JP2001006757A - Residual capacity detecting device for lithium ion battery - Google Patents

Residual capacity detecting device for lithium ion battery

Info

Publication number
JP2001006757A
JP2001006757A JP11180428A JP18042899A JP2001006757A JP 2001006757 A JP2001006757 A JP 2001006757A JP 11180428 A JP11180428 A JP 11180428A JP 18042899 A JP18042899 A JP 18042899A JP 2001006757 A JP2001006757 A JP 2001006757A
Authority
JP
Japan
Prior art keywords
load current
battery
remaining capacity
reference voltage
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11180428A
Other languages
Japanese (ja)
Other versions
JP4668374B2 (en
Inventor
Yasuhisa Saito
安久 斎藤
Atsushi Demachi
敦 出町
Toshiyuki Kubo
利行 久保
Hiroki Tahira
弘樹 田平
Toraji Kuwabara
虎嗣 桑原
Teruyuki Oka
輝行 岡
Satoshi Tabuchi
聡 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP18042899A priority Critical patent/JP4668374B2/en
Publication of JP2001006757A publication Critical patent/JP2001006757A/en
Application granted granted Critical
Publication of JP4668374B2 publication Critical patent/JP4668374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a residual capacity detecting device for a lithium ion battery for detecting residual capacity of the battery by calculating reference battery by detecting a surface temperature, terminal voltage and load current of the lithium ion battery and comparing this calculated reference voltage to a present terminal voltage. SOLUTION: This residual capacity detecting device 1 for lithium ion battery is constituted of a lithium ion battery 2, a surface temperature detecting means 4, a load current detecting means 5, a terminal voltage detecting means 6 and a residual capacity calculating means 7 and can be made the residual capacity detecting device 1 for lithium ion battery for accurately detecting the residual capacity of the battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、二次電池の残容
量検出装置に係り、特にリチウムイオン電池の端子電圧
と、負荷電流と、表面温度とに基づいて基準電圧を算出
し、負荷電流の過渡状態に応じて基準電圧を補正し、補
正した基準電圧と検出した端子電圧に基づいてリチウム
イオン電池の残容量を算出するリチウムイオン電池の残
容量検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting a remaining capacity of a secondary battery, and more particularly, to calculating a reference voltage based on a terminal voltage, a load current, and a surface temperature of a lithium ion battery, and The present invention relates to a remaining capacity detection device for a lithium ion battery that corrects a reference voltage according to a transient state and calculates the remaining capacity of the lithium ion battery based on the corrected reference voltage and the detected terminal voltage.

【0002】[0002]

【従来の技術】従来の電池の残容量検出装置は、特開平
7−235334号公報に開示されているように電池に
接続される負荷が有る時と無い時に、電池電圧が異なっ
て検出されるが、残量表示のための検出電圧が負荷が有
る時と無い時とで一致するようにスイッチを設定して補
正し、この検出電圧が所定値より大きいか小さいかによ
って電池の残量判定を行う残容量検出装置は知られてい
る。
2. Description of the Related Art A conventional battery remaining capacity detecting device detects a battery voltage differently when there is a load connected to the battery and when there is no load as disclosed in Japanese Patent Application Laid-Open No. Hei 7-235334. However, the switch is set so that the detection voltage for displaying the remaining amount matches when there is a load and when there is no load, and the correction is performed. The remaining amount of the battery is determined based on whether the detection voltage is higher or lower than a predetermined value. Apparatuses for detecting the remaining capacity are known.

【0003】また、特公平1−39069号公報に開示
されている従来のバッテリ残容量検出方法は、大電流放
電中のバッテリ放電電流とバッテリ端子電圧を検出し、
この検出値に基づいてバッテリの起電力および短絡電流
を算出し、これを予め実験的に求めた最大出力とバッテ
リ残容量の相関関係を表わす関数に代入し、現在のバッ
テリ残容量を算出し、このバッテリ残容量からバッテリ
上がりの防止、交換の時期の予知を行っているものは知
られている。
[0003] Further, the conventional battery remaining capacity detection method disclosed in Japanese Patent Publication No. 1-39069 detects a battery discharge current and a battery terminal voltage during large current discharge.
The electromotive force and short-circuit current of the battery are calculated based on the detected value, and the calculated values are substituted into a function representing the correlation between the maximum output and the remaining battery capacity obtained experimentally in advance to calculate the current remaining battery capacity. It is known that the remaining battery capacity is used to prevent the battery from running out and to predict the time of replacement.

【0004】図7に特公平1−39069号公報に開示
されている従来のバッテリ残容量を算出する、バッテリ
の放電電流と端子電圧との相関関係を表わす特性図を示
す。図7において、横軸は放電電流Ib、縦軸はバッテ
リの端子電圧Vb、実線aは測定された放電特性(Vb
−Ib特性)、破線dは放電特性の近似特性をそれぞれ
示している。
FIG. 7 is a characteristic diagram showing a correlation between a battery discharge current and a terminal voltage for calculating a conventional battery remaining capacity disclosed in Japanese Patent Publication No. 1-39069. 7, the horizontal axis represents the discharge current Ib, the vertical axis represents the battery terminal voltage Vb, and the solid line a represents the measured discharge characteristic (Vb
-Ib characteristic), and a broken line d indicates an approximate characteristic of the discharge characteristic.

【0005】例えば、モータを起動する時のように大電
流の放電域においては、この放電特性は、ほとんど直線
(破線d)で近似することができる。また、バッテリの
起電力Eoは、この直線(破線d)で近似した放電特性
のIb=0にした値から求められ、バッテリを短絡した
デッドショート電流Isは、直線(破線d)で近似した
放電特性のVb=0にした値から求められる。
For example, in a discharge region of a large current, such as when starting a motor, this discharge characteristic can be approximated by a straight line (broken line d). Further, the electromotive force Eo of the battery is obtained from the value obtained by setting Ib = 0 of the discharge characteristic approximated by the straight line (broken line d), and the dead short current Is obtained by short-circuiting the battery is the discharge approximated by the straight line (broken line d). It is determined from the value of the characteristic Vb = 0.

【0006】このデッドショート電流Isと、起電力E
oとを乗算すると、バッテリから取り出し得る最大電力
の4倍の値のPoが得られ、これはbの部分の面積で表
わすことができる。また、cの部分の面積は、Po/4
になり、バッテリの最大出力に対応していて、この面積
がバッテリの残容量となる。このバッテリ残容量からバ
ッテリ上がりの防止、交換の時期の予知を行っている。
The dead short current Is and the electromotive force E
Multiplying by o gives Po four times the maximum power that can be drawn from the battery, which can be represented by the area of b. The area of the portion c is Po / 4
, And corresponds to the maximum output of the battery, and this area is the remaining capacity of the battery. The remaining battery capacity is used to prevent the battery from running out and to predict the time for replacement.

【0007】[0007]

【発明が解決しようとする課題】しかしながら特開平7
−235334号公報に開示されている従来の電池の残
容量検出装置は、負荷の有無により変動する電源電圧の
補正を行い、補正した電源電圧を所定値と比較して電池
の残量判定を行っているが、同一の負荷で温度が高い時
には電源電圧は高く、温度が低い時には電源電圧は低く
検出され、温度変化によっても電源電圧の変動があり電
池の残容量検出に温度が高い時と低い時とで誤差が生ず
るという課題がある。また、負荷電流が急激に増加する
時と減少する時の過渡状態においても電源電圧に変動が
あり電池の残容量検出に負荷電流の過渡状態で誤差が生
ずるという課題もある。
SUMMARY OF THE INVENTION However, Japanese Patent Application Laid-Open
The conventional battery remaining capacity detecting device disclosed in Japanese Patent Publication No. 235334 corrects a power supply voltage that varies depending on the presence or absence of a load, and compares the corrected power supply voltage with a predetermined value to determine the remaining battery capacity. However, when the temperature is high with the same load, the power supply voltage is high, and when the temperature is low, the power supply voltage is detected low, and the power supply voltage fluctuates due to temperature changes. There is a problem that an error occurs depending on the time. There is also a problem in that the power supply voltage fluctuates in a transient state when the load current rapidly increases and decreases, and an error occurs in the transient state of the load current in detecting the remaining capacity of the battery.

【0008】さらに、特公平1−39069号公報に開
示されている従来のバッテリ残容量検出方法は、大電流
放電中のバッテリ放電電流とバッテリ端子電圧を検出
し、相関関係を表わす関数に代入し、現在のバッテリ残
容量を算出しているが、大電流放電中のバッテリ端子電
圧は、温度変化により電源電圧が変動するので、バッテ
リ残容量が正確に検出できないという課題がある。ま
た、負荷電流が急激に増加する時と減少する時の過渡状
態においても電源電圧に変動があり電池の残容量検出に
負荷電流の過渡状態で誤差が生ずるという課題もある。
Further, the conventional battery remaining capacity detection method disclosed in Japanese Patent Publication No. 1-39069 detects a battery discharge current and a battery terminal voltage during a large current discharge, and substitutes them into a function representing a correlation. Although the present battery remaining capacity is calculated, the battery terminal voltage during large current discharge has a problem that the battery remaining capacity cannot be accurately detected because the power supply voltage fluctuates due to a temperature change. There is also a problem in that the power supply voltage fluctuates in a transient state when the load current rapidly increases and decreases, and an error occurs in the transient state of the load current in detecting the remaining capacity of the battery.

【0009】この発明はこのような課題を解決するため
なされたもので、その目的は、リチウムイオン電池の表
面温度、無負荷時の端子電圧、負荷電流を検出して基準
電圧を算出するとともに、負荷電流の急激な増加と減少
時での過渡状態における基準電圧を負荷電流の過渡状態
に合せた係数で補正し、現在の端子電圧と比較して残容
量を算出して、残容量の検出精度を上げることにある。
The present invention has been made to solve such a problem, and an object of the present invention is to calculate a reference voltage by detecting a surface temperature of a lithium ion battery, a terminal voltage when no load is applied, and a load current. The reference voltage in the transient state at the time of sudden increase and decrease of the load current is corrected by a coefficient corresponding to the transient state of the load current, the remaining capacity is calculated by comparing with the current terminal voltage, and the detection accuracy of the remaining capacity is calculated. Is to raise.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
この発明に係るリチウムイオン電池の残容量検出装置
は、リチウムイオン電池の負荷電流を検出する負荷電流
検出手段と、電池の端子電圧を検出する端子電圧検出手
段と、を有するリチウムイオン電池の残容量検出装置に
おいて、電池の表面温度を検出する表面温度検出手段を
有し、負荷電流と端子電圧および表面温度とに基づいて
電池の残容量を算出する残容量算出手段を備えたことを
特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a lithium-ion battery remaining capacity detecting apparatus according to the present invention comprises a load current detecting means for detecting a load current of a lithium-ion battery, and a terminal voltage of a battery. And a terminal voltage detecting means for detecting the remaining temperature of the battery based on the load current, the terminal voltage and the surface temperature. The remaining capacity calculating means for calculating the remaining capacity is provided.

【0011】この発明に係るリチウムイオン電池の残容
量検出装置は、リチウムイオン電池の負荷電流を検出す
る負荷電流検出手段と、電池の端子電圧を検出する端子
電圧検出手段と、を有するリチウムイオン電池の残容量
検出装置において、電池の表面温度を検出する表面温度
検出手段を有し、負荷電流と端子電圧および表面温度と
に基づいて電池の残容量を算出する残容量算出手段を備
えたので負荷および温度が変わっても精度よく残容量を
検出することができる。
[0011] A remaining capacity detection device for a lithium ion battery according to the present invention includes a load current detection means for detecting a load current of the lithium ion battery, and a terminal voltage detection means for detecting a terminal voltage of the battery. The remaining capacity detecting device includes a surface temperature detecting means for detecting a surface temperature of the battery, and a remaining capacity calculating means for calculating the remaining capacity of the battery based on the load current, the terminal voltage and the surface temperature. Even when the temperature changes, the remaining capacity can be accurately detected.

【0012】また、この発明に係る残容量算出手段は、
負荷電流、表面温度、無負荷時の端子電圧に基づいて基
準電圧を算出する基準電圧算出手段と、負荷電流の急激
な増減時に基準電圧を補正する補正演算手段と、負荷電
流の急激な増減時に検出した端子電圧と補正した基準電
圧とを比較して電池の残容量を算出する比較算出手段
と、残容量を表示する表示手段とを備えたことを特徴と
する。
Further, the remaining capacity calculating means according to the present invention comprises:
Reference voltage calculation means for calculating a reference voltage based on load current, surface temperature, and terminal voltage at no load, correction calculation means for correcting the reference voltage when the load current increases or decreases, and It is characterized by comprising comparison calculating means for calculating the remaining capacity of the battery by comparing the detected terminal voltage with the corrected reference voltage, and display means for displaying the remaining capacity.

【0013】この発明に係る残容量算出手段は、負荷電
流、表面温度、無負荷時の端子電圧に基づいて基準電圧
を算出する基準電圧算出手段と、負荷電流の急激な増減
時に基準電圧を補正する補正演算手段と、負荷電流の急
激な増減時に検出した端子電圧と補正した基準電圧とを
比較して電池の残容量を算出する比較算出手段と、残容
量を表示する表示手段とを備えたので残容量を精度よく
検出して表示することができる。
The remaining capacity calculating means according to the present invention comprises: a reference voltage calculating means for calculating a reference voltage based on a load current, a surface temperature, and a terminal voltage at no load; and a correction means for correcting the reference voltage when the load current increases or decreases rapidly. Correction calculating means for comparing the terminal voltage detected when the load current sharply increases and decreases with the corrected reference voltage to calculate the remaining capacity of the battery, and display means for displaying the remaining capacity. Therefore, the remaining capacity can be accurately detected and displayed.

【0014】さらに、この発明に係る補正演算手段は、
負荷電流の急激な増減時に、それぞれ異なる補正係数を
設定する補正係数設定手段と、それぞれの補正係数と基
準電圧とを演算する演算手段とを備え、負荷電流の急激
な増減時に基準電圧を補正することを特徴とする。
Further, the correction calculating means according to the present invention comprises:
A correction coefficient setting means for setting different correction coefficients when the load current sharply increases and decreases, and a calculation means for calculating each correction coefficient and a reference voltage, and corrects the reference voltage when the load current sharply increases and decreases. It is characterized by the following.

【0015】この発明に係る補正演算手段は、負荷電流
の急激な増減時に、それぞれ異なる補正係数を設定する
補正係数設定手段と、それぞれの補正係数と基準電圧と
を演算する演算手段とを備え、負荷電流の急激な増減時
に基準電圧を補正するので負荷電流が急激に増減した時
の過渡状態においても電池の残容量をリアルタイムに正
確に検出することができる。
The correction calculation means according to the present invention includes: correction coefficient setting means for setting different correction coefficients when the load current is rapidly increased and decreased; and calculation means for calculating each correction coefficient and a reference voltage. Since the reference voltage is corrected when the load current sharply increases or decreases, the remaining capacity of the battery can be accurately detected in real time even in a transient state when the load current sharply increases or decreases.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施の形態を添
付図面に基づいて説明する。なお、本発明は、リチウム
イオン電池の表面温度、端子電圧、負荷電流を検出して
基準電圧を算出し、この算出した基準電圧を負荷電流の
過渡状態に対応した係数で補正して検出した端子電圧と
比較し、リチウムイオン電池の残容量を精度よく検出す
るものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that the present invention detects a surface temperature, a terminal voltage, and a load current of a lithium ion battery to calculate a reference voltage, and corrects the calculated reference voltage with a coefficient corresponding to a transient state of the load current to detect a detected terminal. It detects the remaining capacity of the lithium ion battery more accurately than the voltage.

【0017】図1はこの発明に係るリチウムイオン電池
の残容量検出装置の全体ブロック構成図である。図1に
おいて、リチウムイオン電池の残容量検出装置1は、リ
チウムイオン電池2、表面温度検出手段4、負荷電流検
出手段5、端子電圧検出手段6、残容量算出手段7で構
成する。
FIG. 1 is an overall block diagram of a device for detecting the remaining capacity of a lithium ion battery according to the present invention. In FIG. 1, a remaining capacity detection device 1 for a lithium ion battery includes a lithium ion battery 2, a surface temperature detection unit 4, a load current detection unit 5, a terminal voltage detection unit 6, and a remaining capacity calculation unit 7.

【0018】なお、負荷3には、図示しないスイッチを
介してリチウムイオン電池2を供給し、無負荷時また
は、負荷時の端子電圧を端子電圧検出手段6で検出する
よう構成する。
The load 3 is supplied with the lithium ion battery 2 via a switch (not shown), and the terminal voltage is detected by the terminal voltage detecting means 6 when there is no load or when there is a load.

【0019】リチウムイオン電池2は、電池の充放電を
行うことができる大容量、小型、軽量で長寿命な二次電
池である。また、リチウムイオン電池2は、電池の起電
力が常温時に約3.6V(負荷時)であり、この端子電
圧Vaを負荷および端子電圧検出手段6に供給する。負
荷3は、例えば、モータなどリチウムイオン電池2に接
続して負荷電流Idを消費するもので、負荷3の作動状
態によって負荷電流Idが変化する。
The lithium-ion battery 2 is a large-capacity, small-sized, lightweight, long-life secondary battery capable of charging and discharging the battery. The lithium-ion battery 2 has an electromotive force of about 3.6 V (at load) at normal temperature, and supplies the terminal voltage Va to the load and the terminal voltage detection means 6. The load 3 is connected to the lithium ion battery 2 such as a motor, and consumes the load current Id. The load current Id changes depending on the operation state of the load 3.

【0020】表面温度検出手段4は、サーミスタ等の温
度センサと演算器等で構成し、リチウムイオン電池2の
表面にサーミスタ(温度センサ)Rtxを接触して設置
し、リチウムイオン電池2の表面温度が変化するとサー
ミスタRtxの抵抗値が変化し、この抵抗値変化を検出
し、温度抵抗電圧値Vthとして演算器で演算して温度
に対応した電圧値に変換し、表面温度Vtとして残容量
算出手段7に供給する。
The surface temperature detecting means 4 is composed of a temperature sensor such as a thermistor and an arithmetic unit. The thermistor (temperature sensor) Rtx is placed in contact with the surface of the lithium ion battery 2 and the surface temperature of the lithium ion battery 2 is set. Changes, the resistance value of the thermistor Rtx changes. This change in the resistance value is detected, calculated as a temperature resistance voltage value Vth by an arithmetic unit and converted into a voltage value corresponding to the temperature, and the remaining capacity calculation means as the surface temperature Vt. 7

【0021】負荷電流検出手段5は、抵抗器、差動増幅
器等で構成し、リチウムイオン電池2からの負荷電流I
dを電流検出用の抵抗器で検出して差動増幅器で適正な
電圧値に変換し、変換した電圧値を負荷電流信号Viと
して残容量算出手段7に供給する。
The load current detecting means 5 is composed of a resistor, a differential amplifier and the like.
d is detected by a resistor for current detection, converted into an appropriate voltage value by a differential amplifier, and the converted voltage value is supplied to the remaining capacity calculation means 7 as a load current signal Vi.

【0022】端子電圧検出手段6は、演算増幅器等で構
成し、リチウムイオン電池2から供給される端子電圧V
aを対応した電圧に変換し、端子電圧信号Vd(Vd
o,Vds)を残容量算出手段7に供給する。なお、端
子電圧信号Vd(Vdo,Vds)は、無負荷時の端子
電圧信号をVdo、任意の負荷(負荷時)の端子電圧信
号をVdsとする。
The terminal voltage detecting means 6 is composed of an operational amplifier or the like, and has a terminal voltage V supplied from the lithium ion battery 2.
a into a corresponding voltage, and a terminal voltage signal Vd (Vd
o, Vds) are supplied to the remaining capacity calculating means 7. In the terminal voltage signal Vd (Vdo, Vds), the terminal voltage signal at no load is Vdo, and the terminal voltage signal at an arbitrary load (at load) is Vds.

【0023】残容量算出手段7は、マイクロプロセッサ
を基本に各種演算手段、処理手段、メモリまたは、演算
増幅器等のアナログ回路で構成し、表面温度検出手段4
から供給される表面温度Vt、負荷電流検出手段5から
供給される負荷電流信号Viおよび端子電圧検出手段6
から供給される端子電圧信号Vd(Vdo,Vds)に
基づいてリチウムイオン電池2の基準電圧の算出、基準
電圧の補正を行いリチウムイオン電池2の残容量を算出
して表示を行う。
The remaining capacity calculating means 7 is composed of various arithmetic means, processing means, memories or analog circuits such as operational amplifiers based on a microprocessor.
Temperature Vt supplied from the load current signal Vi supplied from the load current detecting means 5 and the terminal voltage detecting means 6
Calculates the reference voltage of the lithium ion battery 2 and corrects the reference voltage based on the terminal voltage signal Vd (Vdo, Vds) supplied from the controller, and calculates and displays the remaining capacity of the lithium ion battery 2.

【0024】図2はこの発明に係る残容量算出手段の要
部ブロック構成図である。図2において、残容量算出手
段7は、基準電圧算出手段8、補正演算手段9、比較算
出手段10、表示手段11を備える。
FIG. 2 is a block diagram of a main part of the remaining capacity calculating means according to the present invention. In FIG. 2, the remaining capacity calculation means 7 includes a reference voltage calculation means 8, a correction calculation means 9, a comparison calculation means 10, and a display means 11.

【0025】基準電圧算出手段8は、演算増幅器等で構
成し、表面温度検出手段4から供給される表面温度V
t、負荷電流検出手段5から供給される負荷電流信号V
iおよび端子電圧検出手段6から供給される無負荷時の
端子電圧信号Vdoに基づいてリチウムイオン電池2の
基準電圧を演算し、基準電圧Bcを補正演算手段9に供
給する。
The reference voltage calculating means 8 is composed of an operational amplifier and the like.
t, the load current signal V supplied from the load current detecting means 5
The reference voltage of the lithium ion battery 2 is calculated based on i and the no-load terminal voltage signal Vdo supplied from the terminal voltage detection means 6, and the reference voltage Bc is supplied to the correction calculation means 9.

【0026】補正演算手段9は、演算増幅器等で構成
し、基準電圧算出手段8から供給される基準電圧Bcを
負荷電流Idの急激な増加時または減少時に設定される
それぞれの係数で演算し、補正電圧Vcを比較算出手段
10に供給する。
The correction calculating means 9 is composed of an operational amplifier or the like, and calculates the reference voltage Bc supplied from the reference voltage calculating means 8 by respective coefficients set when the load current Id increases or decreases rapidly. The correction voltage Vc is supplied to the comparison calculation means 10.

【0027】比較算出手段10は、比較器または、減算
器等の演算器で構成し、端子電圧検出手段6から供給さ
れる任意の負荷時の端子電圧信号Vdsと補正演算手段
9から供給される補正電圧Vcとを比較し、端子電圧信
号Vdsが補正電圧Vc以上(Vds≧Vc)の場合に
は、例えばHレベルの算出信号Vfを表示手段11に供
給する。
The comparison / calculation means 10 is composed of a computing unit such as a comparator or a subtractor, and is supplied from the terminal voltage detecting means 6 at an arbitrary load supplied from the terminal voltage detecting means 6 and from the correction computing means 9. Comparing with the correction voltage Vc, when the terminal voltage signal Vds is equal to or higher than the correction voltage Vc (Vds ≧ Vc), for example, the H-level calculation signal Vf is supplied to the display unit 11.

【0028】また、比較算出手段10は、端子電圧信号
Vdsが補正電圧Vcを下回る(Vds<Vc)場合に
は、例えばLレベルの算出信号Vfを表示手段11に供
給する。
When the terminal voltage signal Vds is lower than the correction voltage Vc (Vds <Vc), the comparison calculating means 10 supplies, for example, an L-level calculation signal Vf to the display means 11.

【0029】表示手段11は、ブザー等の可聴表示器ま
たはLEDや液晶等の可視表示器で構成し、比較算出手
段10から供給されるHレベルまたはLレベルの算出信
号Vfに基づいて音声や文字、絵図等でリチウムイオン
電池2の残容量を表示する。表示手段11は、Hレベル
の算出信号Vfが供給されるとLEDや液晶等の可視表
示器を点灯させて残容量があることを表示し、Lレベル
の算出信号Vfが供給されるとLEDや液晶等の可視表
示器を消灯して残容量が無いことを知らせる。
The display means 11 is composed of an audible display such as a buzzer or a visual display such as an LED or a liquid crystal. Based on the H-level or L-level calculation signal Vf supplied from the comparison calculation means 10, a voice or a character is displayed. The remaining capacity of the lithium ion battery 2 is displayed in a picture or the like. The display means 11 turns on a visible indicator such as an LED or a liquid crystal when the H level calculation signal Vf is supplied to indicate that there is remaining capacity, and displays the LED or the like when the L level calculation signal Vf is supplied. Turn off the visible display such as liquid crystal to notify that there is no remaining capacity.

【0030】図3はこの発明に係るリチウムイオン電池
の基準電圧の特性図である。図3において、X軸方向に
負荷電流Id、Y軸方向に基準電圧Bc、Z軸方向に電
池の表面温度Vtを設定し、負荷電流Idを0Aから最
大電流(例えば、50A)まで変化させた時および電池
の表面温度Vtを−20℃から80℃まで変えた時の基
準電圧Bcの特性図である。基準電圧Bcは、リチウム
イオン電池2の残容量のことであり、実際に負荷に供給
することができる電圧である。
FIG. 3 is a characteristic diagram of the reference voltage of the lithium ion battery according to the present invention. In FIG. 3, the load current Id was set in the X-axis direction, the reference voltage Bc was set in the Y-axis direction, and the battery surface temperature Vt was set in the Z-axis direction, and the load current Id was changed from 0 A to the maximum current (for example, 50 A). FIG. 6 is a characteristic diagram of the reference voltage Bc at the time and when the surface temperature Vt of the battery is changed from −20 ° C. to 80 ° C. The reference voltage Bc refers to the remaining capacity of the lithium ion battery 2 and is a voltage that can be actually supplied to a load.

【0031】この特性図から、基準電圧Bcは、リチウ
ムイオン電池2の負荷電流Idが小さい時は、リチウム
イオン電池の表面温度Vtに対する変化は少なく、負荷
電流Idが大きくなるとリチウムイオン電池の表面温度
Vtに対する変化は大きくなる。また、基準電圧Bc
は、リチウムイオン電池2の負荷電流Idが大きい時
は、低くなり、負荷電流Idが小さい時は、高くなる。
さらに、基準電圧Bcは、負荷電流Idが0A(無負荷
時)の時は、電池の表面温度Vtが変化しても影響がな
く、ほぼ一定値である。
From this characteristic diagram, it can be seen that the reference voltage Bc has a small change with respect to the surface temperature Vt of the lithium ion battery 2 when the load current Id of the lithium ion battery 2 is small, and the reference voltage Bc increases when the load current Id increases. The change with respect to Vt is large. Also, the reference voltage Bc
Becomes low when the load current Id of the lithium ion battery 2 is large, and becomes high when the load current Id is small.
Further, when the load current Id is 0 A (when no load is applied), the reference voltage Bc has almost no effect even if the surface temperature Vt of the battery changes, and has a substantially constant value.

【0032】例えば、E点の基準電圧Bcは、負荷電流
Idが30Aで電池の表面温度Vtが20℃なので、
3.6Vになる。このように、基準電圧Bcは、負荷電
流Idと電池の表面温度Vtが設定されると特性図より
求められる。
For example, the reference voltage Bc at the point E is such that the load current Id is 30 A and the battery surface temperature Vt is 20 ° C.
3.6V. As described above, the reference voltage Bc is obtained from the characteristic diagram when the load current Id and the surface temperature Vt of the battery are set.

【0033】図4はこの発明に係る基準電圧算出手段の
アナログ回路の一実施例である。図4において、基準電
圧算出手段18は、抵抗器R1,R2、サーミスタ(温
度センサ)Rt1,Rt2、演算増幅器Op1、安定化
電源Voを備える。
FIG. 4 shows an embodiment of the analog circuit of the reference voltage calculating means according to the present invention. 4, the reference voltage calculation means 18 includes resistors R1 and R2, thermistors (temperature sensors) Rt1 and Rt2, an operational amplifier Op1, and a stabilized power supply Vo.

【0034】安定化電源Voは、負荷が変化しても電圧
が変わらない電源で抵抗器R2を介して演算増幅器Op
1の非反転入力端子(+側端子)と、サーミスタ(温度
センサ)Rt2に電流を供給する。サーミスタ(温度セ
ンサ)Rt1およびサーミスタ(温度センサ)Rt2
は、リチウムイオン電池2の表面に接触して設置し、電
池の表面温度の変化を抵抗値の変化として検出する。
The stabilized power supply Vo is a power supply whose voltage does not change even if the load changes, and is connected to the operational amplifier Op through the resistor R2.
1 to supply a current to the non-inverting input terminal (+ terminal) and the thermistor (temperature sensor) Rt2. Thermistor (temperature sensor) Rt1 and thermistor (temperature sensor) Rt2
Is installed in contact with the surface of the lithium ion battery 2 and detects a change in the battery surface temperature as a change in the resistance value.

【0035】また、サーミスタ(温度センサ)Rt1
は、演算増幅器Op1の出力端子と、演算増幅器Op1
の反転入力端子(−側端子)とに接続し、帰還回路を構
成する。サーミスタ(温度センサ)Rt2は、演算増幅
器Op1の非反転入力端子(+側端子)と、GND(接
地)の間に接続する。
Thermistor (temperature sensor) Rt1
Is the output terminal of the operational amplifier Op1 and the operational amplifier Op1.
Connected to the inverting input terminal (− side terminal) of the above circuit to form a feedback circuit. The thermistor (temperature sensor) Rt2 is connected between the non-inverting input terminal (+ terminal) of the operational amplifier Op1 and GND (ground).

【0036】演算増幅器Op1は、抵抗器R1と、サー
ミスタ(温度センサ)Rt1とでRt1/R1の値で表
わされる増幅率の増幅回路を構成する。この増幅回路の
増幅率は、温度によってサーミスタRt1の抵抗値が変
わると抵抗値に比例して変化する。
The operational amplifier Op1 forms an amplifier circuit having an amplification factor represented by the value of Rt1 / R1 by the resistor R1 and the thermistor (temperature sensor) Rt1. The amplification factor of this amplifying circuit changes in proportion to the resistance value when the resistance value of the thermistor Rt1 changes according to the temperature.

【0037】また、常温でのサーミスタ(温度センサ)
Rt2の両端電圧は、無負荷時の電池の基準電圧にな
り、リチウムイオン電池2の表面温度が変わると変化し
て、演算増幅器Op1の非反転入力端子(+側端子)の
入力が変化する。
A thermistor (temperature sensor) at normal temperature
The voltage across Rt2 becomes the reference voltage of the battery at no load, changes when the surface temperature of the lithium ion battery 2 changes, and the input of the non-inverting input terminal (+ terminal) of the operational amplifier Op1 changes.

【0038】抵抗器、サーミスタ等の定数は、電池の表
面温度Vtが常温で負荷電流Idが0A(無負荷)の時
に、演算増幅器Op1の非反転入力端子(+側端子)に
図3の特性図から得られる数値の、例えば3.9Vが入
力されたとき、演算増幅器Op1の出力端子から3.9
Vを基準電圧Bcとして出力するように設定する。
The constants of the resistor, thermistor, etc. are obtained by applying the characteristic shown in FIG. 3 to the non-inverting input terminal (+ terminal) of the operational amplifier Op1 when the battery surface temperature Vt is normal temperature and the load current Id is 0 A (no load). When, for example, 3.9 V of the numerical value obtained from the figure is input, 3.9 V is output from the output terminal of the operational amplifier Op1.
V is set to be output as the reference voltage Bc.

【0039】また、抵抗器、サーミスタ等の定数は、電
池の表面温度Vtが常温で負荷電流Idが最大電流(例
えば、50A)の時に負荷電流検出手段5からの負荷電
流信号Viが抵抗器R1を介して演算増幅器Op1の反
転入力端子(−側端子)に供給されると、演算増幅器O
p1の出力端子から、例えば3.5Vを基準電圧Bcと
して出力するように設定する。
The constant of the resistor, thermistor, etc. is such that when the battery surface temperature Vt is normal temperature and the load current Id is the maximum current (for example, 50 A), the load current signal Vi from the load current detecting means 5 is the resistor R1. Is supplied to the inverting input terminal (-side terminal) of the operational amplifier Op1 via the
The output terminal of p1 is set to output, for example, 3.5 V as the reference voltage Bc.

【0040】基準電圧Bcは、このように抵抗器、サー
ミスタ等の定数を設定すると、負荷電流Idが最大電流
(例えば、50A)の時に、リチウムイオン電池2の表
面温度Vtが0℃〜80℃の範囲で変わると、3.0V
〜3.9Vの範囲で変化する。
When the constant of the resistor, thermistor and the like is set as described above, when the load current Id is the maximum current (for example, 50 A), the surface temperature Vt of the lithium ion battery 2 is 0 ° C. to 80 ° C. 3.0V
It changes within a range of 33.9 V.

【0041】また、基準電圧Bcは、負荷電流Idが0
A(無負荷)の時にリチウムイオン電池2の表面温度V
tが0℃〜80℃の範囲で変わると、サーミスタRt
1,Rt2の抵抗値が変化するが、演算増幅器Op1の
出力電圧3.9Vからほとんど変化しない。
The reference voltage Bc is such that the load current Id is zero.
Surface temperature V of lithium ion battery 2 at A (no load)
When t changes within the range of 0 ° C. to 80 ° C., the thermistor Rt
1 and Rt2 change, but hardly changes from the output voltage 3.9V of the operational amplifier Op1.

【0042】なお、図2の基準電圧算出手段8は、表面
温度検出手段4から表面温度Vt、負荷電流検出手段5
から負荷電流信号Vi、端子電圧検出手段6から無負荷
時の端子電圧信号Vdoの信号が供給されるが、基準電
圧算出手段18では、負荷電流検出手段5から負荷電流
信号Viのみが供給されていて、表面温度Vtをサーミ
スタRt1,Rt2とで、また、無負荷時の端子電圧信
号Vdoを安定化電源Vo、抵抗器R2、サーミスタR
t2とから作成している。
The reference voltage calculating means 8 shown in FIG. 2 is provided with the surface temperature Vt and the load current detecting means 5 from the surface temperature detecting means 4.
Supplies the load current signal Vi from the terminal voltage detection means 6 and the terminal voltage signal Vdo at the time of no load from the terminal voltage detection means 6, but the reference voltage calculation means 18 supplies only the load current signal Vi from the load current detection means 5. The surface temperature Vt is determined by the thermistors Rt1 and Rt2, and the terminal voltage signal Vdo during no load is controlled by the stabilized power supply Vo, the resistor R2, and the thermistor Rt.
It is created from t2.

【0043】図5はこの発明に係る補正演算手段のアナ
ログ回路の一実施例である。図5において、補正演算手
段19は、抵抗器R21,R22、ダイオードD21,
D22、演算増幅器Op2を有する演算手段20と、抵
抗器R23,R24、コンデンサC21を有する補正係
数設定手段21とで構成する。
FIG. 5 shows an embodiment of the analog circuit of the correction operation means according to the present invention. In FIG. 5, the correction calculating means 19 includes resistors R21 and R22, a diode D21,
D22, an arithmetic means 20 having an operational amplifier Op2, and a correction coefficient setting means 21 having resistors R23, R24 and a capacitor C21.

【0044】演算手段20は、基準電圧算出手段8から
供給される基準電圧Bcを入力すると演算増幅器Op2
を介して、基準電圧Bcに比例した(例えば、比例係数
1)演算信号を補正係数設定手段21に供給する。
The calculating means 20 receives the reference voltage Bc supplied from the reference voltage calculating means 8 and receives the operational amplifier Op2.
, A calculation signal proportional to the reference voltage Bc (for example, proportional coefficient 1) is supplied to the correction coefficient setting means 21.

【0045】補正係数設定手段21は、抵抗器R23と
コンデンサC21または抵抗器R24とコンデンサC2
1との構成で、それぞれの時定数(τ=R23*C21
またはτ=R24*C21)の補正係数を設定し、演算
手段20から供給される演算信号を補正係数で補正して
補正電圧Vcを比較算出手段10に供給する。また、抵
抗器R23と抵抗器R24の抵抗値は、R24》R23
になるように設定する。
The correction coefficient setting means 21 comprises a resistor R23 and a capacitor C21 or a resistor R24 and a capacitor C2.
1 and each time constant (τ = R23 * C21
Alternatively, a correction coefficient of τ = R24 * C21) is set, the operation signal supplied from the operation means 20 is corrected by the correction coefficient, and the correction voltage Vc is supplied to the comparison calculation means 10. The resistance values of the resistors R23 and R24 are R24 >> R23
Set to be.

【0046】補正演算手段19は、負荷電流Idが急激
に減少(短時間に50A→0A)すると、急激に増加
(3V→3.9V)した基準電圧Bcが抵抗器R24を
介してコンデンサC21に電流を供給し、設定された補
正係数(時定数τ=R24*C21)の時間(約120
秒)で3V→3.9Vに上昇する補正電圧Vcを比較算
出手段10に供給する。
When the load current Id decreases rapidly (from 50 A to 0 A in a short time), the correction calculating means 19 applies the reference voltage Bc that has increased rapidly (3 V to 3.9 V) to the capacitor C 21 via the resistor R 24. The current is supplied and the time of the set correction coefficient (time constant τ = R24 * C21) (about 120
In 3 seconds, the correction voltage Vc that increases from 3 V to 3.9 V is supplied to the comparison calculation means 10.

【0047】また、補正演算手段19は、負荷電流Id
が急激に増加(短時間に0A→50A)すると、基準電
圧Bcが急激に減少(3.9V→3V)してコンデンサ
C21に充電されていた電荷が抵抗器R23、D22、
演算増幅器Op2の出力回路を介して放電され、設定さ
れた補正係数(時定数τ=R23*C21)の時間(数
秒)でコンデンサC21の電荷を放電し、3.9V→3
Vに下降する補正電圧Vcを比較算出手段10に供給す
る。
The correction calculating means 19 calculates the load current Id
Rapidly increases (0A → 50A in a short time), the reference voltage Bc rapidly decreases (3.9V → 3V), and the electric charge charged in the capacitor C21 is reduced by the resistors R23, D22,
Discharged through the output circuit of the operational amplifier Op2, the electric charge of the capacitor C21 is discharged for a time (several seconds) of a set correction coefficient (time constant τ = R23 * C21), and 3.9V → 3
The correction voltage Vc falling to V is supplied to the comparison calculation means 10.

【0048】なお、補正演算手段19は、負荷電流Id
の急激な増減がないときは基準電圧Bcに対応した演算
信号を演算手段20から出力し、補正係数設定手段21
は、補正を行わずに演算信号をそのまま補正電圧Vcと
して比較算出手段10に供給する。
It should be noted that the correction calculating means 19 calculates the load current Id
When there is no rapid increase or decrease in the value, a calculation signal corresponding to the reference voltage Bc is output from the calculation means 20 and the correction coefficient setting means 21
Supplies the operation signal as it is to the comparison calculation means 10 as the correction voltage Vc without performing the correction.

【0049】このように、リチウムイオン電池の特性
は、負荷電流Idが急激に流れると瞬時に電圧降下して
すぐに収束し、負荷電流Idが急激に減少すると一定の
時定数で電圧上昇する特性があるので、負荷電流Idの
増加時と減少時に基準電圧Bcをそれぞれの係数で補正
すればリチウムイオン電池の残容量が精度よく算出でき
る。
As described above, the characteristics of the lithium ion battery are such that when the load current Id flows rapidly, the voltage instantaneously drops and converges immediately, and when the load current Id decreases rapidly, the voltage rises with a constant time constant. Therefore, when the reference voltage Bc is corrected by the respective coefficients when the load current Id increases and decreases, the remaining capacity of the lithium ion battery can be calculated accurately.

【0050】また、上記実施例の構成は、例えば、ディ
ジタル回路で構成して記憶手段、演算手段等を設け、予
め基準電圧および補正係数等を記憶手段に記憶し、負荷
電流の過渡状態にあわせて対応する基準電圧および補正
係数等を記憶手段から読み出して演算し、基準電圧を補
正するようにしてもよい。
In the configuration of the above embodiment, for example, a digital circuit is provided with storage means, arithmetic means, etc., and the reference voltage and the correction coefficient are stored in advance in the storage means, so as to match the transient state of the load current. Alternatively, the corresponding reference voltage and correction coefficient may be read from the storage means and operated to correct the reference voltage.

【0051】図6はこの発明に係る負荷電流Idの急激
な増加、減少時のリチウムイオン電池2の基準電圧Bc
と補正電圧Vcの時間経過特性図である。図6(A)
は、負荷電流Idが急激に減少(例えば、短時間に50
A→0A)したときの基準電圧Bc(実線表示)と、補
正電圧Vc(破線表示)との関係を示す。図6(B)
は、負荷電流Idが急激に増加(例えば、短時間に0A
→50A)したときの基準電圧Bc(実線表示)と、補
正電圧Vc(破線表示)との関係を示す。
FIG. 6 shows the reference voltage Bc of the lithium ion battery 2 when the load current Id according to the present invention increases or decreases rapidly.
FIG. 7 is a graph showing a time lapse characteristic of a correction voltage Vc. FIG. 6 (A)
Means that the load current Id decreases sharply (for example, 50
The relationship between the reference voltage Bc (shown by a solid line) and the correction voltage Vc (shown by a broken line) when A → 0A) is shown. FIG. 6 (B)
Indicates that the load current Id sharply increases (for example, 0 A
The relationship between the reference voltage Bc (shown by a solid line) and the correction voltage Vc (shown by a broken line) at the time of (50 A) is shown.

【0052】図6(A)において、基準電圧Bc(実線
表示)は、負荷電流Idの急激な減少(例えば、短時間
に50A→0A)によって急激に上昇(例えば、3V→
3.9V)し、図5で説明したように補正演算手段19
で補正された補正電圧Vcを出力する。この補正電圧V
c(破線表示)は、約3.9Vで収束する一定の時定数
(約120秒)で上昇する。
In FIG. 6A, the reference voltage Bc (shown by a solid line) sharply rises (for example, 3V → 0A) due to a sudden decrease in the load current Id (for example, 50A → 0A in a short time).
3.9 V), and as described with reference to FIG.
And outputs the corrected voltage Vc. This correction voltage V
c (indicated by a broken line) increases with a constant time constant (about 120 seconds) that converges at about 3.9V.

【0053】また、図6(B)において、基準電圧Bc
(実線表示)は、負荷電流Idの急激な増加(例えば、
短時間に0A→50A)によって急激に下降(例えば、
3.9V→3V)し、図5で説明したように補正演算手
段19で補正された補正電圧Vcを出力する。
In FIG. 6B, the reference voltage Bc
(Shown by a solid line) indicates a sudden increase in the load current Id (for example,
It falls rapidly by 0A → 50A in a short time (for example,
3.9V → 3V), and outputs the correction voltage Vc corrected by the correction calculation unit 19 as described with reference to FIG.

【0054】この補正電圧Vc(破線表示)は、約3V
まで急激(数秒以内)に下降する。したがって、補正電
圧Vc(破線表示)は、負荷電流Idが急激に減少する
時には、基準電圧Bcを一定の時定数(約120秒)で
上昇するように補正し、また、負荷電流Idが急激に増
加する時には、時間に関係なく所定の係数で補正すれ
ば、負荷電流の増減の過渡状態のときにリチウムイオン
電池2の特性にあわせて残容量を精度よく算出できる。
The correction voltage Vc (shown by a broken line) is about 3 V
It falls rapidly (within a few seconds). Therefore, the correction voltage Vc (shown by a broken line) corrects the reference voltage Bc so as to increase with a constant time constant (about 120 seconds) when the load current Id decreases rapidly, and the load current Id sharply increases. When increasing, the remaining capacity can be accurately calculated in accordance with the characteristics of the lithium-ion battery 2 in the transient state of the increase or decrease of the load current by correcting with a predetermined coefficient regardless of the time.

【0055】[0055]

【発明の効果】以上説明したように、この発明に係るリ
チウムイオン電池の残容量検出装置は、リチウムイオン
電池の負荷電流を検出する負荷電流検出手段と、電池の
端子電圧を検出する端子電圧検出手段と、を有するリチ
ウムイオン電池の残容量検出装置において、電池の表面
温度を検出する表面温度検出手段を有し、負荷電流と端
子電圧および表面温度とに基づいて、電池の残容量を算
出する残容量算出手段を備えたので簡易な構成で負荷お
よび温度が変わっても精度よく残容量を検出することが
でき装置の信頼性を向上することができる。
As described above, the apparatus for detecting the remaining capacity of a lithium ion battery according to the present invention includes a load current detecting means for detecting a load current of the lithium ion battery, and a terminal voltage detecting means for detecting a terminal voltage of the battery. Means for detecting the remaining temperature of the battery, and calculating the remaining capacity of the battery based on the load current, the terminal voltage, and the surface temperature. Since the remaining capacity calculating means is provided, the remaining capacity can be detected accurately with a simple configuration even if the load and temperature change, and the reliability of the apparatus can be improved.

【0056】また、この発明に係る残容量算出手段は、
負荷電流、表面温度、無負荷時の端子電圧に基づいて基
準電圧を算出する基準電圧算出手段と、負荷電流の急激
な増減時に基準電圧を補正する補正演算手段と、負荷電
流の急激な増減時に検出した端子電圧と補正した基準電
圧とを比較して電池の残容量を算出する比較算出手段
と、残容量を表示する表示手段とを備えたので残容量を
精度よく検出して表示することができる。
Further, the remaining capacity calculating means according to the present invention comprises:
Reference voltage calculation means for calculating a reference voltage based on load current, surface temperature, and terminal voltage at no load, correction calculation means for correcting the reference voltage when the load current increases or decreases, and A comparison calculation unit for comparing the detected terminal voltage with the corrected reference voltage to calculate the remaining capacity of the battery, and a display unit for displaying the remaining capacity are provided, so that the remaining capacity can be accurately detected and displayed. it can.

【0057】さらに、この発明に係る補正演算手段は、
負荷電流の急激な増減時に、それぞれ異なる補正係数を
設定する補正係数設定手段と、それぞれの補正係数と基
準電圧とを演算する演算手段とを備え、負荷電流の急激
な増減時に基準電圧を補正するので負荷電流が急激に増
減した時の過渡状態においても電池の残容量をリアルタ
イムに正確に検出することができ検出精度を向上するこ
とができる。
Further, the correction calculating means according to the present invention comprises:
A correction coefficient setting means for setting different correction coefficients when the load current sharply increases and decreases, and a calculation means for calculating each correction coefficient and a reference voltage, and corrects the reference voltage when the load current sharply increases and decreases. Therefore, even in a transient state when the load current sharply increases or decreases, the remaining capacity of the battery can be accurately detected in real time, and the detection accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係るリチウムイオン電池の残容量検
出装置の全体ブロック構成図
FIG. 1 is an overall block configuration diagram of an apparatus for detecting a remaining capacity of a lithium ion battery according to the present invention.

【図2】この発明に係る残容量算出手段の要部ブロック
構成図
FIG. 2 is a block diagram of a main part of a remaining capacity calculating unit according to the present invention.

【図3】この発明に係るリチウムイオン電池の基準電圧
の特性図
FIG. 3 is a characteristic diagram of a reference voltage of the lithium ion battery according to the present invention.

【図4】この発明に係る基準電圧算出手段のアナログ回
路の一実施例
FIG. 4 is an embodiment of an analog circuit of a reference voltage calculating means according to the present invention;

【図5】この発明に係る補正演算手段のアナログ回路の
一実施例
FIG. 5 is a diagram illustrating an embodiment of an analog circuit of a correction operation unit according to the present invention;

【図6】この発明に係る負荷電流Idの急激な増加、減
少時のリチウムイオン電池の基準電圧Bcと補正電圧V
cの時間経過特性図
FIG. 6 shows the reference voltage Bc and the correction voltage V of the lithium ion battery when the load current Id is rapidly increased and decreased according to the present invention.
Time lapse characteristic diagram of c

【図7】特公平1−39069号公報に開示されている
従来のバッテリ残容量を算出する、バッテリの放電電流
と端子電圧との相関関係を示す特性図
FIG. 7 is a characteristic diagram showing a correlation between a battery discharge current and a terminal voltage for calculating a conventional battery remaining capacity disclosed in Japanese Patent Publication No. 1-39069.

【符号の説明】[Explanation of symbols]

1…リチウムイオン電池の残容量検出装置、2…リチウ
ムイオン電池、3…負荷、4…表面温度検出手段、5…
負荷電流検出手段、6…端子電圧検出手段、7…残容量
算出手段、8,18…基準電圧算出手段、9,19…補
正演算手段、10…比較算出手段、11…表示手段、2
0…演算手段、21…補正係数設定手段。
DESCRIPTION OF SYMBOLS 1 ... Remaining capacity detection device of lithium ion battery, 2 ... Lithium ion battery, 3 ... Load, 4 ... Surface temperature detecting means, 5 ...
Load current detecting means, 6 ... terminal voltage detecting means, 7 ... remaining capacity calculating means, 8, 18 ... reference voltage calculating means, 9, 19 ... correction calculating means, 10 ... comparative calculating means, 11 ... display means, 2
0: calculation means, 21: correction coefficient setting means.

フロントページの続き (72)発明者 久保 利行 埼玉県狭山市新狭山1丁目10番地1 ホン ダエンジニアリング株式会社内 (72)発明者 田平 弘樹 埼玉県狭山市新狭山1丁目10番地1 ホン ダエンジニアリング株式会社内 (72)発明者 桑原 虎嗣 埼玉県狭山市新狭山1丁目10番地1 ホン ダエンジニアリング株式会社内 (72)発明者 岡 輝行 埼玉県狭山市新狭山1丁目10番地1 ホン ダエンジニアリング株式会社内 (72)発明者 田渕 聡 埼玉県狭山市新狭山1丁目10番地1 ホン ダエンジニアリング株式会社内 Fターム(参考) 2G016 CA00 CB11 CB12 CB13 CB21 CC04 CC06 CC13 CD09 CD10 CD14 CE01 CE02 CE07 5G003 BA01 CB01 EA05 5H030 AA08 AA10 AS20 FF22 FF42 FF44 Continued on the front page (72) Inventor Toshiyuki Kubo 1-10-1, Shinsayama, Sayama City, Saitama Prefecture Honda Engineering Co., Ltd. (72) Inventor Hiroki Tabira 1-10-1, Shinsayama, Sayama City, Saitama Honda Engineering Co., Ltd. In-company (72) Inventor Toritsu Kuwahara 1-10-1 Shinsayama, Sayama-shi, Saitama Honda Engineering Co., Ltd. (72) Inventor Teruyuki Oka 1-1-10 Shin-Sayama, Sayama-shi, Saitama Honda Engineering Co., Ltd. (72) Inventor Satoshi Tabuchi 1-10-1 Shinsayama, Sayama-shi, Saitama Honda Engineering Co., Ltd. F-term (reference) 2G016 CA00 CB11 CB12 CB13 CB21 CC04 CC06 CC13 CD09 CD10 CD14 CE01 CE02 CE07 5G003 BA01 CB01 EA05 5H030 AA08 AA10 AS20 FF22 FF42 FF44

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオン電池の負荷電流を検出す
る負荷電流検出手段と、前記電池の端子電圧を検出する
端子電圧検出手段と、を有するリチウムイオン電池の残
容量検出装置において、 前記電池の表面温度を検出する表面温度検出手段を有
し、前記負荷電流と前記端子電圧および前記表面温度と
に基づいて前記電池の残容量を算出する残容量算出手段
を備えたことを特徴とするリチウムイオン電池の残容量
検出装置。
1. A device for detecting a remaining capacity of a lithium ion battery, comprising: load current detecting means for detecting a load current of a lithium ion battery; and terminal voltage detecting means for detecting a terminal voltage of the battery. A lithium-ion battery including surface temperature detection means for detecting a temperature, and remaining capacity calculation means for calculating the remaining capacity of the battery based on the load current, the terminal voltage, and the surface temperature. Remaining capacity detection device.
【請求項2】 前記残容量算出手段は、前記負荷電流、
前記表面温度、無負荷時の端子電圧に基づいて基準電圧
を算出する基準電圧算出手段と、前記負荷電流の急激な
増減時に前記基準電圧を補正する補正演算手段と、前記
負荷電流の急激な増減時に検出した端子電圧と補正した
基準電圧とを比較して前記電池の残容量を算出する比較
算出手段と、前記残容量を表示する表示手段と、を備え
たことを特徴とする請求項1記載のリチウムイオン電池
の残容量検出装置。
2. The method according to claim 1, wherein the remaining capacity calculation unit calculates the load current,
A reference voltage calculating means for calculating a reference voltage based on the surface temperature and the terminal voltage at the time of no load; a correction calculating means for correcting the reference voltage when the load current sharply increases and decreases; and a sudden increase and decrease of the load current. 2. The battery control apparatus according to claim 1, further comprising: a comparison calculating unit configured to compare the terminal voltage detected at that time with the corrected reference voltage to calculate a remaining capacity of the battery, and a display unit displaying the remaining capacity. For detecting remaining capacity of lithium-ion batteries.
【請求項3】 前記補正演算手段は、前記負荷電流の急
激な増減時に、それぞれ異なる補正係数を設定する補正
係数設定手段と、それぞれの補正係数と基準電圧とを演
算する演算手段と、を備え、前記負荷電流の急激な増減
時に基準電圧を補正することを特徴とする請求項2記載
のリチウムイオン電池の残容量検出装置。
3. The correction calculation means includes: correction coefficient setting means for setting different correction coefficients when the load current is rapidly increased and decreased; and calculation means for calculating each correction coefficient and a reference voltage. 3. The apparatus according to claim 2, wherein the reference voltage is corrected when the load current increases or decreases abruptly.
JP18042899A 1999-06-25 1999-06-25 Lithium-ion battery remaining capacity detector Expired - Fee Related JP4668374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18042899A JP4668374B2 (en) 1999-06-25 1999-06-25 Lithium-ion battery remaining capacity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18042899A JP4668374B2 (en) 1999-06-25 1999-06-25 Lithium-ion battery remaining capacity detector

Publications (2)

Publication Number Publication Date
JP2001006757A true JP2001006757A (en) 2001-01-12
JP4668374B2 JP4668374B2 (en) 2011-04-13

Family

ID=16083093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18042899A Expired - Fee Related JP4668374B2 (en) 1999-06-25 1999-06-25 Lithium-ion battery remaining capacity detector

Country Status (1)

Country Link
JP (1) JP4668374B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157912A (en) * 2001-08-13 2003-05-30 Hitachi Maxell Ltd Method and device for cell capacity detection
CN108780930A (en) * 2016-01-13 2018-11-09 弗莱克斯电子有限责任公司 The method of discharge period is estimated during high rate cell discharge
US10184987B2 (en) 2016-11-18 2019-01-22 Semiconductor Components Industries, Llc Methods and apparatus for reporting a relative state of charge of a battery
KR102038475B1 (en) * 2018-08-22 2019-10-30 이용현 A system for estimating the SOC of a battery group constituting a battery cell
US10983168B2 (en) 2016-11-18 2021-04-20 Semiconductor Components Industries, Llc Methods and apparatus for reporting a relative state of charge of a battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289734A (en) * 1996-09-05 1998-10-27 Nissan Motor Co Ltd Battery characteristic correction method and estimation method for battery residual capacity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289734A (en) * 1996-09-05 1998-10-27 Nissan Motor Co Ltd Battery characteristic correction method and estimation method for battery residual capacity

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157912A (en) * 2001-08-13 2003-05-30 Hitachi Maxell Ltd Method and device for cell capacity detection
CN108780930A (en) * 2016-01-13 2018-11-09 弗莱克斯电子有限责任公司 The method of discharge period is estimated during high rate cell discharge
CN108780930B (en) * 2016-01-13 2021-09-07 弗莱克斯电子有限责任公司 Method for estimating discharge duration during high rate battery discharge
US10184987B2 (en) 2016-11-18 2019-01-22 Semiconductor Components Industries, Llc Methods and apparatus for reporting a relative state of charge of a battery
US10983168B2 (en) 2016-11-18 2021-04-20 Semiconductor Components Industries, Llc Methods and apparatus for reporting a relative state of charge of a battery
US11543457B2 (en) 2016-11-18 2023-01-03 Semiconductor Components Industries, Llc Methods and apparatus for reporting a relative state of charge of a battery
KR102038475B1 (en) * 2018-08-22 2019-10-30 이용현 A system for estimating the SOC of a battery group constituting a battery cell

Also Published As

Publication number Publication date
JP4668374B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
US5545969A (en) Battery residual capacity displaying system with discharged electrical quantity computation section
US5744963A (en) Battery residual capacity measuring apparatus and method for measuring open-circuit voltages as the battery starts and stops supplying power
EP1081499B1 (en) Means for estimating charged state of battery and method for estimating degraded state of battery
US8305035B2 (en) Energy storage device
JP5242997B2 (en) Battery state management method and battery state management apparatus
JP3311268B2 (en) Current sensor failure judgment device
JP3178315B2 (en) Battery remaining capacity meter and remaining capacity calculation method
JP2008043168A (en) Battery charge/discharge current detecting device
JP2009234557A (en) Open voltage value estimation method and open voltage value estimation device
JP2009214766A (en) Battery state estimating device and battery state estimating method
JP2001006757A (en) Residual capacity detecting device for lithium ion battery
JP2008014951A (en) Battery residual quantity alarm circuit
US6232746B1 (en) Battery charging apparatus and full-charging detecting method
JP2004045170A (en) Battery residual quantity warning circuit
JP4699875B2 (en) Battery remaining amount judging method and apparatus, and battery pack using the same
JP2006010501A (en) Battery status administration system
JPH06207973A (en) Battery remaining capacity measuring device
EP1396729A1 (en) Method of diagnosing a motor vehicle battery
JPH06342044A (en) Battery measuring apparatus
JPH06281711A (en) Device for detecting residual capacity of battery
JP2932871B2 (en) Battery capacity indicator
CN112595983A (en) Charging electric quantity determination method and device, processor and storage medium
JP2009137308A (en) Open voltage value estimation method and open voltage value estimation device
JP2569595B2 (en) Contact resistance detection device for sensor signal input device
JPH06317636A (en) Battery current detecting device for vehicle

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19990730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19990906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees