JP2009214766A - Battery state estimating device and battery state estimating method - Google Patents

Battery state estimating device and battery state estimating method Download PDF

Info

Publication number
JP2009214766A
JP2009214766A JP2008061748A JP2008061748A JP2009214766A JP 2009214766 A JP2009214766 A JP 2009214766A JP 2008061748 A JP2008061748 A JP 2008061748A JP 2008061748 A JP2008061748 A JP 2008061748A JP 2009214766 A JP2009214766 A JP 2009214766A
Authority
JP
Japan
Prior art keywords
voltage value
battery
value
discharge
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008061748A
Other languages
Japanese (ja)
Other versions
JP5112915B2 (en
Inventor
Takahiro Matsuura
貴宏 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2008061748A priority Critical patent/JP5112915B2/en
Publication of JP2009214766A publication Critical patent/JP2009214766A/en
Application granted granted Critical
Publication of JP5112915B2 publication Critical patent/JP5112915B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery state estimating device and a battery state estimating method, capable of excellently estimating a battery state, by reducing an error in a calculation value of SOH and SOC, by calculating a discharge time voltage value, by using an internal resistance value of a battery and a reference resistance value of a load. <P>SOLUTION: A processing part of the battery state estimating device acquires an open voltage value V<SB>OR</SB>(S2), when determining that an IG-SW is turned on (S1), and acquires a voltage value and a current value when driving a plunger (S3), and calculates the internal resistance value R<SB>B</SB>of the battery (S4). Next, the processing part calculates (S5) a lower limit voltage value V<SB>LR</SB>by using the internal resistance value R<SB>B</SB>, the open voltage value V<SB>OR</SB>and the reference resistance value R<SB>SI</SB>of the prestored load L<SB>S</SB>. The processing part calculates the SOC and the SOH based on the calculated lower limit voltage value V<SB>LR</SB>(S6). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エンジン始動の際に取得した車載バッテリの電圧値及び電流値に基づき、バッテリの状態を推定するバッテリ状態推定装置、並びにバッテリ状態推定方法に関する。   The present invention relates to a battery state estimation device and a battery state estimation method for estimating a state of a battery based on a voltage value and a current value of an in-vehicle battery acquired at the time of starting an engine.

従来、劣化度合(以下、SOH:State Of Health という)、及び充電率(以下、SOC:State Of Charge という)等のバッテリの状態の検出を、エンジン始動時等の放電時におけるバッテリの電圧降下特性に基づいて行う、特許文献1等の技術がある。SOHは、バッテリの満充電容量の基準時の満充電容量に対する割合で表され、SOCは、バッテリの充電残容量の満充電容量に対する割合で表される。前記電圧降下特性はバッテリ放電時の車両固有の負荷と密接に関係するため、この種の従来技術では、バッテリの状態評価のための各種のパラメータを車種ごとに個別に設定するようになっていた。
しかし、上述の従来技術では、バッテリの状態評価のための各種のパラメータを車種ごとに個別に設定するため、パラメータの設定のための人的及び装置的コストが増大するとともに、同一車種内の車両個体差によるばらつきには対応できないという問題があった。
Conventionally, the battery voltage drop characteristics at the time of discharging such as engine start-up are detected by detecting the state of the battery such as the degree of deterioration (hereinafter referred to as SOH: State Of Health) and the charging rate (hereinafter referred to as SOC: State Of Charge). There exists a technique of patent document 1 etc. performed based on this. SOH is expressed as a ratio of the full charge capacity of the battery to the full charge capacity at the reference time, and SOC is expressed as a ratio of the remaining charge capacity of the battery to the full charge capacity. Since the voltage drop characteristic is closely related to the load specific to the vehicle at the time of battery discharge, in this type of prior art, various parameters for evaluating the state of the battery are individually set for each vehicle type. .
However, in the above-described prior art, since various parameters for battery state evaluation are individually set for each vehicle type, the human and device costs for setting the parameters increase, and the vehicle in the same vehicle type There was a problem that it was not possible to cope with variations due to individual differences.

そこで、特許文献2には、基準となる基準バッテリ(新品のバッテリ)の基準開放電圧値と、エンジン始動時放電を行なわせた際の下限電圧値(放電時電圧値)との関係を示す放電特性を記憶部に予め記憶しておき、車両に搭載されたバッテリのエンジン始動時放電が行われた際の開放電圧値及び下限電圧値を測定し、その下限電圧値に対応する基準バッテリの基準開放電圧値(対応開放電圧値)を放電特性に基づいて導出し、開放電圧値と導出した対応開放電圧値とを用いて、SOHを算出する技術が開示されている。
特開2004−190604号公報 特開2006−280194号公報
Therefore, Patent Document 2 discloses a discharge indicating a relationship between a reference open circuit voltage value of a reference battery (new battery) serving as a reference and a lower limit voltage value (discharge voltage value) when engine start discharge is performed. The characteristics are stored in advance in the storage unit, and the open-circuit voltage value and the lower limit voltage value when the battery mounted in the vehicle is discharged at engine start are measured, and the reference battery reference corresponding to the lower limit voltage value is measured. A technique is disclosed in which an open-circuit voltage value (corresponding open-circuit voltage value) is derived based on discharge characteristics, and SOH is calculated using the open-circuit voltage value and the derived corresponding open-circuit voltage value.
JP 2004-190604 A JP 2006-280194 A

特許文献1の蓄電池の寿命判定装置は、蓄電池の充放電電流を測定する電流測定部を備えているが、エンジン始動時に放電される場合の電流は例えば500〜600Aであり、大電流を測定することができる高価な電流センサを用いなければならないという問題があった。   The storage battery life determination device of Patent Document 1 includes a current measurement unit that measures the charge / discharge current of the storage battery, but the current when discharged at engine startup is, for example, 500 to 600 A, and measures a large current. There was a problem that an expensive current sensor that could be used had to be used.

また、上述したように、特許文献2においては、測定した下限電圧値に基づきSOHを算出していたが、バッテリに接続される負荷としてのスタータにおいては、スタータの停止位置、ブラシ抵抗、及び可動接点抵抗等にバラツキが生じ、これにより、バッテリが同一の状態であっても、下限電圧値が変化するという問題があった。
図6は、同一のバッテリにつき6回、下限電圧値を測定した場合の結果を示すグラフである。図6において、横軸は経過時間、縦軸は電圧値である。
図6より回ごとに、電圧値が大きく変化していることが分かる。
以上のように、下限電圧値の測定誤差が大きいため、特許文献2の方法においては、SOH、及びSOCの誤差が大きくなるという問題があった。
As described above, in Patent Document 2, SOH is calculated based on the measured lower limit voltage value. However, in the starter as a load connected to the battery, the starter stop position, brush resistance, and movable There is a variation in the contact resistance and the like, which causes a problem that the lower limit voltage value changes even when the batteries are in the same state.
FIG. 6 is a graph showing the results when the lower limit voltage value is measured six times for the same battery. In FIG. 6, the horizontal axis represents the elapsed time, and the vertical axis represents the voltage value.
It can be seen from FIG. 6 that the voltage value changes greatly every time.
As described above, since the measurement error of the lower limit voltage value is large, the method of Patent Document 2 has a problem that errors of SOH and SOC increase.

