JP2001011834A - Bag body for use in civil engineering - Google Patents

Bag body for use in civil engineering

Info

Publication number
JP2001011834A
JP2001011834A JP11185384A JP18538499A JP2001011834A JP 2001011834 A JP2001011834 A JP 2001011834A JP 11185384 A JP11185384 A JP 11185384A JP 18538499 A JP18538499 A JP 18538499A JP 2001011834 A JP2001011834 A JP 2001011834A
Authority
JP
Japan
Prior art keywords
fibers
bag
fiber
bag body
dtex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11185384A
Other languages
Japanese (ja)
Inventor
Tadayuki Sakobe
唯行 迫部
Masahiko Miwa
正彦 三和
Yoshifumi Moriguchi
芳文 森口
Yoshinori Karato
義伯 唐渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP11185384A priority Critical patent/JP2001011834A/en
Publication of JP2001011834A publication Critical patent/JP2001011834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Revetment (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the function of a bag body by forming the bag body of aliphatic polyester fibers of which tensile strength, Young's modulus, and contents of predetermined compounds are specified. SOLUTION: The bag body for use in civil engineering is formed of aliphatic polyester fibers which undergo hydrolysis and then microbial decomposition and enzyme decomposition under hot humid conditions. The fibers are set so as to have tensile strength of 3.0 cN/dtex or more, and Young's modulus of 40 cN/dtex or more. The fiber is most preferably a polylactic acid fiber from the viewpoint of heat resistance and mechanical physicality. Further, the fiber is preferably the polylactic acid fibers having its polymer contain pottasic, phosphorus, and nitric compounds, etc., of 0.1 ppm or more, which function as nutriment for plants. The fibers may be mixed with regenerated fibers and/or natural fibers, and further the opening size of strand of the fabric is preferably set to 15 mm or less and the internal volume of the bag body to 0.001 to 8 m3. Thus, decomposed end products of the bag can be completely decomposed to materials existing in the natural world. Further, the bag is good in light stability, and therefore decomposition speed can be controlled to be different between a surface where sunlight is irradiated and a surface where it is not irradiated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は土木工事、緑化工事等に
使用される一般土嚢、植生土嚢また袋体内に活性炭や石
炭殻を入れ河川などを浄化する目的で使用される浄化用
袋体及び種々の土木工事などで発生する汚泥などを脱水
するために使用する脱水袋体袋などの土木用袋体に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a purifying bag used for civil engineering work, greening work, etc., for purifying rivers by putting activated carbon or coal husks into the bag or purifying rivers. The present invention relates to a civil engineering bag such as a dewatering bag used for dewatering sludge generated in various civil works.

【0002】[0002]

【従来の技術】従来、土木用工事や緑化工事に伴う土木
用袋体には麻や綿などの天然繊維からなる袋体が使用さ
れているが、これらの袋体は土壌の中または屋内外で袋
体全体が同時に分解し始めるだけでなく、また耐候性も
悪いという欠点を有している。耐光性が悪ければ土木用
袋体として利用される場合、太陽光が直接照射される面
では強力が劣化し、土留めや法面補強材などの使用には
適していない。そのため合成繊維が多量に生産されるよ
うになって以来、強度が強く比較的耐候性が良好であり
またコスト面でも有利であるポリエチレンやポリプロピ
レン等の合成繊維が主流になってきている。
2. Description of the Related Art Conventionally, bags made of natural fibers such as hemp and cotton have been used as civil engineering bags for civil works and greening works. However, not only does the entire bag start to decompose simultaneously, but also the weather resistance is poor. If light resistance is poor, when used as a civil engineering bag, the strength of the surface directly exposed to sunlight deteriorates, and it is not suitable for use as earth retaining materials or slope reinforcing materials. For this reason, since synthetic fibers have been produced in large quantities, synthetic fibers such as polyethylene and polypropylene, which have high strength and relatively good weather resistance and are advantageous in cost, have become mainstream.

【0003】しかし、合成繊維からなる土木用袋体には
分解性がないため、掘り返される土壌には以前に埋没さ
れている袋体が工事の妨げになるだけでなく、美観上ま
た環境上に影響を与え、公害問題になってきている。
[0003] However, since a civil engineering bag made of synthetic fiber is not degradable, a previously buried bag does not only hinder the construction of the excavated soil, but also aesthetically and environmentally. Affected and becoming a pollution problem.

【0004】そこで例えば、特開平3−25347号公
報には生分解性プラスチック製土嚢袋を使用する方法が
開示されていて、該公報では地盤中にプラスチックが残
留するため、土地を利用する際の地下工事に支障を生じ
るとあるが、澱粉混入ポリエチレンや脂肪酸ポリエステ
ル混入ポリエチレンでも良く、分解し微粒子状になるこ
とを生分解性としている。しかしポリエチレンは微粒子
状になっても実際に分解し二酸化炭素や水などになるた
めには、非常に時間がかかり自然界に存在する物質に変
換されない。そのため再工事等には適しているが環境面
を考慮されていない。また、澱粉混入ポリエチレンや脂
肪酸ポリエステル混入ポリエチレンでは、繊維の強力と
著しく低いものしか得られず、袋体の強力も満足なもの
が得られないので、施工中等の袋体の破損が問題となる
ものであった。
[0004] For example, Japanese Patent Laid-Open Publication No. Hei 3-25347 discloses a method using a sandbag made of biodegradable plastic. In this publication, since plastic remains in the ground, it is difficult to use land. Although it may interfere with underground construction, polyethylene mixed with starch or polyethylene mixed with fatty acid polyester may be used, and it is made biodegradable by decomposing into fine particles. However, it takes a very long time for polyethylene to be actually decomposed into carbon dioxide and water even if it is in the form of fine particles, and is not converted into a substance existing in nature. Therefore, it is suitable for reconstruction, but the environmental aspects are not considered. In addition, in the case of polyethylene mixed with starch or polyethylene mixed with fatty acid polyester, only a fiber having a remarkably low fiber strength can be obtained, and satisfactory strength of the bag cannot be obtained. Met.

【0005】[0005]

【発明が解決しようとする課題】上記のような従来法で
は、天然繊維などを使用すると耐光性などに問題があ
り、また生分解性とされているものも合成高分子が混入
されていて完全には自然界に存在する物質に変換しない
という問題や施工中等に袋体が破損するといった問題が
あった。
In the above-mentioned conventional methods, when natural fibers are used, there is a problem in light resistance and the like. In addition, those which are considered to be biodegradable are completely mixed with synthetic polymers. Has a problem that it is not converted into a substance existing in the natural world and a problem that the bag is damaged during construction or the like.

【0006】本発明は、この様な現状に鑑みて行われた
もので、加水分解を経て生分解されれ、分解最終物が完
全に自然界に存在する物質に変換され、また強力の点で
も問題のない土木用袋体を提供することを目的とするも
のである。
[0006] The present invention has been made in view of such a situation, is biodegraded through hydrolysis, the final decomposition product is completely converted to a substance that exists in nature, and there is a problem in terms of strength. It is an object of the present invention to provide a civil engineering bag without any defects.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するもので、次の構成よりなるものである。
The present invention achieves the above object and has the following constitution.

【0008】すなわち本発明は、 1.引張強力が3.0cN/dtex以上、ヤング率が40cN/
dtex以上である脂肪族系ポリエステル繊維からなること
を特徴とする土木用袋体。
That is, the present invention provides: Tensile strength is more than 3.0 cN / dtex, Young's modulus is 40 cN /
A civil engineering bag comprising an aliphatic polyester fiber having a dtex or more.

【0009】2.脂肪族系ポリエステル繊維がポリ乳酸
繊維であることを特徴とする上記の土木用袋体。
[0009] 2. The above civil engineering bag, wherein the aliphatic polyester fiber is a polylactic acid fiber.

【0010】3.脂肪族系ポリエステル繊維がリン化合
物、窒素含有化合物、カリウム含有化合物の少なくとも
1種類以上の化合物が0.1ppm 以上の濃度を有してい
るポリ乳酸繊維である上記の土木用袋体。 を要旨とするものである。
[0010] 3. The above civil engineering bag, wherein the aliphatic polyester fiber is a polylactic acid fiber in which at least one compound of a phosphorus compound, a nitrogen-containing compound, and a potassium-containing compound has a concentration of 0.1 ppm or more. It is the gist.

【0011】[0011]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0012】本発明における脂肪族ポリエステル系繊維
とは、ジオール成分とジカルボン酸から合成される脂肪
族系のポリマーからなる繊維であり、湿熱条件下で加水
分解を経て、微生物分解や酵素分解などで分解される合
成繊維である。このようなポリマーとしては、ポリ乳
酸、ポリアルキレンアルカノエート、ポリβヒドロキシ
アルカノエート及びこれらの共重合物等が挙げられる。
特に耐熱性、機械的物性などを考慮するとポリ乳酸がも
っとも好ましい。
The aliphatic polyester fiber in the present invention is a fiber composed of an aliphatic polymer synthesized from a diol component and a dicarboxylic acid. It is a synthetic fiber that is decomposed. Examples of such a polymer include polylactic acid, polyalkylene alkanoate, polyβ hydroxyalkanoate, and a copolymer thereof.
In particular, polylactic acid is most preferable in consideration of heat resistance, mechanical properties, and the like.

【0013】本発明における脂肪族ポリエステル系繊維
の形態は、スリットヤーン、長繊維糸もしくは短繊維の
いずれでもよく、短繊維である場合には通常紡績糸とし
て用いる。物性面を考慮すると長繊維糸が最も好まし
い。
The aliphatic polyester fiber in the present invention may be in the form of a slit yarn, a long fiber yarn or a short fiber, and if it is a short fiber, it is usually used as a spun yarn. Considering physical properties, long fiber yarn is most preferable.

【0014】該脂肪族ポリエステル系繊維は、引張強力
が3.0cN/dtex以上、ヤング率が40cN/dtex以上でな
ければならない。引張強力が3.0cN/dtex未満であれ
ば土木用袋体としての強力が低く袋体に荷重が加わった
ときに袋体自体が破損する可能性がある。またヤング率
が40cN/dtex未満であれば運搬時に急激な荷重が加わ
ったときに破損する可能性があり作業性が悪くなる。
The aliphatic polyester fiber must have a tensile strength of at least 3.0 cN / dtex and a Young's modulus of at least 40 cN / dtex. If the tensile strength is less than 3.0 cN / dtex, the strength as a civil engineering bag is low, and the bag itself may be damaged when a load is applied to the bag. If the Young's modulus is less than 40 cN / dtex, it may be damaged when a sudden load is applied during transportation, resulting in poor workability.

【0015】また該脂肪族ポリエステル系繊維は、ポリ
マーに植物の栄養分となるカリウム、リン及び窒素化合
物などを含有していても良く、その場合濃度は0.1ppm以
上が好ましく、0.1ppm以下であるとその特性が明確に現
れない。ポリマーにカリウム、リン及び窒素化合物を含
有させる方法としては、ポリマーの重合時に混合する方
法や紡糸時にポリマーに混練する方法などがある。
Further, the aliphatic polyester fiber may contain potassium, phosphorus and nitrogen compounds as plant nutrients in the polymer. In this case, the concentration is preferably 0.1 ppm or more, and preferably 0.1 ppm or less. Its properties do not appear clearly. Examples of a method for adding potassium, phosphorus and a nitrogen compound to the polymer include a method of mixing the polymer during polymerization and a method of kneading the polymer during spinning.

【0016】本発明において、天然繊維や再生繊維を混
用して袋体を形成する布帛としてもよい。再生繊維とし
ては、レーヨン繊維、キュプラ、溶剤紡糸によるリヨセ
ル等が挙げられ、天然繊維としては、綿やカポック等の
種子毛繊維、亜麻、大麻及びラミーなどの靱皮繊維、マ
ニラ麻やサイザル麻などの葉脈繊維、ヤシやビンロウジ
ュなどの果実繊維、羊毛、ラクダ毛、アルパカ、カシミ
ヤ、モヘヤ及び兎毛などの獣毛繊維、家蚕や野蚕等の絹
繊維などが挙げられる。
In the present invention, a fabric for forming a bag by mixing natural fibers and regenerated fibers may be used. Regenerated fibers include rayon fiber, cupra, and lyocell by solvent spinning, and natural fibers include seed hair fibers such as cotton and kapok, bast fibers such as flax, cannabis and ramie, and leaf veins such as manila hemp and sisal hemp. Fiber, fruit fiber such as palm and areca, wool, camel hair, animal hair fiber such as alpaca, cashmere, mohair and rabbit hair, and silk fiber such as silkworm and wild silkworm.

【0017】上記のような天然繊維や再生繊維と脂肪族
ポリエステル系繊維とは、分解特性が異なっており、分
解特性の異なる繊維を組合わせて用いると、袋体が徐々
に分解するように設計することができることとなるの
で、植物の成長に応じて開土部を大きくしていったり、
袋体への充填物を順次なじまして補強効果を繊維から充
填物同士に換えていくことができるようになる。
The above natural fibers and regenerated fibers and the aliphatic polyester fibers have different decomposing characteristics, and a design is made such that when fibers having different decomposing characteristics are used in combination, the bag body is gradually decomposed. So that the open area can be enlarged as the plants grow,
The fillers in the bag can be successively blended and the reinforcing effect can be changed from the fibers to the fillers.

【0018】本発明の袋体は、上記の繊維からなる不織
布、上記の繊維からなる糸条により構成された織物や編
物等の布帛からなる。これらの布帛は、用途により任意
に設計されればよい。
The bag of the present invention comprises a nonwoven fabric made of the above-mentioned fibers, and a fabric such as a woven or knitted fabric composed of the yarns made of the above-mentioned fibers. These fabrics may be arbitrarily designed depending on the application.

【0019】袋体を構成する布帛が織物あるいは編物で
ある場合の隣り合う糸条同士の間隔である目合いは、15
mm以下であるのが好ましく、脱水作用や充填物の漏れだ
し防止が必要な場合は平織りなどの組織で繊維間に隙間
がない方が好ましい。また通水、通気あるいは植生用途
であれば、発芽に必要な目合いが必要になるが、目合い
が15mm以上であると袋体を構成する組織がルーズになり
作業性に支障を来すことがある。好ましくは 0.1〜10mm
である。布帛の隣り合う糸条同士の間隔は布帛の組織や
密度により経方向と緯方向とで異なる場合があるが、こ
のような場合には目合いは最大間隔をもっていう。また
組織によっては、糸条が数本づつ集まって1本の糸条の
ようになり、それらの間にすきまができる場合がある
が、この場合は糸条の集合の中心間の間隔でもって目合
いとする。
When the cloth constituting the bag body is a woven or knitted fabric, the spacing, which is the distance between adjacent yarns, is 15
mm or less, and when it is necessary to have a dewatering action or prevent leakage of the filler, it is preferable that there is no gap between the fibers in a structure such as plain weave. For water flow, ventilation or vegetation use, the texture required for germination is necessary.If the texture is 15 mm or more, the tissue constituting the bag becomes loose and hinders workability. There is. Preferably 0.1-10mm
It is. The spacing between adjacent yarns of the fabric may be different between the warp direction and the weft direction depending on the structure and density of the fabric. In such a case, the mesh size is referred to as the maximum spacing. Also, depending on the organization, several yarns may be gathered together to form a single yarn and a gap may be formed between them. To match.

【0020】袋体の大きさは 0.001〜8m3であるのが好
ましく、 0.001m3未満であると袋体自体が小さくなりす
ぎるため土などの充填物を十分に詰められず袋体として
の機能を発揮せず、また8m3より大きくなると運搬、施
工性などの面で問題になってくることがある。また本発
明における袋体の形状は特に限定するものではなく、筒
状、箱形及びマット状などその用途に応じて任意に設計
することができる。
[0020] Preferably the size of the bag is 0.001~8m 3, functions as a well packed without bag packing such as soil for is less than 0.001 m 3 is the bag itself too small does not demonstrate, also larger than 8m 3 and transportation, it may become a problem in terms of workability. Further, the shape of the bag in the present invention is not particularly limited, and it can be arbitrarily designed according to its use, such as a tubular shape, a box shape, and a mat shape.

【0021】本発明の袋体を形成するための縫製方法に
ついては、いずれの方法でもよいが、ミシン縫製や融着
縫製が好ましい方法として挙げられ、縫製部の縫目強力
が求められる用途ではミシン縫製が適しており、現場の
形状に応じて任意な形状が求められる時は熱融着縫製が
適している。
The sewing method for forming the bag of the present invention may be any method. However, sewing method and fusion-sealing method are preferred methods. Sewing is suitable, and when an arbitrary shape is required according to the shape at the site, heat fusion sewing is suitable.

【0022】[0022]

【作用】加水分解を経て生分解され、分解最終物が完全
に自然界に存在する物質に変換されまた耐光性が良好で
太陽光が照射される面とされない面で分解速度が異なる
土木用袋体を提供する。
[Function] Biodegradable through hydrolysis, the final decomposition product is completely converted into a substance existing in nature, and the light-fastness is good, and the bag for civil engineering has different decomposition rates on the surface that is not exposed to sunlight and the surface that is not exposed to sunlight. I will provide a.

【0023】[0023]

【実施例】次に本発明を実施例により説明する。Next, the present invention will be described with reference to examples.

【0024】実施例1 ポリ−L−乳酸からなる引張強度が4.8cN/dtex で、
ヤング率が55cN/dtex である長繊維糸 550dtex/96fを
用い、経緯密度を共に33本/吋とし、12×12本模紗組織
にて土木用袋体用の織物(目合い 2.5mm)を製織した。
該織物を経84cm×緯61cmに裁断し、2つ折りし周辺部を
縫製し、経41cm×緯61cmの実施例1の土木用袋体を得
た。
Example 1 Poly-L-lactic acid having a tensile strength of 4.8 cN / dtex,
Using a long fiber yarn 550dtex / 96f with a Young's modulus of 55cN / dtex, a process density of 33 yarns / inch, and a 12 × 12 woven fabric for civil engineering bags (mesh size 2.5mm) Weaved.
The woven fabric was cut into a length of 84 cm and a length of 61 cm, folded in two, and the periphery was sewn to obtain a civil engineering bag of Example 1 having a length of 41 cm and a length of 61 cm.

【0025】実施例2 ポリ−L−乳酸からなる引張強度が4.8cN/dtex で、
ヤング率が55cN/dtex である長繊維糸 550dtex/96fを
経糸に用い、緯糸に20番手綿糸を使用して実施例1と
同様に製織し、同寸法に縫製し実施例3の土木用袋体を
得た。
Example 2 The tensile strength of poly-L-lactic acid was 4.8 cN / dtex,
Using a long fiber yarn 550dtex / 96f having a Young's modulus of 55 cN / dtex for the warp and twentieth cotton yarn for the weft, weaving in the same manner as in Example 1 and sewing it to the same dimensions, and sewing the same size as in Example 3 I got

【0026】実施例3 溶融紡糸時に K2PO3及びKNO3を各1ppm濃度で混入させ
たポリ−L−乳酸からなる引張強度が4.5cN/dtex
で、ヤング率が53cN/dtex である長繊維糸 550dtex/9
6fを用いて、経緯密度を共に33本/吋とし、12×12本模
紗組織にて土木用袋体用の織物(目合い 2.5mm)を製織
した。該織物を経84cm×緯61cmに裁断し、2つ折りし周
辺部を縫製し、経41cm×緯61cmの実施例3の土木用袋体
を得た。
Example 3 A tensile strength of 4.5 cN / dtex consisting of poly-L-lactic acid mixed with K 2 PO 3 and KNO 3 at a concentration of 1 ppm each during melt spinning.
550dtex / 9 with a Young's modulus of 53 cN / dtex
Using 6f, the weft density was 33 lines / inch, and 12 × 12 woven fabrics for fabric bags (mesh size: 2.5 mm) were woven using a mosaic structure. The woven fabric was cut into a length of 84 cm and a length of 61 cm, folded in two and sewn at the periphery to obtain a civil engineering bag of Example 3 having a length of 41 cm and a length of 61 cm.

【0027】比較例1 ポリエチレンテレフタレートからなる引張強度が8.0
cN/dtex で、ヤング率が90cN/dtex である長繊維糸 5
50dtex/96fをを用い、実施例1と同様に製織し、同寸法
に縫製して、比較例1の土木用袋体を得た。
Comparative Example 1 A polyethylene terephthalate having a tensile strength of 8.0
Long fiber yarn with cN / dtex and Young's modulus 90 cN / dtex 5
Using 50 dtex / 96f, weaving was performed in the same manner as in Example 1 and sewn to the same dimensions to obtain a civil engineering bag of Comparative Example 1.

【0028】比較例2 ポリ−L−乳酸からなる引張強度が2.5cN/dtex で、
ヤング率が30cN/dtex である長繊維糸 550dtex/96fを
用い、実施例1と同様に製織し、同寸法に縫製して、比
較例2の土木用袋体を得た。
Comparative Example 2 Poly-L-lactic acid having a tensile strength of 2.5 cN / dtex,
Using a long fiber yarn of 550 dtex / 96f having a Young's modulus of 30 cN / dtex, the fabric was woven and sewn to the same dimensions as in Example 1 to obtain a civil engineering bag of Comparative Example 2.

【0029】上記の実施例1〜3及び比較例1〜2を福
井県坂井郡丸岡町の現地土を混入し、同地に土木用袋体
を設置し、各々の分解性を比較した。実施例1の土木用
袋体は直射日光が照射される面は約2年間形態を保持し
ており、日光が当たらない面は分解が促進され、形態が
保持していなかった。直射日光があたる面状に土をかぶ
せたところ約1年間で形態が無くなり分解が助長され
た。実施例3についても分解性は実施例1とほぼ同様で
あったが、雑草の生長が他の土木用袋体と比較して顕著
であった。
The above Examples 1 to 3 and Comparative Examples 1 and 2 were mixed with local soil from Maruoka-machi, Sakai-gun, Fukui Prefecture, and a civil engineering bag was installed in the same ground, and their degradability was compared. In the civil engineering bag of Example 1, the surface exposed to direct sunlight maintained its shape for about two years, and the surface not exposed to sunlight accelerated decomposition and did not retain its shape. When the soil was covered on a surface exposed to direct sunlight, the form disappeared in about one year, and decomposition was promoted. Degradability of Example 3 was almost the same as that of Example 1, but the growth of weeds was remarkable as compared with other civil engineering bags.

【0030】比較例1は全く分解性が無く、形態をしっ
かり保持されていることが確認された。比較例2は、現
地土を入れ設置する際に一部破損する箇所がみられ、機
械的強度の不足が観測された。
Comparative Example 1 had no decomposability at all, and it was confirmed that the form was firmly maintained. In Comparative Example 2, there was a part that was partially damaged when the soil was put in and installed, and a lack of mechanical strength was observed.

【0031】[0031]

【発明の効果】本発明によれば加水分解を経て生分解さ
れ、分解最終物が完全に自然界に存在する物質に変換さ
れ、また耐光性が良好で太陽光が照射される面とされな
い面で分解速度が異なる土木用袋体を提供することがで
きる。
According to the present invention, biodegradation is achieved through hydrolysis, and the final decomposition product is completely converted into a substance existing in nature. In addition, the surface has good light resistance and is not exposed to sunlight. Civil engineering bags having different decomposition rates can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 唐渡 義伯 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 Fターム(参考) 2B022 AA03 AB02 BB05 2D018 AA06 2D044 DA01  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoshihisa Karato 23rd Uji Kozakura, Uji City, Kyoto Prefecture Unitika Central Research Laboratory F-term (reference) 2B022 AA03 AB02 BB05 2D018 AA06 2D044 DA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 引張強力が3.0cN/dtex以上、ヤング
率が40cN/dtex以上である脂肪族系ポリエステル繊維
からなることを特徴とする土木用袋体。
1. A civil engineering bag comprising an aliphatic polyester fiber having a tensile strength of at least 3.0 cN / dtex and a Young's modulus of at least 40 cN / dtex.
【請求項2】 脂肪族系ポリエステル繊維がポリ乳酸繊
維であることを特徴とする請求項1記載の土木用袋体。
2. The civil engineering bag according to claim 1, wherein the aliphatic polyester fiber is a polylactic acid fiber.
【請求項3】 脂肪族系ポリエステル繊維がリン化合
物、窒素含有化合物、カリウム含有化合物の少なくとも
1種類以上の化合物が0.1ppm 以上の濃度を有してい
るポリ乳酸繊維であることを特徴とする請求項1または
請求項2記載の土木用袋体。
3. The aliphatic polyester fiber is a polylactic acid fiber in which at least one compound of a phosphorus compound, a nitrogen-containing compound and a potassium-containing compound has a concentration of 0.1 ppm or more. The civil engineering bag according to claim 1 or 2.
JP11185384A 1999-06-30 1999-06-30 Bag body for use in civil engineering Pending JP2001011834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11185384A JP2001011834A (en) 1999-06-30 1999-06-30 Bag body for use in civil engineering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11185384A JP2001011834A (en) 1999-06-30 1999-06-30 Bag body for use in civil engineering

Publications (1)

Publication Number Publication Date
JP2001011834A true JP2001011834A (en) 2001-01-16

Family

ID=16169877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11185384A Pending JP2001011834A (en) 1999-06-30 1999-06-30 Bag body for use in civil engineering

Country Status (1)

Country Link
JP (1) JP2001011834A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274742A (en) * 2005-03-30 2006-10-12 Nisshoku Corp Erosion preventing material and erosion preventing construction method
JP2008291636A (en) * 2007-04-27 2008-12-04 Toray Ind Inc Sand movement preventive construction method, vegetation forming-improving method in sandy place using its construction method and cylindrical fabric for columnar sandbag

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274742A (en) * 2005-03-30 2006-10-12 Nisshoku Corp Erosion preventing material and erosion preventing construction method
JP4546865B2 (en) * 2005-03-30 2010-09-22 日本植生株式会社 Surrounding vegetation introduction type erosion prevention material and surrounding vegetation introduction type erosion prevention method
JP2008291636A (en) * 2007-04-27 2008-12-04 Toray Ind Inc Sand movement preventive construction method, vegetation forming-improving method in sandy place using its construction method and cylindrical fabric for columnar sandbag

Similar Documents

Publication Publication Date Title
JP2001011834A (en) Bag body for use in civil engineering
EP4103786A1 (en) Protective device and slope stabilization
JPH06212510A (en) Cellulosic acetate fiber having regulated biodegradability, its production and seedling cultivating container and greening sheet formed from the same fiber
JP2001011832A (en) Bag body for use in civil engineering
JP4242022B2 (en) Civil engineering bag
JP2001011833A (en) Bag body for use in civil engineering
JPH11280074A (en) Biodegradable net and vegetation basic body and tree planting construction method
JP4524485B2 (en) Biodegradable topsoil protection sheet and vegetation sheet
JP3722726B2 (en) Vegetation mat for slope construction
JPH10121480A (en) Method of forming slope face
JP2001346463A (en) Biodegradable net for cultivating laver
JP2001039451A (en) Bag body for civil engineering
JP2008000084A (en) Vegetation base body, method for producing the body, and greening construction method
JP2599097B2 (en) Vegetation bag
JP2001123450A (en) Bag body for civil engineering
JPH09324428A (en) Gabion bag
JP2002161524A (en) Recovering and conserving material for landscape of water edge
JP3352886B2 (en) Vegetation for greening
JP3923901B2 (en) Peeling damage protection net
JP2011050330A (en) Liana growth supporting net by jute and ramie mixed twisted yarn
JP4171944B2 (en) Civil engineering fabrics
JP2000060314A (en) Garden plant planter for hedge and growing of plant
JP2784466B2 (en) Slope greening method
JPH0626052A (en) Tree-planting bag
JP3832104B2 (en) String-like structure for direct sowing of rice

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721