JPH08325713A - Formation of metallic film on organic substrate surface - Google Patents

Formation of metallic film on organic substrate surface

Info

Publication number
JPH08325713A
JPH08325713A JP13132295A JP13132295A JPH08325713A JP H08325713 A JPH08325713 A JP H08325713A JP 13132295 A JP13132295 A JP 13132295A JP 13132295 A JP13132295 A JP 13132295A JP H08325713 A JPH08325713 A JP H08325713A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
substrate surface
surface
metal film
organic substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13132295A
Other languages
Japanese (ja)
Inventor
Takao Hayashi
Kouichi Kusumura
Satoru Ogawa
悟 小川
隆夫 林
浩一 楠村
Original Assignee
Matsushita Electric Works Ltd
松下電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material including vapour evaporation
    • H05K3/146By vapour deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate

Abstract

PURPOSE: To attach a metallic film firmly to an org. substrate by irradiating the substrate surface with a light of wavelength activating bonding, further applying an amine soln. and then forming a metallic film by a vapor deposition method.
CONSTITUTION: The surface of an org. substrate is irradiated with a light having an energy equivalent to the binding energy of the substrate surface. The light activates the substrate surface to form a functional group such as -OH. The amine group of an amide soln. reacts with the functional group such as-OH to form an amide group. Since the amide group is highly reactive with the metal, the metallic film is firmly attached to the substrate surface. When the substrate surface is heat-treated or treated with plasma after the amine soln. is applied, the formation of the amide group is promoted more surely and preferably.
COPYRIGHT: (C)1996,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、気相成長法による有機質基材表面への金属膜形成方法に関する。 The present invention relates to a method of forming the metal film to the organic substrate surface by vapor deposition.

【0002】 [0002]

【従来の技術】有機質基材表面への気相成長法による金属膜形成技術は、装飾品、フレキシブルプリント基板などの電子機器部品、包装用フィルムをはじめ、幅広く利用される技術である。 BACKGROUND ART organic metal film forming technique by vapor deposition on the substrate surface decoration, electronic components such as a flexible printed circuit board, including packaging films is a technique that is widely used. しかしながら、有機質基材表面への気相成長法による金属膜形成技術における大きな問題点として、有機質基材と金属膜との密着性が挙げられ、 However, a major problem in the metal film forming technique using a vapor deposition method to organic substrate surface include adhesion to the organic substrate and the metal film,
有機質基材表面に強固に密着した金属膜を得ることは非常に難しい。 It is very difficult to obtain a metal film firmly adhered to the organic substrate surface.

【0003】従来、この問題を解決するために様々な方法がとられている。 [0003] Conventionally, various methods in order to solve this problem have been taken. 一つには酸、アルカリ等による表面処理を行って有機質基材表面に凹凸を形成し、アンカー効果等により、金属膜の密着性を高める方法が行われている。 One Acids, subjected to a surface treatment with an alkali or the like irregularities are formed on the organic substrate surface by an anchor effect or the like, a method to improve the adhesion of the metal film is performed. しかし、この方法では、金属膜表面に凹凸が生じるため、金属光沢がでなく、高周波用回路基板に使う場合には凹凸による表皮抵抗が生じて電気特性に悪影響があり、凹凸形成のための工程が複雑になるなどの問題がある。 However, in this method, since the unevenness occurs in the surface of the metal film, not out metallic luster, can adversely affect the electrical characteristics occur skin resistance due to unevenness in the case of using the high-frequency circuit board, the process for roughening there is a problem, such as becomes complicated.

【0004】また、金属膜を形成する前に、有機質基材表面にチタンまたはクロム等をプリコートすることにより、金属膜の密着性を高める方法も行われている。 Further, before forming the metal film, by precoating the titanium or chromium to organic substrate surface, it has been made how to improve the adhesion of the metal film. しかし、この方法では、回路基板として金属膜をパターンエッチングして使用する際のエッチング性に問題が生じる。 However, in this method, a problem occurs in etching properties at the time of use by pattern etching the metal film as a circuit board. つまり、上層となる金属膜をパターンエッチングして使用する際に、下層となるチタンまたはクロム等のプリコート層が残るという問題が生じるのである。 That is, when used in the pattern etching of the metal film serving as the upper layer is the problem that the precoat layer of titanium or chromium as the lower layer remains arises.

【0005】また、特開昭63−270455公報には、アルゴンガス等の不活性ガスまたは酸素、窒素、一酸化炭素、二酸化炭素などの活性ガスを用いて、これらの単独または混合ガスのプラズマで表面処理した後、金属膜を形成する方法が提案されている。 Further, in JP 63-270455 Laid inert gas or oxygen such as argon gas, nitrogen, carbon monoxide, by using an active gas such as carbon dioxide, in the plasma of these alone or a mixed gas after surface treatment, a method of forming a metal film has been proposed. このような表面処理では、有機質基材表面を活性化させるとともに、− In such a surface treatment, as well activate the organic substrate surface -
OH等の官能基形成が行われる。 Functional groups forming the OH or the like is performed. −OH等の官能基は金属との親和性が高く、金属膜の密着性を高める働きをするというのである。 Functional groups such as -OH has high affinity with the metal, it is because that functions to raise the adhesion of the metal film.

【0006】 [0006]

【発明が解決しようとする課題】しかしながら、上記のプラズマによる前処理によっても、十分に良好な有機質基材と金属膜との密着性が得られるというまでには至らない。 [SUMMARY OF THE INVENTION However, even by pre-treatment with the plasma, it does not lead to up to say adhesion a sufficiently good organic substrate and the metal film can be obtained.

【0007】この発明は、上記事情に鑑み、有機質基材の表面に凹凸を形成したり、所望の金属膜以外の材料をプリコートしたりすることなく、平滑な有機質基材の表面に気相成長法によって、金属膜を十分に密着力高く形成することのできる有機質基材表面への金属膜形成方法を提供することを課題とする。 [0007] This invention has been made in view of the above circumstances, or irregularities are formed on the surface of the organic substrate, without or precoat materials other than the desired metal film, vapor phase grown on the surface of the smooth organic substrates law by, and to provide a method of forming the metal film to the organic substrate surface which may be formed sufficiently adhesion high metal film.

【0008】 [0008]

【課題を解決するための手段】上記課題を解決する請求項1記載の発明は、有機質基材表面に結合を活性化させる波長の光を照射し、さらにアミン溶液を塗布した後、 To solve the above problems SUMMARY OF THE INVENTION Claim 1 the described invention, a light of a wavelength that activates the bond in organic substrate surface is irradiated, was further coated with an amine solution,
この有機質基材表面に気相成長法によって金属膜を形成することを特徴として構成している。 Constitute as characterized by forming a metal film by vapor deposition on the organic substrate surface.

【0009】請求項2記載の発明は、請求項1記載の発明において、アミン溶液を塗布した後に、さらに熱処理を行うことを特徴として構成している。 [0009] According to a second aspect of the present invention, in the first aspect, it constitutes after application of the amine solution, further subjected to heat treatment as a feature.

【0010】請求項3記載の発明は、請求項1記載の発明において、アミン溶液を塗布した後に、さらにプラズマ処理を行うことを特徴として構成している。 [0010] According to a third aspect of the present invention, in the first aspect, it constitutes after application of the amine solution, further performing plasma treatment as a feature.

【0011】請求項4記載の発明は、請求項4記載の発明において、プラズマ処理を、酸素、窒素、アルゴンガスのうち少なくとも一つを用いたガスプラズマによって行うことを特徴として構成している。 [0011] The invention of claim 4, wherein, in the invention of claim 4, wherein the plasma treatment, oxygen, nitrogen, and constitutes a means performs the gas plasma using at least one of argon gas.

【0012】有機質基材としては、エポキシ樹脂、ポリイミド樹脂、PET樹脂などの様々な合成樹脂材料を用いることができ、板状、フィルム状のものなど様々な形状のものを使用することができる。 [0012] As the organic base, an epoxy resin, polyimide resin, can be formed using a variety of synthetic resin material such as PET resin, a plate shape, can be used in various shapes such as a film-shaped.

【0013】気相成長法としては、スパッタリング法や真空蒸着法などを代表的に例示することができる。 [0013] As the vapor phase growth method, it is possible to typically exemplified such as a sputtering method or a vacuum deposition method. また、金属膜としては、銅膜が代表的なものであるが、特定の金属膜に限らないことは言うまでもない。 The metal film is a copper film is of representative, it is needless to say that not only the particular metal film. 金属膜の厚みも特に制限されないが、0.01〜数十μm程度の一般的な厚みに形成することができる。 The thickness of the metal film is not particularly limited, but can be formed in general thickness of about 0.01 to several ten [mu] m.

【0014】結合を活性化する波長の光としては、レーザ光等を例示することができるが、これに限定されず、 [0014] As the light of a wavelength that activates the bond can be exemplified a laser beam or the like, not limited to this,
様々な種類の光を照射することができる。 It can be irradiated with different types of light. 照射する光の波長によって定まるエネルギーの値が、有機質基材を構成する活性化させたい結合の結合エネルギーと略一致するような光を選択することによって、有効に有機質基材表面の結合を活性化させることができる。 The value of the energy determined by the wavelength of the irradiated light, by selecting the light that substantially coincides with the binding energy of binding you want to activate constituting the organic substrate, activating the coupling for Effective organic substrate surface it can be.

【0015】塗布するアミンとしては、アニリン、メチルアニリン、エチルアニリン、ベンジルアミン等の芳香族アミンを例示することができ、アミン単独で、あるいはメタノール等の溶剤に溶かして使用することができる。 [0015] The amine of coating, aniline, methylaniline, ethylaniline, can be exemplified aromatic amines such as benzylamine, may be used dissolved in a solvent, such as an amine alone or methanol. 有機質基材表面へのアミン溶液の塗布方法としては、アミン溶液に有機質基材を浸漬する方法や、有機質基材にアミン溶液をスプレーする方法などがあるが、これらに限定されることはない。 The coating method of the amine solution to the organic substrate surface, a method of immersing the organic base to the amine solution, but there is a method of spraying the amine solution to the organic substrate is not limited thereto. またアミンの塗布量は特に制限されるものでないが、アミンをメタノールに溶かして用いる場合には、アミンの濃度が0.1重量%以上のメタノール溶液に有機質基材を浸漬してアミンを付着させるのが好ましい。 The coating amount of the amine is not restricted in particular, when used in dissolving the amine in methanol, the concentration of amine to attach amine by immersing the organic substrate to 0.1% or more by weight of methanol solution preference is.

【0016】また、光を照射し、アミン溶液の塗布を行った後、さらに熱処理をするようにしてもよい。 Further, the light is irradiated, after application of the amine solution, may be further heat-treated. この場合の熱処理は、温度100〜140℃、時間0.5〜2 This heat treatment of the case, the temperature 100~140 ℃, time 0.5 to 2
時間程度の条件が特に好ましい。 Time about the conditions is particularly preferred.

【0017】また、上記のように光を照射し、アミン溶液の塗布を行った後、有機質基材をプラズマ処理するようにしてもよい。 Further, by irradiating light as described above, after the application of the amine solution, the organic base may be a plasma treatment. プラズマは酸素、窒素、アルゴンガスを単独で、あるいは複数を併用して用いたガスプラズマであることが好ましい。 Plasma oxygen, nitrogen, is preferably argon gas alone, or a plurality in combination with a gas plasma using.

【0018】 [0018]

【作用】請求項1記載の発明では、照射する光の波長によって定まるエネルギーが、有機質基材表面の結合の結合エネルギーと略一致するので、結合を励起させて活性化させることができ、−OH等の官能基を形成させることができる。 [Action] In the first aspect of the present invention, the energy determined by the wavelength of the irradiated light, because substantially coincides with the binding energy of binding of the organic substrate surface can be activated by exciting a bond, -OH thereby forming functional groups and the like. さらに、アミン溶液の塗布によって、有機質基材表面の−OH等の官能基とアミノ基の反応によってアミド基を形成することができる。 Furthermore, the application of the amine solution to form an amide group by reaction of a functional group and the amino group of the -OH or the like of the organic substrate surface. このアミド基は金属との反応性に優れているので、この有機質基材表面に気相形成した金属膜が強く密着することになる。 This amide group is excellent in reactivity with the metal, so that the metal film vapor phase formed in the organic substrate surface is strongly adhered.

【0019】請求項2記載の発明では、熱処理を行うことによって、アミド基の形成反応が促進される。 [0019] In a second aspect of the present invention, by performing heat treatment, forming reaction of the amide groups is promoted.

【0020】請求項3記載の発明では、プラズマ処理を行うことによって、アミド基の形成反応が促進される。 [0020] In a third aspect of the present invention, by performing plasma treatment, formation reaction of the amide groups is promoted.

【0021】請求項4記載の発明では、酸素、窒素、アルゴンガスのうち少なくとも一つを用いたガスプラズマによる処理によって、アミド基の形成反応がより確実に促進される。 [0021] In the invention of claim 4, wherein oxygen, nitrogen, by treatment with a gas plasma using at least one of argon gas, formation reaction of an amide group is more reliably promoted.

【0022】 [0022]

【実施例】以下に具体的な実施例を説明する。 BRIEF DESCRIPTION specific examples below. (実施例1)基板ホルダーに有機樹脂基材としてポリイミド基板を取り付け、真空チャンバー内に配置し、この真空チャンバー内を1×10 -5トール以下になるまで真空排気し、ハロゲンヒーターでポリイミド基板を100 (Example 1) A polyimide substrate mounted as an organic resin substrate on a substrate holder and placed in a vacuum chamber was evacuated until the vacuum chamber below 1 × 10 -5 Torr, a polyimide substrate with a halogen heater 100
℃に予備加熱を行った。 ℃ was preheated to. この予備加熱によって、ポリイミド基板に吸着した水分等を除去している。 This preheating, which removes moisture adsorbed on the polyimide substrate.

【0023】次に、結合を活性化させる波長の光として、C=O結合のエネルギー179kcal/molに相当する波長(およそ150〜160nm)のレーザ光を、ポリイミド基板の表面に照射した。 Next, as light of a wavelength that activates binding, laser light having a wavelength (about 150~160Nm) corresponding C = O bonds of the energy 179kcal / mol, was irradiated on the surface of the polyimide substrate.

【0024】照射終了後、このポリイミド基板の表面を、アニリンの1重量%メタノール溶液に浸漬させ、アミンとしてアニリンを用いたアミン溶液の塗布を行い、 [0024] After the end of irradiation, the surface of the polyimide substrate was immersed in 1 wt% methanol solution of aniline, it was coated amine solution used aniline as the amine,
さらに、120℃で熱処理を行った。 Further, heat treatment was performed at 120 ° C..

【0025】この後、気相成長法による金属膜の形成を、ガス成分アルゴン、ガス圧を2.0×10 -3トール、ポリイミド基板の温度を室温、ターゲット電圧を− [0025] Thereafter, the formation of metal film by vapor deposition, a gas component argon, the gas pressure 2.0 × 10 -3 torr, room temperature polyimide substrate, a target voltage -
500Vとした条件によるマグネトロンスパッタリング法で、上記のポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 In magnetron sputtering method with the conditions and 500V, to form a copper film having a thickness of 0.2μm on the surface of the polyimide substrate. (実施例2)実施例1と全く同様にして、ポリイミド基板に対する処理を、アミンとしてアニリンを用いたアミン溶液の塗布までを行い、加熱処理を行わずに以下の工程を実施した。 In the same manner as Example 2 Example 1, the process for the polyimide substrate, performed before coating of the amine solution used aniline as the amine, were carried out following step without heat treatment.

【0026】基板ホルダーに上記処理を行ったポリイミド基板を取り付け、真空チャンバー内に配置した。 [0026] fitted with a polyimide substrate was subjected to the above processing on a substrate holder and placed in a vacuum chamber. この真空チャンバー内を1×10 -5トール以下になるまで真空排気し、真空チャンバー内にアルゴンガスを導入して、アルゴンガス圧760トール(常圧)、放電電力1 The vacuum chamber was evacuated to less than or equal to 1 × 10 -5 Torr, argon gas was introduced into the vacuum chamber, the argon gas pressure of 760 torr (normal pressure), discharge power 1
00W、周波数15kHzの条件で1分間、ポリイミド基板の表面をアルゴンガスプラズマ処理を行った。 00W, 1 min at a frequency of 15 kHz, the surface of the polyimide substrate argon gas plasma treatment was performed.

【0027】この後、実施例1と同様の処理を行って、 [0027] Thereafter, the same processes as in Example 1,
気相成長法による金属膜の形成を行いポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 To form a copper film having a thickness of 0.2μm on the surface of the polyimide substrate subjected to the formation of metal film by vapor deposition. (実施例3)実施例2のアルゴンガスプラズマ処理の代わりに、酸素ガスを真空チャンバー内に導入して酸素ガスプラズマによる表面処理を行うようにした他は、全く同様にしてポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 Instead of the argon gas plasma treatment (Example 3) Example 2, except that to perform a surface treatment using oxygen gas plasma by introducing oxygen gas into the vacuum chamber, in the same manner on the surface of the polyimide substrate to form a copper film having a thickness of 0.2 [mu] m. (実施例4)実施例2のアルゴンガスプラズマ処理の代わりに、窒素ガスを真空チャンバー内に導入して窒素ガスプラズマによる表面処理を行うようにした他は、全く同様にしてポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 Instead of the argon gas plasma treatment (Example 4) Example 2, a nitrogen gas addition was set to be introduced into the vacuum chamber a surface treatment with a nitrogen gas plasma is quite similar manner to the surface of the polyimide substrate to form a copper film having a thickness of 0.2 [mu] m. (比較例1)実施例1における、ポリイミド基板にアニリン溶液を塗布する処理を行わない他は、全く同様にしてポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 In Comparative Example 1 Example 1, except that no processing is performed for applying the aniline solution polyimide substrate was formed a copper film having a thickness of 0.2μm on the surface of the polyimide substrate in the same manner. (比較例2)実施例1における、ポリイミド基板にアニリン溶液を塗布する処理を行わない他は、全く同様にしてポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 In Comparative Example 2 Example 1, except that no processing is performed for applying the aniline solution polyimide substrate was formed a copper film having a thickness of 0.2μm on the surface of the polyimide substrate in the same manner. (比較例3)実施例3における、ポリイミド基板にアニリン溶液を塗布する処理を行わない他は、全く同様にしてポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 In Comparative Example 3 Example 3, except that no processing is performed for applying the aniline solution polyimide substrate was formed a copper film having a thickness of 0.2μm on the surface of the polyimide substrate in the same manner. (比較例4)実施例4における、ポリイミド基板にアニリン溶液を塗布する処理を行わない他は、全く同様にしてポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 In Comparative Example 4 Example 4, except that no processing is performed for applying the aniline solution polyimide substrate was formed a copper film having a thickness of 0.2μm on the surface of the polyimide substrate in the same manner. (比較例5)実施例1における、レーザ光をポリイミド基板の表面に照射する工程を行わない他は、全く同様にしてポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 In Comparative Example 5 Example 1, except that it does not perform the step of irradiating the laser beam on the surface of the polyimide substrate was formed a copper film having a thickness of 0.2μm on the surface of the polyimide substrate in the same manner.

【0028】上記の実施例1〜4および比較例1〜5に述べた方法によって、有機質基材の表面に形成した銅膜について、密着性を評価するために碁盤目試験を行った。 [0028] by the method described in Example 1 to 4 and Comparative Examples 1 to 5 above, the copper film formed on the surface of the organic substrate was subjected to cross-cut adhesion test to evaluate the adhesion. この試験は銅膜に2mm間隔に碁盤目状の切り目をナイフで入れた後、この表面にセロハンテープを貼って剥がすことによって行い、銅膜が剥離しなければ「○」 After this test was put in knife grid pattern cut in 2mm intervals copper film, conducted by peeling put a cellophane tape on the surface, if the copper film is peeled off "○"
と評価し、また碁盤目状の切り目を入れなくとも剥離すれば「×」と評価し、碁盤目状の切り目を入れた場合のみ剥離すれば「△」と評価した。 And evaluation and, also if peel without putting a grid pattern of cuts was evaluated as "×", was evaluated as "△" if the peel only if you put a grid pattern of cuts. この結果を以下の表1 Table 1 of this result below
に示す。 To show.

【0029】 [0029]

【表1】 [Table 1]

【0030】表1の実施例1〜4と比較例1〜4とを対比すると、アニリン溶液を塗布する処理を実施した各実施例のものでは、銅膜の密着性が高いのに対して、アニリン溶液を塗布していない各比較例のものは密着性が低く、アニリン溶液の塗布による金属膜の密着性の向上の効果が確認される。 [0030] In comparison with Comparative Example 1-4 Examples 1-4 of Table 1, by way of the examples embodying the process of applying the aniline solution, whereas the high adhesion of the copper film, those of Comparative examples not applied in the aniline solution low adhesion, the effect of improving the adhesion of the metal film by coating aniline solution is confirmed.

【0031】また、実施例1と比較例5とを対比すると、レーザ光を照射していない比較例のものは密着性が低く、レーザ光を照射による密着性の向上の効果が確認される。 Further, from a comparison with Comparative Example 5 Example 1, those of comparative examples not irradiated with the laser beam has a low adhesion, the effect of improvement in adhesion by irradiation with laser light it is confirmed.

【0032】以上の結果から、光を照射したのちアニリン溶液を塗布することによって、金属膜の密着性が向上していることが確認される。 [0032] From the above results, by applying the aniline solution then was irradiated with light, it is confirmed that the adhesion of the metal film is improved.

【0033】 [0033]

【発明の効果】請求項1記載の発明では、結合を活性化させる波長の光を照射し、さらにアミン溶液を塗布する前処理によって、金属膜を強く有機質基材に密着させることができる。 In the invention of claim 1, wherein, according to the present invention, irradiated with light of a wavelength that activates the binding, by further processing prior to applying the amine solution, can be brought into close contact with the strongly organic substrate a metal film. このような前処理は、従来の微細な凹凸形成による前処理に比較して工程が簡単であって、容易に行うことができる。 Such pretreatment can process compared to the pretreatment with the conventional fine irregularities formed a simple, readily performed.

【0034】したがって、有機質基材の表面に化学エッチングにより凹凸を形成したり所望の金属膜以外の材料をプリコートしたりすることなく、有機質基材の表面に密着強度の高い金属膜を気相成長法により形成することができる。 [0034] Therefore, without or precoat materials other than the desired metal film or forming irregularities by chemical etching on the surface of the organic substrate, a metal film having a high adhesion strength to the surface of the organic substrate the vapor growth it can be formed by law.

【0035】また、有機質基材の表面に凹凸を形成する必要がないので、形成した金属膜に金属光沢が得られ、 Further, since there is no need to form unevenness on the surface of the organic substrate, metallic luster obtained formed metal film,
装飾用、反射鏡用などの用途に有用である。 Breeds, are useful in applications such as reflecting mirrors. また、高周波用回路基板に使う場合を想定すると、凹凸による表皮抵抗が生じる心配がなく、電気特性の良好な高周波用回路基板を製造することができる。 Furthermore, assuming a case of using the high-frequency circuit board, it can be concerned about the skin resistance due to unevenness occurs without producing a good high-frequency circuit board of the electrical characteristics.

【0036】また、所望の金属膜の下層にチタンまたはクロム等のプリコート層を存在させる必要がないものである。 Further, those not required to be present precoat layer of titanium or chromium in a lower layer of the desired metal film. したがって、電子材料用途の回路基板などに用いる場合、導体回路となる金属層のエッチングに悪影響を与えることがなく、回路形成が容易であって、有機質基材をベースとした回路板の製造に好適に用いられる金属膜形成方法になっている。 Therefore, when used in such as a circuit board of electronic materials, without adversely affecting the etching of the metal layer serving as a conductor circuit, an easy circuit formed, suitable for the production of a circuit board which is based on organic substrates It has become the metal film forming method used.

【0037】請求項2記載の発明では、熱処理を行うことによって、アミド基の形成反応が促進され、より金属膜の密着力が向上する。 [0037] In the second aspect of the present invention, by performing heat treatment, forming reaction of the amide groups is promoted, to further improve the adhesion of the metal film.

【0038】請求項3記載の発明では、プラズマ処理を行うことによって、アミド基の形成反応が促進され、より金属膜の密着力が向上する。 [0038] In the present invention of claim 3, wherein, by performing plasma treatment, formation reaction of the amide groups is promoted, to further improve the adhesion of the metal film.

【0039】請求項4記載の発明では、酸素、窒素、アルゴンガスのうち少なくとも一つを用いたガスプラズマによる処理によって、アミド基の形成反応がより確実に促進され、金属膜の密着力を確実に向上させることができる。 [0039] In the present invention of claim 4, wherein oxygen, nitrogen, by treatment with a gas plasma using at least one of argon gas, formation reaction of an amide group is more reliably promoted, ensuring the adhesion of the metal film it is possible to improve on.

───────────────────────────────────────────────────── ────────────────────────────────────────────────── ───

【手続補正書】 [Procedure amendment]

【提出日】平成7年8月3日 [Filing date], 1995 August 3,

【手続補正1】 [Amendment 1]

【補正対象書類名】明細書 [Correction target document name] specification

【補正対象項目名】0011 [Correction target item name] 0011

【補正方法】変更 [Correction method] change

【補正内容】 [Correction contents]

【0011】請求項4記載の発明は、請求項記載の発明において、プラズマ処理を、酸素、窒素、アルゴンガスのうち少なくとも一つを用いたガスプラズマによって行うことを特徴として構成している。 [0011] The invention of claim 4, wherein, in the third aspect of the present invention, a plasma treatment, oxygen, nitrogen, and constitutes a means performs the gas plasma using at least one of argon gas.

【手続補正2】 [Amendment 2]

【補正対象書類名】明細書 [Correction target document name] specification

【補正対象項目名】0027 [Correction target item name] 0027

【補正方法】変更 [Correction method] change

【補正内容】 [Correction contents]

【0027】この後、実施例1と同様の処理を行って、 [0027] Thereafter, the same processes as in Example 1,
気相成長法による金属膜の形成を行いポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 To form a copper film having a thickness of 0.2μm on the surface of the polyimide substrate subjected to the formation of metal film by vapor deposition. (実施例3)実施例2のアルゴンガスプラズマ処理の代わりに、酸素ガスを真空チャンバー内に導入して酸素ガスプラズマによる表面処理を行うようにした他は、全く同様にしてポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 Instead of the argon gas plasma treatment (Example 3) Example 2, except that to perform a surface treatment using oxygen gas plasma by introducing oxygen gas into the vacuum chamber, in the same manner on the surface of the polyimide substrate to form a copper film having a thickness of 0.2 [mu] m. (実施例4)実施例2のアルゴンガスプラズマ処理の代わりに、窒素ガスを真空チャンバー内に導入して窒素ガスプラズマによる表面処理を行うようにした他は、全く同様にしてポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 Instead of the argon gas plasma treatment (Example 4) Example 2, a nitrogen gas addition was set to be introduced into the vacuum chamber a surface treatment with a nitrogen gas plasma is quite similar manner to the surface of the polyimide substrate to form a copper film having a thickness of 0.2 [mu] m. (比較例1)実施例1における、ポリイミド基板にアニリン溶液を塗布する処理を行わない他は、全く同様にしてポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 In Comparative Example 1 Example 1, except that no processing is performed for applying the aniline solution polyimide substrate was formed a copper film having a thickness of 0.2μm on the surface of the polyimide substrate in the same manner. (比較例2)実施例における、ポリイミド基板にアニリン溶液を塗布する処理を行わない他は、全く同様にしてポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 In Comparative Example 2 Example 2, except that no processing is performed for applying the aniline solution polyimide substrate was formed a copper film having a thickness of 0.2μm on the surface of the polyimide substrate in the same manner. (比較例3)実施例3における、ポリイミド基板にアニリン溶液を塗布する処理を行わない他は、全く同様にしてポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 In Comparative Example 3 Example 3, except that no processing is performed for applying the aniline solution polyimide substrate was formed a copper film having a thickness of 0.2μm on the surface of the polyimide substrate in the same manner. (比較例4)実施例4における、ポリイミド基板にアニリン溶液を塗布する処理を行わない他は、全く同様にしてポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 In Comparative Example 4 Example 4, except that no processing is performed for applying the aniline solution polyimide substrate was formed a copper film having a thickness of 0.2μm on the surface of the polyimide substrate in the same manner. (比較例5)実施例1における、レーザ光をポリイミド基板の表面に照射する工程を行わない他は、全く同様にしてポリイミド基板の表面に厚み0.2μmの銅膜を形成した。 In Comparative Example 5 Example 1, except that it does not perform the step of irradiating the laser beam on the surface of the polyimide substrate was formed a copper film having a thickness of 0.2μm on the surface of the polyimide substrate in the same manner.

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 有機質基材表面に結合を活性化させる波長の光を照射し、さらにアミン溶液を塗布した後、この有機質基材表面に気相成長法によって金属膜を形成することを特徴とする有機質基材表面への金属膜形成方法。 1. A binding to organic substrate surface is irradiated with light of a wavelength which activates, after further coated with amine solution, and characterized in that a metal film is formed by vapor deposition on the organic substrate surface method of forming the metal film to the organic substrate surface to.
  2. 【請求項2】 アミン溶液を塗布した後に、さらに熱処理を行うことを特徴とする請求項1記載の有機質基材表面への金属膜形成方法。 Wherein after applying the amine solution, the metal film forming method of the organic substrate surface of claim 1, wherein the further heat treatment is performed.
  3. 【請求項3】 アミン溶液を塗布した後に、さらにプラズマ処理を行うことを特徴とする請求項1記載の有機質基材表面への金属膜形成方法。 3. amine solution after coating, further metal film forming method of the organic substrate surface of claim 1, wherein the plasma treatment.
  4. 【請求項4】 プラズマ処理を、酸素、窒素、アルゴンガスのうち少なくとも一つを用いたガスプラズマによって行うことを特徴とする請求項3記載の有機質基材表面への金属膜形成方法。 4. A plasma processing, oxygen, nitrogen, according to claim 3 metal film forming method of the organic substrate surface, wherein the performing by the gas plasma using at least one of argon gas.
JP13132295A 1995-05-30 1995-05-30 Formation of metallic film on organic substrate surface Withdrawn JPH08325713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13132295A JPH08325713A (en) 1995-05-30 1995-05-30 Formation of metallic film on organic substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13132295A JPH08325713A (en) 1995-05-30 1995-05-30 Formation of metallic film on organic substrate surface

Publications (1)

Publication Number Publication Date
JPH08325713A true true JPH08325713A (en) 1996-12-10

Family

ID=15055250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13132295A Withdrawn JPH08325713A (en) 1995-05-30 1995-05-30 Formation of metallic film on organic substrate surface

Country Status (1)

Country Link
JP (1) JPH08325713A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048749A1 (en) * 1999-02-18 2000-08-24 Battelle Memorial Institute Method for adhering laminate structures
US6207238B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
US6207239B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6217947B1 (en) 1998-12-16 2001-04-17 Battelle Memorial Institute Plasma enhanced polymer deposition onto fixtures
US6224948B1 (en) 1997-09-29 2001-05-01 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6228434B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making a conformal coating of a microtextured surface
US6228436B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making light emitting polymer composite material
US6268695B1 (en) 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6274204B1 (en) 1998-12-16 2001-08-14 Battelle Memorial Institute Method of making non-linear optical polymer
US6358570B1 (en) 1999-03-31 2002-03-19 Battelle Memorial Institute Vacuum deposition and curing of oligomers and resins
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
US6492026B1 (en) 2000-04-20 2002-12-10 Battelle Memorial Institute Smoothing and barrier layers on high Tg substrates
US6506461B2 (en) 1999-03-31 2003-01-14 Battelle Memorial Institute Methods for making polyurethanes as thin films
US6537411B1 (en) 1999-06-29 2003-03-25 The National University Of Singapore Method for low temperature lamination of metals to polyimides
US6548912B1 (en) 1999-10-25 2003-04-15 Battelle Memorial Institute Semicoductor passivation using barrier coatings
US6570325B2 (en) 1998-12-16 2003-05-27 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6573652B1 (en) 1999-10-25 2003-06-03 Battelle Memorial Institute Encapsulated display devices
US6623861B2 (en) 2001-04-16 2003-09-23 Battelle Memorial Institute Multilayer plastic substrates
US8900366B2 (en) 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US8904819B2 (en) 2009-12-31 2014-12-09 Samsung Display Co., Ltd. Evaporator with internal restriction
US8955217B2 (en) 1999-10-25 2015-02-17 Samsung Display Co., Ltd. Method for edge sealing barrier films
US9184410B2 (en) 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US9337446B2 (en) 2008-12-22 2016-05-10 Samsung Display Co., Ltd. Encapsulated RGB OLEDs having enhanced optical output
US9822454B2 (en) 2006-12-28 2017-11-21 3M Innovative Properties Company Nucleation layer for thin film metal layer formation
US9839940B2 (en) 2002-04-15 2017-12-12 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224948B1 (en) 1997-09-29 2001-05-01 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6627267B2 (en) 1997-09-29 2003-09-30 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6656537B2 (en) 1997-09-29 2003-12-02 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6570325B2 (en) 1998-12-16 2003-05-27 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6217947B1 (en) 1998-12-16 2001-04-17 Battelle Memorial Institute Plasma enhanced polymer deposition onto fixtures
US6228434B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making a conformal coating of a microtextured surface
US6228436B1 (en) 1998-12-16 2001-05-08 Battelle Memorial Institute Method of making light emitting polymer composite material
US6268695B1 (en) 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6274204B1 (en) 1998-12-16 2001-08-14 Battelle Memorial Institute Method of making non-linear optical polymer
US6811829B2 (en) 1998-12-16 2004-11-02 Battelle Memorial Institute Method of making a coating of a microtextured surface
US6207239B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6207238B1 (en) 1998-12-16 2001-03-27 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
US6497924B2 (en) 1998-12-16 2002-12-24 Battelle Memorial Institute Method of making non-linear optical polymer
US6497598B2 (en) 1998-12-16 2002-12-24 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6909230B2 (en) 1998-12-16 2005-06-21 Battelle Memorial Institute Method of making molecularly doped composite polymer material
US6509065B2 (en) 1998-12-16 2003-01-21 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6522067B1 (en) 1998-12-16 2003-02-18 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6613395B2 (en) 1998-12-16 2003-09-02 Battelle Memorial Institute Method of making molecularly doped composite polymer material
US6544600B2 (en) 1998-12-16 2003-04-08 Battelle Memorial Institute Plasma enhanced chemical deposition of conjugated polymer
US6858259B2 (en) 1998-12-16 2005-02-22 Battelle Memorial Institute Plasma enhanced chemical deposition for high and/or low index of refraction polymers
WO2000048749A1 (en) * 1999-02-18 2000-08-24 Battelle Memorial Institute Method for adhering laminate structures
US6506461B2 (en) 1999-03-31 2003-01-14 Battelle Memorial Institute Methods for making polyurethanes as thin films
US6358570B1 (en) 1999-03-31 2002-03-19 Battelle Memorial Institute Vacuum deposition and curing of oligomers and resins
US6537411B1 (en) 1999-06-29 2003-03-25 The National University Of Singapore Method for low temperature lamination of metals to polyimides
US6923702B2 (en) 1999-10-25 2005-08-02 Battelle Memorial Institute Method of making encapsulated display devices
USRE40531E1 (en) * 1999-10-25 2008-10-07 Battelle Memorial Institute Ultrabarrier substrates
US8955217B2 (en) 1999-10-25 2015-02-17 Samsung Display Co., Ltd. Method for edge sealing barrier films
US6573652B1 (en) 1999-10-25 2003-06-03 Battelle Memorial Institute Encapsulated display devices
US6548912B1 (en) 1999-10-25 2003-04-15 Battelle Memorial Institute Semicoductor passivation using barrier coatings
US6492026B1 (en) 2000-04-20 2002-12-10 Battelle Memorial Institute Smoothing and barrier layers on high Tg substrates
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
US6623861B2 (en) 2001-04-16 2003-09-23 Battelle Memorial Institute Multilayer plastic substrates
US8900366B2 (en) 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US9839940B2 (en) 2002-04-15 2017-12-12 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US9822454B2 (en) 2006-12-28 2017-11-21 3M Innovative Properties Company Nucleation layer for thin film metal layer formation
US9184410B2 (en) 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US9337446B2 (en) 2008-12-22 2016-05-10 Samsung Display Co., Ltd. Encapsulated RGB OLEDs having enhanced optical output
US9362530B2 (en) 2008-12-22 2016-06-07 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US8904819B2 (en) 2009-12-31 2014-12-09 Samsung Display Co., Ltd. Evaporator with internal restriction

Similar Documents

Publication Publication Date Title
US6544430B2 (en) Methods for detaching a layer from a substrate
US4337279A (en) Method for increasing the peel strength of metal-clad polymers
US6183880B1 (en) Composite foil of aluminum and copper
US4865711A (en) Surface treatment of polymers
US4582564A (en) Method of providing an adherent metal coating on an epoxy surface
US5405656A (en) Solution for catalytic treatment, method of applying catalyst to substrate and method of forming electrical conductor
US6319564B1 (en) Conductor track structures arranged on a nonconductive support material, especially fine conductor track structures, and method for producing the same
US5989653A (en) Process for metallization of a substrate by irradiative curing of a catalyst applied thereto
US5156732A (en) Polyimide substrate and method of manufacturing a printed wiring board using the substrate
US5130192A (en) Process for preparing metallized polyimide film
US5873992A (en) Method of electroplating a substrate, and products made thereby
US4077927A (en) Cured epoxy polymer having improved adhesive properties
US4904498A (en) Method for controlling an oxide layer metallic substrates by laser
US4597828A (en) Method of manufacturing printed circuit boards
US20010030122A1 (en) Laminate comprising polyimide and conductor layer, multi-layer wiring board with the use of the same and process for producing the same
US7033648B1 (en) Means of seeding and metallizing polyimide
US4704791A (en) Process for providing a landless through-hole connection
US20050031910A1 (en) Carrier applied coating layers
US4913762A (en) Surface treatment of polymers for bonding by applying a carbon layer with sputtering
US5527566A (en) Conditioning of a polymeric substrate
WO2001085635A1 (en) A method of coating the surface of an inorganic substrate with an organic material and the product obtained
Ge et al. Surface modification and characterization of photodefinable epoxy/copper systems
US4689111A (en) Process for promoting the interlaminate adhesion of polymeric materials to metal surfaces
DE4322512A1 (en) Increasing adhesion between metal coatings and polymer substrates - by depositing a first metal layer, followed by an interlayer contg. the first metal and a second metal, and then the second metal alone
US6284329B1 (en) Method of forming adherent metal components on a polyimide substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806