本発明は斯かる事情に鑑みてなされたものであり、バッテリに負荷を接続して一時的に電圧が落ち込む前の電流値及び電圧値を取得し、取得した電流値と電圧値との関係に基づき、バッテリの内部抵抗値を求めるので、小電流を検出する、安価な電流センサを用いることができ、負荷の基準の抵抗値を用いて放電時電圧値を算出するので、SOH及びSOCの算出値の誤差が低減し、良好にバッテリの状態を推定することができるバッテリ状態推定装置、及びバッテリ状態推定方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and obtains a current value and a voltage value before the voltage drops temporarily by connecting a load to the battery, and the relationship between the obtained current value and the voltage value is obtained. Since the internal resistance value of the battery is obtained based on this, an inexpensive current sensor that detects a small current can be used, and the discharge voltage value is calculated using the reference resistance value of the load. An object of the present invention is to provide a battery state estimation device and a battery state estimation method that can reduce a value error and can estimate a battery state satisfactorily.

第1発明に係るバッテリ状態推定装置は、エンジンに連動して発電する車載発電機によって充電されるバッテリの電圧値及び電流値を検出するように構成され、前記バッテリの所定基準時の基準開放電圧値と、該バッテリに所定の負荷を接続して放電した場合の出力電圧値である基準放電時電圧値との関係を示す放電特性を記憶しておき、前記放電特性、前記バッテリのエンジン始動に際しての開放電圧値、及び放電時電圧値に基づき、満充電容量の前記バッテリの所定基準時の満充電容量に対する割合で表される劣化度合、及び充電率を算出して、前記バッテリの状態を推定するバッテリ状態推定装置において、前記バッテリに前記負荷を接続して一時的に電圧が落ち込む前の電圧値及び電流値を3以上の時点で取得する手段と、取得した電流値と電圧値との関係に基づき、前記バッテリの内部抵抗値を求める手段と、前記バッテリの所定基準時の内部抵抗値に基づき前記負荷の基準抵抗値を求める手段と、該基準抵抗値を記憶する手段と、前記開放電圧値、及び内部抵抗値を取得する手段と、前記放電時電圧値を次の式(1)により算出する放電時電圧値算出手段とを備え、前記劣化度合、及び充電率は、算出した放電時電圧値を用いて算出するように構成されていることを特徴とする。
LR=VOR×RSI/(RB +RSI) ・・・(1)
但し、
LR:放電時電圧値
OR:開放電圧値
SI:負荷の基準抵抗値
B :内部抵抗値
A battery state estimation device according to a first aspect of the present invention is configured to detect a voltage value and a current value of a battery charged by an in-vehicle generator that generates power in conjunction with an engine, and a reference open voltage at a predetermined reference time of the battery A discharge characteristic indicating a relationship between the value and a reference discharge voltage value that is an output voltage value when a predetermined load is connected to the battery and discharging the battery. Based on the open circuit voltage value and the discharging voltage value, the degree of deterioration expressed by the ratio of the full charge capacity to the full charge capacity of the battery at the predetermined reference time and the charge rate are calculated, and the state of the battery is estimated In the battery state estimation device, the means for acquiring the voltage value and the current value before the voltage temporarily drops by connecting the load to the battery at three or more time points, and A means for obtaining an internal resistance value of the battery based on a relationship between a current value and a voltage value; a means for obtaining a reference resistance value of the load based on an internal resistance value at a predetermined reference time of the battery; and the reference resistance value. Means for storing, means for obtaining the open-circuit voltage value and internal resistance value, and discharge voltage value calculation means for calculating the discharge voltage value according to the following equation (1): The charging rate is configured to be calculated using the calculated discharging voltage value.
V LR = V OR × R SI / (R B + R SI ) (1)
However,
V LR : Discharge voltage value V OR : Open-circuit voltage value R SI : Load reference resistance value R B : Internal resistance value

第2発明に係るバッテリ状態推定装置は、第1発明において、前記基準抵抗値は、複数回の算出値の平均値であることを特徴とする。   The battery state estimation apparatus according to a second aspect of the present invention is characterized in that, in the first aspect, the reference resistance value is an average value of a plurality of calculated values.

第3発明に係るバッテリ状態推定方法は、エンジンに連動して発電する車載発電機によって充電されるバッテリの電圧値及び電流値を検出するように構成され、前記バッテリの所定基準時の基準開放電圧値と、該バッテリに所定の負荷を接続して放電した場合の出力電圧値である基準放電時電圧値との関係を示す放電特性を記憶しておき、前記放電特性、前記バッテリのエンジン始動に際しての開放電圧値、及び放電時電圧値に基づき、満充電容量の前記バッテリの基準時の満充電容量に対する割合で表される劣化度合、及び充電率を算出して、前記バッテリの状態を推定するバッテリ状態推定方法において、前記バッテリに前記負荷を接続して一時的に電圧が落ち込む前の電流値及び電圧値を3以上の時点で取得するステップと、取得した電流値と電圧値との関係に基づき、前記バッテリの内部抵抗値を求めるステップと、前記バッテリの所定基準時の内部抵抗値に基づき前記負荷の基準抵抗値を求めるステップと、前記開放電圧値、及び内部抵抗値を取得するステップと、前記放電時電圧値を次の式(2)により算出するステップとを有し、前記劣化度合、及び充電率は、算出した放電時電圧値を用いて算出するように構成されていることを特徴とする。
LR=VOR×RSI/(RB +RSI) ・・・(2)
但し、
LR:放電時電圧値
OR:開放電圧値
SI:負荷の基準抵抗値
B :内部抵抗値
A battery state estimation method according to a third aspect of the present invention is configured to detect a voltage value and a current value of a battery charged by an in-vehicle generator that generates power in conjunction with an engine, and a reference open voltage at a predetermined reference time of the battery A discharge characteristic indicating a relationship between the value and a reference discharge voltage value that is an output voltage value when a predetermined load is connected to the battery and discharging the battery. Based on the open circuit voltage value and the discharge voltage value, the degree of deterioration expressed by the ratio of the full charge capacity to the full charge capacity of the battery at the reference time and the charge rate are calculated, and the state of the battery is estimated In the battery state estimation method, the step of acquiring the current value and the voltage value before the voltage temporarily drops after connecting the load to the battery at three or more time points, and A step of obtaining an internal resistance value of the battery based on a relationship between a current value and a voltage value; a step of obtaining a reference resistance value of the load based on an internal resistance value at a predetermined reference time of the battery; and the open-circuit voltage value; And the step of obtaining the internal resistance value and the step of calculating the discharge voltage value by the following equation (2), the deterioration degree and the charging rate are calculated using the calculated discharge voltage value. It is comprised so that it may do.
V LR = V OR × R SI / (R B + R SI ) (2)
However,
V LR : Discharge voltage value V OR : Open-circuit voltage value R SI : Load reference resistance value R B : Internal resistance value

本発明においては、バッテリに負荷を接続して一時的に電圧が落ち込む前の電流値及び電圧値を取得し、取得した電流値と電圧値との関係に基づき、バッテリの内部抵抗値を求める。前記電流値は例えば略50A程度の小さい値であるので、例えば100Aまでの電流値を検出することができる安価な電流センサを用いることができる。
本発明においては、予め、バッテリの新品時等の基準時の開放電圧値、負荷を接続して放電したときの放電時電圧値、及び前記電流値と電圧値との関係に基づき求めた内部抵抗値により、前記負荷の基準抵抗値を算出し、記憶しておく。
そして、エンジン始動に際しての開放電圧値、電流値と電圧値との関係に基づき求めた内部抵抗値、前記基準抵抗値を前記式(1)に代入して、放電時電圧値を算出する。
本発明においては、スタータの停止位置、ブラシ抵抗、及び可動接点抵抗等に起因する誤差を有する、放電時電圧値の測定値を用いずに、算出した放電時電圧値に基づきSOH及びSOCを算出するので、SOH及びSOCの誤差が低減され、良好にバッテリの状態が推定される。
In the present invention, a current value and a voltage value before the voltage drops temporarily by connecting a load to the battery are acquired, and an internal resistance value of the battery is obtained based on the relationship between the acquired current value and the voltage value. Since the current value is a small value of about 50 A, for example, an inexpensive current sensor that can detect a current value up to 100 A, for example, can be used.
In the present invention, the internal open-circuit voltage value obtained in advance based on the open-circuit voltage value at the time of reference such as when the battery is new, the voltage value at the time of discharging when the load is connected, and the relationship between the current value and the voltage value Based on the value, the reference resistance value of the load is calculated and stored.
Then, the open-circuit voltage value at the time of starting the engine, the internal resistance value obtained based on the relationship between the current value and the voltage value, and the reference resistance value are substituted into the equation (1) to calculate the voltage value during discharge.
In the present invention, SOH and SOC are calculated based on the calculated discharge voltage value without using the measured value of the discharge voltage value, which has errors due to the stop position of the starter, the brush resistance, the movable contact resistance, and the like. Therefore, the errors of SOH and SOC are reduced, and the battery state is estimated well.

本発明によれば、安価な電流センサを用いることができる。
そして、予め、バッテリに接続される負荷の基準抵抗値を求めておき、エンジン始動に際しての開放電圧値、電流値と電圧値との関係に基づき求めたバッテリの内部抵抗値、前記基準抵抗値を前記式(1)に代入して、放電時電圧値を算出するので、放電時電圧値の誤差が低減する。従って、これを用いたSOH及びSOCの算出値の誤差が低減し、良好にバッテリの状態を推定することができる。
According to the present invention, an inexpensive current sensor can be used.
Then, a reference resistance value of a load connected to the battery is obtained in advance, and an open circuit voltage value at the time of starting the engine, an internal resistance value of the battery obtained based on a relationship between a current value and a voltage value, and the reference resistance value are obtained. Since the voltage value at the time of discharge is calculated by substituting into the equation (1), the error of the voltage value at the time of discharge is reduced. Accordingly, errors in the calculated values of SOH and SOC using this can be reduced, and the state of the battery can be estimated well.

以下に、本発明をその実施の形態を示す図面に基づき具体的に説明する。
図1は、本発明の実施の形態に係るバッテリ状態推定装置2を備える電源制御装置1の概略構成を示すブロック図である。
電源制御装置1は、バッテリ(車載バッテリ)5と、バッテリ5の状態を管理するバッテリ状態推定装置2と、バッテリ5の出力電圧値(端子電圧値)を検出してバッテリ状態推定装置2に与える電圧センサ6と、バッテリ5の電流値を検出してバッテリ状態推定装置2に与える電流センサ12とを備えている。バッテリ状態推定装置2は、マイクロコンピュータを用いてなり、記憶部31を有する処理部3と、出力部4とを備えている。出力部4は、例えば液晶表示装置によって構成されており、バッテリ状態推定装置2の処理部3が推定したSOC、及びSOHを表示することで、ユーザに警告を行う。
電流センサ12は、予め抵抗値の分かった抵抗体を配線に接続し、この抵抗体(シャント抵抗)の電圧降下に基づいて電流値を測定するシャント式のセンサ、磁電変換素子(ホール素子)を利用して被測定電流を非接触で測定するホール式のセンサ等、いずれの方式のセンサを用いてもよい。
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
FIG. 1 is a block diagram showing a schematic configuration of a power supply control device 1 including a battery state estimation device 2 according to an embodiment of the present invention.
The power supply control device 1 detects the output voltage value (terminal voltage value) of the battery 5, the battery state estimation device 2 that manages the state of the battery 5, and the battery state estimation device 2. A voltage sensor 6 and a current sensor 12 that detects the current value of the battery 5 and supplies the current value to the battery state estimation device 2 are provided. The battery state estimation device 2 uses a microcomputer and includes a processing unit 3 having a storage unit 31 and an output unit 4. The output unit 4 is configured by, for example, a liquid crystal display device, and warns the user by displaying the SOC and SOH estimated by the processing unit 3 of the battery state estimation device 2.
The current sensor 12 includes a shunt-type sensor, a magnetoelectric conversion element (Hall element) that connects a resistor whose resistance value is known in advance to the wiring and measures a current value based on a voltage drop of the resistor (shunt resistance). Any type of sensor may be used, such as a hall-type sensor that utilizes the contactless measurement of the current to be measured.

イグニッションスイッチ(以下、IG−SWという)7をオンにすることにより、バッテリ5からスタータ13に電力が供給され、バッテリ5と点火装置8とが導通されて、エンジン9の始動動作が開始される。
エンジン9が回転している場合、オルタネータ(交流発電機)10によってエンジン9の回転力が電力エネルギーに変換され、発生した電力が負荷11に供給されるとともに、余剰の電力を用いてバッテリ5の充電が行われる。
By turning on an ignition switch (hereinafter referred to as IG-SW) 7, electric power is supplied from the battery 5 to the starter 13, the battery 5 and the ignition device 8 are conducted, and the engine 9 starts to start. .
When the engine 9 is rotating, the alternator (alternator) 10 converts the rotational force of the engine 9 into electric power energy, the generated electric power is supplied to the load 11, and the surplus electric power is used for the battery 5. Charging is performed.

以下に、上述の構成のバッテリ状態推定装置2の処理部3の動作を、それを示す図2のフローチャートを参照しながら説明する。
まず、処理部3は、IG−SW7がオンされたか否かを判定する(S1)。処理部3は、IG−SW7がオンされていないと判定した場合(S1でNO)、処理をステップS1へ戻す。
処理部3は、IG−SW7がオンされたと判定した場合(S1でYES)、開放電圧値VORを取得し、記憶部31に記憶させる(S2)。本実施の形態においては、開放電圧値VORとして、IG−SW7のオンの直前に取得された電圧値を用いるが、これに限定されるものではない。
Below, operation | movement of the process part 3 of the battery state estimation apparatus 2 of the above-mentioned structure is demonstrated, referring the flowchart of FIG. 2 which shows it.
First, the processing unit 3 determines whether or not the IG-SW 7 is turned on (S1). If it is determined that the IG-SW 7 is not turned on (NO in S1), the processing unit 3 returns the process to step S1.
When it determines with IG-SW7 having been turned on (it is YES at S1), the process part 3 acquires the open circuit voltage value VOR , and memorize | stores it in the memory | storage part 31 (S2). In the present embodiment, the voltage value acquired immediately before the IG-SW 7 is turned on is used as the open circuit voltage value V OR , but is not limited to this.

次に、処理部3は、バッテリ5に負荷LS (バッテリ5の内部抵抗以外の負荷であって、負荷11、スタータ13、その他の抵抗要素等を含む)を接続して一時的に電圧が落ち込む前の電流値及び電圧値、すなわち、スタータへの突入電流により大電流が流れてバッテリ5の出力電圧値が最低になる前の、プランジャ(図示せず)の駆動時の電流値及び電圧値を3以上の時点で取得する(S3)。 Next, the processing unit 3 connects the load L S (a load other than the internal resistance of the battery 5, including the load 11, the starter 13, and other resistance elements) to the battery 5, and temporarily receives a voltage. Current value and voltage value before dropping, that is, current value and voltage value when the plunger (not shown) is driven before a large current flows due to the inrush current to the starter and the output voltage value of the battery 5 becomes the minimum. Are acquired at three or more times (S3).

図3は、IG−SW7オン後の経過時間と電流値との関係、及び前記経過時間と電圧値との関係を示すグラフである。図3において、横軸は経過時間、縦軸は電圧値及び電流値である。
図3の楕円状部分に示す、出力電圧値が最小になり、電流値が最大になる前のタイミングにおいて、電流値及び電圧値を取得する。
FIG. 3 is a graph showing the relationship between the elapsed time after the IG-SW 7 is turned on and the current value, and the relationship between the elapsed time and the voltage value. In FIG. 3, the horizontal axis represents elapsed time, and the vertical axis represents voltage value and current value.
The current value and the voltage value are acquired at the timing before the output voltage value is minimized and the current value is maximized, as shown in the elliptical part of FIG.

そして、処理部3は、図4に示すように、取得した(電流値、電圧値)をプロットし、最小2乗法により、図4の破線で表し、次の式(3)で示される直線の関係式を成立させ、バッテリ5の内部抵抗値RB を求める(S4)。
V=VOR−RB ×I ・・・(3)
但し、
V:電圧値
I:電流値
Then, as shown in FIG. 4, the processing unit 3 plots the acquired (current value, voltage value), and represents the straight line represented by the following equation (3) by the least square method and represented by the broken line in FIG. 4. It passed a relational expression, and calculates an internal resistance value R B of the battery 5 (S4).
V = V OR -R B × I ··· (3)
However,
V: Voltage value I: Current value

次に、処理部3は、下限電圧値VLRを算出する(S5)。
予め、処理部3の記憶部31には前記負荷Ls の基準抵抗値RSIが記憶されている。
基準抵抗値RSIは、工場における車両組立完成時、出荷時、車両がエンドユーザに引き渡されたとき、又はエンドユーザに引き渡し後の一定期間内等のバッテリ5が新品、かつ満充電の状態にある場合(基準)の基準開放電圧値VOIF 、負荷Ls を接続して放電したとき放電時電圧値である基準下限電圧値VLIF 、及び上記と同様にして求めたバッテリ5の基準内部抵抗値RBIF を用いて次の式(4)により求められる。
SI=VLIF ×RBIF /(VOIF −VLIF ) ・・・(4)
基準抵抗値RSIは、バッテリ5の新品時の複数回の算出値の平均値であるのが好ましい。また、基準抵抗値RSIは、バッテリ5が新品、かつ満充電の状態にある場合の各測定値を用いる場合に限定されず、バッテリ5が新品であり、略満充電の状態にある場合の開放電圧値VOI、下限電圧値VLI、及び上記と同様にして求めたバッテリ5の基準内部抵抗値RBIを用いることにしてもよい。
Next, the processing unit 3 calculates a lower limit voltage value V LR (S5).
Advance, in the storage unit 31 of the processing unit 3 reference resistance value R SI of the load L s are stored.
The reference resistance value RSI indicates that the battery 5 is new and fully charged when the vehicle assembly is completed in the factory, at the time of shipment, when the vehicle is delivered to the end user, or within a certain period after delivery to the end user. In some cases (reference), the reference open circuit voltage value V OIF , the reference lower limit voltage value V LIF which is the voltage value at the time of discharge when the load L s is connected and discharged, and the reference internal resistance of the battery 5 obtained in the same manner as described above Using the value R BIF , the following equation (4) is obtained.
R SI = V LIF × R BIF / (V OIF −V LIF ) (4)
The reference resistance value RSI is preferably an average value of a plurality of calculated values when the battery 5 is new. Further, the reference resistance value RSI is not limited to the case where each measured value when the battery 5 is new and fully charged is used, but when the battery 5 is new and is almost fully charged. The open circuit voltage value V OI , the lower limit voltage value V LI , and the reference internal resistance value R BI of the battery 5 obtained in the same manner as described above may be used.

処理部3は、記憶部31から前記基準抵抗値RSIを読み出し、該基準抵抗値RSI、前記内部抵抗値RB 及び開放電圧値VORを前記式(1)に代入して、下限電圧値VLRを算出する。 Processing unit 3 from the storage unit 31 reads the reference resistance value R SI, by substituting the reference resistance value R SI, the internal resistance value R B and the open circuit voltage value V OR in the formula (1), the lower limit voltage The value V LR is calculated.

次に、処理部3は、SOC、及びSOHを算出する(S6)。
処理部3の記憶部31には、以下の基準放電特性が記憶されている。
記憶部31には、前記基準開放電圧値VOIF 、基準内部抵抗値RBIF 、及び前記基準下限電圧値VLIF 、及びバッテリ5の充電残容量が略0である場合の開放電圧値である最低基準開放電圧値VOIE の測定値が記憶されている。
Next, the processing unit 3 calculates SOC and SOH (S6).
The storage unit 31 of the processing unit 3 stores the following reference discharge characteristics.
The storage unit 31 stores the reference open voltage value V OIF , the reference internal resistance value R BIF , the reference lower limit voltage value V LIF , and the lowest open circuit voltage value when the remaining charge of the battery 5 is approximately zero. The measured value of the reference open circuit voltage value V OIE is stored.

そして、記憶部31には、新品のバッテリの充電残容量が低下した場合の開放電圧値VOIにおける内部抵抗値RBIの前記基準内部抵抗値RBIF に対する変化率(RBI/RBIF )の測定値が記憶され、次の式(5)に示す前記開放電圧値VOIの関数F(VOI)として記憶されている。
F(VOI)=RBI/RBIF ・・・(5)
前記関数F(VOI)と、前記基準開放電圧値VOIF 及び前記基準下限電圧値VLIF と、次の式(6)とを用いて、新品のバッテリの充電残容量が低下した場合の前記開放電圧値VOIに対する下限電圧値VLIの関係を示すグラフG1 が記憶されている。
LI=VLK・VOI/{(VOI−VLK)・F(VOI)+VLK}・・・(6)
但し、VLK=VLIF ・VOI/VOIF
図5に、前記開放電圧値VOIに対する下限電圧値VLIの関係を表すグラフG1 を示す。
The storage unit 31 stores a rate of change (R BI / R BIF ) of the internal resistance value R BI with respect to the reference internal resistance value R BIF in the open circuit voltage value V OI when the remaining charge capacity of a new battery is reduced. The measured value is stored and stored as a function F (V OI ) of the open-circuit voltage value V OI shown in the following equation (5).
F (V OI ) = R BI / R BIF (5)
Using the function F (V OI ), the reference open circuit voltage value V OIF and the reference lower limit voltage value V LIF, and the following equation (6), A graph G1 showing the relationship of the lower limit voltage value V LI to the open circuit voltage value V OI is stored.
V LI = V LK · V OI / {(V OI −V LK ) · F (V OI ) + V LK } (6)
However, V LK = V LIF・ V OI / V OIF
FIG. 5 shows a graph G1 representing the relationship of the lower limit voltage value V LI to the open circuit voltage value V OI .

上述の式(6)は、以下のようにして導出される。
前記基準抵抗値RSI、内部抵抗値RBI、開放電圧値VOI、下限電圧値VLIの間には、次の式(7)が成立する。
SI/RBI=VLI/(VOI−VLI) ・・・(7)
ここで、式(5)よりRBI=F(VOI)・RBIF であるので、次の式(8)が得られる。
SI/(F(VOI)・RBIF )=VLI/(VOI−VLI) ・・・(8)
また、パラメータRS 、前記基準開放電圧値がVOIF である場合の内部抵抗値RBIF 、VOIF 、VLIF の間には、次の式(8)が成立する。
SI/RBIF =VLIF /(VOIF −VLIF ) ・・・(9)
式(9)の右辺を式(8)のパラメータRSI/RBIF に代入したものをパラメータVLIについて解くことで、前記式(6)が得られる。
The above equation (6) is derived as follows.
The following equation (7) is established among the reference resistance value R SI , the internal resistance value R BI , the open-circuit voltage value V OI , and the lower limit voltage value V LI .
R SI / R BI = V LI / (V OI −V LI ) (7)
Here, since R BI = F (V OI ) · R BIF from the equation (5), the following equation (8) is obtained.
R SI / (F (V OI ) · R BIF ) = V LI / (V OI −V LI ) (8)
Further, the following equation (8) is established between the parameter R S and the internal resistance values R BIF , V OIF , and V LIF when the reference open circuit voltage value is V OIF .
R SI / R BIF = V LIF / (V OIF −V LIF ) (9)
The expression (6) is obtained by solving the parameter V LI by substituting the right side of the expression (9) into the parameter R SI / R BIF of the expression (8).

処理部3は、記憶部31に記憶された前記開放電圧値VOR、算出した下限電圧値VLR、及び前記グラフG1 を用いて、SOC、及びSOHを求める。なお、図5には、使用開始後のバッテリ5の放電特性を表すグラフG2 も示してある。
まず、SOHの算出処理について説明する。処理部3は、記憶部31に記憶されている前記グラフG1 上における下限電圧値VLIが下限電圧値VLRと等しい値である場合の開放電圧値を対応開放電圧値VOSとして導出する。又は、前記式(6)における変数VLIに、上述のようにして算出した下限電圧値VLRを代入した場合の変数VOIの値を対応開放電圧値VOSとして導出する。
The processing unit 3 obtains SOC and SOH using the open circuit voltage value V OR stored in the storage unit 31, the calculated lower limit voltage value V LR , and the graph G1. FIG. 5 also shows a graph G2 representing the discharge characteristics of the battery 5 after the start of use.
First, SOH calculation processing will be described. The processing unit 3 derives the open circuit voltage value when the lower limit voltage value V LI on the graph G1 stored in the storage unit 31 is equal to the lower limit voltage value V LR as the corresponding open circuit voltage value V OS . Alternatively, the value of the variable V OI when the lower limit voltage value V LR calculated as described above is substituted for the variable V LI in the equation (6) is derived as the corresponding open circuit voltage value V OS .

次に、基準開放電圧値VOIF と開放電圧値VORとの差である第1差分値D11の、基準開放電圧値VOIF と対応開放電圧値VOSとの差である第2差分値D12に対する割合を求めることにより、その時点におけるバッテリ5のSOHが求められる。 Then, the reference open circuit voltage value V OIF to be the difference between the open-circuit voltage value V OR of the first difference value D11, the second difference value and the reference open circuit voltage value V OIF is the difference between the corresponding open-circuit voltage value V OS D12 Is obtained, the SOH of the battery 5 at that time is obtained.

次に、SOCの算出処理について説明する。この算出処理は、SOHの算出処理において取得された下限電圧値VLR及び対応開放電圧値VOSを用いて行われる。
その時点におけるバッテリ5の充電残容量が0である場合の開放電圧値である最低開放電圧値VORE が、次のようにして導出される。すなわち、予め取得された基準開放電圧値VOIF と最低開放電圧値VORE との差である第3差分値D13の、基準開放電圧値VOIF と最低基準開放電圧値VOIE との差である第4差分値D14に対する比が、前記第2差分値D12に対する前記第1差分値D11の比と等しくなるようにして、最低開放電圧値VORE が導出される。
Next, the SOC calculation process will be described. This calculation process is performed using the lower limit voltage value V LR and the corresponding open circuit voltage value V OS acquired in the SOH calculation process.
A minimum open-circuit voltage value V ORE that is an open-circuit voltage value when the remaining charge capacity of the battery 5 at that time is 0 is derived as follows. That is, the difference between the reference open circuit voltage value V OIF and the minimum reference open circuit voltage value V OIE of the third differential value D13 which is the difference between the reference open circuit voltage value V OIF and the minimum open circuit voltage value V ORE acquired in advance. The lowest open-circuit voltage value V ORE is derived such that the ratio to the fourth difference value D14 is equal to the ratio of the first difference value D11 to the second difference value D12.

そして、開放電圧値VORと最低開放電圧値VORE との差である第5差分値D15の、基準開放電圧値VOIF と最低開放電圧値VORE との差である第6差分値D16に対する割合を求めることにより、その時点におけるバッテリ5のSOCが求められる。 Then, a difference between the open-circuit voltage value V OR and the lowest open-circuit voltage value V ORE fifth differential value D15, for a sixth differential value D16 which is a difference between the reference open circuit voltage value V OIF and the minimum open circuit voltage value V ORE By obtaining the ratio, the SOC of the battery 5 at that time is obtained.

本実施の形態においては、バッテリ5に接続される負荷LS の基準抵抗値RSIを予め記憶しておき、該基準抵抗値RSIを用いて下限電圧値VLRを算出し、算出した下限電圧値VLRに基づきSOH及びSOCを算出するので、下限電圧値VLRの誤差が低減され、SOH及びSOCの算出値の誤差が低減され、良好にバッテリの状態が推定される。
そして、スタータ13への突入電流が流れる前の比較的小さい電流値を用いて、内部抵抗値RB を求め、下限電圧値VLRを算出するので、電流センサ12として、小電流を測定するための安価なセンサを用いることができる。
In the present embodiment, the reference resistance value R SI of the load L S connected to the battery 5 is stored in advance, the lower limit voltage value V LR is calculated using the reference resistance value R SI , and the calculated lower limit since calculating the SOH and SOC based on the voltage value V LR, reduced errors in the lower limit voltage value V LR is reduced error of the calculated value of the SOH and SOC, good condition of the battery is estimated.
Since the internal resistance value R B is obtained using the relatively small current value before the inrush current to the starter 13 flows, and the lower limit voltage value V LR is calculated, the current sensor 12 measures a small current. Inexpensive sensors can be used.

以下、本発明を実施例に基づき具体的に説明する。
[実施例1]
前記実施の形態に係るバッテリ状態推定装置2を用い、内部抵抗値RB を求めた上で、前記式(1)に従い、バッテリ5の下限電圧値VLRの算出値を求めた。下記の表1に、7回、下限電圧値VLRを算出した場合の算出値、標準偏差、最大値、最小値、及び最大値と最小値との差(ΔV)を示す。
なお、実施例1において、電流センサ12として、精度が0.3%であるものを用いた。
Hereinafter, the present invention will be specifically described based on examples.
[Example 1]
The battery state estimation device 2 according to the above embodiment was used to determine the internal resistance value R B, and then the calculated value of the lower limit voltage value V LR of the battery 5 was determined according to the equation (1). Table 1 below shows the calculated value, standard deviation, maximum value, minimum value, and difference (ΔV) between the maximum value and the minimum value when the lower limit voltage value V LR is calculated seven times.
In Example 1, a current sensor 12 having an accuracy of 0.3% was used.

Figure 2009214766
Figure 2009214766

[比較例1]
実施例1において、下限電圧値VLRの実測値(検出値)を実施例1の算出値に対応させて、前記表1に示す。
[Comparative Example 1]
In Example 1, the measured value (detected value) of the lower limit voltage value V LR is shown in Table 1 in association with the calculated value of Example 1.

表1より、下限電圧値VLRの算出値の前記ΔVは、実測値の73mVから60mVまで13mV減じていることが分かる。
これはSOCに換算した場合、誤差が1%改善したことになる。従って、精度が0.1%である電流センサを用いた場合、SOCの誤差が3%改善すると推定される。
以上より、本発明によれば、下限電圧値VLRの誤差が低減し、SOH及びSOCの算出値の誤差が低減して、良好にバッテリの状態を推定することができることが分かる。
From Table 1, it can be seen that ΔV of the calculated value of the lower limit voltage value V LR is reduced by 13 mV from the actually measured value of 73 mV to 60 mV.
This is an error improvement of 1% when converted to SOC. Therefore, when a current sensor with an accuracy of 0.1% is used, it is estimated that the SOC error is improved by 3%.
As described above, according to the present invention, it is understood that the error of the lower limit voltage value V LR is reduced, the errors of the calculated values of SOH and SOC are reduced, and the battery state can be estimated well.

本発明の実施の形態に係るバッテリ状態推定装置を備える電源制御装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of a power supply control apparatus provided with the battery state estimation apparatus which concerns on embodiment of this invention. バッテリ状態推定装置の処理部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the process part of a battery state estimation apparatus. IG−SWオン後の経過時間と電流値との関係、及び前記経過時間と電圧値との関係を示すグラフである。It is a graph which shows the relationship between the elapsed time after IG-SW ON and a current value, and the relationship between the said elapsed time and a voltage value. 電流値と電圧値との関係を示すグラフである。It is a graph which shows the relationship between an electric current value and a voltage value. 開放電圧値に対する下限電圧値の関係を示すグラフである。It is a graph which shows the relationship of the lower limit voltage value with respect to an open circuit voltage value. 同一のバッテリにつき6回、下限電圧値を測定した場合の結果を示すグラフである。It is a graph which shows the result at the time of measuring a lower limit voltage value 6 times for the same battery.

符号の説明Explanation of symbols

1 電源制御装置
2 バッテリ状態推定装置
3 処理部
31 記憶部
4 出力部
5 バッテリ
6 電圧センサ
7 イグニッションスイッチ
8 点火装置
9 エンジン
10 オルタネータ
11 負荷
12 電流センサ
13 スタータ
DESCRIPTION OF SYMBOLS 1 Power supply control apparatus 2 Battery state estimation apparatus 3 Processing part 31 Memory | storage part 4 Output part 5 Battery 6 Voltage sensor 7 Ignition switch 8 Ignition apparatus 9 Engine 10 Alternator 11 Load 12 Current sensor 13 Starter

Claims (3)

エンジンに連動して発電する車載発電機によって充電されるバッテリの電圧値及び電流値を検出するように構成され、前記バッテリの所定基準時の基準開放電圧値と、該バッテリに所定の負荷を接続して放電した場合の出力電圧値である基準放電時電圧値との関係を示す放電特性を記憶しておき、
前記放電特性、前記バッテリのエンジン始動に際しての開放電圧値、及び放電時電圧値に基づき、満充電容量の前記バッテリの所定基準時の満充電容量に対する割合で表される劣化度合、及び充電率を算出して、前記バッテリの状態を推定するバッテリ状態推定装置において、
前記バッテリに前記負荷を接続して一時的に電圧が落ち込む前の電圧値及び電流値を3以上の時点で取得する手段と、
取得した電流値と電圧値との関係に基づき、前記バッテリの内部抵抗値を求める手段と、
前記バッテリの所定基準時の内部抵抗値に基づき前記負荷の基準抵抗値を求める手段と、
該基準抵抗値を記憶する手段と、
前記開放電圧値、及び内部抵抗値を取得する手段と、
前記放電時電圧値を次の式(1)により算出する放電時電圧値算出手段と
LR=VOR×RSI/(RB +RSI) ・・・(1)
但し、
LR:放電時電圧値
OR:開放電圧値
SI:負荷の基準抵抗値
B :内部抵抗値
を備え、
前記劣化度合、及び充電率は、算出した放電時電圧値を用いて算出するように構成されていることを特徴とするバッテリ状態推定装置。
It is configured to detect a voltage value and a current value of a battery charged by an on-vehicle generator that generates power in conjunction with the engine, and a reference open voltage value at a predetermined reference time of the battery and a predetermined load connected to the battery The discharge characteristics indicating the relationship with the reference discharge voltage value, which is the output voltage value when discharged, are stored,
Based on the discharge characteristics, the open-circuit voltage value at the time of starting the engine of the battery, and the voltage value at the time of discharge, the degree of deterioration expressed by the ratio of the full charge capacity to the full charge capacity at the predetermined reference time of the battery, and the charge rate In the battery state estimation device for calculating and estimating the state of the battery,
Means for connecting the load to the battery and acquiring a voltage value and a current value before the voltage temporarily drops at a time of 3 or more;
Based on the relationship between the acquired current value and voltage value, means for determining the internal resistance value of the battery;
Means for determining a reference resistance value of the load based on an internal resistance value at a predetermined reference time of the battery;
Means for storing the reference resistance value;
Means for obtaining the open-circuit voltage value and the internal resistance value;
Discharge voltage value calculating means for calculating the discharge voltage value by the following equation (1): V LR = V OR × R SI / (R B + R SI ) (1)
However,
V LR : Voltage value at discharge V OR : Open voltage value R SI : Load reference resistance value R B : Internal resistance value
The deterioration state and the charging rate are configured to be calculated using the calculated discharging voltage value.
前記基準抵抗値は、複数回の算出値の平均値である請求項1に記載のバッテリ状態推定装置。   The battery state estimation device according to claim 1, wherein the reference resistance value is an average value of a plurality of calculated values. エンジンに連動して発電する車載発電機によって充電されるバッテリの電圧値及び電流値を検出するように構成され、前記バッテリの所定基準時の基準開放電圧値と、該バッテリに所定の負荷を接続して放電した場合の出力電圧値である基準放電時電圧値との関係を示す放電特性を記憶しておき、
前記放電特性、前記バッテリのエンジン始動に際しての開放電圧値、及び放電時電圧値に基づき、満充電容量の前記バッテリの基準時の満充電容量に対する割合で表される劣化度合、及び充電率を算出して、前記バッテリの状態を推定するバッテリ状態推定方法において、
前記バッテリに前記負荷を接続して一時的に電圧が落ち込む前の電流値及び電圧値を3以上の時点で取得するステップと、
取得した電流値と電圧値との関係に基づき、前記バッテリの内部抵抗値を求めるステップと、
前記バッテリの所定基準時の内部抵抗値に基づき前記負荷の基準抵抗値を求めるステップと、
前記開放電圧値、及び内部抵抗値を取得するステップと、
前記放電時電圧値を次の式(2)により算出するステップと
LR=VOR×RSI/(RB +RSI) ・・・(2)
但し、
LR:放電時電圧値
OR:開放電圧値
SI:負荷の基準抵抗値
B :内部抵抗値
を有し、
前記劣化度合、及び充電率は、算出した放電時電圧値を用いて算出するように構成されていることを特徴とするバッテリ状態推定方法。
It is configured to detect a voltage value and a current value of a battery charged by an on-vehicle generator that generates power in conjunction with the engine, and a reference open voltage value at a predetermined reference time of the battery and a predetermined load connected to the battery The discharge characteristics indicating the relationship with the reference discharge voltage value, which is the output voltage value when discharged, are stored,
Based on the discharge characteristics, the open-circuit voltage value at the time of starting the engine of the battery, and the voltage value at the time of discharge, the degree of deterioration expressed by the ratio of the full charge capacity to the full charge capacity at the reference time of the battery, and the charge rate are calculated. In the battery state estimation method for estimating the state of the battery,
Obtaining a current value and a voltage value before the voltage drops temporarily by connecting the load to the battery at a time of 3 or more;
Based on the relationship between the acquired current value and voltage value, obtaining the internal resistance value of the battery;
Obtaining a reference resistance value of the load based on an internal resistance value at a predetermined reference time of the battery;
Obtaining the open circuit voltage value and the internal resistance value;
The step of calculating the voltage value at the time of discharge by the following equation (2) and V LR = V OR × R SI / (R B + R SI ) (2)
However,
V LR : Discharge voltage value V OR : Open circuit voltage value R SI : Load reference resistance value R B : Internal resistance value
The battery state estimation method, wherein the deterioration degree and the charging rate are configured to be calculated using the calculated discharge voltage value.
JP2008061748A 2008-03-11 2008-03-11 Battery state estimation device and battery state estimation method Expired - Fee Related JP5112915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008061748A JP5112915B2 (en) 2008-03-11 2008-03-11 Battery state estimation device and battery state estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008061748A JP5112915B2 (en) 2008-03-11 2008-03-11 Battery state estimation device and battery state estimation method

Publications (2)

Publication Number Publication Date
JP2009214766A true JP2009214766A (en) 2009-09-24
JP5112915B2 JP5112915B2 (en) 2013-01-09

Family

ID=41187106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008061748A Expired - Fee Related JP5112915B2 (en) 2008-03-11 2008-03-11 Battery state estimation device and battery state estimation method

Country Status (1)

Country Link
JP (1) JP5112915B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042337A (en) * 2010-08-19 2012-03-01 Calsonic Kansei Corp Capacity maintenance rate calculation apparatus for secondary battery and capacity maintenance rate calculation method
EP2657715A2 (en) 2012-04-25 2013-10-30 Yokogawa Electric Corporation Battery monitoring apparatus and wireless field device
JP2014119351A (en) * 2012-12-17 2014-06-30 Mitsubishi Heavy Ind Ltd Parameter estimation device, parameter estimation method, power storage system, and program
JP2015504648A (en) * 2011-11-30 2015-02-12 ハー−テク アーゲー Method and apparatus for charging a rechargeable battery
KR20160097030A (en) * 2015-02-06 2016-08-17 삼성전자주식회사 Method and apparatus for estimating state of battery based on battery charging voltage data
CN106707029A (en) * 2015-11-13 2017-05-24 北汽福田汽车股份有限公司 Power cell internal resistance calculation method, and health degree determination method and device
CN114844916A (en) * 2021-02-02 2022-08-02 马自达汽车株式会社 Method for supporting unified management of batteries, server and terminal device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093287A1 (en) * 2005-03-04 2006-09-08 Autonetworks Technologies, Ltd. Battery state monitor device
JP2006280194A (en) * 2005-03-04 2006-10-12 Auto Network Gijutsu Kenkyusho:Kk Device and method for managing battery state
JP2007024756A (en) * 2005-07-20 2007-02-01 Auto Network Gijutsu Kenkyusho:Kk Battery state management device
JP2007028844A (en) * 2005-07-20 2007-02-01 Auto Network Gijutsu Kenkyusho:Kk Battery state management method
JP2007055497A (en) * 2005-08-25 2007-03-08 Auto Network Gijutsu Kenkyusho:Kk Battery condition control device
JP2007078525A (en) * 2005-09-14 2007-03-29 Auto Network Gijutsu Kenkyusho:Kk Method of controlling battery status
JP2007093358A (en) * 2005-09-28 2007-04-12 Auto Network Gijutsu Kenkyusho:Kk Battery state display device
JP2007179968A (en) * 2005-12-28 2007-07-12 Auto Network Gijutsu Kenkyusho:Kk Battery status control device
JP2007178382A (en) * 2005-12-28 2007-07-12 Auto Network Gijutsu Kenkyusho:Kk Battery state managing apparatus
JP2007218666A (en) * 2006-02-15 2007-08-30 Auto Network Gijutsu Kenkyusho:Kk Battery state management device
JP2007218107A (en) * 2006-02-14 2007-08-30 Auto Network Gijutsu Kenkyusho:Kk Idling stop control device
JP2007322171A (en) * 2006-05-30 2007-12-13 Auto Network Gijutsu Kenkyusho:Kk Battery state estimation device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093287A1 (en) * 2005-03-04 2006-09-08 Autonetworks Technologies, Ltd. Battery state monitor device
JP2006280194A (en) * 2005-03-04 2006-10-12 Auto Network Gijutsu Kenkyusho:Kk Device and method for managing battery state
JP2007024756A (en) * 2005-07-20 2007-02-01 Auto Network Gijutsu Kenkyusho:Kk Battery state management device
JP2007028844A (en) * 2005-07-20 2007-02-01 Auto Network Gijutsu Kenkyusho:Kk Battery state management method
JP2007055497A (en) * 2005-08-25 2007-03-08 Auto Network Gijutsu Kenkyusho:Kk Battery condition control device
JP2007078525A (en) * 2005-09-14 2007-03-29 Auto Network Gijutsu Kenkyusho:Kk Method of controlling battery status
JP2007093358A (en) * 2005-09-28 2007-04-12 Auto Network Gijutsu Kenkyusho:Kk Battery state display device
JP2007179968A (en) * 2005-12-28 2007-07-12 Auto Network Gijutsu Kenkyusho:Kk Battery status control device
JP2007178382A (en) * 2005-12-28 2007-07-12 Auto Network Gijutsu Kenkyusho:Kk Battery state managing apparatus
JP2007218107A (en) * 2006-02-14 2007-08-30 Auto Network Gijutsu Kenkyusho:Kk Idling stop control device
JP2007218666A (en) * 2006-02-15 2007-08-30 Auto Network Gijutsu Kenkyusho:Kk Battery state management device
JP2007322171A (en) * 2006-05-30 2007-12-13 Auto Network Gijutsu Kenkyusho:Kk Battery state estimation device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042337A (en) * 2010-08-19 2012-03-01 Calsonic Kansei Corp Capacity maintenance rate calculation apparatus for secondary battery and capacity maintenance rate calculation method
JP2015504648A (en) * 2011-11-30 2015-02-12 ハー−テク アーゲー Method and apparatus for charging a rechargeable battery
US9793733B2 (en) 2011-11-30 2017-10-17 H-Tech Ag Method and apparatus for charging rechargeable cells
EP2657715A2 (en) 2012-04-25 2013-10-30 Yokogawa Electric Corporation Battery monitoring apparatus and wireless field device
US9594120B2 (en) 2012-04-25 2017-03-14 Yokogawa Electric Corporation Battery monitoring apparatus and wireless field device
JP2014119351A (en) * 2012-12-17 2014-06-30 Mitsubishi Heavy Ind Ltd Parameter estimation device, parameter estimation method, power storage system, and program
KR20160097030A (en) * 2015-02-06 2016-08-17 삼성전자주식회사 Method and apparatus for estimating state of battery based on battery charging voltage data
KR102356475B1 (en) 2015-02-06 2022-01-27 삼성전자주식회사 Method and apparatus for estimating state of battery based on battery charging voltage data
CN106707029A (en) * 2015-11-13 2017-05-24 北汽福田汽车股份有限公司 Power cell internal resistance calculation method, and health degree determination method and device
CN106707029B (en) * 2015-11-13 2020-10-23 北京宝沃汽车股份有限公司 Method for calculating internal resistance value of power battery and method and device for determining health degree
CN114844916A (en) * 2021-02-02 2022-08-02 马自达汽车株式会社 Method for supporting unified management of batteries, server and terminal device
CN114844916B (en) * 2021-02-02 2023-11-17 马自达汽车株式会社 Method, server and terminal device for supporting unified management of batteries

Also Published As

Publication number Publication date
JP5112915B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
CN107076802B (en) Secondary battery state detection device and secondary battery state detection method
JP5242997B2 (en) Battery state management method and battery state management apparatus
JP5112915B2 (en) Battery state estimation device and battery state estimation method
JP6040724B2 (en) Battery remaining capacity calculation device and battery remaining capacity calculation method
US10295605B2 (en) State detecting method and state detecting device of secondary battery
US8203305B1 (en) Enhanced voltage-based fuel gauges and methods
JP5070790B2 (en) Battery state detection system and automobile equipped with the same
JP4907519B2 (en) Battery status monitoring device
WO2019230033A1 (en) Parameter estimation device, parameter estimation method, and computer program
JP5644190B2 (en) Battery state estimation device and battery information notification device
JP2007179968A (en) Battery status control device
JP2015215272A (en) Secondary battery state detection device and secondary battery state detection method
JP2009241633A (en) Battery state detection system, and automobile having the same
JP2007322171A (en) Battery state estimation device
JP5129029B2 (en) Open voltage value estimation method and open voltage value estimation apparatus
JP2012189373A (en) Secondary battery condition detection device and secondary battery condition detection method
JP6498920B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2016099251A (en) Secondary battery state detection device and secondary battery state detection method
JP4647509B2 (en) Battery state management device and management method
JP4619709B2 (en) Battery state management device
JP2008053126A (en) Battery deterioration judgement device
JP5112920B2 (en) Deterioration degree calculation device and deterioration degree calculation method
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
JP5094480B2 (en) Battery state estimation device and battery state estimation method
JP2007261433A (en) Battery control device and battery control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5112915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees