaft operating angle according to the operating state of the engine. Target operating angle calculating means for calculating; Current control amount calculating means for calculating a current control amount required to make the target control axis operating angle calculated by the operating angle calculating means coincide with the control axis actual operating angle detected by the operating angle detecting means; A cam angle calculating means for calculating a cam angle of the cam shaft from an engine speed detected by the engine speed detecting means; and a cam shaft calculated from the cam angle calculated by the cam angle calculating means to a control shaft from the engine side. Reaction torque equivalent current calculating means for calculating a reaction torque equivalent current to act on;
Output setting means for setting and outputting a drive current for the electromagnetic actuator based on the reaction torque equivalent current calculated by the reaction torque equivalent current calculation means and the current control amount calculated by the current control amount calculation means. That means.

【0013】請求項2記載の内燃機関の可変動弁装置で
は、請求項1記載の内燃機関の可変動弁装置において、
機関の負荷を検出する機関負荷検出手段を備え、前記目
標作動角演算手段が、前記機関回転数検出手段で検出さ
れた機関の回転数と、前記機関負荷検出手段で検出され
た機関の負荷から機関の運転状態に応じた目標制御軸作
動角を演算するように構成されれている手段とした。
According to a second aspect of the present invention, there is provided a variable valve operating system for an internal combustion engine according to the first aspect.
An engine load detecting means for detecting a load of the engine, wherein the target operating angle calculating means calculates an engine load based on an engine speed detected by the engine speed detecting means and an engine load detected by the engine load detecting means. The means is configured to calculate a target control shaft operating angle according to the operating state of the engine.

【0014】請求項3記載の内燃機関の可変動弁装置で
は、請求項1まはた2に記載の内燃機関の可変動弁装置
において、前記カム角演算手段で演算されたカム軸のカ
ム角より現在機関弁が開作動している気筒を判別し各気
筒別の反力トルク係数を演算する気筒別反力トルク係数
演算手段を備え、前記出力設定手段では、前記気筒別反
力トルク係数演算手段で判別された開作動気筒の反力ト
ルク係数を前記反力トルク相当電流演算手段で演算され
た反力トルク相当電流に乗じた電流値と前記電流制御量
演算手段で演算された電流制御量に基づき前記電磁アク
チュエータに対する駆動電流を設定出力するように構成
されている手段とした。
According to a third aspect of the present invention, in the variable valve operating apparatus for an internal combustion engine according to the first or second aspect, the cam angle of the cam shaft calculated by the cam angle calculating means is provided. The engine further comprises cylinder-specific reaction torque coefficient calculating means for determining a cylinder in which the engine valve is currently open and calculating a reaction torque coefficient for each cylinder, wherein the output setting means calculates the reaction torque coefficient for each cylinder. A current value obtained by multiplying the reaction torque coefficient of the open cylinder determined by the means by the reaction torque equivalent current calculated by the reaction torque equivalent current calculation means, and a current control amount calculated by the current control amount calculation means. Means for setting and outputting a drive current to the electromagnetic actuator based on the above.

【0015】[0015]

【作用】本発明の内燃機関の可変動弁装置では、上述の
ように構成されるため、作動角検出手段で検出された制
御軸の作動角信号に基づいて、目標作動角演算手段で演
算された機関の運転状態に応じた目標制御軸作動角に回
転駆動させるべく電磁アクチュエータへの駆動電流のフ
ィードバック制御が行われる。
In the variable valve operating apparatus for an internal combustion engine according to the present invention, the target operating angle is calculated by the target operating angle calculating means based on the operating angle signal of the control shaft detected by the operating angle detecting means. Feedback control of the drive current to the electromagnetic actuator is performed so as to rotate and drive to the target control shaft operating angle according to the operating state of the engine.

【0016】そして、前記電流制御量演算手段では、目
標制御軸作動角と制御軸実作動角とを一致させるために
必要な電流制御量の演算が行われる一方で、反力トルク
相当電流演算手段では、カム角演算手段で演算されたカ
ム軸のカム角より機関側から制御軸に作用する反力トル
ク相当電流の演算が行われ、続く出力設定手段では、該
反力トルク相当電流と前記電流制御量演算手段で演算さ
れた電流制御量に基づき前記電磁アクチュエータに対す
る駆動電流の設定出力が行われるもので、前記電流制御
量演算手段においては、目標制御軸作動角変化に応じ作
動角をベースとした制御軸作動角制御がなされ、反力ト
ルク相当電流演算手段では、反力トルクによる影響をキ
ャンセルする補正制御がなされることにより、制御軸作
動角の定位置制御中において、カムやロッカアーム等を
通じて制御軸に伝わるバルブスプリング反力等に起因す
る非線形特性である反力トルク(エンジン回転数、作動
角毎に変動)に基づいて発生する作動角変動を抑制する
ように作用する。
The current control amount calculating means calculates a current control amount required to make the target control axis operating angle coincide with the control shaft actual operating angle. Then, a reaction torque equivalent current acting on the control shaft from the engine side is calculated from the cam angle of the cam shaft calculated by the cam angle calculation means, and the subsequent output setting means calculates the reaction torque equivalent current and the current. The setting and output of the drive current to the electromagnetic actuator are performed based on the current control amount calculated by the control amount calculation means.The current control amount calculation means uses an operation angle based on a change in a target control axis operation angle as a base. The control shaft operating angle is controlled, and the reaction torque equivalent current calculation means performs correction control to cancel the effect of the reaction torque, thereby controlling the control shaft operating angle at a fixed position. In order to suppress the operating angle fluctuation generated based on the reaction torque (variable for each engine speed and operating angle), which is a non-linear characteristic due to the valve spring reaction force transmitted to the control shaft through the cam and the rocker arm, etc. Works.

【0017】請求項3記載の内燃機関の可変動弁装置で
は、気筒別反力トルク係数演算手段において、前記カム
角演算手段で演算されたカム軸のカム角より現在機関弁
が開作動している気筒を判別し各気筒別の反力トルク係
数の演算が行われ、出力設定手段では、判別された開作
動気筒の反力トルク係数を前記反力トルク相当電流演算
手段で演算された反力トルク相当電流に乗じた電流値と
前記電流制御量演算手段で演算された電流制御量に基づ
き前記電磁アクチュエータに対する駆動電流の設定が行
われるもので、これにより、反力トルクが機関の気筒毎
に相違することによる各気筒間の制御ずれが吸収され、
より安定した作動角変動抑制がなされる。
According to a third aspect of the present invention, in the variable valve operating apparatus for an internal combustion engine, in the cylinder-specific reaction torque coefficient calculating means, the current engine valve is opened based on the cam angle of the cam shaft calculated by the cam angle calculating means. The cylinders that are present are determined, the reaction torque coefficient of each cylinder is calculated, and the output setting means calculates the reaction torque coefficient of the determined open-operation cylinder by the reaction force calculated by the reaction torque equivalent current calculation means. The drive current for the electromagnetic actuator is set based on the current value multiplied by the torque-equivalent current and the current control amount calculated by the current control amount calculation means, whereby the reaction torque is set for each cylinder of the engine. The control deviation between each cylinder due to the difference is absorbed,
More stable operation angle fluctuation suppression is performed.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 (発明の実施の形態1)図1〜図3は、本発明の実施の
形態1における内燃機関(エンジン)の可変動弁装置を
示すものであり、1気筒あたり2つ備えられる吸気弁の
可変動弁機構VEL(以下、VEL機構という)として
以下に説明する。但し、機関弁を吸気弁に限定するもの
ではなく、また、吸気弁の数を限定するものでないこと
は明らかである。
Embodiments of the present invention will be described below. (First Embodiment of the Invention) FIGS. 1 to 3 show a variable valve apparatus of an internal combustion engine (engine) according to a first embodiment of the present invention, in which two intake valves are provided for each cylinder. This will be described below as a variable valve mechanism VEL (hereinafter, referred to as a VEL mechanism). However, it is clear that the engine valve is not limited to the intake valve and the number of intake valves is not limited.

【0019】図1〜図3に示す可変動弁装置は、シリン
ダヘッド11にバルブガイド(図示省略)を介して摺動
自在に設けられた一対の吸気弁12,12と、シリンダ
ヘッド11上部のカム軸受14に回転自在に支持された
中空状のカム軸13と、該カム軸13に、圧入等により
固設された回転カムである2つの偏心カム15,15
と、前記カム軸13の上方位置に同じカム軸受14に回
転自在に支持された制御軸16と、該制御軸16に制御
カム17を介して揺動自在に支持された一対のロッカア
ーム18,18と、各吸気弁12,12の上端部にバル
ブリフター19,19を介して配置された一対のそれぞ
れ独立した揺動カム20,20と、各吸気弁12,12
を閉弁方向に付勢するバルブスプリング33,33とを
備えている。
The variable valve apparatus shown in FIGS. 1 to 3 has a pair of intake valves 12 and 12 slidably provided on a cylinder head 11 via a valve guide (not shown), A hollow camshaft 13 rotatably supported by a cam bearing 14, and two eccentric cams 15, 15 which are rotary cams fixed to the camshaft 13 by press fitting or the like.
A control shaft 16 rotatably supported by the same cam bearing 14 above the cam shaft 13, and a pair of rocker arms 18, 18 rotatably supported by the control shaft 16 via a control cam 17. A pair of independent swing cams 20 and 20 disposed at the upper ends of the intake valves 12 and 12 via valve lifters 19 and 19;
And valve springs 33 for biasing the valve spring in the valve closing direction.

【0020】また、前記偏心カム15,15とロッカア
ーム18,18とはリンクアーム25,25によって連
係される一方、ロッカアーム18,18と揺動カム2
0,20とはリンク部材26,26によって連係されて
いる。前記カム軸13は、機関前後方向(シリンダ列方
向)に沿って配置されていると共に、一端部に設けられ
た従動スプロケット(図示省略)や該従動スプロケット
に巻装されたタイミングチェーン等を介して機関のクラ
ンク軸から回転力が伝達される。
The eccentric cams 15, 15 and the rocker arms 18, 18 are linked by link arms 25, 25, while the rocker arms 18, 18 and the swing cam 2 are linked.
0 and 20 are linked by link members 26 and 26. The camshaft 13 is disposed along the engine front-rear direction (cylinder row direction), and also via a driven sprocket (not shown) provided at one end or a timing chain wound around the driven sprocket. Torque is transmitted from the crankshaft of the engine.

【0021】前記カム軸受14は、シリンダヘッド11
の上端部に設けられてカム軸13の上部を支持するメイ
ンブラケット14aと、該メインブラケット14aの上
端部に設けられて制御軸16を回転自在に支持するサブ
ブラケット14bとを有し、両ブラケット14a,14
bが一対のボルト14c,14cによって上方から共締
め固定されている。
The cam bearing 14 is mounted on the cylinder head 11.
A main bracket 14a provided at an upper end portion of the main bracket 14 and supporting an upper portion of the camshaft 13, and a sub-bracket 14b provided at an upper end portion of the main bracket 14a and rotatably supporting the control shaft 16; 14a, 14
b is fixed together from above by a pair of bolts 14c, 14c.

【0022】前記両偏心カム15は、図4にも示すよう
に、略リング状を呈し、小径なカム本体15aと、該カ
ム本体15aの外端面に一体に設けられたフランジ部1
5bとからなり、内部軸方向にカム軸挿通孔15cが貫
通形成されていると共に、カム本体15aの軸心Xがカ
ム軸13の軸心Yから径方向へ所定量だけ偏心してい
る。
As shown in FIG. 4, the two eccentric cams 15 have a substantially ring shape and have a small-diameter cam body 15a and a flange 1 provided integrally on the outer end surface of the cam body 15a.
5b, the cam shaft insertion hole 15c is formed in the inner axial direction, and the axis X of the cam body 15a is eccentric by a predetermined amount in the radial direction from the axis Y of the cam shaft 13.

【0023】また、この各偏心カム15は、カム軸13
に対し前記両バルブリフター19,19に干渉しない両
外側にカム軸挿通孔15cを介して圧入固定されている
と共に、両方のカム本体15a,15aの外周面15
d,15dが同一のカムプロフィールに形成されてい
る。
Each of the eccentric cams 15 has a camshaft 13
, Are press-fitted and fixed via cam shaft insertion holes 15c on both outer sides not interfering with the valve lifters 19, 19, and the outer peripheral surfaces 15 of both cam bodies 15a, 15a.
d and 15d are formed in the same cam profile.

【0024】前記各ロッカアーム18は、図3に示すよ
うに、平面からみて略クランク状に折曲形成され、中央
に有する基部18aが制御カム17に回転自在に支持さ
れている。また、各基部18aの各外端部に突設された
一端部18bには、リンクアーム25の先端部と連結す
るピン21が圧入されるピン孔18dが貫通形成されて
いる一方、各筒状基部18aの各内端部に夫々突設され
た他端部18cには、各リンク部材26の後述する一端
部26aと連結するピン28が圧入されるピン孔18e
が形成されている。
As shown in FIG. 3, each of the rocker arms 18 is bent substantially in a crank shape when viewed from a plane, and a base 18a at the center is rotatably supported by the control cam 17. A pin hole 18d into which the pin 21 connected to the distal end of the link arm 25 is press-fitted is formed through one end 18b protruding from each outer end of each base 18a, while each cylindrical shape is formed. A pin hole 18e into which a pin 28 connected to one end 26a of each link member 26 described later is press-fitted is inserted into the other end 18c protruding from each inner end of the base 18a.
Are formed.

【0025】前記各制御カム17は、夫々円筒状を呈
し、制御軸16外周に固定されていると共に、図1に示
すように軸心P1位置が制御軸16の軸心P2からαだ
け偏心している。
Each of the control cams 17 has a cylindrical shape and is fixed to the outer periphery of the control shaft 16, and the position of the axis P1 is eccentric from the axis P2 of the control shaft 16 by α as shown in FIG. I have.

【0026】前記揺動カム20は、図1及び図6,図7
に示すように略横U字形状を呈し、略円環状の基端部2
2にカム軸13が嵌挿されて回転自在に支持される支持
孔22aが貫通形成されていると共に、ロッカアーム1
8の他端部18c側に位置する端部23にピン孔23a
が貫通形成されている。
The swing cam 20 is shown in FIGS.
As shown in the figure, the base end portion 2 has a substantially horizontal U-shape and has a substantially annular shape.
2 has a support hole 22a through which the camshaft 13 is inserted and rotatably supported.
8 is provided with a pin hole 23a at the end 23 located on the other end 18c side.
Are formed through.

【0027】また、揺動カム20の下面には、基端部2
2側の基円面24aと該基円面24aから端部23端縁
側に円弧状に延びるカム面24bとが形成されており、
該基円面24aとカム面24bとが、揺動カム20の揺
動位置に応じて各バルブリフター19の上面所定位置に
当接するようになっている。
The lower end of the oscillating cam 20 has a base end 2.
A base circular surface 24a on the two sides and a cam surface 24b extending in an arc shape from the base circular surface 24a toward the end edge of the end portion 23 are formed.
The base circular surface 24a and the cam surface 24b abut on a predetermined position on the upper surface of each valve lifter 19 according to the swing position of the swing cam 20.

【0028】すなわち、図5に示すバルブリフト特性か
らみると、図1に示すように基円面24aの所定角度範
囲θ1がべースサークル区間になり、カム面24bの前
記べースサークル区間θ1から所定角度範囲θ2がいわ
ゆるランプ区間となり、さらにカム面24bのランプ区
間θ2から所定角度範囲θ3がリフト区間になるように
設定されている。
That is, in view of the valve lift characteristics shown in FIG. 5, a predetermined angle range θ1 of the base circular surface 24a is a base circle section as shown in FIG. 1, and a predetermined angle range from the base circle section θ1 of the cam surface 24b. The range θ2 is set to be a so-called ramp section, and the predetermined angle range θ3 from the ramp section θ2 of the cam surface 24b is set to be a lift section.

【0029】また、前記リンクアーム25は、比較的大
径な円環状の基部25aと、該基部25aの外周面所定
位置に突設された突出端25bとを備え、基部25aの
中央位置には、前記偏心カム15のカム本体15aの外
周面に回転自在に嵌合する嵌合穴25cが形成されてい
る一方、突出端25bには、前記ピン21が回転自在に
挿通するピン孔25dが貫通形成されている。なお、前
記リンクアーム25と偏心カム15とによって揺動駆動
手段が構成される。
The link arm 25 has a relatively large annular base 25a and a protruding end 25b projecting from a predetermined position on the outer peripheral surface of the base 25a. The eccentric cam 15 has a cam hole 15c rotatably fitted on the outer peripheral surface of the cam main body 15a, while a protruding end 25b has a pin hole 25d through which the pin 21 is rotatably inserted. Is formed. Note that the link arm 25 and the eccentric cam 15 constitute a swing drive unit.

【0030】さらに、前記リンク部材26は、図1にも
示すように所定長さの直線状に形成され、円形状の両端
部26a,26bには前記ロッカアーム18の他端部1
8cと揺動カム20の端部23の各ピン孔18d,23
aに圧入した各ピン28,29の端部が回転自在に挿通
するピン挿通孔26c,26dが貫通形成されている。
なお、各ピン21,28,29の一端部には、リンクア
ーム25やリンク部材26の軸方向の移動を規制するス
ナップリング30,31,32が設けられている。
Further, as shown in FIG. 1, the link member 26 is formed in a linear shape having a predetermined length, and circular end portions 26a and 26b have the other end 1 of the rocker arm 18 attached thereto.
8c and each pin hole 18d, 23 of the end 23 of the swing cam 20.
Pin insertion holes 26c and 26d through which the ends of the pins 28 and 29 press-fitted into a are rotatably inserted are formed.
At one end of each of the pins 21, 28, 29, snap rings 30, 31, 32 for regulating the axial movement of the link arm 25 and the link member 26 are provided.

【0031】前記制御軸16は、一端部に設けられた電
磁アクチュエータを構成するDCサーボモータ101に
よって所定回転角度範囲内で回転駆動されるようになっ
ており、図9に示すように、前記DCサーボモータ10
1は、制御軸作動角制御手段としての制御装置CPUか
らの駆動電流によって制御されるようになっている。前
記制御装置CPUは、機関(エンジン)回転数を検出す
る機関(エンジン)回転数センサ103、機関(エンジ
ン)の負荷を検出する機関(エンジン)負荷センサ10
4等の各種のセンサからの検出信号に基づいて現在の機
関運転状態を検出して、該検出された機関運転状態に応
じて目標のバルブ特性を決定し、該目標のバルブ特性に
対応する角度位置に制御軸16を駆動すべく、作動角セ
ンサ102で検出された制御軸実作動角に基づき、前記
DCサーボモータ101に駆動信号(駆動電流)を出力
する。なお、制御装置CPUの構成内容については、後
述する。
The control shaft 16 is rotatably driven within a predetermined rotation angle range by a DC servo motor 101 constituting an electromagnetic actuator provided at one end, and as shown in FIG. Servo motor 10
Reference numeral 1 is controlled by a drive current from a control device CPU as a control shaft operating angle control means. The control device CPU includes an engine (engine) speed sensor 103 for detecting an engine (engine) speed, and an engine (engine) load sensor 10 for detecting a load on the engine (engine).
4 to detect a current engine operating state based on detection signals from various sensors, determine a target valve characteristic according to the detected engine operating state, and determine an angle corresponding to the target valve characteristic. In order to drive the control shaft 16 to the position, a drive signal (drive current) is output to the DC servomotor 101 based on the control shaft actual operating angle detected by the operating angle sensor 102. The configuration of the control device CPU will be described later.

【0032】以下、上記可変動弁装置の作用を説明すれ
ば、まず、機関の低速低負荷時には、制御装置CPUか
らの制御信号(駆動電流)によってDCサーボモータ1
01が一方に回転駆動される。このため、制御カム17
は、軸心P1が図6A,Bに示すように制御軸16の軸
心P2から左上方の回動位置に保持され、厚肉部17a
がカム軸13から上方向に離間移動する。このため、ロ
ッカアーム18は、全体がカム軸13に対して上方向へ
移動し、これにより、各揺動カム20は、リンク部材2
6を介して端部23が強制的に若干引き上げられて全体
が左方向へ回動する。
In the following, the operation of the variable valve operating device will be described. First, when the engine is running at a low speed and low load, the DC servo motor 1 is controlled by a control signal (drive current) from the control unit CPU.
01 is rotationally driven to one side. Therefore, the control cam 17
6A and 6B, the axis P1 is held at the upper left rotation position from the axis P2 of the control shaft 16, and the thick portion 17a
Moves upward from the camshaft 13. As a result, the entire rocker arm 18 moves upward with respect to the cam shaft 13, whereby each swing cam 20 is connected to the link member 2.
6, the end 23 is forcibly pulled up slightly and the whole is turned to the left.

【0033】従って、図6A,Bに示すように偏心カム
15が回転してリンクアーム25を介してロッカアーム
18の一端部18bを押し上げると、そのリフト量がリ
ンク部材26を介して揺動カム20及びバルブリフター
19に伝達されるが、そのリフト量L1は図6Bに示す
ように比較的小さくなる。
Therefore, as shown in FIGS. 6A and 6B, when the eccentric cam 15 rotates and pushes up one end 18 b of the rocker arm 18 via the link arm 25, the lift amount of the rocker cam 20 is increased via the link member 26. The lift amount L1 is relatively small as shown in FIG. 6B.

【0034】よって、かかる低速低負荷域では、図8の
破線で示すようにバルブリフト量が小さくなると共に、
各吸気弁12の開時期が遅くなり(作動角が小さくな
り)、排気弁とのバルブオーバラップが小さくなる。こ
のため、燃費の向上と機関の安定した回転が得られる。
Therefore, in such a low speed and low load range, the valve lift becomes small as shown by the broken line in FIG.
The opening timing of each intake valve 12 is delayed (operating angle is reduced), and the valve overlap with the exhaust valve is reduced. For this reason, improvement in fuel consumption and stable rotation of the engine can be obtained.

【0035】一方、機関の高速高負荷時に移行した揚合
は、制御装置CPUからの制御信号によってDCサーボ
モータ101が反対方向に回転駆動される。従って、図
7A,Bに示すように制御軸16が、制御カム17を図
6に示す位置から時計方向に回転させ、軸心P1(厚肉
部17a)を下方向へ移動させる。このため、ロッカア
ーム18は、今度は全体がカム軸13方向(下方向)に
移動して、他端部18cが揺動カム20の上端部23を
リンク部材26を介して下方へ押圧して該揺動カム20
全体を所定量だけ時計方向へ回動させる。
On the other hand, when the engine shifts at the time of high speed and high load of the engine, the DC servomotor 101 is rotationally driven in the opposite direction by the control signal from the control device CPU. Accordingly, as shown in FIGS. 7A and 7B, the control shaft 16 rotates the control cam 17 clockwise from the position shown in FIG. 6, and moves the shaft center P1 (thick portion 17a) downward. Therefore, the rocker arm 18 moves in the direction of the camshaft 13 (downward) as a whole, and the other end portion 18c pushes the upper end portion 23 of the swing cam 20 downward via the link member 26, thereby causing the rocker arm 18 to move downward. Swing cam 20
The whole is rotated clockwise by a predetermined amount.

【0036】従って、揺動カム20のバルブリフター1
9上面に対する下面の当接位置が図7A,Bに示すよう
に左方向位置に移動する。このため、図7に示すように
偏心カム15が回転してロッカアーム18の一端部18
bをリンクアーム25を介して押し上げると、バルブリ
フター19に対するそのリフト量L2は図7Bに示すよ
うに大きくなる。
Accordingly, the valve lifter 1 of the swing cam 20
The contact position of the lower surface with respect to the upper surface 9 moves to the left position as shown in FIGS. 7A and 7B. For this reason, the eccentric cam 15 rotates as shown in FIG.
When b is pushed up via the link arm 25, the lift amount L2 with respect to the valve lifter 19 increases as shown in FIG. 7B.

【0037】よって、かかる高速高負荷域では、カムリ
フト特性が低速低負荷域に比較して大きくなり、図8に
実線で示すようにバルブリフト量(作動角)も大きくな
ると共に、各吸気弁12の開時期が早く、閉時期が遅く
なる。この結果、吸気充填効率が向上し、十分な出力が
確保できる。
Therefore, in such a high-speed, high-load region, the cam lift characteristics are larger than those in the low-speed, low-load region, and the valve lift (operating angle) is increased as shown by the solid line in FIG. The opening timing is earlier and the closing timing is later. As a result, the intake charging efficiency is improved, and a sufficient output can be secured.

【0038】ところで、上記可変動弁装置においては、
目標のバルブ特性に対応する角度位置に制御軸16を駆
動し、実際のバルブ特性を前記目標のバルブ特性に制御
するが、前記制御軸16の駆動精度や、前記制御軸16
の角度位置とバルブ特性との関係にばらつきがあると、
目標のバルブ特性に精度よく実際のバルブ特性を制御す
ることができなくなる。
By the way, in the above variable valve device,
The control shaft 16 is driven to an angular position corresponding to the target valve characteristic to control the actual valve characteristic to the target valve characteristic.
If there is a variation in the relationship between the angle position and the valve characteristics,
The actual valve characteristics cannot be accurately controlled to the target valve characteristics.

【0039】そこで、従来例として示したように、図1
0のシステム図、および、図11のブロック図に示すよ
うに、前記揺動支点を変化させるための制御軸3の作動
角(回転位置)をポテンショメータ等の作動角センサに
よって検出し、この検出された作動角信号に基づき、制
御装置に備えた位置サーボコントローラ(線形コントロ
ーラ)において、検出結果としての作動角と目標制御軸
作動角とを比較し、制御軸3の作動角(回転位置)を目
標のバルブ特性に対応する目標制御軸作動角(回転位
置)となるようにDCサーボモータに対する駆動制御信
号を、作動角をベースとしてフィードバック制御するよ
うになっている。なお、前記DCサーボモータと制御軸
3との間には減速ギアが介装されている。
Therefore, as shown as a conventional example, FIG.
As shown in the system diagram of FIG. 0 and the block diagram of FIG. 11, the operating angle (rotational position) of the control shaft 3 for changing the swing fulcrum is detected by an operating angle sensor such as a potentiometer. Based on the operating angle signal, the position servo controller (linear controller) provided in the control device compares the operating angle as a detection result with the target control shaft operating angle, and sets the operating angle (rotational position) of the control shaft 3 to the target. The drive control signal for the DC servomotor is feedback-controlled based on the operating angle so that the target control shaft operating angle (rotational position) corresponding to the valve characteristic of (1) is obtained. Note that a reduction gear is interposed between the DC servo motor and the control shaft 3.

【0040】ところが、可変動弁装置においては、図1
に示すように、ロッカアーム18,18と揺動カム2
0,20とはリンク部材26,26によって連係されて
いることから、図12のVEL機構ブロック図に示すよ
うに、各バルブスプリング33,33の反力や燃焼圧等
に起因する反力トルクが、バルブリフター19、揺動カ
ム20,20、リンク部材26,26およびロッカアー
ム18を介し、DCサーボモータ101の発生トルクが
伝達される機械機構の制御軸16に伝達される。
However, in the variable valve system, FIG.
As shown in FIG.
As shown in the VEL mechanism block diagram of FIG. 12, the reaction force torque generated by the reaction force of each of the valve springs 33, 33 and the combustion pressure, etc., is linked to 0, 20 by the link members 26, 26. The torque generated by the DC servomotor 101 is transmitted to the control shaft 16 of the mechanical mechanism via the valve lifter 19, the swing cams 20, 20, the link members 26, 26, and the rocker arm 18.

【0041】そして、制御軸作動角のフィードバック制
御において、作動角をベースとした制御は、制御遅れが
大きいため、作動角が所定角度位置に保持された状態に
ある定位置制御中において、図12に示すように、前記
反力トルクに基づく制御偏差が発生するもので、特に、
エンジン回転数が高回転数において反力トルクに基づく
制御偏差が顕著に現れ、このため、可変動弁装置として
の制御精度が損なわれ、十分なエンジン出力の向上効果
や、燃費低減効果が得られなくなる。
In the feedback control of the operating angle of the control shaft, since the control based on the operating angle has a large control delay, during the fixed position control in which the operating angle is maintained at the predetermined angle position, the control shown in FIG. As shown in the figure, a control deviation based on the reaction torque is generated.
When the engine speed is high, a control deviation based on the reaction torque appears remarkably, which impairs the control accuracy of the variable valve device, and provides a sufficient effect of improving the engine output and reducing the fuel consumption. Disappears.

【0042】そこで、この発明の実施の形態1の可変動
弁装置では、VEL機構におけるDCサーボモータ10
1にモータ駆動信号を出力する制御装置CPUの内容と
して、目標制御軸作動角と制御軸実作動角とを一致させ
るために必要な電流制御量を反力トルク相当電流値で補
正するようにしたものであり、以下、その制御内容を図
13のシステムブロック図に基づいて説明する。
Therefore, in the variable valve apparatus according to Embodiment 1 of the present invention, the DC servo motor 10 in the VEL mechanism is used.
As a content of the control device CPU for outputting the motor drive signal to 1, the current control amount necessary for matching the target control axis operation angle and the control axis actual operation angle is corrected by the current value corresponding to the reaction torque. The control will be described below with reference to the system block diagram of FIG.

【0043】即ち、この制御装置CPUには、エンジン
回転数センサ103からの信号に基づきエンジン回転数
を検出するエンジン回転数検出手段B1と、エンジン負
荷センサ104からの信号に基づきエンジン負荷を検出
するエンジン負荷検出手段B2と、エンジン回転数検出
手段B1で検出されたエンジン回転数と、エンジン負荷
検出手段B2で検出されたエンジン負荷から目標制御軸
作動角を決定する目標作動角演算手段B3と、作動角セ
ンサ102からの信号に基づき制御軸16の実作動角を
検出する作動角検出手段B4と、目標作動角演算手段B
3で演算された目標制御軸作動角と作動角検出手段B4
で検出された制御軸実作動角とを一致させるために必要
な電流制御量を演算する電流制御量演算手段B5と、エ
ンジン回転数検出手段B1で検出されたエンジンの回転
数からカム軸13のカム角を演算するカム角演算手段B
6と、カム角演算手段B6で演算されたカム軸のカム角
より機関側から制御軸16に作用する反力トルク相当電
流を演算する反力トルク相当電流演算手段B7と、反力
トルク相当電流演算手段B7で演算された反力トルク相
当電流と電流制御量演算手段B5で演算された電流制御
量に基づきDCサーボモータ101に対する駆動電流を
設定出力するPWM出力設定手段B8と、を備えてい
る。
That is, the control unit CPU detects an engine speed based on a signal from the engine speed sensor 103 and an engine speed detecting means B1 for detecting the engine speed based on a signal from the engine load sensor 104. Engine load detecting means B2; target operating angle calculating means B3 for determining a target control shaft operating angle from the engine speed detected by the engine speed detecting means B1 and the engine load detected by the engine load detecting means B2; Operating angle detecting means B4 for detecting an actual operating angle of the control shaft 16 based on a signal from the operating angle sensor 102;
The target control shaft operating angle calculated in step 3 and the operating angle detecting means B4
A current control amount calculating means B5 for calculating a current control amount necessary to make the actual control shaft actual operating angle detected by the control shaft coincide with the control shaft actual operating angle; Cam angle calculation means B for calculating the cam angle
6, a reaction torque equivalent current calculation means B7 for calculating a reaction torque equivalent current acting on the control shaft 16 from the engine side from the cam angle of the cam shaft calculated by the cam angle calculation means B6, and a reaction torque equivalent current PWM output setting means B8 for setting and outputting a drive current for the DC servo motor 101 based on the reaction torque equivalent current calculated by the calculation means B7 and the current control amount calculated by the current control amount calculation means B5. .

【0044】さらに詳述すると、前記反力トルク相当電
流演算手段B7における反力トルク相当電流値の演算方
法は、図14に示すように、反力トルクは、カム軸13
のカム角に同期していることから、予めカム角に対する
反力トルクの計算値を反力トルク相当電流演算手段B7
に記憶させておくもので、これにより、カム軸13のカ
ム角検出値から、直ちにその時の反力トルクがわかり、
それに対応した反力トルク相当電流を出力することがで
きる。この反力トルクから、反力トルク相当電流への変
換方法の一例を以下に示す。 反力トルク相当電流=反力トルク/ギャ比/モータトル
ク定数×ギャ効率 即ち、「ギャ比/モータトルク定数×ギャ効率」を固定
値として設定しておくことにより、反力トルクから反力
トルク相当電流が容易に求められる。
More specifically, the method of calculating the reaction torque equivalent current value in the reaction torque equivalent current calculation means B7 is as shown in FIG.
Is calculated in advance, the calculated value of the reaction torque corresponding to the cam angle is calculated in advance by the current calculation means B7.
Thus, the reaction torque at that time can be immediately found from the detected cam angle of the camshaft 13,
A corresponding reaction torque equivalent current can be output. An example of a method of converting the reaction torque into a current corresponding to the reaction torque will be described below. Reaction torque equivalent current = reaction torque / gear ratio / motor torque constant × gear efficiency That is, by setting “gear ratio / motor torque constant × gear efficiency” as a fixed value, the reaction torque is converted to the reaction torque. Equivalent current is easily obtained.

【0045】なお、前記図14は、カム軸13のカム角
に対する反力トルクの実測値(なお、♯1〜4は、4気
筒エンジンにおける各気筒別反力トルクを示す。)であ
り、図15は、カム軸13のカム角に対する反力トルク
の計算値であり、両図から明らかなように、実測値と、
計算値には大きな差異がないため、反力トルク相当電流
の演算に用いられる値は、各気筒別反力トルクの実測値
の代表値(反力トルクの値は各気筒別に多少ばらつきが
あるため、その代表値)または計算値のいずれの値を用
いてもかまわない。
FIG. 14 shows measured values of the reaction torque with respect to the cam angle of the camshaft 13 (note that # 1 to # 4 indicate the reaction torque for each cylinder in a four-cylinder engine). Numeral 15 is a calculated value of the reaction force torque with respect to the cam angle of the camshaft 13, and as is apparent from both figures,
Since there is no large difference between the calculated values, the value used for calculating the reaction torque equivalent current is a representative value of the actual measured value of the reaction torque for each cylinder (the value of the reaction torque is slightly different for each cylinder. , A representative value thereof) or a calculated value.

【0046】以上のように、この発明の実施の形態1の
内燃機関の可変動弁装置では、VEL機構におけるDC
サーボモータ101にモータ駆動信号を出力する制御装
置CPUの内容として、目標制御軸作動角と制御軸実作
動角とを一致させるために必要な電流制御量を反力トル
ク相当電流値で補正するようにしたことにより、図12
に示すように、制御軸作動角の定位置制御中において、
揺動カム20やロッカアーム18等を通じて機関側から
制御軸16に伝わるバルブスプリング反力等に起因する
非線形特性である反力トルク(エンジン回転数、作動角
毎に変動)に基づいて発生する作動角変動を抑制するこ
とができ、これにより、制御精度の低下が防止され、十
分なエンジン出力向上効果および燃費低減効果が得られ
るようになるという効果が得られる。
As described above, in the variable valve apparatus for an internal combustion engine according to the first embodiment of the present invention, the DC
The content of the control device CPU that outputs a motor drive signal to the servo motor 101 is such that the current control amount required to match the target control axis operation angle with the actual control axis operation angle is corrected by the current value corresponding to the reaction torque. As shown in FIG.
As shown in the figure, during fixed position control of the control shaft operating angle,
An operating angle generated based on a reaction torque (variable for each engine speed and operating angle), which is a non-linear characteristic due to a valve spring reaction force transmitted from the engine to the control shaft 16 through the swing cam 20 and the rocker arm 18. Fluctuations can be suppressed, whereby the control accuracy is prevented from lowering, and the effect of improving the engine output and reducing the fuel consumption can be obtained.

【0047】(発明の実施の形態2)次に、発明の実施
の形態2の内燃機関の可変動弁装置について説明する。
なお、この発明の実施の形態2の内燃機関の可変動弁装
置は、前記発明の実施の形態1とは、制御装置CPUの
内容が一部相違(追加)するのみであるため、その説明
に当たっては、前記発明の実施の形態1と同様の構成部
分は図示およびその説明を省略し、もしくは、同一の符
号を付けてその説明を省略する。
(Embodiment 2) Next, a variable valve apparatus for an internal combustion engine according to Embodiment 2 of the invention will be described.
The variable valve gear for an internal combustion engine according to the second embodiment of the present invention is different from the first embodiment in that the content of the control device CPU is only partially different (added). In the drawings, the same components as those in the first embodiment of the present invention are omitted from the drawings and description, or the same reference numerals are given and the description is omitted.

【0048】この発明の実施の形態2の内燃機関の可変
動弁装置は、図16のシステムブロック図に示すよう
に、前記カム角演算手段B6で演算されたカム軸13の
カム角より現在吸気弁12が開作動している気筒を判別
し各気筒別の反力トルク係数を演算する気筒別反力トル
ク係数演算手段B9を備え、前記PWM出力設定手段B
8では、前記気筒別反力トルク係数演算手段B9で判別
された開作動気筒の反力トルク係数を前記反力トルク相
当電流演算手段B7で演算された反力トルク相当電流に
乗じた電流値と前記電流制御量演算手段B5で演算され
た電流制御量に基づき前記DCサーボモータ101に対
する駆動電流を設定出力するように構成されている点
が、前記発明の実施の形態1とは相違したものである。
As shown in the system block diagram of FIG. 16, the variable valve operating apparatus for an internal combustion engine according to the second embodiment of the present invention uses the cam angle of the cam shaft 13 calculated by the cam angle calculating means B6 to obtain the current intake air. A cylinder-reaction-force-torque-coefficient calculating means for determining a cylinder in which the valve is open and calculating a reaction-force torque coefficient for each of the cylinders;
8, a current value obtained by multiplying the reaction torque coefficient of the open cylinder determined by the cylinder-specific reaction torque coefficient calculating means B9 by the reaction torque equivalent current calculated by the reaction torque equivalent current calculating means B7; This embodiment is different from the first embodiment in that the drive current for the DC servomotor 101 is set and output based on the current control amount calculated by the current control amount calculation means B5. is there.

【0049】即ち、制御軸16に外乱として伝わる反力
トルクは、図14の実測値と図15の計算値に示すよう
に、実測値と計算値との間で気筒毎に多少の誤差(ず
れ)があるため、そのずれを補正するために、前記気筒
別反力トルク係数演算手段B9で各気筒毎に求められた
反力トルク係数を、反力トルク相当電流演算手段B7で
演算された反力トルク相当電流に乗じることにより、反
力トルク相当電流の各気筒毎の誤差(ずれ)を個別に補
正することができる。
That is, as shown by the measured value in FIG. 14 and the calculated value in FIG. 15, the reaction torque transmitted as disturbance to the control shaft 16 has a slight error (deviation) for each cylinder between the measured value and the calculated value. ), The reaction torque coefficient calculated for each cylinder by the cylinder-specific reaction torque coefficient calculating means B9 is corrected by the reaction force torque equivalent current calculating means B7 to correct the deviation. By multiplying the current corresponding to the force torque, the error (deviation) of the current corresponding to the reaction torque for each cylinder can be individually corrected.

【0050】従って、この発明の実施の形態2の内燃機
関の可変動弁装置では、前記発明の実施の形態1の効果
に加え、反力トルクが機関の気筒毎に相違することによ
る各気筒間の制御ずれが吸収され、より安定した作動角
変動抑制がなされるようになるという効果が得られる。
Therefore, in the variable valve apparatus for an internal combustion engine according to the second embodiment of the present invention, in addition to the effects of the first embodiment, the reaction torque differs between the cylinders of the engine. Is absorbed, and the effect of more stably suppressing the fluctuation of the operating angle can be obtained.

【0051】以上、本発明の実施の形態を説明してきた
が、具体的な構成はこの発明の実施の形態に限定される
ものではなく、本発明の要旨を逸脱しない範囲における
設計変更等があっても本発明に含まれる。
Although the embodiment of the present invention has been described above, the specific configuration is not limited to the embodiment of the present invention, and there are design changes and the like without departing from the gist of the present invention. This is also included in the present invention.

【0052】例えば、発明の実施の形態では、機関弁と
して吸気弁を例にとったが、排気弁についても適用する
ことができる。また、本発明が適用される可変動弁機構
としては、この発明の実施の形態で例示した構造のもの
に限定されるものではなく、従来例に示した構造のもの
や、その他の可変動弁機構にも全て本発明を適用するこ
とができる。
For example, in the embodiment of the present invention, an intake valve is taken as an example of an engine valve, but the invention can also be applied to an exhaust valve. Further, the variable valve mechanism to which the present invention is applied is not limited to the structure illustrated in the embodiment of the present invention, but may be the structure illustrated in the conventional example or other variable valve mechanisms. The present invention can be applied to all mechanisms.

【0053】[0053]

【発明の効果】以上詳細に説明してきたように、本発明
請求項1記載の内燃機関の可変動弁装置では、上述のよ
うに、機関の運転状態に応じた目標制御軸作動角を演算
する目標作動角演算手段と、該目標作動角演算手段で演
算された目標制御軸作動角と作動角検出手段で検出され
た制御軸実作動角とを一致させるために必要な電流制御
量を演算する電流制御量演算手段と、機関回転数検出手
段で検出された機関の回転数からカム軸のカム角を演算
するカム角演算手段と、該カム角演算手段で演算された
カム軸のカム角より機関側から制御軸に作用する反力ト
ルク相当電流を演算する反力トルク相当電流演算手段
と、該反力トルク相当電流演算手段で演算された反力ト
ルク相当電流と前記電流制御量演算手段で演算された電
流制御量に基づき電磁アクチュエータに対する駆動電流
を設定出力する出力設定手段と、を備えた構成としたこ
とで、制御軸作動角の定位置制御中において、カムやロ
ッカアーム等を通じて制御軸に伝わるバルブスプリング
反力等に起因する非線形特性である反力トルク(エンジ
ン回転数、作動角毎に変動)に基づいて発生する作動角
変動を抑制することができ、これにより、制御精度の低
下が防止され、十分なエンジン出力向上効果および燃費
低減効果が得られるようになる。
As described above in detail, in the variable valve operating apparatus for an internal combustion engine according to the first aspect of the present invention, the target control shaft operating angle according to the operating state of the engine is calculated as described above. A target operating angle calculating means, and calculating a current control amount required for matching the target control axis operating angle calculated by the target operating angle calculating means with the actual control axis operating angle detected by the operating angle detecting means. Current control amount calculating means, cam angle calculating means for calculating the cam angle of the camshaft from the engine speed detected by the engine speed detecting means, and a camshaft cam angle calculated by the cam angle calculating means. A reaction torque equivalent current calculating means for calculating a reaction torque equivalent current acting on the control shaft from the engine; and a reaction torque equivalent current calculated by the reaction torque equivalent current calculating means and the current control amount calculating means. Based on the calculated current control amount, And output setting means for setting and outputting a drive current to the actuator, which is caused by a valve spring reaction force transmitted to the control shaft through a cam, a rocker arm, or the like during the fixed position control of the control shaft operating angle. It is possible to suppress the operating angle fluctuation generated based on the non-linear characteristic reaction torque (variable for each engine speed and operating angle), thereby preventing the control accuracy from lowering and sufficiently improving the engine output. In addition, an effect of reducing fuel consumption can be obtained.

【0054】請求項3記載の内燃機関の可変動弁装置で
は、前記カム角演算手段で演算されたカム軸のカム角よ
り現在機関弁が開作動している気筒を判別し各気筒別の
反力トルク係数を演算する気筒別反力トルク係数演算手
段を備え、前記出力設定手段では、前記気筒別反力トル
ク係数演算手段で判別された開作動気筒の反力トルク係
数を前記反力トルク相当電流演算手段で演算された反力
トルク相当電流に乗じた電流値と前記電流制御量演算手
段で演算された電流制御量に基づき前記電磁アクチュエ
ータに対する駆動電流を設定出力するように構成された
ことで、反力トルクが機関の気筒毎に相違することによ
る各気筒間の制御ずれが吸収され、より安定した作動角
変動抑制がなされるようになるという追加の効果が得ら
れる。
According to a third aspect of the present invention, the cylinder in which the engine valve is currently open is determined based on the cam angle of the camshaft calculated by the cam angle calculating means. Cylinder-specific reaction torque coefficient calculating means for calculating a force torque coefficient, wherein the output setting means calculates the reaction torque coefficient of the open operating cylinder determined by the cylinder-specific reaction torque coefficient calculating means as the reaction torque. The drive current for the electromagnetic actuator is set and output based on the current value multiplied by the reaction torque equivalent current calculated by the current calculation means and the current control amount calculated by the current control amount calculation means. In addition, the control deviation between the cylinders due to the reaction torque differing between the cylinders of the engine is absorbed, and the additional effect that the operating angle fluctuation is more stably suppressed is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における内燃期間の可変動
弁装置を示す断面図(図2のA−A線断面図)。
FIG. 1 is a cross-sectional view (a cross-sectional view taken along the line AA in FIG. 2) illustrating a variable valve apparatus during an internal combustion period according to an embodiment of the present invention.

【図2】上記可変動弁装置の側面図。FIG. 2 is a side view of the variable valve device.

【図3】上記可変動弁装置の平面図。FIG. 3 is a plan view of the variable valve device.

【図4】上記可変動弁装置に使用される偏心カムを示す
斜視図。
FIG. 4 is a perspective view showing an eccentric cam used in the variable valve device.

【図5】上記可変動弁装置における揺動カムの基端面と
カム面に対応したバルブリフト特性図。
FIG. 5 is a valve lift characteristic diagram corresponding to a base end surface and a cam surface of an oscillating cam in the variable valve operating device.

【図6】上記可変動弁装置の低速低負荷時の作用を示す
断面図(図2のB−B線断面図)。
FIG. 6 is a cross-sectional view (cross-sectional view taken along the line BB in FIG. 2) showing the operation of the variable valve device at low speed and low load.

【図7】上記可変動弁装置の高速高負荷時の作用を示す
断面図(図2のB−B線断面図)。
FIG. 7 is a cross-sectional view (a cross-sectional view taken along the line BB of FIG. 2) illustrating an operation of the variable valve device at the time of high speed and high load.

【図8】上記可変動弁装置のバルブタイミングとバルブ
リフトの特性図。
FIG. 8 is a characteristic diagram of valve timing and valve lift of the variable valve operating device.

【図9】上記可変動弁装置の作動角制御システムを示す
ブロック図。
FIG. 9 is a block diagram showing an operating angle control system of the variable valve operating device.

【図10】従来例の可変動弁装置の作動角制御回路の内
容を示すシステム図。
FIG. 10 is a system diagram showing the contents of an operation angle control circuit of a conventional variable valve apparatus.

【図11】従来例の可変動弁装置の作動角制御回路の内
容を示すブロック図。
FIG. 11 is a block diagram showing the contents of an operation angle control circuit of a conventional variable valve apparatus.

【図12】上記可変動弁装置における制御軸作動角変動
を示すタイムチャート。
FIG. 12 is a time chart showing a control shaft operating angle variation in the variable valve operating device.

【図13】上記可変動弁装置のシステムブロック図。FIG. 13 is a system block diagram of the variable valve operating device.

【図14】上記可変動弁装置におけるカム軸のカム角に
対する反力トルクの実測値を示す図。
FIG. 14 is a view showing actual measurement values of reaction torque with respect to a cam angle of a cam shaft in the variable valve operating device.

【図15】上記可変動弁装置におけるカム軸のカム角に
対する反力トルクの計算値を示す図。
FIG. 15 is a view showing a calculated value of a reaction force torque with respect to a cam angle of a cam shaft in the variable valve operating device.

【図16】発明の実施の形態2の内燃機関の上記可変動
弁装置のシステムブロック図。
FIG. 16 is a system block diagram of the variable valve device of the internal combustion engine according to the second embodiment of the present invention.

【図17】従来例の可変動弁装置を示す断面図。FIG. 17 is a cross-sectional view showing a conventional variable valve apparatus.

【図18】従来例の可変動弁装置の作動角制御システム
を示すブロック図。
FIG. 18 is a block diagram showing an operating angle control system of a conventional variable valve device.

【符号の説明】 12 吸気弁(機関弁) 13 カム軸 15 偏心カム(揺動駆動手段) 16 制御軸 17 制御カム 18 ロッカアーム 20 揺動カム 25 リンクアーム(揺動駆動手段) 33 バルブスプリング CPU 制御装置(制御軸作動角制御手段) 101 DCサーボモータ(電磁アクチュェータ) 102 作動角センサ(作動角検出手段) 103 エンジン回転数センサ(機関回転数検出手段) 104 エンジン負荷センサ(機関負荷検出手段) B1 エンジン回転数検出手段(機関回転数検出手段) B2 エンジン負検出手段(機関負荷検出手段) B3 目標作動角演算手段 B4 作動角検出手段 B5 電流制御量演算手段 B6 カム角演算手段 B7 反力トルク相当電流演算手段 B8 出力設定手段(PWM出力設定手段) B9 気筒別反力トルク係数演算手段[Description of Signs] 12 Intake valve (engine valve) 13 Cam shaft 15 Eccentric cam (oscillation driving means) 16 Control shaft 17 Control cam 18 Rocker arm 20 Oscillating cam 25 Link arm (oscillation driving means) 33 Valve spring CPU control Device (control shaft operating angle control means) 101 DC servo motor (electromagnetic actuator) 102 Operating angle sensor (operating angle detecting means) 103 Engine speed sensor (engine speed detecting means) 104 Engine load sensor (engine load detecting means) B1 Engine speed detecting means (engine speed detecting means) B2 Engine negative detecting means (engine load detecting means) B3 Target operating angle calculating means B4 Operating angle detecting means B5 Current control amount calculating means B6 Cam angle calculating means B7 Equivalent to reaction torque Current calculation means B8 Output setting means (PWM output setting means) B9 Cylinder reaction force Torque coefficient calculation means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】カム軸と略平行に配設された制御軸と、 該制御軸の外周に偏心して固定された制御カムと、 該制御カムに揺動自在に軸支されたロッカアームと、 前記カム軸の回転に応じて前記ロッカアームの一端部を
揺動駆動する揺動駆動手段と、 前記ロッカアームの他端部に連係して揺動して機関弁を
開作動させる揺動カムと、 前記機関弁を閉じる方向に付勢するバルブスプリング
と、 前記制御軸の作動角を検出する作動角検出手段と、 前記制御軸を目標制御軸作動角に回転駆動する電磁アク
チュエータと、 機関の回転数を検出する機関回転数検出手段と、 機関の運転状態に応じた目標制御軸作動角を演算する目
標作動角演算手段と、 該目標作動角演算手段で演算された目標制御軸作動角と
前記作動角検出手段で検出された制御軸実作動角とを一
致させるために必要な電流制御量を演算する電流制御量
演算手段と、 前記機関回転数検出手段で検出された機関の回転数から
前記カム軸のカム角を演算するカム角演算手段と、 該カム角演算手段で演算されたカム軸のカム角より機関
側から制御軸に作用する反力トルク相当電流を演算する
反力トルク相当電流演算手段と、 該反力トルク相当電流演算手段で演算された反力トルク
相当電流と前記電流制御量演算手段で演算された電流制
御量に基づき前記電磁アクチュエータに対する駆動電流
を設定出力する出力設定手段と、を備えていることを特
徴とする内燃機関の可変動弁装置。
A control shaft disposed substantially parallel to a cam shaft; a control cam eccentrically fixed to an outer periphery of the control shaft; a rocker arm pivotally supported by the control cam; Rocking drive means for rocking one end of the rocker arm in response to rotation of a camshaft; rocking cam for linking with the other end of the rocker arm and rocking to open an engine valve; A valve spring for urging the valve in a direction to close the valve, operating angle detecting means for detecting an operating angle of the control shaft, an electromagnetic actuator for rotating the control shaft to a target control shaft operating angle, and detecting an engine speed. Means for detecting an engine speed, a target operating angle calculating means for calculating a target control shaft operating angle according to an operating state of the engine, a target control shaft operating angle calculated by the target operating angle calculating means, and detecting the operating angle. Actual control axis detected by means Current control amount calculating means for calculating a current control amount necessary for matching a dynamic angle; and cam angle calculation for calculating a cam angle of the cam shaft from an engine speed detected by the engine speed detecting means. Means, a reaction torque equivalent current calculation means for calculating a reaction torque equivalent current acting on the control shaft from the engine side from the cam angle of the cam shaft calculated by the cam angle calculation means, and a reaction torque equivalent current calculation Output setting means for setting and outputting a driving current for the electromagnetic actuator based on the reaction torque equivalent current calculated by the means and the current control amount calculated by the current control amount calculating means. Variable valve gear for internal combustion engines.
【請求項2】機関の負荷を検出する機関負荷検出手段を
備え、 前記目標作動角演算手段が、前記機関回転数検出手段で
検出された機関の回転数と、前記機関負荷検出手段で検
出された機関の負荷から機関の運転状態に応じた目標制
御軸作動角を演算するように構成されれていることを特
徴とする請求項1に記載の内燃機関の可変動弁装置。
2. An engine load detecting means for detecting a load of an engine, wherein the target operating angle calculating means detects an engine speed detected by the engine speed detecting means and an engine speed detected by the engine load detecting means. The variable valve train for an internal combustion engine according to claim 1, wherein the variable valve train of the internal combustion engine is configured to calculate a target control shaft operating angle according to an operation state of the engine from the load of the engine.
【請求項3】前記カム角演算手段で演算されたカム軸の
カム角より現在機関弁が開作動している気筒を判別し各
気筒別の反力トルク係数を演算する気筒別反力トルク係
数演算手段を備え、 前記出力設定手段では、前記気筒別反力トルク係数演算
手段で判別された開作動気筒の反力トルク係数を前記反
力トルク相当電流演算手段で演算された反力トルク相当
電流に乗じた電流値と前記電流制御量演算手段で演算さ
れた電流制御量に基づき前記電磁アクチュエータに対す
る駆動電流を設定出力するように構成されていることを
特徴とする請求項1または2に記載の内燃機関の可変動
弁装置。
3. A cylinder-specific reaction torque coefficient for determining a cylinder in which an engine valve is currently open from the cam angle of the cam shaft calculated by the cam angle calculation means and calculating a reaction torque coefficient for each cylinder. The output setting means calculates the reaction torque coefficient of the open cylinder determined by the cylinder-specific reaction torque coefficient calculation means by the reaction torque equivalent current calculated by the reaction torque equivalent current calculation means. 3. The apparatus according to claim 1, wherein a drive current for the electromagnetic actuator is set and output based on a current value multiplied by a current control amount calculated by the current control amount calculation unit. 4. Variable valve gear for internal combustion engines.
JP17716499A 1999-06-23 1999-06-23 Variable valve operating device for internal combustion engine Expired - Lifetime JP3975246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17716499A JP3975246B2 (en) 1999-06-23 1999-06-23 Variable valve operating device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17716499A JP3975246B2 (en) 1999-06-23 1999-06-23 Variable valve operating device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001012262A true JP2001012262A (en) 2001-01-16
JP3975246B2 JP3975246B2 (en) 2007-09-12

Family

ID=16026311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17716499A Expired - Lifetime JP3975246B2 (en) 1999-06-23 1999-06-23 Variable valve operating device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3975246B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306528A2 (en) 2001-10-23 2003-05-02 Hitachi Unisia Automotive Ltd. Variable valve control apparatus for engine and method thereof
EP1306529A2 (en) * 2001-10-29 2003-05-02 Hitachi Unisia Automotive Ltd. Variable valve control apparatus for internal combustion engine and method thereof
EP1308604A2 (en) 2001-11-02 2003-05-07 Hitachi Unisia Automotive Ltd. Apparatus and method for measuring intake air flow amount of internal combustion engine
US6622678B2 (en) 2001-06-21 2003-09-23 Unisia Jecs Corporation Apparatus and method for controlling variable valve mechanism
US6851409B2 (en) 2001-10-12 2005-02-08 Hitachi Unisia Automotive, Ltd. Apparatus and method for controlling intake air amount of internal combustion engine
US7013211B2 (en) 2002-12-02 2006-03-14 Hitachi, Ltd. Variable valve control apparatus for internal combustion engine and method thereof
US7013875B2 (en) 2002-06-28 2006-03-21 Hitachi, Ltd. Apparatus for controlling fuel injection of engine and method thereof
US7055474B2 (en) 2002-12-03 2006-06-06 Hitachi, Ltd. Variable valve control apparatus for internal combustion engine and method thereof
US7086381B2 (en) 2001-07-26 2006-08-08 Hitachi, Ltd. Apparatus and method for controlling an internal combustion engine
US7191055B2 (en) 2004-11-18 2007-03-13 Hitachi, Ltd. Evaluation method of diagnostic function for a variable valve mechanism and evaluation apparatus for a variable valve mechanism
US7263957B2 (en) 2004-11-18 2007-09-04 Hitachi, Ltd. Evaluation method of diagnostic function for variable valve mechanism and evaluation apparatus for variable valve mechanism
JP2007270708A (en) * 2006-03-31 2007-10-18 Hitachi Ltd Control device for variable valve timing mechanism
JP2009133326A (en) * 2009-03-23 2009-06-18 Hitachi Ltd Control device for variable valve lift mechanism
US8762027B2 (en) 2010-12-07 2014-06-24 Hyundai Motor Company Apparatus and method for controlling motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798057B1 (en) * 2016-06-14 2017-11-15 주식회사 현대케피코 System for controlling continuously variable valve duration and operating method thereof

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6622678B2 (en) 2001-06-21 2003-09-23 Unisia Jecs Corporation Apparatus and method for controlling variable valve mechanism
US7086381B2 (en) 2001-07-26 2006-08-08 Hitachi, Ltd. Apparatus and method for controlling an internal combustion engine
US6851409B2 (en) 2001-10-12 2005-02-08 Hitachi Unisia Automotive, Ltd. Apparatus and method for controlling intake air amount of internal combustion engine
US6722325B2 (en) 2001-10-23 2004-04-20 Hitachi Unisia Automotive, Ltd. Variable valve control apparatus for engine and method thereof
EP1306528A2 (en) 2001-10-23 2003-05-02 Hitachi Unisia Automotive Ltd. Variable valve control apparatus for engine and method thereof
EP1306529A2 (en) * 2001-10-29 2003-05-02 Hitachi Unisia Automotive Ltd. Variable valve control apparatus for internal combustion engine and method thereof
EP1306529A3 (en) * 2001-10-29 2003-12-10 Hitachi Unisia Automotive Ltd. Variable valve control apparatus for internal combustion engine and method thereof
US6612274B2 (en) 2001-10-29 2003-09-02 Hitachi Unisia Automotive, Ltd. Variable valve control apparatus for internal combustion engine and method thereof
US6728627B2 (en) 2001-11-02 2004-04-27 Hitachi Unisia Automotive, Ltd. Apparatus and method for measuring intake air flow amount of internal combustion engine
EP1308604A2 (en) 2001-11-02 2003-05-07 Hitachi Unisia Automotive Ltd. Apparatus and method for measuring intake air flow amount of internal combustion engine
DE10329065B4 (en) * 2002-06-28 2009-09-24 Hitachi, Ltd. Apparatus and method for controlling the fuel injection of an internal combustion engine
US7013875B2 (en) 2002-06-28 2006-03-21 Hitachi, Ltd. Apparatus for controlling fuel injection of engine and method thereof
US7386390B2 (en) 2002-12-02 2008-06-10 Hitachi, Ltd. Variable valve control apparatus for internal combustion engine and method thereof
US7191050B2 (en) 2002-12-02 2007-03-13 Hitachi, Ltd. Variable valve control apparatus for internal combustion engine and method thereof
DE10356202B4 (en) * 2002-12-02 2007-04-19 Hitachi, Ltd. Variable valve control device and variable valve control method
US7013211B2 (en) 2002-12-02 2006-03-14 Hitachi, Ltd. Variable valve control apparatus for internal combustion engine and method thereof
DE10356477B4 (en) * 2002-12-03 2006-12-14 Hitachi, Ltd. Valve control device for internal combustion engines and associated method
US7055474B2 (en) 2002-12-03 2006-06-06 Hitachi, Ltd. Variable valve control apparatus for internal combustion engine and method thereof
US7191055B2 (en) 2004-11-18 2007-03-13 Hitachi, Ltd. Evaluation method of diagnostic function for a variable valve mechanism and evaluation apparatus for a variable valve mechanism
US7263957B2 (en) 2004-11-18 2007-09-04 Hitachi, Ltd. Evaluation method of diagnostic function for variable valve mechanism and evaluation apparatus for variable valve mechanism
JP2007270708A (en) * 2006-03-31 2007-10-18 Hitachi Ltd Control device for variable valve timing mechanism
US7748357B2 (en) 2006-03-31 2010-07-06 Hitachi, Ltd. Control apparatus and control method for a variable valve timing mechanism
JP4639161B2 (en) * 2006-03-31 2011-02-23 日立オートモティブシステムズ株式会社 Control device for variable valve timing mechanism
JP2009133326A (en) * 2009-03-23 2009-06-18 Hitachi Ltd Control device for variable valve lift mechanism
US8762027B2 (en) 2010-12-07 2014-06-24 Hyundai Motor Company Apparatus and method for controlling motor

Also Published As

Publication number Publication date
JP3975246B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP3783589B2 (en) Variable valve operating device for internal combustion engine
JP4827865B2 (en) Variable valve operating device for internal combustion engine
JP2001012262A (en) Variable valve system of internal combustion engine
JP3485434B2 (en) Valve train for internal combustion engine
EP1403487B1 (en) Control system and method for an internal combustion engine having a VVT device
JP2001173469A (en) Variable valve system of internal combustion engine
JP3933404B2 (en) Variable valve operating device for internal combustion engine
JP4268839B2 (en) Variable valve controller for internal combustion engine
JP4103819B2 (en) Variable valve operating device for internal combustion engine
JP4096939B2 (en) Control apparatus and control method for variable valve mechanism
US6578534B2 (en) Variable valve operating system of internal combustion engine enabling variation of valve-lift characteristic
JP4027536B2 (en) Variable valve operating device for internal combustion engine
JP2004340013A (en) Intake valve drive control device for internal combustion engine
JP4024020B2 (en) Reference position learning device for variable valve mechanism
JP3936818B2 (en) Operating angle sensor failure determination device for variable valve operating device of internal combustion engine
JP4192186B2 (en) Operating angle detection device for variable valve operating device of internal combustion engine
JP4878594B2 (en) Variable valve operating device for internal combustion engine
JP2002168105A (en) Variable valve system for internal combustion engine
JP2000314329A (en) Management device for variable valve system of internal combustion engine at operating sensor failure
JP3986212B2 (en) Variable valve control device for internal combustion engine
JPH11173127A (en) Variable valve system device for internal combustion engine
JP2008208779A (en) Variable valve gear of internal combustion engine
JP2001082191A (en) Control position detecting device for variable valve system of internal combustion engine
JP5119180B2 (en) Variable valve operating device for internal combustion engine
JP4518010B2 (en) Variable valve operating device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050831

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150