JP2001011644A - Formation of metallic film on resin substrate - Google Patents

Formation of metallic film on resin substrate

Info

Publication number
JP2001011644A
JP2001011644A JP11182621A JP18262199A JP2001011644A JP 2001011644 A JP2001011644 A JP 2001011644A JP 11182621 A JP11182621 A JP 11182621A JP 18262199 A JP18262199 A JP 18262199A JP 2001011644 A JP2001011644 A JP 2001011644A
Authority
JP
Japan
Prior art keywords
resin substrate
resin
photocatalyst
substrate
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11182621A
Other languages
Japanese (ja)
Inventor
Shugo Yamada
周吾 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP11182621A priority Critical patent/JP2001011644A/en
Publication of JP2001011644A publication Critical patent/JP2001011644A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a metallic film on a resin substrate with good adhesion by carrying photocatalyst particles which degrade the resin of the resin substrate on the surface of the resin substrate, irradiating the photocatalyst particles with UV, removing these by washing in water under ultrasonic vibration and coating the resin substrate with metal by sputtering, vacuum deposition or electroless plating. SOLUTION: The resin of the resin substrate is degraded by the action of the photocatalyst to roughen the surface of the substrate. Then the washing in water under ultrasonic vibration is carried out, the photocatalyst particles remaining on the surface of the substrate are removed by the cavitation action of ultrasonic waves. The photocatalyst particles are preferably dispersed in a water-soluble medium, applied and carried on the surface of the resin substrate. The photocatalyst is preferably anatase type titanium dioxide and the irradiation with UV is preferably carried out by exposure to plasma. The resin of the resin substrate may be acrylic resin, polyethylene or epoxy resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は樹脂基板への金属膜
の密着を良好とする樹脂基板への金属膜形成方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a metal film on a resin substrate to improve the adhesion of the metal film to the resin substrate.

【0002】[0002]

【従来の技術】樹脂基板の表面に金属膜を形成する技術
は、装飾品、フレキシブルプリント基板等の電子機器部
品、包装用フィルム等、各種の分野で利用されている。
この金属膜の形成をスパッタリング法や真空蒸着法等の
気相成長法で行う場合、樹脂基板への金属膜の密着性を
高めることが要望されている。
2. Description of the Related Art The technique of forming a metal film on the surface of a resin substrate is used in various fields such as decorative articles, electronic parts such as flexible printed boards, packaging films, and the like.
When this metal film is formed by a vapor phase growth method such as a sputtering method or a vacuum evaporation method, it is desired to enhance the adhesion of the metal film to the resin substrate.

【0003】[0003]

【発明が解決しようとする課題】その解決方法として、
樹脂基板の表面に凹凸を付与し、金属膜の密着性を高め
る方法が知られている。この方法は、酸やアルカリ、
酸、これらの化合物を併用した薬剤に樹脂基板を浸漬す
ることで、上記薬剤の分解作用により樹脂基板の表面に
凹凸を付与するものである。例えば、特開平5−829
41号には、フッ素イオンを供給したクロム酸−テトラ
フルオロホウ酸水溶液で粗化した後に無電解めっきを施
す方法が開示されている。しかし、環境問題に対する関
心の高まりに伴い、これら方法に用いられる薬剤の廃水
処理に多数の工程を要し、処理に時間がかかるため、よ
り取扱いの容易な処理方法が求められている。
As a solution to this problem,
There has been known a method of providing irregularities on the surface of a resin substrate to increase the adhesion of a metal film. This method uses acids, alkalis,
By immersing the resin substrate in an agent containing an acid and these compounds in combination, the surface of the resin substrate is made uneven by the decomposition action of the agent. For example, Japanese Patent Application Laid-Open No. 5-829
No. 41 discloses a method of performing electroless plating after roughening with a chromic acid-tetrafluoroboric acid aqueous solution supplied with fluorine ions. However, with increasing interest in environmental issues, the wastewater treatment of chemicals used in these methods requires a large number of steps, and the treatment takes a long time. Therefore, a treatment method that is easier to handle is required.

【0004】本発明は上記の事情に鑑みてなされたもの
で、その目的とするところは、樹脂基板への金属膜の密
着を良好とする樹脂基板への金属膜形成方法を提供する
ことにある。さらに、樹脂基板に凹凸を付与するに伴っ
て生じる廃棄処理の取扱いが、比較的容易な方法を提供
することにある。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for forming a metal film on a resin substrate, which improves the adhesion of the metal film to the resin substrate. . It is still another object of the present invention to provide a relatively easy method of handling disposal processing caused by providing the resin substrate with irregularities.

【0005】[0005]

【課題を解決するための手段】本発明の請求項1に係る
樹脂基板への金属膜形成方法は、樹脂基板の表面に、こ
の樹脂基板に用いられた樹脂を分解する光触媒の粒子を
担持させ、紫外光を照射した後、超音波振動を与えなが
ら水中洗浄を行ない、上記表面の光触媒の粒子を除去し
た後に、スパッタリング、真空蒸着、または、無電解め
っきを施し金属を被覆することを特徴とする。上記構成
によると、光触媒が光触媒作用で樹脂基板に用いられた
樹脂を分解し、基板の表面が粗化すると共に、超音波振
動を与えながらの水中洗浄は、超音波のキャビテーショ
ン作用により、基板の表面に残存する光触媒の粒子を除
去するので、光触媒の粒子を残存したまま金属膜が形成
されることを防止する。
According to a first aspect of the present invention, there is provided a method of forming a metal film on a resin substrate, wherein particles of a photocatalyst for decomposing the resin used for the resin substrate are carried on the surface of the resin substrate. After irradiating with ultraviolet light, performing underwater washing while applying ultrasonic vibration, removing particles of the photocatalyst on the surface, sputtering, vacuum deposition, or electroless plating to coat the metal. I do. According to the above configuration, the photocatalyst decomposes the resin used for the resin substrate by photocatalysis, and the surface of the substrate is roughened, and the underwater cleaning while applying ultrasonic vibration is performed by the cavitation action of ultrasonic waves. Since the photocatalyst particles remaining on the surface are removed, a metal film is prevented from being formed with the photocatalyst particles remaining.

【0006】本発明の請求項2に係る樹脂基板への金属
膜形成方法は、請求項1記載の樹脂基板への金属膜形成
方法において、上記光触媒の粒子の担持は、光触媒の粒
子を水溶性の媒体中に分散させ、樹脂基板の表面に塗布
させてなることを特徴とする。
According to a second aspect of the present invention, there is provided a method for forming a metal film on a resin substrate according to the first aspect of the present invention, wherein the photocatalyst particles are supported by dissolving the photocatalyst particles in a water-soluble state. Characterized by being dispersed in a medium and applied to the surface of a resin substrate.

【0007】本発明の請求項3に係る樹脂基板への金属
膜形成方法は、請求項1又は請求項2記載の樹脂基板へ
の金属膜形成方法において、上記光触媒の粒子は、アナ
ターゼ型酸化チタンであることを特徴とする。
According to a third aspect of the present invention, there is provided a method for forming a metal film on a resin substrate according to the first or second aspect, wherein the particles of the photocatalyst are anatase type titanium oxide. It is characterized by being.

【0008】本発明の請求項4に係る樹脂基板への金属
膜形成方法は、請求項1乃至請求項3いずれか記載の樹
脂基板への金属膜形成方法において、上記紫外光の照射
は、プラズマに曝することであることを特徴とする。
According to a fourth aspect of the present invention, in the method for forming a metal film on a resin substrate according to any one of the first to third aspects, the irradiation of the ultraviolet light may be performed by plasma. Is characterized by being exposed to

【0009】[0009]

【発明の実施の形態】本発明の樹脂基板への金属膜形成
方法は、樹脂基板の表面に、この樹脂基板に用いられた
樹脂を分解する光触媒の粒子を担持させ、紫外光を照射
する。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for forming a metal film on a resin substrate according to the present invention, particles of a photocatalyst for decomposing the resin used for the resin substrate are carried on the surface of the resin substrate, and ultraviolet light is irradiated.

【0010】上記樹脂基板に用いる樹脂としては、アク
リル、ポリエチレン、エポキシ、ポリイミド、ポリアミ
ド等の各種合成樹脂が挙げられる。上記樹脂基板は、ガ
ラス繊維等の基材に熱硬化性の樹脂を含浸して得られる
プリプレグの樹脂を硬化させて得ることもできるし、熱
可塑性の樹脂を射出成形して得ることもできる。この樹
脂基板は、板状、フイルム状等、各種形状のものを利用
することができる。
Examples of the resin used for the resin substrate include various synthetic resins such as acryl, polyethylene, epoxy, polyimide and polyamide. The resin substrate can be obtained by curing a prepreg resin obtained by impregnating a base material such as a glass fiber with a thermosetting resin, or by injection molding a thermoplastic resin. As the resin substrate, those having various shapes such as a plate shape and a film shape can be used.

【0011】上記光触媒は、紫外光を受けることで触媒
機能を発揮するものであり、この触媒機能により上記樹
脂を分解するものである。上記光触媒としては、例え
ば、アナターゼ型酸化チタン、酸化ルテニウム、酸化亜
鉛、酸化ジルコニウム等の単独、及び、混合物が挙げら
れる。なかでも、アナターゼ型酸化チタンは、分解する
能力が高いので、好ましい。さらに、上記光触媒は、金
属を担持した状態で存在してもよく、上記金属として
は、白金、銀、金等が挙げられる。上記光触媒の粒子の
粒径は、樹脂基板に付与する凹凸のサイズによって適宜
選択されるが、直径0.1〜100μmが好ましい。
The photocatalyst exhibits a catalytic function by receiving ultraviolet light, and decomposes the resin by the catalytic function. Examples of the photocatalyst include single and mixtures of anatase-type titanium oxide, ruthenium oxide, zinc oxide, zirconium oxide and the like. Among them, anatase type titanium oxide is preferable because of its high ability to decompose. Further, the photocatalyst may be present in a state where a metal is supported, and examples of the metal include platinum, silver, and gold. The particle diameter of the photocatalyst particles is appropriately selected depending on the size of the irregularities provided on the resin substrate, and preferably has a diameter of 0.1 to 100 μm.

【0012】本発明においては、光触媒の粒子を樹脂基
板の表面に担持した後に、紫外光を照射する。これによ
り、光触媒作用で樹脂基板に用いられた樹脂は分解さ
れ、基板の表面が粗化される。上記紫外光を照射する光
源としては、ブラックライト、低圧水銀灯、プラズマ等
が挙げられる。なかでも、プラズマは、樹脂基板表面の
分解が促進されるので好ましい。上記プラズマに曝す
と、紫外光と共に、プラズマ中の電子及びラジカルの作
用でも光触媒は活性化され、樹脂基板の表面の分解がよ
り促進される。そのため、基板表面の凹凸の形成がより
促進され、基板表面の粗化が短時間で達成できる。プラ
ズマの形態としては、マイクロ波放電プラズマ、高周波
放電プラズマ、ECRプラズマ等が挙げられ、プラズマ
を発生させるガスとしては、アルゴン、ヘリウム、窒
素、水素等のガスを用いることができる。
In the present invention, ultraviolet light is irradiated after the photocatalyst particles are supported on the surface of the resin substrate. Thereby, the resin used for the resin substrate is decomposed by the photocatalysis, and the surface of the substrate is roughened. Examples of the light source that emits the ultraviolet light include a black light, a low-pressure mercury lamp, and plasma. Among them, plasma is preferable because decomposition of the resin substrate surface is promoted. When exposed to the plasma, the photocatalyst is activated by the action of electrons and radicals in the plasma together with the ultraviolet light, and the decomposition of the surface of the resin substrate is further promoted. Therefore, the formation of the unevenness on the substrate surface is further promoted, and the roughening of the substrate surface can be achieved in a short time. Examples of the form of the plasma include microwave discharge plasma, high-frequency discharge plasma, ECR plasma, and the like. As a gas for generating the plasma, a gas such as argon, helium, nitrogen, or hydrogen can be used.

【0013】本発明においては、紫外光を照射した後
に、超音波振動を与えながら水中洗浄を行ない、上記基
板の表面の光触媒の粒子を除去する。この超音波振動を
与えながらの水中洗浄は、超音波振動のキャビテーショ
ン作用により、基板の表面に残存する光触媒の粒子を除
去するものであり、これにより、樹脂基板と金属膜の間
に光触媒の粒子を残存したままこれらが接合されること
を防止し、金属膜の密着性を良好にすることができる。
In the present invention, after irradiation with ultraviolet light, washing in water is performed while applying ultrasonic vibration to remove particles of the photocatalyst on the surface of the substrate. The washing in water while applying the ultrasonic vibration removes the photocatalyst particles remaining on the surface of the substrate by the cavitation action of the ultrasonic vibration. Can be prevented from being bonded while the metal remains, and the adhesion of the metal film can be improved.

【0014】本発明においては、上記の如く、水中洗浄
を行なうので、この水中洗浄を考慮して光触媒を樹脂基
板に担持する。上記光触媒を樹脂基板に担持する一方法
は、光触媒の粒子を水溶性の媒体中に分散させ、樹脂基
板の表面に塗布させる。上記媒体としては、例えば、メ
タノール、ポリビニルアルコール等のアルコール類、で
んぷん、コンスチータ等が挙げられる。上記媒体を用い
ると、上記水中洗浄の際、上記光触媒の除去がより効率
良くできるので、好ましい。
In the present invention, since the underwater washing is performed as described above, the photocatalyst is carried on the resin substrate in consideration of the underwater washing. In one method of supporting the photocatalyst on a resin substrate, particles of the photocatalyst are dispersed in a water-soluble medium and applied to the surface of the resin substrate. Examples of the medium include alcohols such as methanol and polyvinyl alcohol, starch, and constita. The use of the medium is preferable because the photocatalyst can be more efficiently removed during the underwater washing.

【0015】本発明は、上記光触媒の粒子を除去した後
に、スパッタリング、真空蒸着、または、無電解めっき
を施し金属を被覆する。上記金属膜の厚みは、特に制限
されないが、0.01〜数十μm程度が適当である。
According to the present invention, after the photocatalyst particles are removed, the metal is coated by sputtering, vacuum deposition, or electroless plating. The thickness of the metal film is not particularly limited, but is suitably about 0.01 to several tens μm.

【0016】本発明においては、比較的廃棄処理の取扱
いが容易な光触媒を用い、基板の表面を粗化できると共
に、水中洗浄を行ない光触媒の粒子を除去した後に金属
膜を形成するので、金属膜の密着を良好とすることがで
きる。
In the present invention, since the surface of the substrate can be roughened using a photocatalyst which is relatively easy to handle for disposal, and the metal film is formed after the photocatalyst is removed by washing in water, the metal film is formed. Can be improved.

【0017】[0017]

【実施例】本発明の効果を確認するために、評価用の樹
脂基板を作製し、金属膜の剥離試験を行った。
EXAMPLES In order to confirm the effects of the present invention, a resin substrate for evaluation was prepared and a metal film peeling test was performed.

【0018】(実施例1)熱可塑性樹脂のポリフタルア
ミド樹脂組成物で作製した樹脂基板(サイズ100×1
00mm)を用いた。メタノール溶液に、光触媒として
平均粒子径0.1μmのアナターゼ型酸化チタンを攪拌
し、この混合液を樹脂基板の表面にスプレーコートし、
温風乾燥した。光触媒の膜厚は、蛍光X線による測定の
結果約 5μmであった。この樹脂基板に、紫外光の出力
が45Wの低圧水銀灯を20分間照射した。その後、超
音波洗浄機を用い、超音波振動を付与しながら水中洗浄
を10分間行ない、乾燥した。その後、無電解銅めっき
を施し、厚さ0.3μmの銅膜を基板の表面に形成し
た。
Example 1 A resin substrate (size 100 × 1) made of a thermoplastic resin polyphthalamide resin composition
00 mm). In a methanol solution, an anatase type titanium oxide having an average particle diameter of 0.1 μm was stirred as a photocatalyst, and this mixture was spray-coated on the surface of a resin substrate,
Hot air dried. The thickness of the photocatalyst was about 5 μm as measured by X-ray fluorescence. This resin substrate was irradiated with a low-pressure mercury lamp having an ultraviolet light output of 45 W for 20 minutes. Thereafter, using an ultrasonic washing machine, washing in water was performed for 10 minutes while applying ultrasonic vibrations, and drying was performed. Thereafter, electroless copper plating was performed to form a 0.3 μm thick copper film on the surface of the substrate.

【0019】(実施例2)熱硬化性樹脂のエポキシ樹脂
組成物で作製した樹脂基板(サイズ100×100m
m)を用いた。上記樹脂基板を用いた以外は、実施例1
と同様にして、厚さ0.3μmの銅膜を基板の表面に形
成した。
Example 2 A resin substrate (size 100 × 100 m) made of an epoxy resin composition of a thermosetting resin
m) was used. Example 1 except that the above resin substrate was used.
Similarly, a copper film having a thickness of 0.3 μm was formed on the surface of the substrate.

【0020】(実施例3)熱可塑性樹脂のポリフタルア
ミド樹脂組成物で作製した樹脂基板(サイズ100×1
00mm)を用いた。ポリビニルアルコール1重量%の
水溶液に、光触媒として平均粒子径0.1μmのアナタ
ーゼ型酸化チタンを攪拌した混合液を準備し、この混合
液を樹脂基板の表面にスプレーコートし、温風乾燥し
た。光触媒の膜厚は、蛍光X線による測定の結果約20
μmであった。この樹脂基板に、紫外光の出力が45W
の低圧水銀灯を20分間照射した。その後、超音波洗浄
機を用い、超音波振動を付与しながら水中洗浄を10分
間行ない、乾燥した。その後、無電解銅めっきを施し、
厚さ0.3μmの銅膜を基板の表面に形成した。
Example 3 A resin substrate (size 100 × 1) made of a thermoplastic resin polyphthalamide resin composition
00 mm). A mixed solution was prepared by stirring an anatase type titanium oxide having an average particle diameter of 0.1 μm as a photocatalyst in an aqueous solution of 1% by weight of polyvinyl alcohol, and the mixed solution was spray-coated on the surface of a resin substrate and dried with hot air. The thickness of the photocatalyst was about 20
μm. The resin substrate has an ultraviolet light output of 45 W
For 20 minutes. Thereafter, using an ultrasonic washing machine, washing in water was performed for 10 minutes while applying ultrasonic vibrations, and drying was performed. After that, electroless copper plating is applied,
A copper film having a thickness of 0.3 μm was formed on the surface of the substrate.

【0021】(実施例4)熱可塑性樹脂のポリフタルア
ミド樹脂組成物で作製した樹脂基板(サイズ100×1
00mm)を用いた。ポリビニルアルコール1重量%の
水溶液に、光触媒として平均粒子径0.1μmのアナタ
ーゼ型酸化チタンを攪拌した混合液を準備し、この混合
液を樹脂基板の表面にスプレーコートし、温風乾燥し
た。光触媒の膜厚は、蛍光X線による測定の結果約20
μmであった。この樹脂基板をホルダーに取り付け、真
空チャンバー内に配置し、この真空チャンバー内を1×
10-3Pa以下になるまで真空排気した。アルゴンガス
を導入し、プラズマを発生させ5分間処理を行った。そ
の後、超音波洗浄機を用い、超音波振動を付与しながら
水中洗浄を10分間行ない、乾燥した。その後、無電解
銅めっきを施し、厚さ0.3μmの銅膜を基板の表面に
形成した。
Example 4 A resin substrate (size 100 × 1) made of a polyphthalamide resin composition of a thermoplastic resin
00 mm). A mixed solution was prepared by stirring an anatase type titanium oxide having an average particle diameter of 0.1 μm as a photocatalyst in an aqueous solution of 1% by weight of polyvinyl alcohol, and the mixed solution was spray-coated on the surface of a resin substrate and dried with hot air. The thickness of the photocatalyst was about 20
μm. This resin substrate is mounted on a holder and placed in a vacuum chamber.
Evacuation was performed until the pressure became 10 −3 Pa or less. Argon gas was introduced, plasma was generated, and the treatment was performed for 5 minutes. Thereafter, using an ultrasonic washing machine, washing in water was performed for 10 minutes while applying ultrasonic vibrations, and drying was performed. Thereafter, electroless copper plating was performed to form a 0.3 μm thick copper film on the surface of the substrate.

【0022】(実施例5)実施例4において、熱硬化性
樹脂のエポキシ樹脂組成物で作製した樹脂基板(サイズ
100×100mm)を用いた。上記樹脂基板を用いた
以外は、実施例4と同様にして、厚さ0.3μmの銅膜
を基板の表面に形成した。
Example 5 In Example 4, a resin substrate (size 100 × 100 mm) made of an epoxy resin composition of a thermosetting resin was used. A copper film having a thickness of 0.3 μm was formed on the surface of the substrate in the same manner as in Example 4 except that the resin substrate was used.

【0023】(実施例6)実施例1において、金属膜を
次のように形成した以外は実施例1と同様にした。超音
波振動を付与しながら水中洗浄を10分間行ない、乾燥
した後に、スパッタリングを行なった。スパッタリング
は、ガス成分がアルゴン、ガス圧が2.0×10-1
a、基板の温度が室温、ターゲット電圧が−500Vの
条件で、マグネトロンスパッタリング法で行い、厚さ
0.3μmの銅膜を基板の表面に形成した。
Example 6 Example 1 was the same as Example 1 except that a metal film was formed as follows. Underwater washing was performed for 10 minutes while applying ultrasonic vibration, and after drying, sputtering was performed. In sputtering, the gas component is argon and the gas pressure is 2.0 × 10 −1 P
a, A copper film having a thickness of 0.3 μm was formed on the surface of the substrate by magnetron sputtering under the conditions of a substrate temperature of room temperature and a target voltage of −500 V.

【0024】(実施例7)実施例1において、金属膜を
次のように形成した以外は実施例1と同様にした。超音
波振動を付与しながら水中洗浄を10分間行ない、乾燥
した後に、真空蒸着を行なった。真空蒸着は、基板を真
空蒸着装置内のホルダーに取り付け、電子ビーム電圧が
4kV、電流が150mA、蒸着時間5分間の条件で、
電子ビーム加熱を行なった。この電子ビーム加熱によ
り、金属を蒸発加熱を行ない、厚さ0.3μmの銅膜を
基板の表面に形成した。
Example 7 Example 1 was the same as Example 1 except that the metal film was formed as follows. Underwater washing was performed for 10 minutes while applying ultrasonic vibration, and after drying, vacuum evaporation was performed. For vacuum deposition, the substrate is mounted on a holder in a vacuum deposition apparatus, and the electron beam voltage is 4 kV, the current is 150 mA, and the deposition time is 5 minutes.
Electron beam heating was performed. By this electron beam heating, the metal was evaporated and heated, and a copper film having a thickness of 0.3 μm was formed on the surface of the substrate.

【0025】(比較例1)熱硬化性樹脂のエポキシ樹脂
組成物で作製した樹脂基板(サイズ100×100m
m)を用いた。重クロム酸カリウム15g、硫酸100
cc、水150ccの割合で配合した溶液に、上記樹脂
基板を5分間浸漬し、表面を粗化した。その後、無電解
銅めっきを施し、厚さ0.3μmの銅膜を基板の表面に
形成した。
Comparative Example 1 A resin substrate (100 × 100 m in size) made of an epoxy resin composition of a thermosetting resin
m) was used. 15 g of potassium dichromate, sulfuric acid 100
The resin substrate was immersed in a solution containing cc and 150 cc of water for 5 minutes to roughen the surface. Thereafter, electroless copper plating was performed to form a 0.3 μm thick copper film on the surface of the substrate.

【0026】(比較例2)実施例1において、水中洗浄
を行なわずに、無電解銅めっきを施し、厚さ0.3μm
の銅膜を基板の表面に形成した。
(Comparative Example 2) In Example 1, an electroless copper plating was carried out without washing in water, and the thickness was 0.3 μm.
Was formed on the surface of the substrate.

【0027】(評価)金属膜の剥離試験は、次のように
行った。銅膜に2mm間隔で碁盤目状に切り目をナイフ
で入れ、この20個所にセロハンテープを貼り、急激に
剥がし、銅膜が剥離しなかった箇所の割合を測定した。
結果は、表1に示すとおり、実施例はいずれも比較例に
比べ、銅膜の密着性は、良好であった。
(Evaluation) The peeling test of the metal film was performed as follows. The copper film was cut in a grid pattern at intervals of 2 mm with a knife, and cellophane tape was applied to these 20 locations, and the copper film was rapidly peeled off, and the proportion of locations where the copper film was not peeled off was measured.
As a result, as shown in Table 1, the adhesiveness of the copper film in each of the examples was better than that in the comparative example.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明の請求項1乃至請求項3いずれか
に係る樹脂基板への金属膜形成方法によると、樹脂基板
の表面に担持した光触媒の作用で、基板の表面を粗化
し、水中洗浄を行なった後に、金属を被覆するので、金
属膜の密着を良好とすることができる。また、光触媒は
比較的廃棄処理の取扱いが容易であるので、環境面から
も優れる。
According to the method for forming a metal film on a resin substrate according to any one of claims 1 to 3 of the present invention, the surface of the substrate is roughened by the action of a photocatalyst carried on the surface of the resin substrate, and Since the metal is coated after the cleaning, the adhesion of the metal film can be improved. In addition, since the photocatalyst is relatively easy to handle for disposal, it is also environmentally friendly.

【0030】さらに、本発明の請求項4に係る形成方法
によると、上記効果に加えて、プラズマは樹脂基板表面
の分解が促進されるので、基板表面の粗化が短時間で達
成できる。
Further, according to the forming method of the fourth aspect of the present invention, in addition to the above effects, the plasma promotes the decomposition of the resin substrate surface, so that the substrate surface can be roughened in a short time.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K022 AA13 AA15 AA18 AA19 AA23 AA32 AA36 BA08 CA02 CA12 CA17 DA01 4K029 AA11 BA08 CA01 CA05 DB21 DC39 FA02 5E343 AA12 DD23 DD25 DD33 EE05 EE32 EE36 EE37 EE60 GG02 GG11  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K022 AA13 AA15 AA18 AA19 AA23 AA32 AA36 BA08 CA02 CA12 CA17 DA01 4K029 AA11 BA08 CA01 CA05 DB21 DC39 FA02 5E343 AA12 DD23 DD25 DD33 EE05 EE32 EE36 EE37 EE60 GG02 GG

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 樹脂基板の表面に、この樹脂基板に用い
られた樹脂を分解する光触媒の粒子を担持させ、紫外光
を照射した後、超音波振動を与えながら水中洗浄を行な
い、上記表面の光触媒の粒子を除去した後に、スパッタ
リング、真空蒸着、または、無電解めっきを施し金属を
被覆することを特徴とする樹脂基板への金属膜形成方
法。
Claims: 1. The surface of a resin substrate is loaded with particles of a photocatalyst that decomposes the resin used in the resin substrate, and after irradiating with ultraviolet light, washing with water is performed while applying ultrasonic vibration. A method for forming a metal film on a resin substrate, comprising removing a photocatalyst particle, and then coating the metal by sputtering, vacuum deposition, or electroless plating.
【請求項2】 上記光触媒の粒子の担持は、光触媒の粒
子を水溶性の媒体中に分散させ、樹脂基板の表面に塗布
させてなることを特徴とする請求項1記載の樹脂基板へ
の金属膜形成方法。
2. The method according to claim 1, wherein the photocatalyst particles are supported by dispersing the photocatalyst particles in a water-soluble medium and applying the particles to the surface of the resin substrate. Film formation method.
【請求項3】 上記光触媒の粒子は、アナターゼ型酸化
チタンであることを特徴とする請求項1又は請求項2記
載の樹脂基板への金属膜形成方法。
3. The method for forming a metal film on a resin substrate according to claim 1, wherein the particles of the photocatalyst are anatase type titanium oxide.
【請求項4】 上記紫外光の照射は、プラズマに曝する
ことであることを特徴とする請求項1乃至請求項3いず
れか記載の樹脂基板への金属膜形成方法。
4. The method for forming a metal film on a resin substrate according to claim 1, wherein the irradiation of the ultraviolet light is performed by exposing to a plasma.
JP11182621A 1999-06-29 1999-06-29 Formation of metallic film on resin substrate Pending JP2001011644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11182621A JP2001011644A (en) 1999-06-29 1999-06-29 Formation of metallic film on resin substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11182621A JP2001011644A (en) 1999-06-29 1999-06-29 Formation of metallic film on resin substrate

Publications (1)

Publication Number Publication Date
JP2001011644A true JP2001011644A (en) 2001-01-16

Family

ID=16121500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11182621A Pending JP2001011644A (en) 1999-06-29 1999-06-29 Formation of metallic film on resin substrate

Country Status (1)

Country Link
JP (1) JP2001011644A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010082386A (en) * 2001-03-09 2001-08-30 김종학 Method for forming metallic coating onto abs copolymer
JP2005311034A (en) * 2004-04-21 2005-11-04 Sharp Corp Nitride semiconductor light emitting device and manufacturing method thereof
JP2006278744A (en) * 2005-03-29 2006-10-12 Dainippon Printing Co Ltd Conductive variable composite, conductive variable lamination, and conductive pattern forming sheet material
JP2010211397A (en) * 2009-03-09 2010-09-24 Toshiba Corp Information processor, program, and storage medium
US8946088B2 (en) 2010-10-01 2015-02-03 Lancaster University Business Enterprises Limited Method of metal deposition
CN106244983A (en) * 2016-08-01 2016-12-21 太仓顺如成建筑材料有限公司 A kind of metal material surface coating processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010082386A (en) * 2001-03-09 2001-08-30 김종학 Method for forming metallic coating onto abs copolymer
JP2005311034A (en) * 2004-04-21 2005-11-04 Sharp Corp Nitride semiconductor light emitting device and manufacturing method thereof
JP2006278744A (en) * 2005-03-29 2006-10-12 Dainippon Printing Co Ltd Conductive variable composite, conductive variable lamination, and conductive pattern forming sheet material
JP4580799B2 (en) * 2005-03-29 2010-11-17 大日本印刷株式会社 Conductive variable composition, conductive variable laminate, conductive pattern forming body, and organic electroluminescent device
JP2010211397A (en) * 2009-03-09 2010-09-24 Toshiba Corp Information processor, program, and storage medium
US8946088B2 (en) 2010-10-01 2015-02-03 Lancaster University Business Enterprises Limited Method of metal deposition
CN106244983A (en) * 2016-08-01 2016-12-21 太仓顺如成建筑材料有限公司 A kind of metal material surface coating processing method

Similar Documents

Publication Publication Date Title
JP5360963B2 (en) Catalyst-free metallization method on dielectric substrate surface and dielectric substrate with metal film
Charbonnier et al. Copper metallization of polymers by a palladium-free electroless process
CN1223702C (en) Plating method of metal film on surface of polymer
JP2006193780A (en) Metallic film and method for forming the same
JPH08325713A (en) Formation of metallic film on organic substrate surface
JPH036225B2 (en)
EP1558786B1 (en) Pretreatment method for electroless plating material and method for producing member having plated coating
US5668076A (en) Photocatalyst and method for preparing the same
JP2001011644A (en) Formation of metallic film on resin substrate
JP2012046781A (en) Copper plating method of polytetrafluoroethylene substrate for high frequency circuit
JPWO2003021005A1 (en) Plating method for nonconductor products
JP2008308762A (en) Material for forming electroless plating and method for manufacturing electrolessly plated non-electroconductive base material
JP4795100B2 (en) Metal film forming method, metal film forming substrate, metal film, metal pattern forming method, metal pattern forming substrate, metal pattern, and polymer layer forming composition
JP2012062543A (en) Method for metallizing surface of dielectric substrate without using catalyst, and dielectric substrate provided with metal film
JP4579048B2 (en) Metal film forming method, metal pattern forming method using the same, and metal film
JPH02125873A (en) Bonding deposition of silver film, silver film and electrically-conductive, reflective or decorative film constituted thereof
US20170159182A1 (en) Resin article with plating film and method for manufacturing resin article
JP4013352B2 (en) Method for forming metal film on resin substrate surface
JP2006274176A (en) Method for modification of surface of plastics, plating method for surface of plastics, plastics, and plastics surface modification device
US20160186324A1 (en) Resin article and method of manufacturing resin article
JP6519061B1 (en) Integral molding, method for producing the same, and primer composition
Akiyama et al. Atmospheric pressure plasma liquid deposition of copper nanoparticles onto poly (4-vinylpyrdine)-grafted-poly (tetrafluoroethylene) surface
JP4902344B2 (en) Method for producing metal pattern material
JP3409563B2 (en) Electroless plating method
JP4013353B2 (en) Method for forming metal film on resin substrate surface