JP2001004288A - Method of controlling cooling of exhaust gas, and cooling controller - Google Patents

Method of controlling cooling of exhaust gas, and cooling controller

Info

Publication number
JP2001004288A
JP2001004288A JP11172504A JP17250499A JP2001004288A JP 2001004288 A JP2001004288 A JP 2001004288A JP 11172504 A JP11172504 A JP 11172504A JP 17250499 A JP17250499 A JP 17250499A JP 2001004288 A JP2001004288 A JP 2001004288A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
cooling device
cooling
spray water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11172504A
Other languages
Japanese (ja)
Inventor
Shinjiro Uchida
親司朗 内田
Isao Arimitsu
功 有光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11172504A priority Critical patent/JP2001004288A/en
Publication of JP2001004288A publication Critical patent/JP2001004288A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To stably cool exhaust gas to an objective temperature, by computing the quantity of incoming heat of exhaust gas from the temperature of exhaust gas on entry side and the rate of flow of exhaust gas thereby getting the quantity of primary spray water, and correcting this based on the difference between the temperature of exhaust gas on discharge side and the objective temperature, in the case of spraying water to the exhaust gas generated from an electric furnace or the like thereby cooling it. SOLUTION: A flow meter 3 for measuring the rate of flow of exhaust gas and a thermometer 4 for measuring the temperature of exhaust gas are installed in the water-cooling flue 2 on entry side of a cooler 1, also a thermometer 9 for measuring the temperature of exhaust gas after cooling is installed on the delivery side of the cooler 1, and each measured value is inputted into a computing element 5. Then, the computing element 5 computes the quantity of incoming heat of exhaust gas and the quantity of primary spray water, based on the rate of flow of the exhaust gas and the temperature on entry side of the exhaust gas, and also a corrective computing element 12 corrects the quantity of primary spray water, based on the difference between the temperature on delivery side of the exhaust gas, and the objective temperature on delivery side of the exhaust gas. This computing element sends the quantity of spray water as a command to a regulator 8, and controls the aperture of the valve of a flow controller 7, thereby cooling the temperature of exhaust gas to objective temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属材料を溶解あ
るいは精錬する電気炉から溶解、精錬、昇温中に発生す
る排ガス、あるいは金属材料を電気炉内又はスクラップ
予熱専用装置にて予熱するときに発生する排ガスを排ガ
ス出側目標温度まで冷却する冷却装置の冷却制御方法及
び冷却制御装置に関する。
The present invention relates to a method for preheating exhaust gas generated during melting, refining and heating from an electric furnace for melting or refining a metal material, or for preheating a metal material in an electric furnace or a device dedicated to scrap preheating. TECHNICAL FIELD The present invention relates to a cooling control method and a cooling control device for a cooling device that cools exhaust gas generated at a temperature to an exhaust gas outlet side target temperature.

【0002】[0002]

【従来の技術】金属材料を電気炉内で溶解、昇温する場
合、あるいは電気炉内またはスクラップ予熱専用装置に
て予熱する場合に、該電気炉または予熱専用装置から白
煙あるいは悪臭等の有害成分が発生することがある。こ
の白煙は、金属材料に付着している油分が蒸発してミス
ト状になったもので、排ガスの集塵装置において集塵除
去されるが、集塵装置内の濾布の目詰まり、あるいは火
災の原因となる。また、悪臭や芳香族塩素化合物等の有
害成分については、就業する作業者の作業環境の悪化だ
けでなく、地域住民の生活環境にも重大な影響を与え
る。
2. Description of the Related Art When a metal material is melted and heated in an electric furnace, or when preheated in an electric furnace or a device dedicated to scrap preheating, harmful substances such as white smoke or odor are generated from the electric furnace or a device dedicated to preheating. Ingredients may be generated. This white smoke is formed by evaporating oil adhering to the metal material to form a mist. The dust is removed by an exhaust gas dust collector, but the filter cloth in the dust collector is clogged, or May cause fire. Further, harmful components such as odors and aromatic chlorine compounds not only deteriorate the working environment of working workers, but also have a significant effect on the living environment of local residents.

【0003】これら排ガス中に含まれる白煙、あるいは
悪臭や芳香族塩素化合物等の有害成分を除去する方法と
しては、様々な方法が開示されている。
[0003] Various methods have been disclosed as a method for removing harmful components such as white smoke, malodor and aromatic chlorine compounds contained in these exhaust gases.

【0004】例えば、電気炉内またはスクラップ予熱専
用装置から発生する排ガスを直接燃焼加熱して有害成分
を除去する直接燃焼装置として、特開平06−1177
80号公報に開示されている発明は、バーナー燃焼によ
る燃焼高温ガスと排ガスとを混合させ、所定の高温度に
保持した状態で排ガス中の有害成分を分解し、その後有
害成分が再生成するのを防止するために、冷却装置に設
置されたスプレーノズルから噴霧される噴霧水で排ガス
を所定の目標冷却温度まで直接冷却する方法である。
[0004] For example, Japanese Patent Application Laid-Open No. 06-1177 discloses a direct combustion apparatus for directly burning and heating exhaust gas generated from an electric furnace or a device dedicated to scrap preheating to remove harmful components.
The invention disclosed in Japanese Patent Publication No. 80 discloses a method in which high temperature gas burned by burner combustion and exhaust gas are mixed, and harmful components in the exhaust gas are decomposed while maintaining a predetermined high temperature. This is a method of directly cooling the exhaust gas to a predetermined target cooling temperature with spray water sprayed from a spray nozzle installed in a cooling device in order to prevent the above.

【0005】また、例えば電気炉内またはスクラップ予
熱専用装置から発生する排ガスを加熱することなく直接
冷却して有害成分を除去する直接冷却方法として、特公
平07−18665号公報には、排ガスを冷却装置内で
所定の目標温度まで直接冷却する発明が開示されてい
る。
For example, Japanese Patent Publication No. 07-18665 discloses a direct cooling method for removing harmful components by directly cooling the exhaust gas generated from an electric furnace or a device dedicated to scrap preheating without heating. An invention for directly cooling to a predetermined target temperature in the apparatus is disclosed.

【0006】[0006]

【発明が解決しようとする課題】電気炉から発生する排
ガス流量や排ガス温度は電気炉の操業期によって大きく
変動する。直接燃焼装置で排ガスのバーナー燃焼を行う
場合においても、冷却装置入り側排ガス入熱量が排ガス
流量の変動等に起因して大きく変動する。上記特開平0
6−117780号公報に記載の方法においては、冷却
装置出側の実績排ガス温度と排ガス出側目標温度との差
異を測定し、該差異が大きい場合には冷却装置の噴霧水
量を多く、差異が小さい場合は噴霧水量を少なくという
ように冷却制御を行っている。ところが、冷却装置入り
側入熱量が急激に変化した場合において、冷却装置出側
排ガス温度はそれに呼応してすぐには変化しないため、
噴霧水量も急速には変化せず、結果として噴霧水量の供
給過不足が発生し、噴霧水量過剰の場合は蒸発しきれな
かった噴霧水が冷却装置下部より洩れ、噴霧水量不足の
場合は排ガスを目標温度まで冷却できなくなる。
The flow rate and the temperature of the exhaust gas generated from the electric furnace vary greatly depending on the operating period of the electric furnace. Even in the case of performing burner combustion of the exhaust gas by the direct combustion device, the heat input amount of the exhaust gas on the cooling device side largely fluctuates due to the fluctuation of the flow rate of the exhaust gas. The above-mentioned JP
In the method described in JP-A-6-117780, the difference between the actual exhaust gas temperature at the outlet of the cooling device and the target temperature at the exhaust gas is measured, and when the difference is large, the spray water amount of the cooling device is increased, and the difference is large. When it is small, the cooling control is performed so as to reduce the amount of spray water. However, when the heat input to the cooling device suddenly changes, the exhaust gas temperature at the cooling device outlet does not change immediately in response to the change.
The amount of spray water also does not change rapidly.As a result, excess or insufficient supply of spray water occurs.If the amount of spray water is excessive, the spray water that could not evaporate leaks from the lower part of the cooling device, and if the amount of spray water is insufficient, exhaust gas is discharged. It cannot be cooled to the target temperature.

【0007】上記特公平07−18665号公報に記載
の方法では、所定の温度まで加熱する装置がないため、
冷却装置へ導入される排ガスは排ガス流量、排ガス温度
ともに大きく変動し、入り側排ガス入熱量の変動は加熱
装置を有している場合以上に大きく変動する。そのた
め、冷却装置において噴霧水量の供給過不足が発生し、
噴霧水量過剰の場合は蒸発しきれなかった噴霧水が冷却
装置下部より洩れ、噴霧水量不足の場合は排ガスを目標
温度まで冷却できなくなる。冷却が極端に不足した場合
は、有害成分が再生成する恐れもでてくる。
In the method described in Japanese Patent Publication No. 07-18665, there is no apparatus for heating to a predetermined temperature.
Exhaust gas introduced into the cooling device greatly fluctuates in both the exhaust gas flow rate and the exhaust gas temperature, and the fluctuation of the inlet-side exhaust gas heat input fluctuates more greatly than in the case where the heating device is provided. Therefore, the supply of the spray water amount is insufficient or insufficient in the cooling device,
If the amount of spray water is excessive, the spray water that has not completely evaporated leaks from the lower part of the cooling device, and if the amount of spray water is insufficient, the exhaust gas cannot be cooled to the target temperature. If cooling is extremely insufficient, harmful components may be regenerated.

【0008】本発明は、金属材料を溶解あるいは精錬す
る電気炉から溶解、精錬、昇温中に発生する排ガス、あ
るいは金属材料を電気炉内又はスクラップ予熱専用装置
にて予熱するときに発生する排ガスを排ガス出側目標温
度まで冷却する冷却装置において、水漏れがなく所定の
目標温度に確実に安定して冷却可能にするための冷却制
御方法及び冷却制御装置を提供することを目的とする。
The present invention relates to an exhaust gas generated during melting, refining and heating from an electric furnace for melting or refining a metal material, or an exhaust gas generated when the metal material is preheated in an electric furnace or a device dedicated to scrap preheating. It is an object of the present invention to provide a cooling control method and a cooling control device for ensuring stable and stable cooling to a predetermined target temperature without water leakage in a cooling device for cooling the target to an exhaust gas outlet side target temperature.

【0009】[0009]

【課題を解決するための手段】即ち、本発明の要旨とす
るところは以下のとおりである。 (1)電気炉又は電気炉用スクラップ予熱装置から発生
する排ガスに水を噴霧して該排ガス温度を排ガス出側目
標温度まで冷却する冷却装置の冷却制御方法において、
冷却装置入り側の排ガス温度と排ガス流量及び冷却装置
出側の排ガス温度を測定し、前記入り側排ガス温度と排
ガス流量から排ガス入熱量を算出し、前記排ガス入熱量
に基づいて一次噴霧水量を求め、更に前記排ガス出側温
度と排ガス出側目標温度との差異に基づいて前記一次噴
霧水量を補正して噴霧水量とし、冷却装置の噴霧水量を
制御することを特徴とする排ガスの冷却制御方法。 (2)前記一次噴霧水量を前記排ガス入熱量の一次関数
として定めることを特徴とする上記(1)に記載の排ガ
スの冷却制御方法。 (3)電気炉又は電気炉用スクラップ予熱装置から発生
する排ガスに水を噴霧して該排ガス温度を排ガス出側目
標温度まで冷却する冷却装置の冷却制御方法において、
冷却装置入り側の排ガス温度と排ガス流量及び冷却装置
出側の排ガス温度を測定し、下記式(1)〜(3)に基
づいて補正した噴霧水量G’を求め、冷却装置の噴霧水
量を制御することを特徴とする排ガスの冷却制御方法。 G’=(E+ΔE−(Qgi+Qa)×To×Cpo)/(0.45×To+ 539.5) ・・・式(1) E=Qgi×Tgi×Cpi ・・・式(2) ΔE=(Qgi+Qa)×To’×Cpo’−(Qgi+Qa)×To×Cp o ・・・式(3) ここで、E:冷却装置入り側の排ガス入熱量 Qgi:冷却装置入り側排ガス量 Qa:噴霧空気量 To:冷却装置排ガス出側目標温度 Cpo:Toにおける排ガス比熱 Tgi:冷却装置排ガス入り側温度 Cpi:Tgiにおける排ガス比熱 To’:実際の冷却装置出側排ガス温度 Cpo’:To’における排ガス比熱 G’:補正した噴霧水量 (4)電気炉又は電気炉用スクラップ予熱装置から発生
する排ガスに水を噴霧して該排ガス温度を排ガス出側目
標温度まで冷却する冷却装置の冷却制御装置において、
冷却装置入り側煙道に設けた排ガス流量計及び排ガス入
り側温度計と、冷却装置出側煙道に設けた排ガス出側温
度計と、前記排ガス流量計と排ガス入り側温度計の測定
結果に基づいて排ガス入熱量を計算する演算器と、前記
排ガス入熱量、前記排ガス出側温度計の測定結果と排ガ
ス出側目標温度に基づいて上記式(1)〜(3)を用い
て補正した噴霧水量を求めて冷却装置に噴霧水量を指令
する補正演算器とを有することを特徴とする排ガスの冷
却制御装置。
That is, the gist of the present invention is as follows. (1) A cooling control method for a cooling device for spraying water onto exhaust gas generated from an electric furnace or a scrap preheating device for an electric furnace to cool the temperature of the exhaust gas to a target temperature on the exhaust gas outlet side.
Measure the exhaust gas temperature and exhaust gas flow rate on the cooling device inlet side and the exhaust gas temperature on the cooling device outlet side, calculate the exhaust gas heat input amount from the inlet exhaust gas temperature and the exhaust gas flow amount, and determine the primary spray water amount based on the exhaust gas heat input amount. An exhaust gas cooling control method, wherein the primary spray water amount is corrected to a spray water amount based on a difference between the exhaust gas outlet temperature and the exhaust gas outlet target temperature, and the spray water amount of the cooling device is controlled. (2) The exhaust gas cooling control method according to (1), wherein the primary spray water amount is determined as a linear function of the exhaust gas heat input amount. (3) A cooling control method of a cooling device for spraying water onto exhaust gas generated from an electric furnace or a scrap preheating device for an electric furnace to cool the exhaust gas temperature to a target exhaust gas outlet temperature.
The temperature of the exhaust gas and the flow rate of the exhaust gas at the inlet of the cooling device and the temperature of the exhaust gas at the outlet of the cooling device are measured, and the spray water amount G ′ corrected based on the following equations (1) to (3) is obtained, and the spray water amount of the cooling device is controlled. A method for controlling the cooling of exhaust gas. G ′ = (E + ΔE− (Qgi + Qa) × To × Cpo) / (0.45 × To + 539.5) Expression (1) E = Qgi × Tgi × Cpi Expression (2) ΔE = (Qgi + Qa) ) × To ′ × Cpo ′ − (Qgi + Qa) × To × Cpo (Equation (3)) Here, E: heat input amount of exhaust gas at the cooling device entrance side Qgi: exhaust gas amount at the cooling device entrance side Qa: spray air amount To : Target temperature of exhaust gas on the cooling device exhaust side Cpo: Exhaust gas specific heat at To Tgi: Temperature on the exhaust gas inlet side of the cooling device Cpi: Exhaust gas specific heat at Tgi To ': Actual exhaust gas temperature on the cooling device outlet side Cpo': Exhaust gas specific heat at To 'G': Corrected spray water volume (4) The cooling control device of the cooling device that sprays water on the exhaust gas generated from the electric furnace or the scrap preheating device for the electric furnace and cools the exhaust gas temperature to the exhaust gas outlet side target temperature Te,
The exhaust gas flow meter and exhaust gas inlet thermometer provided in the cooling device inlet flue, the exhaust gas outlet thermometer provided in the cooling device outlet flue, and the measurement results of the exhaust gas flow meter and exhaust gas inlet thermometer An arithmetic unit for calculating the heat input amount of the exhaust gas based on the heat amount of the exhaust gas, the measurement result of the exhaust gas outlet thermometer and the target temperature of the exhaust gas outlet using the above equations (1) to (3). An exhaust gas cooling control device, comprising: a correction arithmetic unit for determining a water amount and instructing a cooling device to instruct a spray water amount.

【0010】[0010]

【発明の実施の形態】従来技術においては、冷却装置出
側の実績排ガス温度と排ガス出側目標温度との差異を測
定し、該差異が大きい場合には冷却装置の噴霧水量を多
く、差異が小さい場合は噴霧水量を少なくというように
冷却制御を行っていた。これでは前記のように、冷却装
置入り側入熱量が急激に変化した場合において、冷却装
置出側排ガス温度はそれに呼応してすぐには変化しない
ため、噴霧水量も急速には変化せず、結果として噴霧水
量の供給過不足が発生していた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the prior art, the difference between the actual exhaust gas temperature at the outlet of the cooling device and the target temperature at the exhaust gas is measured. When it was small, cooling control was performed so as to reduce the amount of spray water. In this case, as described above, when the heat input amount on the cooling device inlet side suddenly changes, the exhaust gas temperature on the cooling device outlet side does not change immediately in response thereto, so that the spray water amount also does not change rapidly. As a result, there was an oversupply and deficiency of the spray water amount.

【0011】本発明においては、冷却装置入り側の排ガ
ス温度と排ガス流量を測定し、入り側排ガス温度と排ガ
ス流量から排ガス入熱量を算出し、この排ガス入熱量に
基づいて一次噴霧水量を求めている。具体的には、排ガ
ス入熱量と排ガス出側目標温度とから冷却に必要な理論
噴霧水量を求め、この理論噴霧水量を一次噴霧水量とし
ている。このため、排ガス入熱量の急激な変化があって
も計算した一次噴霧水量は排ガス入熱量の変化に対応し
て急速に変化するため、噴霧水量の供給過不足を発生さ
せない。
In the present invention, the temperature of the exhaust gas and the flow rate of the exhaust gas on the inlet side of the cooling device are measured, the heat input amount of the exhaust gas is calculated from the exhaust gas temperature on the inlet side and the exhaust gas flow rate, and the primary spray water amount is determined based on the heat input amount of the exhaust gas. I have. Specifically, a theoretical spray water amount required for cooling is obtained from the exhaust gas heat input amount and the exhaust gas outlet side target temperature, and this theoretical spray water amount is used as a primary spray water amount. For this reason, even if there is a rapid change in the exhaust gas heat input amount, the calculated primary spray water amount changes rapidly in response to the change in the exhaust gas heat input amount.

【0012】理論噴霧水量は以下の式によって計算する
ことができる。 G=(E−(Qgi+Qa)×To×Cpo)/(0.45×To+539. 5) ・・・式(4) E=Qgi×Tgi×Cpi ・・・式(2) ここで、E:冷却装置入り側の排ガス入熱量 Qgi:冷却装置入り側排ガス量 Qa:噴霧空気量 To:冷却装置排ガス出側目標温度 Cpo:Toにおける排ガス比熱 Tgi:冷却装置排ガス入り側温度 Cpi:Tgiにおける排ガス比熱 G:理論噴霧水量
The theoretical spray water amount can be calculated by the following equation. G = (E− (Qgi + Qa) × To × Cpo) / (0.45 × To + 539.5) Equation (4) E = Qgi × Tgi × Cpi Equation (2) where E: cooling Exhaust gas heat input amount on the device entrance side Qgi: Exhaust gas amount on the cooling device entrance side Qa: Spray air amount To: Cooling device exhaust gas outlet target temperature Cpo: Exhaust gas specific heat at To Tgi: Cooling device exhaust gas inlet side temperature Cpi: Exhaust gas specific heat at Tgi G : Theoretical spray water volume

【0013】以上のように理論噴霧水量は排ガス入熱量
Eの一次関数となっている。従って、上記理論式に基づ
かなくても、排ガス出側温度を一定に保つための必要噴
霧水量を排ガス入熱量を変化させて実験により求め、そ
の結果をもとに噴霧水量を排ガス入熱量の一次関数の形
に表現し、これをもって一次噴霧水量としてもよい。
As described above, the theoretical spray water amount is a linear function of the exhaust gas heat input E. Therefore, even if it is not based on the above theoretical formula, the amount of spray water required to keep the exhaust gas outlet temperature constant is determined by changing the heat input amount of the exhaust gas, and the spray water amount is determined based on the result as the primary heat input amount of the exhaust gas. Expressed in the form of a function, this may be used as the primary spray water amount.

【0014】上記のように一次噴霧水量は理論噴霧水量
に基づいており、一次噴霧水量の計算にはパラメーター
として排ガス入り側流量、排ガス入り側温度、排ガス出
側目標温度のみを採用している。もちろん、理論噴霧水
量とはいっても当該冷却装置において実績値に基づいて
キャリブレーションを行うので、当該冷却装置に最適な
一次噴霧水量を算出することができる。
As described above, the primary spray water amount is based on the theoretical spray water amount, and only the exhaust gas inlet flow rate, the exhaust gas inlet side temperature, and the exhaust gas outlet target temperature are used as parameters in the calculation of the primary spray water amount. Of course, although the theoretical spray water amount is used, calibration is performed in the cooling device based on the actual value, so that an optimal primary spray water amount for the cooling device can be calculated.

【0015】発明者等の経験によると、冷却装置入り側
の排ガス流量、排ガス温度が大きく変動している場合、
冷却装置出側の温度が実際に所定の目標冷却温度に到達
するまでに、およそ10分かかっている。従って、その
時間を超えても、なお所定の目標冷却温度に到達しな
い、あるいは所定の目標冷却温度を大幅に下回る場合
は、噴霧冷却水の温度が異なる、冷却装置内の雰囲気温
度が異なる等で、計算によって算出した理論噴霧水量が
現状にあっていないと考えられる。従って、そのような
場合は、冷却装置出側温度の実績値と、所定の目標冷却
温度との差から噴霧水量の補正計算を実施し、その分の
噴霧水量の増減を実施する。
According to the experience of the inventors, when the exhaust gas flow rate and the exhaust gas temperature on the cooling device entrance side fluctuate greatly,
It takes about 10 minutes for the temperature at the outlet of the cooling device to actually reach the predetermined target cooling temperature. Therefore, even if the time is exceeded, if the predetermined target cooling temperature is still not reached or is significantly lower than the predetermined target cooling temperature, the temperature of the spray cooling water is different, the ambient temperature in the cooling device is different, or the like. It is considered that the theoretical spray water amount calculated by the calculation is not present. Therefore, in such a case, the correction calculation of the spray water amount is performed from the difference between the actual value of the cooling device outlet side temperature and the predetermined target cooling temperature, and the spray water amount is increased or decreased accordingly.

【0016】以下具体的に述べる。例えば、仮に冷却装
置内面耐火物の温度が周囲温度より高くなっているとす
ると、実際に冷却水を噴霧しているときには、耐火物表
面より放熱して、その分雰囲気温度が高くなるため、所
定の目標冷却温度まで冷却するためにはその分噴霧水量
は理論噴霧水量より多く必要になる。
The details will be described below. For example, if the temperature of the refractory inside the cooling device is higher than the ambient temperature, when the cooling water is actually sprayed, heat is radiated from the surface of the refractory, and the ambient temperature increases accordingly. In order to cool to the target cooling temperature, the spray water amount is required to be greater than the theoretical spray water amount.

【0017】耐火物の放熱量をΔEとおくと、そのとき
に必要な噴霧水量G’は以下となる。 G’=(E+ΔE−(Qgi+Qa)×To×Cpo)/(0.45×To+ 539.5) ・・・式(1) ここで、ΔE:耐火物の放熱量、その他は前記のとお
り。
Assuming that the heat release amount of the refractory is ΔE, the required spray water amount G ′ at that time is as follows. G ′ = (E + ΔE− (Qgi + Qa) × To × Cpo) / (0.45 × To + 539.5) Expression (1) where ΔE: heat release amount of the refractory, and others are as described above.

【0018】ここで、ΔE以外は実測値からすべて算出
可能だが、ΔEを定量的に把握することは困難なため、
このような補正方法は現実的ではない。そこで、発明者
等は、実機において収集したデータからおよそ以下の関
係を導き出した。すなわち、概括的に整理すれば、図3
に示したように、もともと設定していた理論噴霧水量に
対する、所定の目標冷却温度まで冷却するのに実際に必
要な噴霧水量の比α(噴霧水量係数)は、実際の冷却装
置出側排ガス温度と目標冷却温度との差から以下の式に
よって求まる排ガス熱量差ΔEとおよそ一次比例の関係
にあるということである。 ΔE=(Qgi+Qa)×To’×Cpo’−(Qgi+Qa)×To×Cp o ・・式(3) ここで、To’:実際の冷却装置出側排ガス温度 Cpo’:To’における排ガス比熱
Here, except for ΔE, all can be calculated from the actually measured values. However, since it is difficult to quantitatively grasp ΔE,
Such a correction method is not practical. Therefore, the inventors have derived the following relationship from the data collected in the actual machine. In other words, if roughly summarized, FIG.
As shown in the above, the ratio α (spray water amount coefficient) of the spray water amount actually required to cool to the predetermined target cooling temperature with respect to the theoretically set spray water amount originally set is the actual cooling device outlet exhaust gas temperature. And a target cooling temperature, and is approximately linearly proportional to the exhaust gas calorific value ΔE obtained by the following equation. ΔE = (Qgi + Qa) × To ′ × Cpo ′ − (Qgi + Qa) × To × Cpo (3) where To ′: actual exhaust gas temperature on the exit side of the cooling device Cpo ′: specific heat of exhaust gas at To ′

【0019】従って、所定の目標冷却温度より高い場
合、または低い場合には、そのときの上記に述べた排ガ
ス熱量差ΔEから求まる噴霧水量係数αを図3より求
め、それをもともとの理論噴霧水量(上記式(4)の
G)に乗じた噴霧水量へ切り替えることで、所定の目標
冷却温度に到達させることが可能になるわけである。あ
るいは、上記式(1)のG’を用いても同様の効果を発
揮することができる。
Therefore, when the temperature is higher or lower than the predetermined target cooling temperature, the spray water amount coefficient α obtained from the exhaust gas calorie difference ΔE at that time is obtained from FIG. By switching to the spray water amount multiplied by (G in the above equation (4)), it is possible to reach a predetermined target cooling temperature. Alternatively, the same effect can be exerted by using G ′ in the above formula (1).

【0020】このことは、別の表現を用いると、冷却装
置からの排ガス出熱量について実績出熱量と目標出熱量
との差を算出し、該差に比例する補正噴霧水量をもって
上記一次噴霧水量を補正すると、結果として排ガス出側
実績温度を排ガス出側目標温度に一致させることができ
ることとなる。この結果に基づき、本発明においては、
冷却装置出側の排ガス温度を測定し、排ガス出側温度と
排ガス出側目標温度との差異に基づいて前記一次噴霧水
量を補正して噴霧水量とし、冷却装置の噴霧水量を制御
する。具体的には、一次噴霧水量に補正噴霧水量を加減
する方法を採用しても、あるいは一次噴霧水量に補正係
数を乗除する方法を採用してもよい。
In other words, using another expression, the difference between the actual heat output and the target heat output with respect to the exhaust gas heat output from the cooling device is calculated, and the primary spray water amount is calculated using a corrected spray water amount proportional to the difference. After correction, the actual exhaust gas outlet temperature can be made to match the exhaust gas outlet target temperature. Based on this result, in the present invention,
The exhaust gas temperature at the outlet of the cooling device is measured, and the primary spray water amount is corrected to the spray water amount based on the difference between the exhaust gas outlet temperature and the exhaust gas outlet target temperature, and the spray water amount of the cooling device is controlled. Specifically, a method of adding or subtracting the correction spray water amount to the primary spray water amount may be adopted, or a method of multiplying or dividing the primary spray water amount by the correction coefficient may be adopted.

【0021】上記補正量を排ガス出側温度と排ガス出側
目標温度との差異に比例する成分のみとすると、制御を
行った結果として排ガス出側温度と排ガス出側目標温度
との間にオフセットが残存することがある。オフセット
を除去するためには、上記補正量の計算において積分項
を導入することが有効である。
Assuming that the correction amount is only a component proportional to the difference between the exhaust gas outlet temperature and the exhaust gas outlet target temperature, as a result of the control, an offset between the exhaust gas outlet temperature and the exhaust gas outlet target temperature is generated. May remain. In order to remove the offset, it is effective to introduce an integral term in the calculation of the correction amount.

【0022】[0022]

【実施例】(実施例1)図1に示す実施例1にもとづい
て本発明を説明する。冷却装置1の入り側の水冷煙道2
には排ガス流量を測定するための排ガス流量計3及び排
ガス温度を測定するための排ガス入り側温度計4が設置
され、それぞれの測定値は演算器5に送られる。演算器
5では、測定された排ガス流量と排ガス入り側温度を基
に排ガスの入熱量及び一次噴霧水量が計算される。
(Embodiment 1) The present invention will be explained based on Embodiment 1 shown in FIG. Water-cooled flue 2 on the inlet side of cooling device 1
An exhaust gas flow meter 3 for measuring the exhaust gas flow rate and an exhaust gas inlet-side thermometer 4 for measuring the exhaust gas temperature are installed in the, and their measured values are sent to a computing unit 5. The computing unit 5 calculates the heat input amount of the exhaust gas and the primary spray water amount based on the measured exhaust gas flow rate and the exhaust gas entrance side temperature.

【0023】冷却装置出側には冷却後の排ガス温度を測
定するための排ガス出側温度計9が設置されている。排
ガス出側温度計9の測定値も演算器5に送られる。
An exhaust gas outlet thermometer 9 for measuring the temperature of the exhaust gas after cooling is installed on the outlet side of the cooling device. The measured value of the exhaust gas outlet thermometer 9 is also sent to the calculator 5.

【0024】補正演算器12においては、式(1)〜
(3)に基づいて補正した噴霧水量を算出する。
In the correction arithmetic unit 12, the equations (1) to (1)
The spray water amount corrected based on (3) is calculated.

【0025】一方、冷却装置上部には、冷却水を噴霧す
るためのスプレーノズル6が配され、スプレーノズル6
に冷却水を供給する配管途中には、冷却水流量を制御す
るための流量調節弁7が設置されている。流量調節弁7
には、弁開度を制御・調整するための調節器8が接続さ
れている。
On the other hand, a spray nozzle 6 for spraying cooling water is disposed above the cooling device.
A flow control valve 7 for controlling the flow rate of the cooling water is installed in the middle of the pipe for supplying the cooling water to the cooling water. Flow control valve 7
Is connected to an adjuster 8 for controlling and adjusting the valve opening.

【0026】上記補正演算器12から噴霧水量が調節器
8に指令として送られ、該指令に基づいて調節器8によ
って流量調節弁7の弁開度が調整され、上記補正演算器
12により計算されたとおりの噴霧水量が冷却装置内に
供給される。この結果、冷却装置下部からは水が漏れる
ことがなく、また排ガスは目標温度まで冷却されること
となる。
The amount of spray water is sent from the correction calculator 12 to the controller 8 as a command. Based on the command, the valve opening of the flow rate control valve 7 is adjusted by the controller 8 and calculated by the correction calculator 12. The amount of sprayed water is supplied into the cooling device. As a result, no water leaks from the lower part of the cooling device, and the exhaust gas is cooled to the target temperature.

【0027】本発明に基づいて冷却装置の制御を行った
結果、冷却装置出側の排ガス温度は常に排ガス出側目標
温度を維持することができ、また冷却装置下部から水が
漏れることもなくなった。
As a result of controlling the cooling device according to the present invention, the temperature of the exhaust gas on the outlet side of the cooling device can always maintain the target temperature on the exhaust gas outlet side, and water does not leak from the lower portion of the cooling device. .

【0028】(実施例2)本発明の実施例2として、図
2に示す設備構成を用いた。スプレーノズルに気水ノズ
ルを採用したものであり、スプレーノズルの構成以外の
部分については実施例1と同様である。実施例1と同
様、本発明に基づいて冷却装置の制御を行った結果、冷
却装置出側の排ガス温度は常に排ガス出側目標温度を維
持することができ、また冷却装置下部から水が漏れるこ
ともなくなった。
Example 2 As Example 2 of the present invention, the equipment configuration shown in FIG. 2 was used. The air-water nozzle is adopted as the spray nozzle, and the other parts than the structure of the spray nozzle are the same as in the first embodiment. As in the first embodiment, as a result of controlling the cooling device based on the present invention, the temperature of the exhaust gas at the outlet of the cooling device can always maintain the target temperature at the exhaust gas outlet, and water leaks from the lower portion of the cooling device. Also gone.

【0029】[0029]

【発明の効果】電気炉または電気炉用スクラップ予熱装
置から発生する排ガスの冷却装置において、冷却装置入
り側の排ガス入熱量に応じて冷却のための噴霧水量を求
め、更に排ガス出側温度と排ガス出側目標温度との差異
に基づいて該噴霧水量を補正することにより、噴霧水量
の過不足が解消され、冷却装置下部から水が漏れること
がなくなり、冷却装置出側の排ガス温度は常に排ガス出
側目標温度を維持することができるようになる。
According to the present invention, in a cooling device for exhaust gas generated from an electric furnace or a scrap preheating device for an electric furnace, a spray water amount for cooling is determined in accordance with an exhaust gas heat input amount on a cooling device entrance side. By correcting the amount of spray water based on the difference from the outlet target temperature, excess or deficiency of the amount of spray water is eliminated, water does not leak from the lower part of the cooling device, and the exhaust gas temperature on the outlet side of the cooling device is constantly discharged. The side target temperature can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の冷却制御装置を用いた冷却装置の第1
の実施例を示す。
FIG. 1 shows a first example of a cooling device using the cooling control device of the present invention.
The following shows an example.

【図2】本発明の冷却制御装置を用いた冷却装置の第2
の実施例を示す。
FIG. 2 shows a second example of a cooling device using the cooling control device of the present invention.
The following shows an example.

【図3】噴霧水量係数を表わすグラフである。FIG. 3 is a graph showing a spray water amount coefficient.

【符号の説明】[Explanation of symbols]

1 冷却装置 2 水冷煙道 3 排ガス流量計 4 排ガス入り側温度計 5 演算器 6 スプレーノズル 7 流量調節弁 8 調節器 9 排ガス出側温度計 10 流量調節弁 11 調節器 12 補正演算器 DESCRIPTION OF SYMBOLS 1 Cooling apparatus 2 Water-cooled flue 3 Exhaust gas flow meter 4 Exhaust gas inlet side thermometer 5 Calculator 6 Spray nozzle 7 Flow control valve 8 Controller 9 Exhaust gas outlet side thermometer 10 Flow control valve 11 Controller 12 Correction calculator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K056 AA02 AA05 BB05 CA01 DB05 DB08 FA08 4K063 AA03 AA04 AA12 BA02 BA03 CA02 GA37 GA39  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K056 AA02 AA05 BB05 CA01 DB05 DB08 FA08 4K063 AA03 AA04 AA12 BA02 BA03 CA02 GA37 GA39

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電気炉又は電気炉用スクラップ予熱装置
から発生する排ガスに水を噴霧して該排ガス温度を排ガ
ス出側目標温度まで冷却する冷却装置の冷却制御方法に
おいて、冷却装置入り側の排ガス温度と排ガス流量及び
冷却装置出側の排ガス温度を測定し、前記入り側排ガス
温度と排ガス流量から排ガス入熱量を算出し、前記排ガ
ス入熱量に基づいて一次噴霧水量を求め、更に前記排ガ
ス出側温度と排ガス出側目標温度との差異に基づいて前
記一次噴霧水量を補正して噴霧水量とし、冷却装置の噴
霧水量を制御することを特徴とする排ガスの冷却制御方
法。
1. A cooling control method for a cooling device for spraying water onto exhaust gas generated from an electric furnace or a scrap preheating device for an electric furnace to cool the temperature of the exhaust gas to a target temperature on the exhaust gas outlet side. The temperature and the exhaust gas flow rate and the exhaust gas temperature at the cooling device outlet side are measured, the exhaust gas heat input amount is calculated from the inlet exhaust gas temperature and the exhaust gas flow amount, and the primary spray water amount is obtained based on the exhaust gas heat input amount. An exhaust gas cooling control method, comprising: correcting the primary spray water amount based on a difference between a temperature and an exhaust gas outlet side target temperature to obtain a spray water amount, and controlling a spray water amount of a cooling device.
【請求項2】 前記一次噴霧水量を前記排ガス入熱量の
一次関数として定めることを特徴とする請求項1に記載
の排ガスの冷却制御方法。
2. The exhaust gas cooling control method according to claim 1, wherein the primary spray water amount is determined as a linear function of the exhaust gas heat input amount.
【請求項3】 電気炉又は電気炉用スクラップ予熱装置
から発生する排ガスに水を噴霧して該排ガス温度を排ガ
ス出側目標温度まで冷却する冷却装置の冷却制御方法に
おいて、冷却装置入り側の排ガス温度と排ガス流量及び
冷却装置出側の排ガス温度を測定し、下記式(1)〜
(3)に基づいて補正した噴霧水量G’を求め、冷却装
置の噴霧水量を制御することを特徴とする排ガスの冷却
制御方法。 G’=(E+ΔE−(Qgi+Qa)×To×Cpo)/(0.45×To+ 539.5) ・・・式(1) E=Qgi×Tgi×Cpi ・・・式(2) ΔE=(Qgi+Qa)×To’×Cpo’−(Qgi+Qa)×To×Cp o ・・・式(3) ここで、E:冷却装置入り側の排ガス入熱量 Qgi:冷却装置入り側排ガス量 Qa:噴霧空気量 To:冷却装置排ガス出側目標温度 Cpo:Toにおける排ガス比熱 Tgi:冷却装置排ガス入り側温度 Cpi:Tgiにおける排ガス比熱 To’:実際の冷却装置出側排ガス温度 Cpo’:To’における排ガス比熱 G’:補正した噴霧水量
3. A cooling control method for a cooling device for spraying water onto exhaust gas generated from an electric furnace or a scrap preheating device for an electric furnace to cool the exhaust gas temperature to a target temperature on the exhaust gas outlet side. The temperature, the exhaust gas flow rate and the exhaust gas temperature at the outlet of the cooling device were measured, and the following equations (1) to
A method for controlling the cooling of exhaust gas, wherein a spray water amount G ′ corrected based on (3) is obtained and the spray water amount of the cooling device is controlled. G ′ = (E + ΔE− (Qgi + Qa) × To × Cpo) / (0.45 × To + 539.5) Expression (1) E = Qgi × Tgi × Cpi Expression (2) ΔE = (Qgi + Qa) ) × To ′ × Cpo ′ − (Qgi + Qa) × To × Cpo (Equation (3)) Here, E: heat input amount of exhaust gas at the cooling device entrance side Qgi: exhaust gas amount at the cooling device entrance side Qa: spray air amount To : Target temperature of exhaust gas on the cooling device exhaust side Cpo: Exhaust gas specific heat at To Tgi: Temperature on the exhaust gas inlet side of the cooling device Cpi: Exhaust gas specific heat at Tgi To ': Actual exhaust gas temperature on the cooling device outlet side Cpo': Exhaust gas specific heat at To 'G': Corrected spray water volume
【請求項4】 電気炉又は電気炉用スクラップ予熱装置
から発生する排ガスに水を噴霧して該排ガス温度を排ガ
ス出側目標温度まで冷却する冷却装置の冷却制御装置に
おいて、冷却装置入り側煙道に設けた排ガス流量計及び
排ガス入り側温度計と、冷却装置出側煙道に設けた排ガ
ス出側温度計と、前記排ガス流量計と排ガス入り側温度
計の測定結果に基づいて排ガス入熱量を計算する演算器
と、前記排ガス入熱量、前記排ガス出側温度計の測定結
果と排ガス出側目標温度に基づいて上記式(1)〜
(3)を用いて補正した噴霧水量を求めて冷却装置に噴
霧水量を指令する補正演算器とを有することを特徴とす
る排ガスの冷却制御装置。
4. A cooling control device of a cooling device for spraying water onto exhaust gas generated from an electric furnace or a scrap preheating device for an electric furnace to cool the temperature of the exhaust gas to a target temperature on the exhaust gas outlet side. Exhaust gas flow meter and exhaust gas inlet side thermometer provided in the, cooling device outlet flue exhaust gas outlet thermometer, and the exhaust gas heat input based on the measurement results of the exhaust gas flow meter and exhaust gas inlet thermometer The above formulas (1) to (3) are calculated based on a computing unit, the exhaust gas heat input amount, the measurement result of the exhaust gas outlet thermometer, and the exhaust gas outlet target temperature.
An exhaust gas cooling control device, comprising: a correction arithmetic unit that obtains a spray water amount corrected by using (3) and instructs the cooling device on the spray water amount.
JP11172504A 1999-06-18 1999-06-18 Method of controlling cooling of exhaust gas, and cooling controller Pending JP2001004288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11172504A JP2001004288A (en) 1999-06-18 1999-06-18 Method of controlling cooling of exhaust gas, and cooling controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11172504A JP2001004288A (en) 1999-06-18 1999-06-18 Method of controlling cooling of exhaust gas, and cooling controller

Publications (1)

Publication Number Publication Date
JP2001004288A true JP2001004288A (en) 2001-01-12

Family

ID=15943203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11172504A Pending JP2001004288A (en) 1999-06-18 1999-06-18 Method of controlling cooling of exhaust gas, and cooling controller

Country Status (1)

Country Link
JP (1) JP2001004288A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120090338A1 (en) * 2009-02-11 2012-04-19 Edwards Limited Method of treating an exhaust gas stream
CN110846460A (en) * 2019-11-06 2020-02-28 西安西矿环保科技有限公司 Water quantity adjusting method and system of evaporative cooler for dry dedusting
CN113932270A (en) * 2021-11-26 2022-01-14 安徽工程大学 Environment-friendly multifunctional cooling type oil fume treatment machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120090338A1 (en) * 2009-02-11 2012-04-19 Edwards Limited Method of treating an exhaust gas stream
KR101285041B1 (en) * 2009-02-11 2013-07-10 에드워즈 리미티드 Method of treating an exhaust gas stream
US9631810B2 (en) 2009-02-11 2017-04-25 Edwards Limited Method of treating an exhaust gas stream
CN110846460A (en) * 2019-11-06 2020-02-28 西安西矿环保科技有限公司 Water quantity adjusting method and system of evaporative cooler for dry dedusting
CN113932270A (en) * 2021-11-26 2022-01-14 安徽工程大学 Environment-friendly multifunctional cooling type oil fume treatment machine
CN113932270B (en) * 2021-11-26 2023-04-18 安徽工程大学 Environment-friendly multifunctional cooling type oil fume treatment machine

Similar Documents

Publication Publication Date Title
US4994959A (en) Fuel burner apparatus and a method of control
PL196714B1 (en) Method for operating a refuse incineration plant
JP2001004288A (en) Method of controlling cooling of exhaust gas, and cooling controller
KR100593754B1 (en) Coke dry fire extinguishing equipment and method
JP3145998B2 (en) Control method of combustion efficiency
JPS55122811A (en) Combustion control method of hot stove
JP3902737B2 (en) Ammonia injection control method for denitration catalyst device of waste treatment facility
JP2004212005A (en) Heat amount monitoring device in arc melting facility
JPS5896914A (en) Controlling method of white fume preventive device
JP2002005436A (en) Combustor
JP4281243B2 (en) Gas cooling chamber outlet temperature control method and apparatus
JP2002349829A (en) Measuring method and measuring device for measuring temperature of secondary combustion exhaust gas in incinerator
JP3235646B2 (en) Combustion control method for sludge incinerator and apparatus therefor
JP2006266650A (en) Temperature control method for converter exhaust gas cooling device
JP2002180117A (en) Method for controlling temperature of cold blast in inlet side of hot blast stove
JP2008309461A (en) Control method of plasma type ash melting furnace and plasma type ash melting furnace
JP2617830B2 (en) Control method of combustion air volume in ash melting furnace
JP3556086B2 (en) Combustion control device and combustion control method for waste melting furnace
JP3129863B2 (en) Carbonated water heater
JPH05332524A (en) Temperature control device for heat accumulative deodorizing device
SU1334017A1 (en) Method of controlling the process of spraying drying of milk products
RU2013453C1 (en) Method of heating ingots in heating well
JPH02122059A (en) Method for controlling holding zone temperature in alloying furnace
JP3094848B2 (en) Water supply method to waste heat boiler of fluidized bed waste incinerator
JP2795569B2 (en) Operating method of hot dip galvanizing alloying furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007