JP2001011525A - Device for reducing inclusion in molten steel - Google Patents

Device for reducing inclusion in molten steel

Info

Publication number
JP2001011525A
JP2001011525A JP11178481A JP17848199A JP2001011525A JP 2001011525 A JP2001011525 A JP 2001011525A JP 11178481 A JP11178481 A JP 11178481A JP 17848199 A JP17848199 A JP 17848199A JP 2001011525 A JP2001011525 A JP 2001011525A
Authority
JP
Japan
Prior art keywords
molten steel
ladle
refractory
inclusions
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11178481A
Other languages
Japanese (ja)
Inventor
Kenji Hamaogi
健司 濱荻
幸司 ▲高▼谷
Koji Takatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11178481A priority Critical patent/JP2001011525A/en
Publication of JP2001011525A publication Critical patent/JP2001011525A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inclusion reducing device having simple structure, low equipment cost and high efficiency. SOLUTION: AC current is supplied into an annular induction coil 6 parallel disposed with a ladle 1 bottom surface in a refractory at the ladle bottom part, and the fine inclusion in molten steel is fluidized on the ladle bottom part and caught to the refractory at the bottom part with Lorentz force caused by the mutual action between magnetic field induced with the AC current and eddy current in the molten steel 2 induced with the induced magnetic field. Further, the remaining fine inclusion is coagulated and grown with the fluidity of the molten steel to promote the floatation and the separation thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は溶鋼の精錬工程にお
いて溶鋼中の介在物を低減する装置に関する。
The present invention relates to an apparatus for reducing inclusions in molten steel in a process of refining molten steel.

【0002】[0002]

【従来の技術】従来、電磁力を用いた介在物低減装置と
しては下記のような技術が開示されている。
2. Description of the Related Art Conventionally, the following technology has been disclosed as an inclusion reducing device using electromagnetic force.

【0003】(a) 回転磁場によって取鍋内の撹拌強度を
高め精錬反応を促進するとともに、乱流による介在物の
凝集効率を高めて浮上分離させる方法を採る方法(例え
ば特公昭62−11049号公報、特開平01−279
706号公報、特公昭59−29083号公報)。
(A) A method using a rotating magnetic field to increase the stirring intensity in a ladle to promote a refining reaction, and to increase the agglomeration efficiency of inclusions due to turbulence to separate them by flotation (for example, Japanese Patent Publication No. 62-11049) Gazette, JP-A-01-279
706, JP-B-59-29083).

【0004】(b) 円筒若しくは矩形断面のチャネルに磁
場を作用させ溶鋼に作用するピンチ力により介在物をチ
ャネルの耐火物壁に捕捉する方法等(例えば、特開平7
−90342号公報、特開平7−90343号公報、特
開平8−60263号公報)。
(B) A method in which a magnetic field is applied to a channel having a cylindrical or rectangular cross section to capture inclusions on a refractory wall of the channel by a pinch force acting on molten steel (for example, see Japanese Patent Application Laid-Open No.
-90342, JP-A-7-90343, JP-A-8-60263).

【0005】(c) これら電磁的方法に加え溶鋼中に不活
性ガスを吹き込み、介在物低減能力を向上させる方法
(例えば、特開平9−122846号公報、特開平9−
295109号公報)。
(C) In addition to these electromagnetic methods, a method of blowing an inert gas into molten steel to improve the ability to reduce inclusions (see, for example, JP-A-9-122846,
295109).

【0006】これら従来の介在物低減装置においての問
題は、いずれの方式も取鍋等の精錬容器の鉄皮外面側か
ら磁場を印加するため鉄皮の磁気シールド効果である。
このシールド効果により印加磁場の大部分が減衰し、溶
鋼中への磁気浸透が小さくなって電力の利用効率が悪く
なり、撹拌効率の低下、ひいては介在物低減効果の低下
を招く問題点があった。
[0006] The problem with these conventional inclusion reducing devices is that the magnetic shielding effect of the steel shell occurs because a magnetic field is applied from the outer surface side of the steel shell of a refining vessel such as a ladle.
Due to this shield effect, most of the applied magnetic field is attenuated, magnetic penetration into the molten steel is reduced, and the power use efficiency is reduced, resulting in a problem that the stirring efficiency is reduced and the inclusion reduction effect is reduced. .

【0007】このような問題点を改善すべく、鉄皮に非
磁性体材料を用いる方法も挙げられているが、設備コス
トが高く、その材料は殆どの場合金属製であるためここ
に誘起される渦電流によって電力損失が生じ電力効率の
低下を招いていた。
In order to solve such problems, a method using a non-magnetic material for the steel shell has been proposed. However, the equipment cost is high, and since the material is mostly made of metal, it is induced here. The eddy current causes power loss and lowers power efficiency.

【0008】さらに、上記(a) の各方法においては撹拌
強度の増大のみでは凝集肥大の促進に限界があり、微小
介在物が残留するとともに、撹拌強度を高めすぎると溶
鋼表面に浮上分離した介在物が再度溶鋼中に巻き込まれ
る弊害があった。
Further, in each of the above methods (a), there is a limit to the promotion of coagulation and hypertrophy only by increasing the stirring intensity, and fine inclusions remain. There was a harmful effect that the material was caught in the molten steel again.

【0009】前記(b) の各方法においては、溶鋼に作用
するピンチ力によって微小介在物とともに大型介在物も
捕捉しようとするため、耐火物表面に介在物が著しく堆
積し、チャネルが閉塞されるという致命的な問題があっ
た。
In each of the above methods (b), the pinch force acting on the molten steel tries to capture not only the small inclusions but also the large inclusions, so that the inclusions are significantly deposited on the surface of the refractory, and the channels are closed. There was a fatal problem.

【0010】前記(c) の各方法においてはガス吹き込み
の効果が吹き込み孔近傍に限定されるため、容器内の全
溶鋼に対して効果を及ぼすには吹き込み孔数を増やさね
ばならず、装置の複雑化、ひいては改造コストの増大を
招くこととなる。
In each of the above methods (c), since the effect of gas injection is limited to the vicinity of the injection hole, the number of injection holes must be increased in order to exert an effect on all the molten steel in the vessel, and the apparatus needs to be used. This leads to complications and, consequently, increased remodeling costs.

【0011】[0011]

【発明が解決しようとする課題】本発明の課題は、電磁
力を用いた溶鋼の精錬において、介在物低減効率を向上
させること、鉄皮に誘起される渦電流ロスを低減するこ
と、および構造を単純化して装置のコストを低減するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the efficiency of reducing inclusions, reduce eddy current loss induced in a steel shell, and improve the structure in refining molten steel using electromagnetic force. In order to reduce the cost of the apparatus.

【0012】[0012]

【課題を解決するための手段】本発明者らは溶鋼の介在
物除去処理の基本プロセスとして取鍋精錬プロセスに着
目し、以下の知見を得た。
Means for Solving the Problems The present inventors focused on a ladle refining process as a basic process for removing inclusions in molten steel, and obtained the following knowledge.

【0013】(a) 溶鋼攪拌の電力効率を向上するには、
取鍋の耐火物中に誘導コイルを配置して、鉄皮を介すこ
となく直接溶鋼に磁場を印加するのがよい。
(A) To improve the power efficiency of molten steel stirring,
It is preferable to arrange an induction coil in a refractory of a ladle and apply a magnetic field directly to molten steel without passing through a steel shell.

【0014】(b) 取鍋の底部に、底面と平行にリング状
の誘導コイルを配置し、交流電流を印加すれば、溶鋼を
上下方向に貫く誘導磁界が発生し、これによって溶鋼中
に取鍋中心軸周りに渦電流が誘導される。この渦電流と
前記の誘導磁場との相互作用によりローレンツ力が発生
する。
(B) A ring-shaped induction coil is arranged at the bottom of the ladle in parallel with the bottom surface, and when an alternating current is applied, an induction magnetic field penetrating the molten steel in a vertical direction is generated. An eddy current is induced around the central axis of the pot. The Lorentz force is generated by the interaction between the eddy current and the induction magnetic field.

【0015】(c) 前記の誘導コイルの大きさを取鍋底面
直径より若干小さくしておけば、底面付近のローレンツ
力の分布は誘導コイルの直上で最大、中心部で最小とな
って、底面付近の溶鋼には中心から取鍋壁に向かう流れ
が発生する。この溶鋼流れが攪拌力となる。
(C) If the size of the induction coil is made slightly smaller than the diameter of the bottom surface of the ladle, the distribution of Lorentz force near the bottom surface is maximum just above the induction coil and minimum at the center, and In the nearby molten steel, a flow from the center to the ladle wall occurs. This molten steel flow becomes the stirring power.

【0016】(d) 前記のローレンツ力は、導電体である
溶鋼には上向きないし取鍋中心方向の力となるため、溶
鋼を取鍋中心ないし上方に向かわせる体積力が作用す
る。一方、非導電体である介在物にはこのローレンツ力
が作用しないため、相対的に逆向き(取鍋の底方向ない
し外周方向)の力(ピンチ力)が作用する。その結果、
介在物は溶鋼流動に対して相対的に取鍋底側壁部に向か
って移動する。
(D) The Lorentz force acts on the molten steel as a conductor in the upward direction or in the direction of the center of the ladle, so that a volume force acts on the molten steel toward the center or upward of the ladle. On the other hand, since the Lorentz force does not act on the inclusion that is a non-conductive material, a relatively opposite force (pinch force) acts in the opposite direction (the bottom direction or the outer peripheral direction of the ladle). as a result,
The inclusions move toward the ladle bottom side wall relatively to the molten steel flow.

【0017】(e) 溶鋼の攪拌によって、微小介在物は凝
集し肥大化して浮上しやすくなり、取鍋全域に生じた溶
鋼流動に対して相対的に浮上する。また、微小介在物は
溶鋼流動にしたがって取鍋底面に沿って外向きに移動す
るが、ピンチ力により下向きにも移動するため底面耐火
物に衝突後は底面に捕捉される。
(E) Due to the stirring of the molten steel, the fine inclusions are coagulated, enlarged, and easily floated, and float relatively to the molten steel flow generated in the entire ladle. In addition, the fine inclusions move outward along the ladle bottom in accordance with the flow of molten steel, but also move downward due to the pinch force, so that they are trapped on the bottom after colliding with the bottom refractory.

【0018】(f) 底面の耐火物を多孔質とすれば、ここ
に衝突又は接触した微小耐火物は一層捕捉されやすくな
る。
(F) If the refractory on the bottom surface is made porous, the minute refractory that has collided with or contacts the refractory is more easily captured.

【0019】(g) 誘導コイルは取鍋底面下にあるため、
溶鋼の流動速度は取鍋底部ほど大きく、鋼浴の上部では
小さい。従って、鋼浴の上部に浮上してきた介在物は粒
径がさほど大きくなくても浮上しやすくなる。また、鋼
浴面に浮上した介在物が再度鋼浴中に巻き込まれること
はない。
(G) Since the induction coil is located below the bottom of the ladle,
The flow velocity of molten steel is higher at the bottom of the ladle and lower at the top of the steel bath. Therefore, the inclusions floating on the upper part of the steel bath easily float even if the particle size is not so large. Further, the inclusions floating on the steel bath surface do not get caught in the steel bath again.

【0020】本発明は上記の知見に基づいて完成したも
のであり、その要旨は下記(1) および(2) にある。
The present invention has been completed based on the above findings, and the gist thereof is as described in (1) and (2) below.

【0021】(1) 磁場を印加して取鍋内の溶鋼をスラグ
とともに撹拌し、精錬反応を促進させつつ溶鋼中の介在
物を低減する介在物低減装置であって、耐火物を内張り
した取鍋と、リング状の誘導コイルと、電源装置とを備
え、該誘導コイルは取鍋底部耐火物内で取鍋底面に平行
に配置されており、該電源装置は誘導コイルに交流電流
を供給し、交流電流により誘起された誘導磁場と該誘導
磁場によって誘起された溶鋼中の渦電流との相互作用に
起因するローレンツ力により溶鋼中の微小介在物を取鍋
底部に流動させ取鍋底部耐火物に捕捉させるとともに、
溶鋼を流動させ、介在物を凝集肥大化させ浮上分離を促
進させる電源装置であることを特徴とする溶鋼中の介在
物低減装置。
(1) A device for reducing inclusions in a molten steel while applying a magnetic field to agitate molten steel in a ladle together with slag to promote a refining reaction, wherein a refractory-lined removal device is provided. A ladle, a ring-shaped induction coil, and a power supply, wherein the induction coil is disposed in the ladle bottom refractory and parallel to the ladle bottom, and the power supply supplies an alternating current to the induction coil. The Lorentz force caused by the interaction between the induced magnetic field induced by the alternating current and the eddy current in the molten steel induced by the induced magnetic field causes the minute inclusions in the molten steel to flow to the bottom of the ladle, thereby causing the ladle bottom to be refractory. As well as
An apparatus for reducing inclusions in molten steel, which is a power supply device for flowing molten steel, coagulating and thickening inclusions, and promoting flotation.

【0022】(2) 取鍋底部の耐火物の表面の一部若しく
は全部が多孔質耐火物で覆われていることを特徴とする
前記(1) 項に記載の溶鋼中の介在物低減装置。
(2) The apparatus for reducing inclusions in molten steel according to the above (1), wherein a part or all of the surface of the refractory at the bottom of the ladle is covered with a porous refractory.

【0023】[0023]

【発明の実施の形態】図1は本発明の介在物低減装置の
構成を示す概要図である。同図において、符号1は取
鍋、2は溶鋼、3は鉄皮、4は耐火物、5は保温用蓋、
6は誘導コイル、7は交流電源、8はインバータ、9は
多孔質耐火物、10はスラグ、11は周波数制御装置で
ある。溶鋼2は例えば、転炉で脱炭、脱燐された後、次
工程の連続鋳造に供される前に、本発明の介在物低減装
置で精錬されるとともに、精錬前または精錬中に生成し
た介在物を除去される。同図において、取鍋1の内面は
耐火物4で内張りされており、底部の耐火物4には誘導
コイル6が取鍋の底面と平行に配置されている。この誘
導コイル6には商用周波数の交流電源7からインバータ
8を経由して周波数、電圧、電流を制御された交流電流
が印加される。この制御は周波数制御装置11によって
行われ、溶鋼中に誘導される交流磁界の制御が行われ
る。交流電源7、インバータ8および周波数制御装置1
1を総称して電源装置という。精錬中は取鍋1に精錬用
のスラグ10が添加され、また、保熱のため保温用蓋5
が載置される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram showing the configuration of an inclusion reducing device according to the present invention. In the figure, reference numeral 1 denotes a ladle, 2 denotes molten steel, 3 denotes an iron skin, 4 denotes a refractory, 5 denotes a heat insulating lid,
6 is an induction coil, 7 is an AC power supply, 8 is an inverter, 9 is a porous refractory, 10 is a slag, and 11 is a frequency control device. The molten steel 2 is, for example, after being decarburized and dephosphorized in a converter, before being subjected to continuous casting in the next step, is refined by the inclusion reducing device of the present invention, and is produced before or during refining. Inclusions are removed. In the figure, the inner surface of the ladle 1 is lined with a refractory 4, and an induction coil 6 is arranged on the bottom of the refractory 4 in parallel with the bottom surface of the ladle. An AC current having a controlled frequency, voltage, and current is applied to the induction coil 6 from a commercial frequency AC power supply 7 via an inverter 8. This control is performed by the frequency control device 11 to control the AC magnetic field induced in the molten steel. AC power supply 7, inverter 8, and frequency control device 1
1 is collectively called a power supply device. During smelting, slag 10 for smelting is added to ladle 1, and lid 5 for heat insulation for heat retention.
Is placed.

【0024】誘導コイル6の直径は最大でも取鍋底部の
内径よりも若干小さくなるように取鍋中心軸と同心円上
に位置するように形成されている。
The induction coil 6 is formed so as to be located concentrically with the ladle center axis so that the diameter of the induction coil 6 is slightly smaller than the inner diameter of the ladle bottom at the maximum.

【0025】取鍋1の底部の耐火物表面は多孔質の耐火
物9によって一部または全部が覆われている。多孔質耐
火物のコストを削減する狙いで、一部を被覆する場合は
主に取鍋底の外周部を同心円状に被覆するのが好まし
い。すなわち、後述するように、電磁誘導による溶鋼の
攪拌流は底面に沿って中心から外周側に向かう流れとな
り、外周側ほど流速が小さく、外周ほど溶鋼中の介在物
が多孔質耐火物9にトラップされやすくなるからであ
る。底面の外周側を多孔質耐火物被覆する場合には非被
覆部の径を取鍋底部内径の1/2〜1/3とするのがよ
い。
The refractory surface at the bottom of the ladle 1 is partially or entirely covered with a porous refractory 9. In order to reduce the cost of the porous refractory, it is preferable to mainly coat the outer periphery of the ladle bottom concentrically when partially covering the refractory. That is, as will be described later, the stirring flow of the molten steel by electromagnetic induction becomes a flow from the center to the outer peripheral side along the bottom surface, the flow velocity is smaller toward the outer peripheral side, and inclusions in the molten steel are trapped in the porous refractory 9 toward the outer peripheral side. This is because it is easy to be done. When the outer peripheral side of the bottom surface is covered with the porous refractory, the diameter of the uncoated portion is preferably set to 1/2 to 1/3 of the inner diameter of the bottom portion of the ladle.

【0026】誘導コイル6は溶鋼にできるだけ接近させ
るのが望ましいが、耐火物の損耗等を考慮して、耐火物
厚さを確保する必要がある。誘導コイルはジュール熱に
よる発熱と耐火物4を介しての溶鋼の熱負荷とに曝され
るため、冷却構造を備えるのが望ましい。この冷却方法
は公知のように、コイルの導電体として中空の銅線を用
い、銅線の内部には冷却媒体を流通させる方法を用いれ
ばよい。ただし、万一、誘導コイル6の導電体が溶損し
て水蒸気爆発に至らないよう、また可燃性ガスを発生し
て火災にならないよう、冷却媒体には水、可燃性鉱油、
油脂類を用いるのは好ましくない。フロン、4塩化炭
素、液体窒素等の不燃〜難燃性液体を用いるか、または
窒素、アルゴン等の不活性気体を高圧で吹き込み導電コ
イル内で断熱膨張させそのときの吸熱作用を利用してコ
イルを冷却するのがよい。
It is desirable that the induction coil 6 be as close as possible to the molten steel, but it is necessary to ensure the thickness of the refractory in consideration of the wear of the refractory. Since the induction coil is exposed to the heat generated by Joule heat and the heat load of the molten steel via the refractory 4, it is desirable to provide a cooling structure. As a known cooling method, a method in which a hollow copper wire is used as a conductor of the coil and a cooling medium is circulated inside the copper wire may be used. However, in order to prevent the conductor of the induction coil 6 from being melted and damaged to cause a steam explosion and to generate a flammable gas and cause a fire, the cooling medium is water, flammable mineral oil,
It is not preferable to use fats and oils. Use a non-flammable or flame-retardant liquid such as CFC, carbon tetrachloride, or liquid nitrogen, or blow an inert gas such as nitrogen or argon at high pressure to adiabatic expansion in a conductive coil and use the heat absorption effect at that time to make use of the coil. It is better to cool.

【0027】誘導コイル6に流す電流の周波数は、イン
バータ8の電力変換効率が高く、誘導磁場によって生成
されるローレンツ力への変換効率が高く、かつ設備コス
トがあまり増大しない範囲で選定するのよい。現状得ら
れる市販装置の範囲ではこの周波数は1〜15Hzとす
るのがよく、さらに望ましくは8〜10Hzとするのが
よい。
The frequency of the current flowing through the induction coil 6 is preferably selected in such a range that the power conversion efficiency of the inverter 8 is high, the conversion efficiency to the Lorentz force generated by the induction magnetic field is high, and the equipment cost does not increase so much. . This frequency is preferably 1 to 15 Hz, and more preferably 8 to 10 Hz, in the range of commercially available devices currently available.

【0028】コイルに供給する電力量は溶鋼トンあたり
2.2〜3.6kWとするのがよい。2.2kW/t未
満では介在物凝集に有効な溶鋼攪拌がほとんど得られ
ず、3.6kW/tを超えて攪拌しても精錬に必要な攪
拌力は飽和する反面、過度の溶鋼流動により特にスラグ
ラインの耐火物が損耗が激しくなるからである。
The amount of electric power supplied to the coil is preferably 2.2 to 3.6 kW per ton of molten steel. At less than 2.2 kW / t, almost no molten steel agitation effective for agglomeration of inclusions is obtained. Even if the agitation exceeds 3.6 kW / t, the agitation power required for refining is saturated. This is because the refractory of the slag line becomes severely worn.

【0029】誘導コイルの形状、固有抵抗によっても異
なるが、前記のように電力を供給すると、誘起される誘
導磁界は103 〜105 AT/t(アンペアターン/ト
ン)程度が得られる。
Although the power is supplied as described above, the induced magnetic field induced is about 10 3 to 10 5 AT / t (ampere turn / ton), although it depends on the shape and specific resistance of the induction coil.

【0030】図2は誘導コイル6に交流電流を印加した
場合の磁場、誘起される渦電流、および作用する電磁力
の関係を示す縦断面摸式図であり、同図(a) は交流電流
位相の前半周期の場合、同図(b) は後半周期の場合であ
る。同図(a) において、誘導コイル6の断面の左側の記
号(○で囲った・)は印加電流21が紙面裏から表に向
かう方向であることを示し、右側の記号(○で囲った
×)は同様に印加電流21が紙面表から裏に向かうこと
を示す。同図(a) において、印加電流21は誘導磁場2
2を誘起し、さらにこの誘導磁界22により溶鋼2中に
は渦電流23が誘起される。渦電流23は左側で紙面表
から裏に向かう方向であり、印加電流21の方向とは逆
である。
FIG. 2 is a schematic longitudinal sectional view showing the relationship among a magnetic field, an induced eddy current, and an acting electromagnetic force when an alternating current is applied to the induction coil 6. FIG. In the case of the first half period of the phase, FIG. 12B shows the case of the second half period. In FIG. 5A, the symbol on the left side of the cross section of the induction coil 6 (circled by .circle-solid.) Indicates that the applied current 21 is in the direction from the back of the paper to the front, and the symbol on the right side (× surrounded by the circle). ) Similarly indicates that the applied current 21 goes from the front to the back of the page. In FIG. 2A, the applied current 21 is the induction magnetic field 2
The eddy current 23 is induced in the molten steel 2 by the induction magnetic field 22. The eddy current 23 is on the left side in the direction from the front to the back of the page, and is opposite to the direction of the applied current 21.

【0031】この誘導磁場22と渦電流23の溶鋼領域
においてはフレミングの左手の法則に従う相互作用によ
りローレンツ力と呼ばれる体積力24が作用する。図2
(b) に示すように後半周期では誘導磁場22と渦電流2
3の方向が反転するが、体積力24は同図(a) と同じ方
向に作用する。
In the molten steel region of the induction magnetic field 22 and the eddy current 23, a body force 24 called Lorentz force acts by an interaction according to Fleming's left-hand rule. FIG.
As shown in (b), the induced magnetic field 22 and the eddy current 2
Although the direction of 3 is reversed, the body force 24 acts in the same direction as in FIG.

【0032】図3は溶鋼断面における体積力の大きさ及
び方向の概略を示す縦断面図である。同図において、体
積力24は取鍋底層部の溶鋼に対して上向きの方向を持
ち、コイル6の直上部で最大値となる。この様な体積力
24が作用する状況においては、介在物を含む溶鋼2に
循環流動とピンチ力による介在物排除作用をもたらす。
FIG. 3 is a longitudinal sectional view schematically showing the magnitude and direction of the body force in the section of the molten steel. In the figure, the body force 24 has an upward direction with respect to the molten steel in the ladle bottom layer portion, and has a maximum value immediately above the coil 6. In a situation where such a body force 24 acts, the molten steel 2 containing inclusions has a function of eliminating inclusions by circulating flow and pinch force.

【0033】まず、循環流動については、体積力24は
取鍋の断面全域で溶鋼2を上昇させようとする力として
作用するが、半径方向でその向きと大きさが異なってい
るため、溶鋼に流動力が発生する。
First, with regard to the circulating flow, the volume force 24 acts as a force for raising the molten steel 2 over the entire cross section of the ladle, but since the direction and the size are different in the radial direction, the volume force 24 is applied to the molten steel. Flow force is generated.

【0034】図4は取鍋内の溶鋼の流れを模式的に示す
縦断面図である。同図に示すように、溶鋼2には取鍋の
側壁付近では上昇流、中央部では下降流となるような循
環流が発生する。この循環流は取鍋側壁が冷却されるこ
とによって生ずる熱対流とは逆向きの方向を持つが、底
部で発生する渦電流により底部の溶鋼が加熱されるため
撹拌力を十分維持することが可能である。
FIG. 4 is a longitudinal sectional view schematically showing the flow of molten steel in the ladle. As shown in the figure, a circulating flow is generated in the molten steel 2 such that the flow is ascending near the side wall of the ladle and descending at the center. This circulating flow has a direction opposite to the thermal convection generated by cooling the ladle side wall, but the eddy current generated at the bottom heats the molten steel at the bottom, so it is possible to maintain sufficient stirring power It is.

【0035】一方、図2に示すように、取鍋の中心軸近
傍で底面から離れたところでは体積力24は取鍋中心に
向かっており、溶鋼の体積を縮める方向にピンチ力とし
て作用する。しかし、介在物は非導電性であって、この
ような体積力は作用しない。そのため介在物はこの部分
の溶鋼から排除され、取鍋底部に向かう力が作用するこ
とになる。この部分の溶鋼には上方に向かう体積力も作
用するが、前記のように取鍋全体では中心部で下方の循
環流となるため、介在物は溶鋼より高速に下方に移動
し、取鍋底面に達する。
On the other hand, as shown in FIG. 2, near the center axis of the ladle and away from the bottom surface, the body force 24 is directed toward the center of the ladle and acts as a pinch force in the direction of reducing the volume of the molten steel. However, the inclusions are non-conductive and no such body forces act. Therefore, the inclusions are removed from the molten steel in this portion, and a force toward the bottom of the ladle acts. Although upward bulk force acts on the molten steel in this part, the ladder is circulated downward at the center of the entire ladle as described above. Reach.

【0036】このとき、微小介在物は図1に示す取鍋底
部の耐火物4の表面に吸着される。さらに本発明の好ま
しい態様では取鍋底面に多孔質耐火物9が配置されてお
り、微小介在物は多孔質の間隙に入り込んで捕捉され
る。しかし、大型の介在物は取鍋底部の耐火物表面また
は多孔質耐火物9には吸着されにくく、前記溶鋼の循環
流により取鍋底面から離脱し、取鍋側壁に沿って浮上し
溶鋼表層のスラグ10に捕捉されることになる。
At this time, the minute inclusions are adsorbed on the surface of the refractory 4 at the bottom of the ladle shown in FIG. Further, in a preferred embodiment of the present invention, the porous refractory 9 is arranged on the bottom of the ladle, and the fine inclusions enter the porous gap and are trapped. However, large inclusions are unlikely to be adsorbed on the refractory surface or the porous refractory 9 at the bottom of the ladle, are separated from the bottom of the ladle by the circulating flow of the molten steel, and float along the ladle side wall to form a surface layer of the molten steel. It will be captured by the slag 10.

【0037】本発明においては介在物の大きさによって
異なった挙動をとるものと考えられる。大型の介在物
(粒径がおよそ50μm超)は十分な浮上力があるた
め、本発明の電磁的攪拌にかかわらず、浮上し、取鍋内
の溶鋼表面に達する。
In the present invention, it is considered that different behaviors are taken depending on the size of the inclusion. Large inclusions (having a particle size of more than about 50 μm) have a sufficient levitation force, so that they float and reach the surface of the molten steel in the ladle regardless of the electromagnetic stirring of the present invention.

【0038】微少介在物(粒径がおよそ10μm未満)
は浮上力をほとんど持たないため、本発明による溶鋼流
動(取鍋中心で下降流、側壁付近で上昇流)に乗って流
動するが、その過程で一部は凝集肥大化し、中粒径の介
在物となる。凝集しない微小介在物は本発明に係る作用
によって、取鍋中心の下降流ないし取鍋底面中心から側
壁に向かう流れの中で取鍋側面の耐火物(好ましい態様
では多孔質耐火物)に吸着される。
Micro inclusions (particle size less than about 10 μm)
Has little buoyancy, and flows on the flow of molten steel according to the present invention (downward flow at the center of the ladle, upward flow near the side wall). Things. The non-agglomerated microinclusions are adsorbed by the refractory (porous refractory in a preferred embodiment) on the side of the ladle in the downward flow at the center of the ladle or the flow from the center of the ladle bottom to the side wall by the action according to the present invention. You.

【0039】中粒径介在物(粒径がおよそ10〜50μ
m)はある程度の浮上力はあるが、弱い。また、微小介
在物ほど比表面積が大きくないため、取鍋底面の耐火物
に吸着される可能性も小さい。従って、溶鋼流に乗って
流動するが、その過程で一部は凝集肥大化し、大粒径と
なり十分な浮上力を得て溶鋼流にかかわらず浮上するよ
うになる。流速が大きいほど凝集しやすいので、この過
程は取鍋中心部での下降流および取鍋底面での中心から
側壁に向かう流れの中で肥大化が進行する。十分に肥大
化できなかった介在物は取鍋側壁に沿って上昇し、外周
から中心に向かう流れに乗る。図3の体積力24の分布
に見られるように、この部分(鋼浴の上半分)の流速は
低いため、中粒径介在物は浮上速度は小さくても浮上時
間が十分に与えられ鋼浴表面に達する。
Medium particle size inclusions (particle size approximately 10 to 50 μm)
m) has some levitation force but is weak. In addition, since the specific surface area is not as large as that of the minute inclusions, the possibility of being adsorbed by the refractory on the bottom of the ladle is small. Therefore, it flows along with the molten steel flow, but in the process, a part thereof is coagulated and enlarged, the particle diameter becomes large, a sufficient levitation force is obtained, and the steel floats regardless of the molten steel flow. Since the higher the flow velocity, the more easily the coagulation occurs, in this process, the enlargement progresses in the downward flow at the center of the ladle and the flow from the center to the side wall at the bottom of the ladle. Inclusions that could not be sufficiently enlarged rise along the ladle side wall and ride the flow from the outer periphery toward the center. As can be seen from the distribution of the body force 24 in FIG. 3, since the flow velocity in this part (upper half of the steel bath) is low, the medium particle size inclusions have a sufficient floating time even if the floating speed is low, and the steel bath Reach the surface.

【0040】本発明においては、鋼浴表面近傍の溶鋼流
動は小さいため、一旦鋼浴表面に達した介在物が再度溶
鋼中に流出することはない。
In the present invention, since the flow of molten steel near the surface of the steel bath is small, inclusions that have once reached the surface of the steel bath do not flow out into the molten steel again.

【0041】[0041]

【実施例】上部直径2.4m、下部直径2.2m、高さ
2.5m、溶鋼容量約80tの取鍋において、誘導コイ
ルの形状を円形4ターン、半径0.8mとするような装
置において本発明による検討を実施した。誘導コイルに
供給した電流は10Hz、106 AT(アンペアター
ン)とした。また、取鍋底部には底部全面にわたり多孔
質耐火物を配した。多孔質耐火物の平均孔径は0.5m
mの耐火物を用い、厚さ を0.05mとした。
EXAMPLE In a ladle having an upper diameter of 2.4 m, a lower diameter of 2.2 m, a height of 2.5 m, and a molten steel capacity of about 80 t, an induction coil having a circular shape with four turns and a radius of 0.8 m was used. A study according to the invention was performed. The current supplied to the induction coil was 10 Hz, 10 6 AT (ampere turn). In addition, a porous refractory was placed on the entire bottom of the ladle. Average pore size of porous refractory is 0.5m
m and a thickness of 0.05 m.

【0042】比較用の従来技術として、取鍋底部からA
rガスを吹き込む装置を用いた。この比較例では、本発
明例の装置の取鍋と同サイズの取鍋の底部中央から溶鋼
トン当り50Nl/minのArガスを吹き込んだ。
As a prior art for comparison, A was measured from the bottom of the ladle.
An apparatus for blowing r gas was used. In this comparative example, Ar gas at 50 Nl / min per ton of molten steel was blown from the center of the bottom of the ladle of the same size as the ladle of the apparatus of the present invention.

【0043】本発明例および比較例において同一鋼種、
同一処理の溶鋼に対して10分間の処理で初期に存在し
た各種サイズの介在物の処理後低減割合により両者の性
能を比較した。表1に結果を示す。
In Examples of the present invention and Comparative Examples, the same steel type was used.
The performances of the two types of inclusions of various sizes that were initially present in the same treatment of molten steel after a 10-minute treatment were compared based on the reduction ratio after the treatment. Table 1 shows the results.

【0044】[0044]

【表1】 [Table 1]

【0045】表1に示すように、初期に存在した介在物
の内、大型のものに関しては、Arガス吹き込み装置で
も本発明例の装置と同様の低減効果が見られた。
As shown in Table 1, with respect to large inclusions among the initially existing inclusions, the same reduction effect as that of the apparatus of the present invention example was observed in the Ar gas blowing apparatus.

【0046】微小介在物に関しては、本発明例の装置は
比較例の装置に比べて著しい改善効果が見られた。ま
た、本発明例の装置による取鍋を多数回使用した場合で
も底部に蓄積したと思われる微小介在物による溶鋼汚染
等は見られず、安定した微小介在物の除去効果が見られ
た。
With respect to minute inclusions, the device of the present invention showed a remarkable improvement effect as compared with the device of the comparative example. In addition, even when the ladle using the apparatus of the present invention was used many times, no molten steel contamination or the like due to the fine inclusions accumulated at the bottom was observed, and a stable removal effect of the fine inclusions was observed.

【0047】[0047]

【発明の効果】本発明の介在物低減装置により、設備コ
ストを低減でき、介在物低減効率の高い溶鋼精錬が可能
になる。
According to the inclusion reducing apparatus of the present invention, equipment cost can be reduced and molten steel refining with high inclusion reducing efficiency can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の介在物低減装置の構成を示す概要図で
ある。
FIG. 1 is a schematic diagram showing a configuration of an inclusion reducing device of the present invention.

【図2】誘導コイルに交流電流を印加した場合の磁場、
誘起される渦電流、および作用する電磁力の関係を示す
縦断面摸式図であり、同図(a) は交流電流位相の前半周
期の場合、同図(b) は後半周期の場合である。
FIG. 2 shows a magnetic field when an alternating current is applied to an induction coil;
It is a vertical cross-sectional schematic diagram showing a relationship between an induced eddy current and an acting electromagnetic force, wherein FIG. 12A shows a case of a first half cycle of an alternating current phase, and FIG. .

【図3】溶鋼断面における体積力の大きさ及び方向の概
略を示す縦断面図である。
FIG. 3 is a longitudinal sectional view schematically showing the magnitude and direction of body force in a molten steel section.

【図4】取鍋内の溶鋼の流れを模式的に示す縦断面図で
ある。
FIG. 4 is a longitudinal sectional view schematically showing a flow of molten steel in a ladle.

【符号の説明】[Explanation of symbols]

1.取鍋 2.溶鋼 3.鉄皮 4.耐火物 5.保温用蓋 6.誘導コイル 7.交流電源 8.インバータ 9.多孔質耐火物 10.スラグ 11.周波数制御装置 21.印加電流 22.誘導磁場 23,渦電流 24.体積力 1. Ladle 2. Molten steel 3. Iron skin 4. Refractory 5. Heat retention lid 6. Induction coil 7. AC power supply 8. Inverter 9. Porous refractories 10. Slug 11. Frequency control device 21. Applied current 22. Induction magnetic field 23, eddy current 24. Body force

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁場を印加して取鍋内の溶鋼をスラグと
ともに撹拌し、精錬反応を促進させつつ溶鋼中の介在物
を低減する介在物低減装置であって、耐火物を内張りし
た取鍋と、リング状の誘導コイルと、電源装置とを備
え、該誘導コイルは取鍋底部耐火物内で取鍋底面に平行
に配置されており、該電源装置は誘導コイルに交流電流
を供給し、交流電流により誘起された誘導磁場と該誘導
磁場によって誘起された溶鋼中の渦電流との相互作用に
起因するローレンツ力により溶鋼中の微小介在物を取鍋
底部に流動させ取鍋底部耐火物に捕捉させるとともに、
溶鋼を流動させ、介在物を凝集肥大化させ浮上分離を促
進させる電源装置であることを特徴とする溶鋼中の介在
物低減装置。
An apparatus for reducing inclusions in a molten steel while applying a magnetic field to agitate molten steel in a ladle together with slag to promote a refining reaction, wherein the ladle has a refractory lining. And a ring-shaped induction coil, and a power supply device, wherein the induction coil is disposed parallel to the ladle bottom within the ladle bottom refractory, the power supply supplies an alternating current to the induction coil, The Lorentz force caused by the interaction between the induced magnetic field induced by the alternating current and the eddy current in the molten steel induced by the induced magnetic field causes the small inclusions in the molten steel to flow to the bottom of the ladle, thereby forming a refractory at the bottom of the ladle. As well as capture
An apparatus for reducing inclusions in molten steel, which is a power supply device for flowing molten steel, coagulating and thickening inclusions, and promoting flotation.
【請求項2】 取鍋底部の耐火物の表面の一部若しくは
全部が多孔質耐火物で覆われていることを特徴とする請
求項1に記載の溶鋼中の介在物低減装置。
2. The apparatus for reducing inclusions in molten steel according to claim 1, wherein part or all of the surface of the refractory at the bottom of the ladle is covered with a porous refractory.
JP11178481A 1999-06-24 1999-06-24 Device for reducing inclusion in molten steel Withdrawn JP2001011525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11178481A JP2001011525A (en) 1999-06-24 1999-06-24 Device for reducing inclusion in molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11178481A JP2001011525A (en) 1999-06-24 1999-06-24 Device for reducing inclusion in molten steel

Publications (1)

Publication Number Publication Date
JP2001011525A true JP2001011525A (en) 2001-01-16

Family

ID=16049240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11178481A Withdrawn JP2001011525A (en) 1999-06-24 1999-06-24 Device for reducing inclusion in molten steel

Country Status (1)

Country Link
JP (1) JP2001011525A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030052424A (en) * 2001-12-21 2003-06-27 재단법인 포항산업과학연구원 Elimination method of inclusions in molten metal using electromagnetic vibration
CN113512626A (en) * 2021-04-23 2021-10-19 东北大学 Ladle multipoint pulsation type bottom blowing intelligent refining device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030052424A (en) * 2001-12-21 2003-06-27 재단법인 포항산업과학연구원 Elimination method of inclusions in molten metal using electromagnetic vibration
CN113512626A (en) * 2021-04-23 2021-10-19 东北大学 Ladle multipoint pulsation type bottom blowing intelligent refining device and method

Similar Documents

Publication Publication Date Title
JP3696903B2 (en) Method for melting conductive material in low temperature crucible type induction melting furnace and melting furnace therefor
MX2007015380A (en) Method and device for extracting a metal from a slag containing the metal.
JP6458531B2 (en) Stirring method in arc type bottom blowing electric furnace
US4032704A (en) Method and apparatus for treating a metal melt
US6010552A (en) Apparatus for the process of melting and purification of aluminum, copper, brass, lead and bronze alloys
US3908072A (en) Method and furnace for the melt reduction of metal oxides
JP2001512182A (en) Apparatus and method for stirring molten metal using an electromagnetic field
JP2001011525A (en) Device for reducing inclusion in molten steel
CN112276025A (en) Device and method for inhibiting vortex formation at ladle nozzle by adding electromagnetic field
EP0228024B1 (en) Method of rendering slag-bath reactions more efficient and arrangement for carrying out the method
CN110423862A (en) A kind of double hose electromagnetic agitation RH device and method
US6240120B1 (en) Inductive melting of fine metallic particles
US5317591A (en) Direct-current arc furnace
US4132545A (en) Method of electroslag remelting processes using a preheated electrode shield
US5738823A (en) Meltdown apparatus
CN211284429U (en) Induction heating type molten steel slag washing and purifying device
US4192370A (en) Device for effecting electroslag remelting processes
EP0116221B1 (en) Apparatus for and method of desulfurizing and heating molten metal
EP0286934B1 (en) Method of reducing lining wear in a ladle containing a melt
CN112393588A (en) Induction smelting cold crucible with full suspension and strong stirring capacity
WO2006031964A1 (en) Methods and facilities for suppressing vortices arising in tundishes or ladles during their respective discharge
JP2008100248A (en) Continuously casting tundish, and method of continuous casting
US4099960A (en) Method of smelting metallic material, particularly iron sponge
JP3654248B2 (en) Method for refining molten metal
JP4816138B2 (en) Ladle refining method and ladle refining furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905