JP2001010865A - Silicon nitride sintered compact and its production - Google Patents

Silicon nitride sintered compact and its production

Info

Publication number
JP2001010865A
JP2001010865A JP11176479A JP17647999A JP2001010865A JP 2001010865 A JP2001010865 A JP 2001010865A JP 11176479 A JP11176479 A JP 11176479A JP 17647999 A JP17647999 A JP 17647999A JP 2001010865 A JP2001010865 A JP 2001010865A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
weight
terms
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11176479A
Other languages
Japanese (ja)
Inventor
Kiyoshi Araki
清 新木
Katsuhiro Inoue
勝弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP11176479A priority Critical patent/JP2001010865A/en
Publication of JP2001010865A publication Critical patent/JP2001010865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a silicon nitride sintered compact having sufficient mechanical characteristics and thermal conductivity as a circuit substrate and capable of preventing malfunction of a semiconductor element with electromagnetic waves, etc., and to provide a method for producing the silicon nitride sintered compact. SOLUTION: This silicon nitride sintered compact comprises silicon nitride crystal grains, microcrystal grains comprising a metal simple substance and/or a compound of at least one kind of element selected from W and Mo and a grain boundary phase. The microcrystal grains are dispersed in the sintered compact. Further, the sintered compact is produced by including a rare earth element in an amount of 1.0-10 wt.% expressed in terms of an oxide, Mg in an amount of 0.3-5 wt.% expressed in terms of an oxide and W and/or Mo in an amount of 0.001-5.0 wt.% expressed in terms of a carbide and making >=5 silicon nitride grains having >=30 μm major axis length exist in an optional region of 200×150 μm size in the sintered compact.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、機械的強度、破
壊靭性値等の機械的特性に優れ、熱伝導率が高く、か
つ、明度が低い窒化珪素焼結体及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body having excellent mechanical properties such as mechanical strength and fracture toughness, high thermal conductivity, and low brightness, and a method for producing the same.

【0002】[0002]

【従来の技術】 窒化珪素焼結体は、機械的強度、破壊
靭性値等の機械的特性をはじめ、耐摩耗性、耐酸化性、
電気絶縁性等、種々の特性に優れているため、例えばデ
ィーゼル、ガスタービンのような熱機関用構造材料とし
て汎用される一方、BeO,AlN,SiC等の焼結体
に比して熱伝導特性が劣るため、放熱性を要求される部
材(例えば回路基板)には使用されていなかった。
2. Description of the Related Art A silicon nitride sintered body has mechanical properties such as mechanical strength and fracture toughness, as well as wear resistance, oxidation resistance, and the like.
Because it is excellent in various properties such as electrical insulation, it is widely used as a structural material for heat engines such as diesel and gas turbines, but has a higher thermal conductivity than sintered bodies such as BeO, AlN, and SiC. Therefore, it has not been used for a member (for example, a circuit board) requiring heat radiation.

【0003】 しかしながら、本出願人は窒化珪素焼結
体の優れた機械的特性や電気絶縁性を生かしつつ、熱伝
導特性を向上させることができれば、回路基板等として
好適に用いることができると考え、種々の改良を行って
きた。例えば、窒化珪素多結晶体の結晶粒の大きさと不
純物であるAlの含有量とを制御することにより、優れ
た機械的特性と良好な熱伝導特性を併有する窒化珪素焼
結体が得られることを既に開示している(特開平3-2189
75号公報)。
However, the present applicant considers that a silicon nitride sintered body can be suitably used as a circuit board and the like if the heat conduction property can be improved while utilizing the excellent mechanical properties and electrical insulation properties. And various improvements have been made. For example, by controlling the size of the crystal grains of the silicon nitride polycrystal and the content of Al as an impurity, a silicon nitride sintered body having both excellent mechanical properties and good heat conduction properties can be obtained. (Japanese Unexamined Patent Publication No. Hei 3-2189)
No. 75 gazette).

【0004】 また、最近では、窒化珪素多結晶体の結
晶粒を粗粒と微粒の複合組織にし、粗粒の比率を制御す
ることにより、良好な機械的特性を満足し、かつ、高熱
伝導性を有する窒化珪素焼結体が得られることが開示さ
れている(特開平9-30866号公報)。
Further, recently, the crystal grains of the silicon nitride polycrystal are formed into a composite structure of coarse grains and fine grains, and by controlling the ratio of the coarse grains, satisfactory mechanical properties are satisfied and high thermal conductivity is obtained. It is disclosed that a silicon nitride sintered body having the following can be obtained (JP-A-9-30866).

【0005】 更には、窒化珪素結晶及び粒界相からな
り、希土類元素を酸化物換算で2〜7.5重量%、T
i,Zr,Mo,W等の元素の酸化物、炭化物、窒化
物、珪化物、ホウ化物の少なくとも1種以上を0.2〜
3重量%含有する、高熱伝導性の窒化珪素焼結体も開示
されている(特開平7-48174号公報)。
Further, it is composed of a silicon nitride crystal and a grain boundary phase.
oxides, carbides, nitrides, silicides, borides of elements such as i, Zr, Mo, W, etc.
A highly thermally conductive silicon nitride sintered body containing 3% by weight is also disclosed (JP-A-7-48174).

【0006】 更にまた、窒化珪素多結晶体の結晶粒を
粗粒と微粒の複合組織にし、結晶粒全体の平均粒径及び
平均アスペクト比を規定し、かつ、焼結体の任意の30
0×300μmの領域に存在する長軸長さ20μm以上
の粗粒の個数を5個以上とすることにより、良好な機械
的特性と高熱伝導性を併有する窒化珪素焼結体が得られ
ることが開示されている(特開平11-100276号公報)。
Further, the crystal grains of the silicon nitride polycrystal are formed into a composite structure of coarse grains and fine grains, the average grain size and the average aspect ratio of the entire crystal grains are specified, and an arbitrary 30
By setting the number of coarse particles having a major axis length of 20 μm or more in a region of 0 × 300 μm to 5 or more, a silicon nitride sintered body having both good mechanical properties and high thermal conductivity can be obtained. It is disclosed (JP-A-11-100276).

【0007】[0007]

【発明が解決しようとする課題】 窒化珪素は電気絶縁
性にも優れるため、上記のような熱伝導特性に優れる窒
化珪素焼結体は、素子からの発熱を速やかに放熱し、か
つ、基板表裏及び基板上の配線間を確実に絶縁すること
が要求される回路基板として好適に用いることができ
る。例えば当該窒化珪素焼結体に金属回路を設け、更に
半導体素子を搭載してなる半導体モジュールなどが検討
されている。
Problems to be Solved by the Invention Since silicon nitride is also excellent in electrical insulation, a silicon nitride sintered body having excellent heat conduction characteristics as described above quickly dissipates heat generated from the element, and furthermore, heats and cools the substrate. Further, it can be suitably used as a circuit board required to reliably insulate between wirings on the board. For example, a semiconductor module in which a metal circuit is provided on the silicon nitride sintered body and a semiconductor element is further mounted has been studied.

【0008】 しかしながら、上述した窒化珪素焼結体
であっても、焼結体の緻密化が不十分であることに起因
して、回路基板として使用するには機械的強度、破壊靭
性値等の機械的特性や熱伝導率が不十分な場合があり、
また、基板に搭載する半導体素子の種類によっては電磁
波等による誤作動が生じるという問題が生じていた。ま
た、自動検査機を使用した回路基板の欠陥検査におい
て、焼結体の単なる色ムラや、焼結体に定常的に発生す
る黒斑が不良として頻繁に検出されるため、製造上の問
題点として指摘されていた。
However, even if the above-mentioned silicon nitride sintered body is used, it cannot be used as a circuit board due to insufficient densification of the sintered body. Mechanical properties and thermal conductivity may be insufficient,
Further, there has been a problem that malfunctions due to electromagnetic waves or the like occur depending on the type of semiconductor element mounted on the substrate. In addition, in a defect inspection of a circuit board using an automatic inspection machine, mere color unevenness of a sintered body and black spots that constantly occur on the sintered body are frequently detected as defects, which causes a problem in manufacturing. Was pointed out.

【0009】 本発明は、このような従来技術の問題点
に鑑みてなされたものであって、その目的とするところ
は、回路基板として十分な機械的特性及び熱伝導率を備
え、かつ、電磁波等による半導体素子の誤作動を防止し
得る窒化珪素焼結体及びその製造方法を提供することに
ある。
The present invention has been made in view of such problems of the prior art, and has as its object to provide a circuit board with sufficient mechanical properties and thermal conductivity, and to provide an electromagnetic wave It is an object of the present invention to provide a silicon nitride sintered body capable of preventing a malfunction of a semiconductor element due to the above and the like, and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】 即ち、本発明によれ
ば、窒化珪素結晶粒、W,Moから選択される少なくと
も1種の元素の金属単体及び/又は化合物からなる微結
晶粒、及び粒界相からなり、前記微結晶粒が焼結体中に
分散されてなる窒化珪素焼結体であって、酸化物換算で
1.0〜10重量%の希土類元素、酸化物換算で0.3
〜5重量%のMg、及び炭化物換算で0.001〜5.
0重量%のW及び/又はMoを含み、かつ、焼結体の任
意の200μm×150μmの領域に長軸長さ30μm
以上の窒化珪素粒が5個以上存在することを特徴とする
窒化珪素焼結体が提供される。本発明の窒化珪素焼結体
においては、焼結体の任意の200μm×150μmの
領域に長軸長さ40μm以上の窒化珪素粒が5個以上存
在することが好ましい。
That is, according to the present invention, silicon nitride crystal grains, fine crystal grains composed of a simple metal and / or a compound of at least one element selected from W and Mo, and grain boundaries A silicon nitride sintered body composed of a phase, wherein the fine crystal grains are dispersed in a sintered body, wherein 1.0 to 10% by weight of a rare earth element in terms of oxide;
-5% by weight of Mg, and 0.001-5.
0% by weight of W and / or Mo, and a major axis length of 30 μm in an arbitrary area of 200 μm × 150 μm of the sintered body.
A silicon nitride sintered body characterized in that five or more silicon nitride grains are present. In the silicon nitride sintered body of the present invention, it is preferable that five or more silicon nitride grains having a major axis length of 40 μm or more exist in an arbitrary region of 200 μm × 150 μm of the sintered body.

【0011】 また、本発明の窒化珪素焼結体において
は、W,Moから選択される少なくとも1種の元素の金
属単体及び/又は化合物からなる微結晶粒を0.001
〜0.2重量%含むことが好ましく、窒化珪素以外の物
質からなる微結晶粒が、W及び/又はMoの炭化物から
なることが好ましい。
Further, in the silicon nitride sintered body of the present invention, 0.001 microcrystalline grains composed of a simple metal and / or a compound of at least one element selected from W and Mo are used.
The fine crystal grains made of a substance other than silicon nitride are preferably made of W and / or Mo carbide.

【0012】 更に、本発明の窒化珪素焼結体において
は、焼結体中に含まれる希土類元素がYであることが好
ましく、酸化物換算で0.1〜10重量%のZrを含む
ことが好ましく、酸化物換算で0〜0.5重量%のAl
を含むことが好ましい。上述した本発明の窒化珪素焼結
体においては、熱伝導率(JIS R1611)を80(W/m
K)以上、破壊靭性値KIC(JIS R1607)を8(MPa
1/2)以上、明度(JIS Z8721)をN6以下とすること
が可能である。また、本発明によれば、上述した本発明
の窒化珪素焼結体からなることを特徴とする回路基板が
提供される。
Further, in the silicon nitride sintered body of the present invention, the rare earth element contained in the sintered body is preferably Y, and preferably contains 0.1 to 10% by weight of Zr in terms of oxide. Preferably, 0 to 0.5% by weight of Al in terms of oxide
It is preferable to include In the above-described silicon nitride sintered body of the present invention, the thermal conductivity (JIS R1611) is set to 80 (W / m).
K), the fracture toughness value K IC (JIS R1607) is set to 8 (MPa).
m 1/2 ) or more, and the brightness (JIS Z8721) can be N6 or less. Further, according to the present invention, there is provided a circuit board comprising the above-described silicon nitride sintered body of the present invention.

【0013】 更に、本発明によれば、不純物酸素量が
1.4重量%以下である窒化珪素粉末と、希土類元素化
合物と、Mg化合物と、W,Moから選択される少なく
とも1種の元素の金属単体及び/又は化合物とを含む成
形原料を成形し、当該成形体を窒素雰囲気中において焼
成する、窒化珪素焼結体の製造方法であって、希土類元
素を酸化物換算で1.0〜10重量%、Mgを酸化物換
算で0.3〜5重量%、W,Moから選択される少なく
とも1種の元素を炭化物換算で0.001〜5.0重量
%含むように前記成形原料を調製するとともに、前記成
形体を1〜11気圧の窒素ガス圧下、1800〜200
0℃の温度範囲において2時間以上焼成することを特徴
とする窒化珪素焼結体の製造方法が提供される。
Further, according to the present invention, a silicon nitride powder having an impurity oxygen content of 1.4% by weight or less, a rare earth element compound, a Mg compound, and at least one element selected from W and Mo A method for producing a silicon nitride sintered body, comprising forming a forming raw material containing a metal simple substance and / or a compound, and firing the formed body in a nitrogen atmosphere. The molding raw material is prepared so as to contain 0.3% to 5% by weight of Mg, 0.3 to 5% by weight in terms of oxides, and 0.001 to 5.0% by weight of at least one element selected from W and Mo in terms of carbides. And pressing the compact under a nitrogen gas pressure of 1 to 11 atm.
A method for producing a silicon nitride sintered body characterized in that it is fired for 2 hours or more in a temperature range of 0 ° C.

【0014】 本発明の製造方法において成形原料とし
て用いる窒化珪素粉末は、β化率が5重量%以下のα型
窒化珪素粉末であることが好ましく、不純物Alの含有
率が0.01重量%以下であることが好ましい。
The silicon nitride powder used as a forming raw material in the production method of the present invention is preferably an α-type silicon nitride powder having a β conversion of 5% by weight or less, and a content of impurity Al of 0.01% by weight or less. It is preferred that

【0015】[0015]

【発明の実施の形態】 本発明の窒化珪素焼結体は、所
定量の希土類元素、Mg、更にはW,Moから選択され
る少なくとも1種の元素の金属単体及び/又は化合物を
必須構成成分として含み、かつ、焼結体中に30μm以
上の長軸長さを有する窒化珪素の粗粒を5個以上存在せ
しめたことを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The silicon nitride sintered body of the present invention comprises a predetermined amount of a rare earth element, Mg, and a metal simple substance and / or compound of at least one element selected from W and Mo as essential components. And 5 or more coarse particles of silicon nitride having a major axis length of 30 μm or more are present in the sintered body.

【0016】 このような窒化珪素焼結体は、機械的強
度、破壊靭性値等の機械的特性に優れ、熱伝導率も高い
ため、例えば半導体素子に使用する回路基板として好適
に用いることができ、また、明度(JIS Z 8721)が低い
ため、電磁波等による半導体素子の誤作動を防止するこ
とも可能である。以下、本発明の窒化珪素焼結体につい
て詳細に説明する。
Such a silicon nitride sintered body is excellent in mechanical properties such as mechanical strength and fracture toughness and has a high thermal conductivity, and thus can be suitably used as a circuit board used for a semiconductor element, for example. In addition, since the brightness (JIS Z 8721) is low, it is possible to prevent malfunction of the semiconductor element due to electromagnetic waves or the like. Hereinafter, the silicon nitride sintered body of the present invention will be described in detail.

【0017】 一般に、窒化珪素焼結体は、粒径0.1
〜100μm程度の窒化珪素の結晶粒の間隙に、酸化
物、酸窒化物等からなる粒界相を有する焼結体であり、
通常は、相対密度が97〜100%程度、10μm当た
りの粒界個数が5〜30個程度であるのが通常である。
本発明の窒化珪素焼結体はこれに加えて以下に掲げるよ
うな特徴を有している。
Generally, a silicon nitride sintered body has a particle size of 0.1
A sintered body having a grain boundary phase composed of an oxide, an oxynitride, or the like in a gap between silicon nitride crystal grains of about 100 μm;
Usually, the relative density is about 97 to 100%, and the number of grain boundaries per 10 μm is usually about 5 to 30.
The silicon nitride sintered body of the present invention additionally has the following features.

【0018】(1)微結晶粒 本発明の窒化珪素焼結体は、当該焼結体中に分散され
る、W,Moから選択される少なくとも1種の元素の金
属単体及び/又は化合物からなる微結晶粒を含む。当該
微結晶粒は、焼結体の粒界相、或いは窒化珪素結晶粒内
に分散されることにより、焼結体の機械的強度を向上さ
せる。微結晶粒は、粒径が微細なほど機械的強度を向上
させる効果が高いため、少なくとも平均粒径が2μm以
下であることが必要であり、平均粒径1μm以下の球状
粒子であることが好ましい。
(1) Fine crystal grains The silicon nitride sintered body of the present invention is composed of a single metal and / or a compound of at least one element selected from W and Mo dispersed in the sintered body. Contains fine crystal grains. The microcrystal grains are dispersed in the grain boundary phase of the sintered body or in the silicon nitride crystal grains, thereby improving the mechanical strength of the sintered body. The fine crystal grains have a higher effect of improving the mechanical strength as the particle diameter is smaller. Therefore, it is necessary that the average particle diameter is at least 2 μm or less, and spherical particles having an average particle diameter of 1 μm or less are preferable. .

【0019】 また、上記微結晶粒を含む焼結体は、明
度が低く可視光近傍の波長を有する電磁波を遮光できる
ため、半導体素子の誤動作を防止できる点において好ま
しい。また、自動検査機による回路基板の欠陥検査にお
いては、焼結体の単なる色ムラや、定常的に発生する黒
斑を不良として検出してしまう場合があるが、明度が低
い焼結体であればそのような不具合を防止することも可
能である。
[0019] Furthermore, the sintered body containing the fine crystal grains is preferable in that it can block an electromagnetic wave having a low brightness and a wavelength near a visible light, thereby preventing a malfunction of a semiconductor element. In addition, in a defect inspection of a circuit board by an automatic inspection machine, mere color unevenness of a sintered body or black spots that occur regularly may be detected as defective. Such a problem can be prevented.

【0020】 上記微結晶粒は、入手が容易である点に
おいてWC,Mo2C等の炭化物であることが好ましい
が、W,Moの金属単体、或いは酸化物のようなW,M
oの化合物であっても良く、窒化珪素と反応したケイ化
物の状態で存在していても良い。
The fine crystal grains are preferably carbides such as WC and Mo 2 C from the viewpoint that they are easily available. However, W and Mo such as simple metals of W and Mo or oxides are preferable.
It may be a compound of o, or may be present in a state of silicide reacted with silicon nitride.

【0021】 W,Moから選択される少なくとも1種
の元素の金属単体及び/又は化合物は、炭化物に換算し
た場合に0.001〜5.0重量%の範囲内で焼結体中
に含有されていることが必要である。含有率が0.00
1重量%未満の焼結体は機械的強度が低く、明度も高い
一方、含有率5.0重量%超の焼結体は、明度は低い
が、機械的強度や熱伝導率の点で不十分だからである。
前記範囲の中でも含有率0.001〜0.2重量%の範
囲の焼結体は、熱伝導率が高い点において好ましい。
The simple substance metal and / or compound of at least one element selected from W and Mo is contained in the sintered body in the range of 0.001 to 5.0% by weight in terms of carbide. It is necessary to be. 0.00% content
A sintered body of less than 1% by weight has a low mechanical strength and a high lightness, while a sintered body with a content of more than 5.0% by weight has a low lightness but is inferior in mechanical strength and thermal conductivity. Because it is enough.
Among the above ranges, a sintered body having a content of 0.001 to 0.2% by weight is preferable in terms of high thermal conductivity.

【0022】(2)希土類元素 本発明の窒化珪素焼結体は、酸化物換算で0.1〜10
重量%の希土類元素を必須構成成分として含有する。希
土類元素の含有率が前記範囲の焼結体は機械的強度が高
い点において好ましい。Yb、Nd等の希土類元素を含
む焼結体でも良いが、機械的強度が高い点においてYを
含む焼結体であることが特に好ましい。
(2) Rare earth element The silicon nitride sintered body of the present invention is 0.1 to 10 in terms of oxide.
It contains a rare earth element by weight as an essential component. A sintered body having a rare earth element content in the above range is preferable in terms of high mechanical strength. A sintered body containing a rare earth element such as Yb or Nd may be used, but a sintered body containing Y is particularly preferable in terms of high mechanical strength.

【0023】(3)Mg 本発明の窒化珪素焼結体は、酸化物換算で0.3〜10
重量%のMgを必須構成成分として含有する。Mgの含
有率が前記範囲の焼結体は機械的強度及び熱伝導率が高
い点において好ましい。
(3) Mg The silicon nitride sintered body of the present invention has an oxide equivalent of 0.3 to 10
It contains Mg as an essential component by weight. A sintered body having a Mg content in the above range is preferable in terms of high mechanical strength and thermal conductivity.

【0024】(4)粗大粒 本発明の窒化珪素焼結体は、焼結体の任意の200μm
×150μmの領域に長軸長さ30μm以上、好ましく
は40μm以上の窒化珪素粒が5個以上存在するもので
ある。即ち、窒化珪素結晶粒の殆どが柱状のβ型結晶で
あり、その一部の結晶粒のみが長軸長さ30μm又は4
0μm以上の粗大粒であるものである。
(4) Coarse Grains The silicon nitride sintered body of the present invention has an arbitrary size of 200 μm.
In the region of × 150 μm, five or more silicon nitride particles having a major axis length of 30 μm or more, preferably 40 μm or more are present. That is, most of the silicon nitride crystal grains are columnar β-type crystals, and only some of the crystal grains have a long axis length of 30 μm or 4 μm.
It is a coarse particle of 0 μm or more.

【0025】 熱を伝達するフォノンは、焼結体中の結
晶格子が整然とした部分においては良く伝わるが、結晶
格子が乱れた粒界相、或いは結晶粒と粒界相との界面で
は散乱し伝達されないため、結晶粒を大きくすれば結晶
粒と粒界相との界面が減少し、焼結体の熱伝導率が向上
する。一方、結晶粒が全体に大きくなりすぎると焼結体
の機械的強度が低下することが知られている。
The phonon that transfers heat is well transmitted in a portion where the crystal lattice in the sintered body is well-ordered, but is scattered and transmitted in a grain boundary phase in which the crystal lattice is disordered or in an interface between the crystal grains and the grain boundary phase. Therefore, if the crystal grains are made larger, the interface between the crystal grains and the grain boundary phase is reduced, and the thermal conductivity of the sintered body is improved. On the other hand, it is known that the mechanical strength of the sintered body decreases when the crystal grains become too large as a whole.

【0026】 上記のように極端に長軸長さが長い粗大
粒を所定の比率で存在させた焼結体は、熱伝導率と機械
的強度が高いレベルで均衡される点において好ましい。
なお、粗大粒を含む焼結体であっても、粗大粒の長軸長
さが30μm未満のものは熱伝導率が低い点において好
ましくない。また、極端に長軸長さが長い粗大粒が所定
の比率で存在すると、当該粗大粒が3次元的に絡み合
い、クラックが進展し難くなるため、焼結体の破壊靭性
値を向上させることができる点においても好ましい。
A sintered body in which coarse particles having an extremely long major axis length are present at a predetermined ratio as described above is preferable in that thermal conductivity and mechanical strength are balanced at a high level.
In addition, even if the sintered body contains coarse grains, those having a major axis length of less than 30 μm are not preferable in that the thermal conductivity is low. In addition, when coarse particles having an extremely long major axis length are present at a predetermined ratio, the coarse particles are three-dimensionally entangled with each other and cracks are difficult to progress, so that the fracture toughness value of the sintered body can be improved. It is also preferable in that it is possible.

【0027】(5)Zr 本発明の窒化珪素焼結体は、Zrを酸化物換算で0.1
〜10重量%含むことが好ましい。Zrの含有率が前記
範囲の焼結体は機械的強度が高いからである。
(5) Zr In the silicon nitride sintered body of the present invention, Zr is 0.1% in terms of oxide.
It is preferable to contain 10 to 10% by weight. This is because a sintered body having a Zr content in the above range has high mechanical strength.

【0028】(6)不純物Al 本発明の窒化珪素焼結体は、不純物であるAlの含有率
が酸化物換算で0.5重量%以下であることが好まし
い。Alの含有率が0.5重量%超の焼結体は熱伝導率
が低いからである。
(6) Impurity Al The silicon nitride sintered body of the present invention preferably has an impurity Al content of 0.5% by weight or less in terms of oxide. This is because a sintered body having an Al content of more than 0.5% by weight has a low thermal conductivity.

【0029】 上述した本発明の窒化珪素焼結体は、熱
伝導率(JIS R1611)が80(W/mK)以上と高く、
室温強度(JIS R1601)が650(MPa)以上、破壊
靭性値KIC(JIS R1607)が8(MPam1/2)以上と機
械的特性にも優れるため、例えば半導体素子に使用する
回路基板として好適に用いることができる。また、明度
(JIS Z8721)がN6以下と低いため、電磁波等による
半導体素子の誤作動を防止することも可能である。
The above-described silicon nitride sintered body of the present invention has a high thermal conductivity (JIS R1611) of 80 (W / mK) or more,
It has excellent mechanical properties such as room temperature strength (JIS R1601) of 650 (MPa) or more and fracture toughness value K IC (JIS R1607) of 8 (MPam 1/2 ) or more. Therefore, it is suitable as a circuit board used for a semiconductor element, for example. Can be used. Further, since the brightness (JIS Z8721) is as low as N6 or less, it is possible to prevent malfunction of the semiconductor element due to electromagnetic waves or the like.

【0030】 本発明の窒化珪素焼結体は、従来の製造
方法のように、窒化珪素粉末と、Y23等の焼結助剤と
からなる成形原料を成形し、当該成形体を窒素雰囲気或
いは不活性ガス雰囲気中で焼成するのみでは得ることが
できないが、希土類元素化合物、Mg化合物、W,Mo
から選択される少なくとも1種の元素の金属単体及び/
又は化合物を所定の比率で成形原料に含有せしめ、か
つ、所定の焼成条件で焼成することにより製造すること
が可能となる。以下、本発明の製造方法について詳細に
説明する。
The silicon nitride sintered body of the present invention is obtained by forming a forming raw material comprising silicon nitride powder and a sintering aid such as Y 2 O 3 as in a conventional manufacturing method, and forming the formed body with nitrogen. Although it cannot be obtained only by firing in an atmosphere or an inert gas atmosphere, rare earth element compounds, Mg compounds, W, Mo
A simple metal of at least one element selected from the group consisting of:
Alternatively, the compound can be produced by allowing the compound to be contained in the molding raw material at a predetermined ratio and firing under predetermined firing conditions. Hereinafter, the production method of the present invention will be described in detail.

【0031】 本発明の製造方法では、まず、成形原料
を成形して成形体を製造する。本発明で使用する成形原
料は、少なくとも不純物酸素量が1.4重量%以下であ
る窒化珪素粉末と、希土類元素化合物と、Mg化合物
と、W,Moから選択される少なくとも1種の元素の金
属単体及び/又は化合物とを含有するものである。
In the production method of the present invention, first, a molding raw material is molded to produce a molded body. The forming raw material used in the present invention is a metal of at least one element selected from the group consisting of a silicon nitride powder having an impurity oxygen content of at most 1.4% by weight, a rare earth element compound, a Mg compound, and W and Mo. It contains a simple substance and / or a compound.

【0032】 窒化珪素は難焼結性のセラミックである
ため、成形原料を構成する窒化珪素粉末は、粒径が2μ
m以下の微粒子を用いることが好ましい。粒径を小さく
することにより、表面張力が大きくなり、焼結が容易と
なるからである。窒化珪素は結晶構造としてα相、β相
が存在するが、成形原料となる窒化珪素粉末はβ化率が
5%以下のα型窒化珪素粉末であることが好ましい。β
化率が5%を超えると焼結性が悪化し、焼結体の機械的
強度が低下するためである。また、粗大なβ粉末を種結
晶として添加する場合には、焼結体の機械的強度が著し
く低下するため留意しなければならない。
Since silicon nitride is a hardly sinterable ceramic, the silicon nitride powder constituting the forming raw material has a particle size of 2 μm.
It is preferable to use fine particles of m or less. This is because by reducing the particle size, the surface tension increases and sintering becomes easy. Silicon nitride has an α-phase and a β-phase as a crystal structure, but it is preferable that the silicon nitride powder used as a forming material is an α-type silicon nitride powder having a β conversion of 5% or less. β
If the conversion ratio exceeds 5%, the sinterability deteriorates and the mechanical strength of the sintered body decreases. In addition, when coarse β powder is added as a seed crystal, care must be taken because the mechanical strength of the sintered body is significantly reduced.

【0033】 また、窒化珪素粉末中に不純物として存
在する酸素の含有量は、1.4重量%以下とすることが
必要である。理由は明らかではないが、酸素の含有量が
1.4重量%を超えると、焼結体とした際に熱伝導率が
低下する傾向があり、所望の熱伝導率が得られないため
である。
Further, the content of oxygen existing as an impurity in the silicon nitride powder needs to be 1.4% by weight or less. Although the reason is not clear, if the oxygen content exceeds 1.4% by weight, the thermal conductivity tends to decrease when the sintered body is formed, and the desired thermal conductivity cannot be obtained. .

【0034】 更に、窒化珪素粉末は、不純物Alの含
有率が0.01重量%以下であることが好ましい。Al
は窒化珪素結晶粒に固溶し、熱を伝達するフォノンを散
乱するため、焼結体の熱伝導率を低下させるからであ
る。同様の理由から、成形原料全体の不純物Alの含有
率は酸化物換算で0.5重量%以下であることが必要で
ある。
Further, the silicon nitride powder preferably has an impurity Al content of 0.01% by weight or less. Al
This is because the solid solution dissolves in silicon nitride crystal grains and scatters phonons that transfer heat, thereby lowering the thermal conductivity of the sintered body. For the same reason, the content of impurity Al in the entire forming raw material needs to be 0.5% by weight or less in terms of oxide.

【0035】 本発明の製造方法においては、成形原料
中に希土類元素の酸化物、硝酸塩、炭酸塩等の希土類元
素化合物を含有せしめる。希土類元素化合物は窒化珪素
結晶粒の界面に均一に分布して不純物のSiO2、或い
は他の焼結助剤であるMgO等と結合し、高融点の液相
又は結晶を形成するため、焼結体を緻密化し、機械的特
性を高める効果を奏するからである。
In the production method of the present invention, a rare earth element compound such as an oxide, a nitrate, or a carbonate of a rare earth element is contained in the forming raw material. The rare earth element compound is uniformly distributed at the interface of the silicon nitride crystal grains and combines with the impurity SiO 2 or other sintering aid such as MgO to form a liquid phase or crystal having a high melting point. This is because it has the effect of densifying the body and increasing the mechanical properties.

【0036】 上記の効果を得るためには、少なくとも
酸化物換算で0.1重量%以上の希土類元素化合物を含
有している必要がある一方、過剰に含有する場合には多
量の粒界相が形成され熱伝導率が低下するおそれがあ
る。従って、含有率は多くとも10重量%以下とするこ
とが必要である。
In order to obtain the above-mentioned effects, it is necessary to contain at least 0.1% by weight or more of a rare earth element compound in terms of oxide. It may be formed and the thermal conductivity may decrease. Therefore, the content needs to be at most 10% by weight or less.

【0037】 また、本発明の製造方法においては、成
形原料中にMgO等のMg化合物を含有せしめる。希土
類元素化合物(特にY23)とMg化合物(特にMg
O)を併用することにより、焼結時に高融点の液相が形
成されるため、Y23、MgOをはじめとする焼結助剤
を減量しても焼結体を緻密化することが可能となる。即
ち、Mg化合物を成形原料の必須構成成分とすると、焼
結体中の粒界相を減少させることができるため、焼結体
の機械的強度及び熱伝導率の向上が可能となる点におい
て極めて好ましい。
Further, in the production method of the present invention, a Mg compound such as MgO is contained in the forming raw material. Rare earth element compound (especially Y 2 O 3 ) and Mg compound (especially Mg
When O) is used in combination, a liquid phase having a high melting point is formed during sintering, so that the sintered body can be densified even if the sintering aids such as Y 2 O 3 and MgO are reduced. It becomes possible. That is, when the Mg compound is used as an essential component of the forming raw material, the grain boundary phase in the sintered body can be reduced, so that the mechanical strength and thermal conductivity of the sintered body can be improved. preferable.

【0038】 但し、成形原料中における希土類元素化
合物が酸化物換算で0.1〜10重量%という本発明の
範囲においては、酸化物換算で0.3重量%以上のMg
化合物を含有しなければ上記の効果を得ることができな
い。一方、Mg化合物を過剰に含有する場合には焼結体
が緻密化しないという不具合を生ずるおそれがあるた
め、多くとも酸化物換算で10重量%以下とすることが
必要である。
However, in the range of the present invention in which the rare earth element compound in the forming raw material is 0.1 to 10% by weight in terms of oxide, 0.3% by weight or more of Mg in terms of oxide is used.
If the compound is not contained, the above effects cannot be obtained. On the other hand, when the Mg compound is excessively contained, there is a possibility that a problem that the sintered body is not densified may occur. Therefore, the content needs to be at most 10% by weight in terms of oxide.

【0039】 更に、本発明の製造方法においては、成
形原料中にW,Moから選択される少なくとも1種の元
素の金属単体及び/又は化合物(以下、「W系助剤」、
「Mo系助剤」という。)を含有せしめる。W系助剤、
Mo系助剤は、平均粒径2μm以下の微結晶粒として含
有せしめることにより、機械的強度向上、明度低下の効
果を得られることに加え、希土類元素化合物(特にY2
3)及びMg化合物(特にMgO)と併用することに
より、焼結体の緻密化を一層促進させることができる点
において好ましい。これはW系助剤やMo系助剤が焼結
時における液相形成過程に寄与しているためと推定され
る。
Furthermore, in the production method of the present invention, a simple substance and / or a compound of at least one element selected from W and Mo in the forming raw material (hereinafter referred to as “W-based auxiliary”,
It is called "Mo-based auxiliary agent". ). W-based auxiliaries,
By adding Mo-based auxiliaries as fine crystal grains having an average particle size of 2 μm or less, not only the effect of improving mechanical strength and lowering of lightness can be obtained, but also rare earth element compounds (particularly, Y 2
The combined use of O 3 ) and a Mg compound (particularly MgO) is preferable in that the densification of the sintered body can be further promoted. This is presumably because the W-based auxiliary agent and the Mo-based auxiliary agent contribute to the liquid phase forming process during sintering.

【0040】 W系助剤,Mo系助剤としては、WC,
Mo2Cのような炭化物を用いることが好ましいが、
W,Moの金属単体、或いは酸化物のような炭化物以外
のW,Moの化合物であっても良い。W系助剤,Mo系
助剤は、成形原料に微結晶粒として添加すれば、そのま
まの状態で焼結体に残存するのが通常であるが、焼成時
に窒化珪素と反応してケイ化物に変換される場合もあ
る。いずれの場合にあっても、W,Moから選択される
少なくとも1種の元素が炭化物換算で0.001〜5.
0重量%含むように成形原料が調製されていれば本発明
の効果を得ることができる。
Examples of the W-based auxiliary agent and the Mo-based auxiliary agent include WC,
It is preferable to use a carbide such as Mo 2 C,
It may be a single metal of W or Mo, or a compound of W or Mo other than a carbide such as an oxide. When the W-based and Mo-based auxiliaries are added as fine crystal grains to the forming raw material, they usually remain in the sintered body as they are, but react with the silicon nitride during firing to form silicides. It may be converted. In any case, at least one element selected from W and Mo is 0.001-5.
If the forming raw material is prepared so as to contain 0% by weight, the effect of the present invention can be obtained.

【0041】 なお、従前は焼結体の明度を低下させる
助剤として、SiC、TiC、TiN等を成形原料中に
含有せしめる場合もあったが、これらの助剤はW系助剤
やMo系助剤とは異なり、機械的強度を向上させる効果
がなく、焼結体に白斑や茶斑が発生する場合がある。従
って、本発明の効果を得るためにはW系助剤及び/又は
Mo系助剤の使用が必須である。
In the past, SiC, TiC, TiN and the like were sometimes included in the forming raw material as auxiliary agents for lowering the brightness of the sintered body, but these auxiliary agents were W-based auxiliary agents and Mo-based auxiliary agents. Unlike the auxiliary, there is no effect of improving the mechanical strength, and white spots or tea spots may be generated on the sintered body. Therefore, in order to obtain the effects of the present invention, it is essential to use a W-based auxiliary agent and / or a Mo-based auxiliary agent.

【0042】 なお、本発明の成形原料には、窒化珪素
粉末と、希土類元素化合物と、Mg化合物と、W,Mo
から選択される少なくとも1種の元素の金属単体及び/
又は化合物とが前記所定の比率で含有されている限りに
おいて、他の物質を添加してもよい。例えば焼結助剤と
してZrO2を含有せしめることも好ましい。0.1〜
10重量%の範囲でZrO2を含有せしめることにより
熱伝導率の低下を防止しつつ機械的強度を高めることが
可能である。
The forming raw material of the present invention includes silicon nitride powder, rare earth element compound, Mg compound, W, Mo
A simple metal of at least one element selected from the group consisting of:
Alternatively, another substance may be added as long as the compound and the compound are contained in the above-mentioned predetermined ratio. For example, it is also preferable to include ZrO 2 as a sintering aid. 0.1 ~
By incorporating ZrO 2 in the range of 10% by weight, it is possible to increase the mechanical strength while preventing a decrease in thermal conductivity.

【0043】 成形原料全体に対する窒化珪素結晶粒以
外の成分(以下、「焼結助剤等」という。)の含有率は
特に限定されないが1〜10重量%であることが好まし
い。焼結助剤等が少なすぎれば焼結が進行しない一方、
多すぎれば窒化珪素粒子間に多量のガラス相が形成さ
れ、焼結体の熱伝導率が低下するためである。
The content of components other than silicon nitride crystal grains (hereinafter referred to as “sintering aids, etc.”) with respect to the entire forming raw material is not particularly limited, but is preferably 1 to 10% by weight. Sintering does not proceed if there is too little sintering aid, etc.,
If the amount is too large, a large amount of glass phase is formed between the silicon nitride particles, and the thermal conductivity of the sintered body decreases.

【0044】 上記の成形原料は従来公知の成形方法に
より成形体とすることができる。例えば、上記成形原料
に水を加え、撹拌槽型撹拌ミル(商品名:アトライタ
(三井三池化工機(株))等)により混合・粉砕してス
ラリーを形成し、バインダを添加した後スプレードライ
ヤにて造粒乾燥し、当該造粒粉を成形型に投入して一軸
成形した後、静水圧加圧成形する方法等が挙げられる。
このような成形方法は、成形原料界面での凝集を防止
し、均一な分散が可能となるとともに、成形原料に流動
性を付与することが可能である点において好ましい。
The above-mentioned molding raw material can be formed into a molded body by a conventionally known molding method. For example, water is added to the above molding material, and the mixture is mixed and pulverized with a stirring tank type stirring mill (trade name: Attritor (Mitsui Miike Kakoki Co., Ltd.) or the like) to form a slurry. After adding a binder, the slurry is added to a spray dryer. After granulating and drying, the granulated powder is put into a molding die, and subjected to uniaxial molding, followed by isostatic pressing.
Such a molding method is preferable in that aggregation at the molding material interface is prevented, uniform dispersion is possible, and fluidity can be imparted to the molding material.

【0045】 また、バインダの添加は1次粒子間の摩
擦抵抗を減少させ、造粒粉をつぶれ易くするため、生成
される欠陥を小さくすることができる点においても好ま
しい。バインダの種類は特に限定されないが、例えばポ
リビニルアルコール、ポリエチレングリコール等の有機
質材料が挙げられる。
Further, the addition of the binder is preferable in that the frictional resistance between the primary particles is reduced and the granulated powder is easily crushed, so that the generated defects can be reduced. The type of the binder is not particularly limited, and examples thereof include organic materials such as polyvinyl alcohol and polyethylene glycol.

【0046】 上記成形体は、窒化珪素の分解、酸化を
防止するため、窒素雰囲気中において焼成して焼結体と
するが、1〜11気圧の窒素ガス加圧下で焼成を行うこ
とが好ましい。少なくとも1気圧以上なければ窒化珪素
が昇華し、或いは分解する一方、11気圧以下であれば
焼成炉を特別な耐圧構造としなくても済むため容易に製
造でき、製造コストも低減できるからである。なお、1
〜11気圧の窒素ガス加圧下で焼成を行う場合には、窒
化珪素の分解を防止しつつ高密度焼結体を得るため、焼
成温度を1800〜2000℃とする必要がある。
The above compact is fired in a nitrogen atmosphere to form a sintered body in order to prevent decomposition and oxidation of silicon nitride, but it is preferable to perform firing under a nitrogen gas pressure of 1 to 11 atm. If the pressure is not at least 1 atm, silicon nitride will sublime or decompose, while if it is at most 11 atm, the firing furnace does not need to have a special pressure-resistant structure, so that it can be easily manufactured and the manufacturing cost can be reduced. In addition, 1
When sintering is performed under nitrogen gas pressure of about 11 atm, the sintering temperature needs to be 1800 to 2000 ° C. in order to obtain a high-density sintered body while preventing decomposition of silicon nitride.

【0047】 更に、1800〜2000℃の温度範囲
で焼成する場合には2時間以上焼成することが必要であ
る。焼成時間が短いと窒化珪素結晶粒の溶解再析出によ
る結晶粒の成長がおこらず、長軸長さ30μm以上の粗
大粒が形成されないため、焼結体の熱伝導率が向上しな
いからである。
Further, when firing in a temperature range of 1800 to 2000 ° C., firing must be performed for 2 hours or more. If the firing time is short, crystal grains do not grow due to dissolution and precipitation of silicon nitride crystal grains, and coarse grains having a major axis length of 30 μm or more are not formed, so that the thermal conductivity of the sintered body does not improve.

【0048】 以上説明したように本発明の製造方法に
よれば、例えば半導体素子に使用する回路基板として好
適に用いることができ、電磁波等による半導体素子の誤
作動を防止することも可能な、熱伝導率(JIS R1611)
が80(W/mK)以上、室温強度(JIS R1601)が6
50(MPa)以上、破壊靭性値KIC(JISR1607)が8
(MPam1/2)以上、更には明度(JIS Z8721)がN6
以下の窒化珪素焼結体を簡便に製造することができる。
As described above, according to the manufacturing method of the present invention, for example, heat can be suitably used as a circuit board used for a semiconductor element, and malfunction of the semiconductor element due to electromagnetic waves or the like can be prevented. Conductivity (JIS R1611)
Is 80 (W / mK) or more and room temperature strength (JIS R1601) is 6
50 (MPa) or more, fracture toughness value K IC (JISR1607) is 8
(MPam 1/2 ) or more, and the brightness (JIS Z8721) is N6
The following silicon nitride sintered body can be easily manufactured.

【0049】[0049]

【実施例】 以下、本発明について実施例により更に詳
細に説明する。但し、本発明はこれらの実施例に限定さ
れるものではない。なお、以下の実施例、比較例で使用
する窒化珪素粉末、焼結助剤、微結晶粒は、いずれも不
純物Al量が0.01重量%以下のものを使用した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to these examples. The silicon nitride powder, the sintering aid, and the fine crystal grains used in the following Examples and Comparative Examples all had an impurity Al content of 0.01% by weight or less.

【0050】(焼結体の評価方法)製造された窒化珪素
焼結体は以下に示す評価方法により相対密度、熱伝導
率、窒化珪素結晶粒の長軸長さ、微結晶粒の平均粒径、
希土類元素等の含有率、明度、β化率、室温強度、破壊
靭性値、不純物酸素量を測定して評価した。
(Evaluation Method of Sintered Body) The manufactured silicon nitride sintered body was evaluated by the following evaluation methods for relative density, thermal conductivity, major axis length of silicon nitride crystal grains, and average grain size of fine crystal grains. ,
The content of rare earth elements and the like, lightness, β conversion, room temperature strength, fracture toughness, and impurity oxygen content were measured and evaluated.

【0051】(1)相対密度:水溶媒のアルキメデス法
により測定した。各助剤組成における理論密度は、窒化
珪素及び各助剤の単独での密度の配合重量により重み付
け平均により算出した。 (2)熱伝導率:直径10mm×厚さ3mmの円筒状に
加工した焼結体をサンプルとし、JIS R1611に記載の方
法に準拠してレーザーフラッシュ法で測定した。
(1) Relative density: Measured by the Archimedes method of an aqueous solvent. The theoretical density in each auxiliary composition was calculated by weighted average based on the compounding weight of the density of silicon nitride and each auxiliary alone. (2) Thermal conductivity: A sintered body processed into a cylindrical shape having a diameter of 10 mm and a thickness of 3 mm was used as a sample and measured by a laser flash method in accordance with the method described in JIS R1611.

【0052】(3)窒化珪素結晶粒の長さ:焼結体を切
断後、鏡面仕上げを施した面を、弱フッ化水素酸でエッ
チングして、窒化珪素粒界を際だたせ、窒化珪素粒子を
見易くした。次に走査型電子顕微鏡(SEM)を用い
て、倍率500倍にて200μm×150μmの領域
を、任意の5箇所について観察し、写真撮影を行った。
その写真を4倍に引き伸ばした上で、その領域に存在す
る長軸長さ30μm以上、40μm以上の窒化珪素粒の
個数を計数しその平均を算出した。
(3) Length of silicon nitride crystal grains: After cutting the sintered body, the mirror-finished surface is etched with weak hydrofluoric acid to emphasize silicon nitride grain boundaries, Made it easier to see. Next, using a scanning electron microscope (SEM), an area of 200 μm × 150 μm was observed at five arbitrary positions at a magnification of 500 × and photographed.
After enlargement of the photograph four times, the number of silicon nitride grains having a major axis length of 30 μm or more and 40 μm or more present in the area was counted, and the average was calculated.

【0053】(4)微結晶粒の平均粒径:焼結体を切断
後、鏡面仕上げを施した。次にSEM/EDSを用い
て、倍率5000倍にて20μm×15μmの領域を、
任意の1箇所について観察し、反射電子像を撮影した。
その写真で明るく光っている分散粒について、平均粒径
を求めた。なお、W,Moは重元素なので反射電子像を
撮影すると明るく光って観察される。分散粒にW,Mo
が含まれていることはEDSにより確認した。
(4) Average grain size of fine crystal grains: After cutting the sintered body, it was mirror-finished. Next, using a SEM / EDS, a region of 20 μm × 15 μm at a magnification of 5000 ×
Observation was made at any one place, and a reflected electron image was taken.
The average particle size of the dispersed particles that glow brightly in the photograph was determined. Since W and Mo are heavy elements, they are brightly lit and observed when a reflected electron image is taken. W, Mo for dispersed particles
Was confirmed by EDS.

【0054】(5)希土類元素,Mg,Zr,Al,
W,Moの含有率:焼結体を加圧分解してICP湿式分
析により算出した。 (6)明度:JIS Z8721に記載の方法に準拠し焼結体と
標準色票の色とを比較し小数点第1位まで明度を決定し
た。但し、小数点第1位は0又は5のみとした。標準色
票としては、「塗料用標準色見本帳1995年T版,ポケッ
ト版:社団法人日本塗料工業会」を使用した。
(5) Rare earth elements, Mg, Zr, Al,
W, Mo content: The sintered body was decomposed under pressure and calculated by ICP wet analysis. (6) Brightness: Based on the method described in JIS Z8721, the sintered body and the color of the standard color chart were compared to determine the brightness to the first decimal place. However, the first place of the decimal point was only 0 or 5. As the standard color chart, "Standard color sample book for paint 1995 T edition, pocket edition: Japan Paint Industry Association" was used.

【0055】 なお、明度とは物体表面の反射率の大き
さの指標であって、理想的な黒の明度をN0、理想的な
白の明度をN10とし、その間で色の明るさが等歩度と
なるように色を10分割して表示するものである。 (7)β化率:X線回折により、α−Si34の(21
0),(201)面の回折強度α(210),α(20
1)と、β−Si34の(101),(210)面の回
折強度β(101),β(210)より次式により求め
た。
The lightness is an index of the magnitude of the reflectance of the surface of the object. The ideal lightness of black is N0 and the ideal lightness of white is N10. The color is divided into ten so as to be displayed. (7) β conversion: X-ray diffraction revealed that (21) of α-Si 3 N 4
0), (201) diffraction intensity α (210), α (20)
1) and the diffraction intensity β (101) and β (210) of the (101) and (210) planes of β-Si 3 N 4 were determined by the following equation.

【0056】[0056]

【数1】 (Equation 1)

【0057】(8)室温強度:縦4mm×横3mm×長
さ40mmの棒状に加工した焼結体をサンプルとし、JI
S R1601に記載の方法に準拠して、4点曲げ強度を測定
した。但し、実施例4−1,比較例4−1の焼結体(4
0×50×0.6mmの平板状)については、スパン3
0mmの3点曲げ強度を測定した。
(8) Room temperature strength: A sintered body processed into a rod having a length of 4 mm × a width of 3 mm × a length of 40 mm was used as a sample,
The four-point bending strength was measured according to the method described in SR1601. However, the sintered body of Example 4-1 and Comparative Example 4-1 (4
0 × 50 × 0.6 mm flat plate)
The three-point bending strength of 0 mm was measured.

【0058】(9)破壊靭性値:JIS R1607に記載の方
法に準拠して、SEPB法により測定した。 (10)原料窒化珪素粉の不純物酸素量:燃焼ガス分析
法により測定した。
(9) Fracture toughness: Measured by the SEPB method according to the method described in JIS R1607. (10) Impurity oxygen content of raw silicon nitride powder: measured by combustion gas analysis.

【0059】(実施例1)実施例1では、成形原料の組
成、製造条件の影響について検証した。
Example 1 In Example 1, the effects of the composition of the forming raw material and the manufacturing conditions were examined.

【0060】 表1記載のβ化率、不純物酸素量であっ
て、比表面積11m2/gの市販の窒化珪素粉末と、微
結晶粒となるMo2C又はWC、焼結助剤であるMg
O,Y23とからなる成形原料に、更に焼結助剤として
ZrO2を添加し、表1に記載の比率で調合した。な
お、表1においては、MgO、Y23については成形原
料中の含有率で、Mo2C又はWC、ZrO2については
成形原料に対する添加率で表記した。
A commercially available silicon nitride powder having a β conversion ratio and an impurity oxygen amount shown in Table 1 having a specific surface area of 11 m 2 / g, Mo 2 C or WC as fine crystal grains, and Mg as a sintering aid
ZrO 2 was further added as a sintering aid to the forming raw material consisting of O and Y 2 O 3, and the mixture was prepared at the ratio shown in Table 1. In Table 1, the contents of MgO and Y 2 O 3 are shown in the forming raw material, and the contents of Mo 2 C or WC and ZrO 2 are shown in the addition ratio to the forming raw material.

【0061】 上記成形原料に水を加え、撹拌槽型撹拌
ミル(商品名;アトライタ(三井三池化工機(株))
等)により混合・粉砕してスラリーを形成し、PVA
(ポリビニルアルコール)及びPEG(ポリエチレング
リコール)をバインダとして添加した後スプレードライ
ヤにて造粒乾燥し、更に当該造粒粉を成形型に投入し、
一軸成形後、690MPaで静水圧加圧成形することに
より、60×60×6mmの成形体を作製した。
Water is added to the above molding material, and a stirring tank type stirring mill (trade name: Attritor (Mitsui Miike Kakoki Co., Ltd.))
) To form a slurry,
(Polyvinyl alcohol) and PEG (polyethylene glycol) are added as binders, and then granulated and dried by a spray dryer.
After the uniaxial molding, a molded product of 60 × 60 × 6 mm was produced by isostatic pressing at 690 MPa.

【0062】 得られた成形体はバインダを消失させた
後、N2雰囲気中、1900℃で焼成を行い、実施例1
−1〜1−9、比較例1−1〜1−4の焼結体を得た。
原料組成及び製造条件を表1に、焼結体特性を表2に、
焼結体の微構造と焼結体特性を表3に示す。なお、比較
例1−3は焼成時間を1時間とした以外は実施例1−3
と同様にして、比較例1−4は不純物酸素量が1.6重
量%の窒化珪素粉末を用いて成形原料を調製した以外は
実施例1−3と同様にして焼結体を製造した。
After the binder was removed from the obtained molded body, the molded body was fired at 1900 ° C. in an N 2 atmosphere.
-1 to 1-9 and Comparative Examples 1-1 to 1-4 were obtained.
Table 1 shows the raw material composition and production conditions, and Table 2 shows the sintered body characteristics.
Table 3 shows the microstructure and characteristics of the sintered body. Comparative Example 1-3 was the same as Example 1-3 except that the firing time was 1 hour.
In Comparative Example 1-4, a sintered body was produced in the same manner as in Example 1-3 except that a forming raw material was prepared using silicon nitride powder having an impurity oxygen content of 1.6% by weight.

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】[0065]

【表3】 [Table 3]

【0066】(結果)成形原料の組成が本発明の範囲内
である限り、熱伝導率、室温強度、明度が良好な焼結体
を得ることができた。また、希土類酸化物の種類はY2
3に限定されず実施例1−5のようにYb23でも同
様の効果を得ることができ、実施例1−3と1−4との
比較からわかるように、ZrO2の添加により室温強度
が高くなった。
(Results) As long as the composition of the forming raw material was within the range of the present invention, a sintered body having good thermal conductivity, room temperature strength and lightness could be obtained. The type of rare earth oxide is Y 2
As O 3 limited not examples 1-5 can obtain the same effect even Yb 2 O 3, as can be seen from the comparison between Examples 1-3 and 1-4, with the addition of ZrO 2 Room temperature strength increased.

【0067】 一方、比較例1−1及び1−2に示すよ
うに、希土類酸化物やMgOを未添加若しくは本発明の
範囲外である場合には、長径30μm以上の粗大粒が減
少し、熱伝導率及び破壊靭性値が低下する。また、比較
例1−3のように焼成時間が短いと窒化珪素結晶粒が粒
成長できないため、粗大粒が形成されず熱伝導率及び破
壊靭性値が低下した。更にまた、比較例1−4のように
不純物酸素量が多い窒化珪素粉末を使用した場合には粗
大粒は本発明の範囲で形成されたものの、必要とする熱
伝導率を得ることができなかった。
On the other hand, as shown in Comparative Examples 1-1 and 1-2, when the rare earth oxide or MgO was not added or was out of the range of the present invention, coarse particles having a major axis of 30 μm or more were reduced, Conductivity and fracture toughness values decrease. When the firing time was short as in Comparative Example 1-3, the silicon nitride crystal grains could not grow, so that coarse grains were not formed and the thermal conductivity and the fracture toughness decreased. Furthermore, when silicon nitride powder having a large amount of impurity oxygen is used as in Comparative Examples 1-4, coarse particles are formed within the scope of the present invention, but the required thermal conductivity cannot be obtained. Was.

【0068】(実施例2)実施例2では、微結晶粒の添
加効果について検証した。実施例1−3と同様にして、
微結晶粒として添加するMo2Cの量のみを調整して焼
結体を製造し、実施例2−1,2−2、比較例2−1,
2−2の焼結体を得た。原料組成及び製造条件を表4
に、焼結体特性を表5に、焼結体の微構造と焼結体特性
を表6に示す。
Example 2 In Example 2, the effect of adding fine crystal grains was verified. In the same manner as in Example 1-3,
Sintered bodies were manufactured by adjusting only the amount of Mo 2 C added as fine crystal grains, and Examples 2-1 and 2-2 and Comparative Examples 2-1 and 2-1 were performed.
A sintered body 2-2 was obtained. Table 4 shows raw material composition and manufacturing conditions.
Table 5 shows the characteristics of the sintered body, and Table 6 shows the microstructure of the sintered body and the characteristics of the sintered body.

【0069】[0069]

【表4】 [Table 4]

【0070】[0070]

【表5】 [Table 5]

【0071】[0071]

【表6】 [Table 6]

【0072】(結果)微結晶粒の添加量が本発明の範囲
内である限り、熱伝導率、室温強度、明度が良好な焼結
体を得ることができた。一方、比較例2−1のようにM
2Cを添加しない場合には熱伝導率は高いものの明度
が高く、比較例2−2のようにMo2Cを過剰に添加し
た場合には熱伝導率が急激に低下した。
(Results) As long as the added amount of the fine crystal grains was within the range of the present invention, a sintered body having good thermal conductivity, room temperature strength and lightness could be obtained. On the other hand, as in Comparative Example 2-1, M
When o 2 C was not added, the thermal conductivity was high but the brightness was high, and when Mo 2 C was excessively added as in Comparative Example 2-2, the thermal conductivity sharply decreased.

【0073】(実施例3)実施例3では微結晶粒を構成
する物質の種類による効果の相違について検証した。実
施例1−5と同様にして、微結晶粒を構成する物質の種
類を変化させて同様に焼結体を製造し、実施例3−1〜
3−4の焼結体を得た。原料組成及び製造条件を表4
に、焼結体特性を表5に、焼結体の微構造と焼結体特性
を表6に示す。
Example 3 In Example 3, the effect of the type of the substance constituting the fine crystal grains was verified. In the same manner as in Example 1-5, a sintered body was similarly manufactured by changing the type of the material constituting the fine crystal grains, and
A sintered body of 3-4 was obtained. Table 4 shows raw material composition and manufacturing conditions.
Table 5 shows the characteristics of the sintered body, and Table 6 shows the microstructure of the sintered body and the characteristics of the sintered body.

【0074】(結果)微結晶粒を構成する物質の種類は
Mo2Cに限定されず、Mo単体,MoSi2,WC或い
はこれらの混合物でも同様の効果を得ることができた。
(Results) The type of the substance constituting the fine crystal grains is not limited to Mo 2 C, and the same effect can be obtained with Mo alone, MoSi 2 , WC or a mixture thereof.

【0075】(実施例4)実施例1−3、比較例2−1
と同一組成の成形原料を150MPaで金型成形するこ
とにより、50×60×1mmの成形体とし、実施例1
−3、比較例2−1と同一の条件にて焼成し、最後に研
削加工することにより40×50×0.6mmの平板状
焼結体を100枚づつ作製した(各々を、実施例4−
1,比較例4−1の焼結体と称する。)。
(Example 4) Example 1-3, Comparative example 2-1
By molding a molding raw material having the same composition as in Example 1 at 150 MPa, a molded body of 50 × 60 × 1 mm was obtained.
-3, baking was performed under the same conditions as in Comparative Example 2-1, and finally, grinding was performed to produce 100 plate-shaped sintered bodies each having a size of 40 × 50 × 0.6 mm (each of which was Example 4). −
1, referred to as the sintered body of Comparative Example 4-1. ).

【0076】(結果)実施例4−1,比較例4−1の焼
結体の各3枚づつについて熱伝導率、室温強度(3点曲
げ強度)を測定した平均値は、実施例4−1の焼結体は
85W/mK,730MPa、比較例4−1の焼結体は
86W/mK,650MPaとともに良好であった。
(Results) The average values of the thermal conductivity and the room temperature strength (three-point bending strength) of each of the three sintered bodies of Example 4-1 and Comparative Example 4-1 were determined as in Example 4--1. The sintered body of No. 1 was good at 85 W / mK, 730 MPa, and the sintered body of Comparative Example 4-1 was good at 86 W / mK, 650 MPa.

【0077】 しかしながら、実施例4−1の焼結体は
均一な灰黒色を呈し、明度がN5.5と低かったのに対
し、比較例4−1の焼結体は薄いクリーム色を呈し、明
度もN7.5と高かった。また、比較例4−1の焼結体
の表面に色ムラや外径1mm以下の黒斑が認められた。
However, the sintered body of Example 4-1 had a uniform gray-black color and a low brightness of N5.5, whereas the sintered body of Comparative Example 4-1 had a light cream color. The brightness was also high at N7.5. Further, color unevenness and black spots having an outer diameter of 1 mm or less were observed on the surface of the sintered body of Comparative Example 4-1.

【0078】 更に、前記各100枚の焼結体につい
て、CCDカメラで焼結体表面を画像化し、色の濃淡を
認識することにより、色ムラ、表面の黒斑をコンピュー
タで自動判別する装置を用いて検査したところ、実施例
4−1の焼結体は100枚全部が黒斑、色ムラなしと判
別されたが、比較例4−1の焼結体は100枚中53枚
が黒斑、若しくは色ムラがある不良品として判別され
た。
Further, for each of the above-mentioned 100 sintered bodies, an image of the sintered body surface is imaged with a CCD camera, and the color shading is recognized. As a result of the inspection, it was determined that all of the 100 sintered bodies of Example 4-1 had no black spots and no color unevenness, but 53 of the 100 sintered bodies of Comparative Example 4-1 had black spots. Or a defective product having color unevenness.

【0079】(実施例5)実施例4−1,比較例4−1
の各焼結体に、市販のAg−Cu−Tiロウを外周5m
m幅を除いて両面にスクリーン印刷し、0.3mm厚の
銅板を両面に張り付けた状態で、真空下850℃で10
分間熱処理を行うことにより窒化珪素/銅の複合接合体
を得た。
Example 5 Example 4-1 and Comparative Example 4-1
, A commercially available Ag-Cu-Ti wax was applied to each
screen printing on both sides except for the m width, and a copper plate having a thickness of 0.3 mm stuck on both sides.
By performing a heat treatment for a minute, a silicon nitride / copper composite joined body was obtained.

【0080】 次いで、複合接合体の一方の面に回路形
成用レジストを印刷し、硬化した後、塩化第2鉄水溶液
でエッチングし、回路パターンを形成した。更に、回路
間のロウ材を除くため、酸性フッ化アンモニウム水溶液
にて洗浄し、その後数回水洗して回路基板を作製した
(各々を、実施例5−1,比較例5−1の回路基板と称
する。)。
Next, a circuit forming resist was printed on one surface of the composite joined body, cured, and then etched with an aqueous ferric chloride solution to form a circuit pattern. Further, in order to remove the brazing material between the circuits, the circuit boards were washed with an aqueous solution of acidic ammonium fluoride, and then washed several times with water to produce circuit boards (each of which was the circuit board of Example 5-1 and Comparative Example 5-1). ).

【0081】 実施例5−1,比較例5−1の回路基板
とも、ロウ材の濡れ、銅の接合状態等に差は見られず、
いずれも高熱伝導性、絶縁回路基板としての使用に耐え
るものであった。しかしながら、比較例5−1の回路基
板は明度が高いことに起因して、可視光近傍の波長を有
する電磁波等による半導体素子の誤作動が懸念される。
The circuit boards of Example 5-1 and Comparative Example 5-1 showed no difference in the wetting of the brazing material, the bonding state of copper, and the like.
All of them had high thermal conductivity and could withstand use as an insulated circuit board. However, since the circuit board of Comparative Example 5-1 has high brightness, there is a concern that malfunction of the semiconductor element due to electromagnetic waves having a wavelength near visible light or the like may occur.

【0082】[0082]

【発明の効果】 以上説明したように、本発明の窒化珪
素焼結体は、熱伝導率(JIS R1611)が80(W/m
K)以上と高く、室温強度(JIS R1601)が650(M
Pa)以上、破壊靭性値KIC(JIS R1607)が8(MP
am1/2)以上と機械的特性にも優れるため、例えば半
導体素子に使用する回路基板として好適に用いることが
できる。また、明度(JIS Z8721)がN6以下と低いた
め、電磁波等による半導体素子の誤作動を防止すること
も可能である。
As described above, the silicon nitride sintered body of the present invention has a thermal conductivity (JIS R1611) of 80 (W / m).
K) or higher and room temperature strength (JIS R1601) of 650 (M
Pa) and a fracture toughness value K IC (JIS R1607) of 8 (MP
am 1/2 ) or more, which is excellent in mechanical properties, and thus can be suitably used as a circuit board used for a semiconductor element, for example. Further, since the lightness (JIS Z8721) is as low as N6 or less, it is possible to prevent malfunction of the semiconductor element due to electromagnetic waves or the like.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G001 BA03 BA06 BA08 BA09 BA14 BA21 BA24 BA32 BA61 BA62 BA71 BB03 BB06 BB08 BB09 BB14 BB21 BB24 BB32 BB61 BB62 BB71 BC12 BC52 BC54 BC55 BD03 BD13 BD14 BD16 BD31  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4G001 BA03 BA06 BA08 BA09 BA14 BA21 BA24 BA32 BA61 BA62 BA71 BB03 BB06 BB08 BB09 BB14 BB21 BB24 BB32 BB61 BB62 BB71 BC12 BC52 BC54 BC55 BD03 BD13 BD14 BD16 BD31

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素結晶粒、W,Moから選択され
る少なくとも1種の元素の金属単体及び/又は化合物か
らなる微結晶粒、及び粒界相からなり、前記微結晶粒が
焼結体中に分散されてなる窒化珪素焼結体であって、 酸化物換算で1.0〜10重量%の希土類元素、酸化物
換算で0.3〜5重量%のMg、及び炭化物換算で0.
001〜5.0重量%のW及び/又はMoを含み、 かつ、焼結体の任意の200μm×150μmの領域に
長軸長さ30μm以上の窒化珪素粒が5個以上存在する
ことを特徴とする窒化珪素焼結体。
The present invention comprises a silicon nitride crystal grain, a microcrystal grain composed of a simple substance and / or a compound of at least one element selected from W and Mo, and a grain boundary phase, wherein the microcrystal grain is a sintered body. A silicon nitride sintered body dispersed therein, comprising 1.0 to 10% by weight of a rare earth element in terms of oxide, 0.3 to 5% by weight of Mg in terms of oxide, and 0.1% in terms of oxide;
It is characterized in that five or more silicon nitride grains containing 001 to 5.0% by weight of W and / or Mo and having a major axis length of 30 μm or more are present in an arbitrary area of 200 μm × 150 μm of the sintered body. Silicon nitride sintered body.
【請求項2】 焼結体の任意の200μm×150μm
の領域に長軸長さ40μm以上の窒化珪素粒が5個以上
存在する請求項1に記載の窒化珪素焼結体。
2. An arbitrary 200 μm × 150 μm of a sintered body
2. The silicon nitride sintered body according to claim 1, wherein five or more silicon nitride grains having a major axis length of 40 μm or more are present in the region.
【請求項3】 W,Moから選択される少なくとも1種
の元素の金属単体及び/又は化合物からなる微結晶粒を
0.001〜0.2重量%含む請求項1又は2に記載の
窒化珪素焼結体。
3. The silicon nitride according to claim 1, which contains 0.001 to 0.2% by weight of fine crystal grains made of a metal simple substance and / or a compound of at least one element selected from W and Mo. Sintered body.
【請求項4】 焼結体中に分散される微結晶粒が、W及
び/又はMoの炭化物からなる請求項1〜3のいずれか
一項に記載の窒化珪素焼結体。
4. The silicon nitride sintered body according to claim 1, wherein the fine crystal grains dispersed in the sintered body are made of a carbide of W and / or Mo.
【請求項5】 焼結体中に含まれる希土類元素がYであ
る請求項1〜4のいずれか一項に記載の窒化珪素焼結
体。
5. The silicon nitride sintered body according to claim 1, wherein the rare earth element contained in the sintered body is Y.
【請求項6】 酸化物換算で0.1〜10重量%のZr
を含む請求項1〜5のいずれか一項に記載の窒化珪素焼
結体。
6. Zr of 0.1 to 10% by weight in terms of oxide
The silicon nitride sintered body according to any one of claims 1 to 5, comprising:
【請求項7】 酸化物換算で0〜0.5重量%のAlを
含む請求項1〜6のいずれか一項に記載の窒化珪素焼結
体。
7. The silicon nitride sintered body according to claim 1, comprising 0 to 0.5% by weight of Al in terms of oxide.
【請求項8】 焼結体の熱伝導率(JIS R1611)が80
(W/mK)以上である請求項1〜7のいずれか一項に
記載の窒化珪素焼結体。
8. The thermal conductivity of the sintered body (JIS R1611) is 80.
(W / mK) or more, The silicon nitride sintered body according to any one of claims 1 to 7.
【請求項9】 焼結体の明度(JIS Z8721)がN6以下
である請求項1〜8のいずれか一項に記載の窒化珪素焼
結体。
9. The silicon nitride sintered body according to claim 1, wherein the brightness (JIS Z8721) of the sintered body is N6 or less.
【請求項10】 焼結体の破壊靭性値KIC(JIS R160
7)が8(MPam1/2)以上である請求項1〜9のいず
れか一項に記載の窒化珪素焼結体。
10. The fracture toughness value K IC of a sintered body (JIS R160
The silicon nitride sintered body according to any one of claims 1 to 9, wherein 7) is 8 (MPam 1/2 ) or more.
【請求項11】 請求項1〜10のいずれか一項に記載
の窒化珪素焼結体からなることを特徴とする回路基板。
11. A circuit board comprising the silicon nitride sintered body according to claim 1.
【請求項12】 不純物酸素量が1.4重量%以下であ
る窒化珪素粉末と、希土類元素化合物と、Mg化合物
と、W,Moから選択される少なくとも1種の元素の金
属単体及び/又は化合物とを含む成形原料を成形し、当
該成形体を窒素雰囲気中において焼成する、窒化珪素焼
結体の製造方法であって、 希土類元素を酸化物換算で1.0〜10重量%、Mgを
酸化物換算で0.3〜5重量%、W,Moから選択され
る少なくとも1種の元素を炭化物換算で0.001〜
5.0重量%含むように前記成形原料を調製するととも
に、 前記成形体を1〜11気圧の窒素ガス圧下、1800〜
2000℃の温度範囲において2時間以上焼成すること
を特徴とする窒化珪素焼結体の製造方法。
12. A silicon nitride powder having an impurity oxygen content of 1.4% by weight or less, a rare earth element compound, a Mg compound, and a simple metal and / or compound of at least one element selected from W and Mo. A method for producing a silicon nitride sintered body, comprising: forming a forming raw material containing: and sintering the formed body in a nitrogen atmosphere, wherein the rare earth element is 1.0 to 10% by weight in terms of oxide and Mg is oxidized. 0.3 to 5% by weight in terms of material, 0.001 to 0.001 in terms of carbide in at least one element selected from W and Mo
The molding raw material is prepared so as to contain 5.0% by weight, and the molded body is subjected to 1800 to 11,000 atmospheres of nitrogen gas pressure.
A method for producing a silicon nitride sintered body, comprising firing at a temperature of 2000 ° C. for 2 hours or more.
【請求項13】 成形原料として用いる窒化珪素粉末の
β化率が5%以下のα型窒化珪素粉末である請求項12
に記載の窒化珪素焼結体の製造方法。
13. An α-type silicon nitride powder having a β conversion ratio of 5% or less in a silicon nitride powder used as a forming raw material.
3. The method for producing a silicon nitride sintered body according to item 1.
【請求項14】 成形原料として用いる窒化珪素粉末の
不純物Alの含有率が0.01重量%以下である請求項
12又は13のいずれか一項に記載の窒化珪素焼結体の
製造方法。
14. The method for producing a silicon nitride sintered body according to claim 12, wherein the content of the impurity Al in the silicon nitride powder used as a forming raw material is 0.01% by weight or less.
JP11176479A 1999-06-23 1999-06-23 Silicon nitride sintered compact and its production Pending JP2001010865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11176479A JP2001010865A (en) 1999-06-23 1999-06-23 Silicon nitride sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11176479A JP2001010865A (en) 1999-06-23 1999-06-23 Silicon nitride sintered compact and its production

Publications (1)

Publication Number Publication Date
JP2001010865A true JP2001010865A (en) 2001-01-16

Family

ID=16014397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11176479A Pending JP2001010865A (en) 1999-06-23 1999-06-23 Silicon nitride sintered compact and its production

Country Status (1)

Country Link
JP (1) JP2001010865A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125799A1 (en) 2009-04-27 2010-11-04 塩野義製薬株式会社 Urea derivative having pi3k inhibitory activity
US8563869B2 (en) 2005-08-29 2013-10-22 Hitachi Metals, Ltd. Circuit board and semiconductor module using this, production method for circuit board
US10810144B2 (en) 2016-06-08 2020-10-20 Samsung Electronics Co., Ltd. System and method for operating a DRR-compatible asynchronous memory module
US11294571B2 (en) 2016-03-03 2022-04-05 Samsung Electronics Co., Ltd. Coordinated in-module RAS features for synchronous DDR compatible memory
US11397698B2 (en) 2016-03-03 2022-07-26 Samsung Electronics Co., Ltd. Asynchronous communication protocol compatible with synchronous DDR protocol

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563869B2 (en) 2005-08-29 2013-10-22 Hitachi Metals, Ltd. Circuit board and semiconductor module using this, production method for circuit board
WO2010125799A1 (en) 2009-04-27 2010-11-04 塩野義製薬株式会社 Urea derivative having pi3k inhibitory activity
US11294571B2 (en) 2016-03-03 2022-04-05 Samsung Electronics Co., Ltd. Coordinated in-module RAS features for synchronous DDR compatible memory
US11397698B2 (en) 2016-03-03 2022-07-26 Samsung Electronics Co., Ltd. Asynchronous communication protocol compatible with synchronous DDR protocol
US12032828B2 (en) 2016-03-03 2024-07-09 Samsung Electronics Co., Ltd. Coordinated in-module RAS features for synchronous DDR compatible memory
US10810144B2 (en) 2016-06-08 2020-10-20 Samsung Electronics Co., Ltd. System and method for operating a DRR-compatible asynchronous memory module

Similar Documents

Publication Publication Date Title
TW397807B (en) Aluminium nitride sintered body
JP3565425B2 (en) Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
JP4571728B2 (en) Silicon nitride sintered body and manufacturing method thereof
JP2002097005A5 (en)
JP4850007B2 (en) Silicon nitride sintered body
Yasar et al. Effect of acid etching time and concentration on oxygen content of powder on the microstructure and elastic properties of silicon carbide densified by SPS
JP4089974B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same
JP2001010865A (en) Silicon nitride sintered compact and its production
JP2003313079A (en) Silicon nitride-based sintered compact, method of producing the same, and circuit board using the sintered compact
JP3002642B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board using the same
JP3481778B2 (en) Aluminum nitride sintered body and method for producing the same
JP2000256066A (en) Silicon nitride-base sintered compact, its production and wear resistant member using same
JP4859267B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP3537241B2 (en) Method for producing silicon nitride sintered body
JP3145519B2 (en) Aluminum nitride sintered body
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JP2000351673A (en) High heat-conductive silicon nitride-based sintered product and its production
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP5825962B2 (en) Silicon nitride-based sintered body, member for molten metal using the same, and wear-resistant member
JP3995284B2 (en) Silicon nitride-based sintered body and method for producing the same
JP2003095747A (en) Sintered silicon nitride compact and circuit board obtained by using the same
JP2000072553A (en) Silicon nitride wear resistance member and its production
JPH11100273A (en) Silicon nitride sintered compact, its production and circuit board
KR102141812B1 (en) Sintered aluminum nitride and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520