JP2001003117A - Production of crank shaft - Google Patents

Production of crank shaft

Info

Publication number
JP2001003117A
JP2001003117A JP11173804A JP17380499A JP2001003117A JP 2001003117 A JP2001003117 A JP 2001003117A JP 11173804 A JP11173804 A JP 11173804A JP 17380499 A JP17380499 A JP 17380499A JP 2001003117 A JP2001003117 A JP 2001003117A
Authority
JP
Japan
Prior art keywords
less
crankshaft
aging treatment
hardness
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11173804A
Other languages
Japanese (ja)
Other versions
JP3701145B2 (en
Inventor
Shoichi Ando
省一 安藤
Hiroshi Ono
博史 小野
Tadashi Kobayashi
正 小林
Mitsuru Kamikawa
満 上川
Fumio Fukuda
文男 福田
Hideki Matsuura
英樹 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP17380499A priority Critical patent/JP3701145B2/en
Publication of JP2001003117A publication Critical patent/JP2001003117A/en
Priority to US10/789,322 priority patent/US20040261918A1/en
Priority to US10/789,347 priority patent/US7093526B2/en
Application granted granted Critical
Publication of JP3701145B2 publication Critical patent/JP3701145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a crank shaft having high precision and high strength, to eliminate the trouble of machining in the after-working and to improve the yield. SOLUTION: A carbon steel having compositional components of 0.46-0.48 wt.% C, <=0.14 wt.% Si, 0.55-0.65 wt.% Mn, <=0.015 wt.% P, <=0.015 wt.% S, <=0.15 wt.% Cu, <= 0.20 wt.% Ni, 0.35 wt.% Cr and the balance Fe with impurities, is continuously cold-forged to form the crank shaft and, thereafter, the crank shaft is held at 250-350 deg.C for 1-2.5 hr and an aging treatment for air- cooling to a room temp., is applied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動二輪車等のエ
ンジンの分割型クランク軸の製造技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for manufacturing a split crankshaft for an engine of a motorcycle or the like.

【0002】[0002]

【従来の技術】自動二輪車等のエンジンに組み込むクラ
ンクシャフトは、左右の軸付き円盤状の分割型クランク
軸を成形した後、それぞれの円盤状のウェイト部に形成
したピン穴にピンを嵌合させて左右の分割型クランク軸
を連結するようにしている。この左右の分割型クランク
軸の製造方法としては、特開昭59―4936号公報に
開示されるように熱間鍛造成形で製造するのが主流であ
る。
2. Description of the Related Art A crankshaft to be incorporated in an engine of a motorcycle or the like is formed by shaping a disk-shaped split crankshaft with left and right shafts, and fitting pins into pin holes formed in respective disk-shaped weight portions. To connect the left and right split crankshafts. As a method of manufacturing the left and right split crankshafts, the mainstream is manufacturing by hot forging as disclosed in JP-A-59-4936.

【0003】熱間鍛造用の素材としては調質鋼と非調質
鋼がある。調質鋼は加熱(約1200℃)した後、焼入
れと焼戻しを施して強度及び靱性の向上を図ったもので
あり、クランク軸の素材として用いる炭素鋼には調質が
施される。特に、熱間鍛造にあっては熱間鍛造が終了し
た鍛造品の強度を当該鍛造品自身の温度を利用した調質
で高めることができる。また、非調質鋼は予めバナジウ
ム等を添加しておいた材料を加熱(約1200℃)した
後、空冷することで強度及び靱性の向上を図ったもので
ある。
[0003] Materials for hot forging include tempered steel and non-tempered steel. The tempered steel is heated (about 1200 ° C.) and then quenched and tempered to improve strength and toughness. Carbon steel used as a material for a crankshaft is tempered. In particular, in the case of hot forging, the strength of a forged product after hot forging can be enhanced by tempering utilizing the temperature of the forged product itself. The non-heat treated steel is obtained by heating (about 1200 ° C.) a material to which vanadium or the like has been added in advance and then cooling it by air to improve strength and toughness.

【0004】ところでクランク軸はその一部にウォーム
やテーパ部を備えており、これらウォームやテーパ部に
は他の部分よりも高硬度が要求される。これらの部分を
後に高周波焼入れ等によって部分的に高硬度にするに
は、素材にC(炭素)が含まれていなければならないの
で、クランク軸用の熱間鍛造の素材としては、JISS
48C(以下、単にS48Cと記す)等の炭素鋼が用い
られている。
[0004] Incidentally, the crankshaft is provided with a worm and a tapered part in a part thereof, and the worm and the tapered part are required to have higher hardness than other parts. In order to partially harden these parts later by induction hardening or the like, the material must contain C (carbon). Therefore, as a material for hot forging for crankshafts, JISS is used.
Carbon steel such as 48C (hereinafter simply referred to as S48C) is used.

【0005】因みに、S48Cの成分割合は、Cが0.
45〜0.51wt%、Siが0.15〜0.35wt%以
下、Mnが0.6〜0.9wt%、Pが0.03wt%以
下、Sが0.035wt%以下、Cuが0.3wt%以下、
Niが0.2wt%以下、Crが0.2wt%以下が基準と
されている。
[0005] Incidentally, the component ratio of S48C is such that C is 0.1%.
45 to 0.51 wt%, Si is 0.15 to 0.35 wt% or less, Mn is 0.6 to 0.9 wt%, P is 0.03 wt% or less, S is 0.035 wt% or less, and Cu is 0.1 to 0.3 wt%. 3 wt% or less,
The standard is such that Ni is 0.2 wt% or less and Cr is 0.2 wt% or less.

【0006】[0006]

【発明が解決しようとする課題】熱間鍛造による成形
は、金型表面が摩耗しやすく、その結果鍛造品の精度が
悪くなり、鍛造後の機械加工による取代が大きくなって
加工効率が低下する。そして、レース加工代が大きい為
に機械台数も多くなり初期投資が膨大になる。また、熱
間鍛造にあっては、加熱後に鍛造するためにスケールが
発生し、更に離型剤等の塗布が必須になるので作業環境
を最適に保つことが困難である。
In the forming by hot forging, the mold surface is liable to wear, as a result, the accuracy of the forged product is deteriorated, the machining allowance after forging is increased, and the working efficiency is reduced. . Since the cost of lace processing is large, the number of machines increases, and the initial investment becomes enormous. In the case of hot forging, scale is generated due to forging after heating, and it is necessary to apply a release agent or the like. Therefore, it is difficult to keep the working environment optimal.

【0007】冷間鍛造によれば、成形精度や作業環境更
には初期投資の問題を解消することができるのである
が、最大の問題は変形能が小さく割れが発生してしまう
ことである。特に分割型クランク軸の場合、軸部と円盤
状のウェイト部との形状差が大きく冷間鍛造(据込み)
の際に割れが発生しやすい。
[0007] According to cold forging, the problems of molding accuracy, working environment and initial investment can be solved, but the biggest problem is that the deformability is small and cracks occur. Especially in the case of a split crankshaft, the difference in shape between the shaft and the disk-shaped weight is large and cold forging (upsetting)
Cracks are likely to occur at the time.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
本発明は、Cが0.46〜0.48wt%、Siが0.1
4wt%以下、Mnが0.55〜0.65wt%、Pが0.
015wt%以下、Sが0.015wt%以下、Cuが0.
15wt%以下、Niが0.20wt%以下、Crが0.3
5wt%以下含まれ、残部がFeと不純物からなる炭素鋼
を素材として連続した冷間鍛造を行ってクランク軸を成
形し、その後、時効処理(例えば250〜350℃の温
度で1〜2.5時間保持)を施すようにした。
In order to solve the above-mentioned problems, the present invention provides a method according to the present invention, wherein C is 0.46 to 0.48 wt% and Si is 0.1%.
4 wt% or less, Mn is 0.55 to 0.65 wt%, and P is 0.
015 wt% or less, S is 0.015 wt% or less, Cu is 0.
15 wt% or less, Ni is 0.20 wt% or less, Cr is 0.3
A continuous cold forging is performed using carbon steel containing 5 wt% or less and the balance being Fe and impurities to form a crankshaft, and then aging treatment (for example, at a temperature of 250 to 350 ° C and a temperature of 1 to 2.5 Time hold).

【0009】ここで、前記炭素鋼の成分比は、熱間鍛造
素材として使用されるJIS S48C(以下、単にS
48Cと記す)の成分組成を基準にし、焼入れ性の確保
の点から、Cの含有量をS48Cとほぼ同一とし、変形
能に悪影響を及ぼす元素として、Si、P、S及びCu
の含有量を減じた成分比である。
Here, the component ratio of the carbon steel is determined by JIS S48C (hereinafter simply referred to as S) used as a hot forging material.
48C), the content of C is almost the same as that of S48C from the viewpoint of ensuring hardenability, and Si, P, S and Cu are elements that adversely affect the deformability.
Is a component ratio in which the content of is reduced.

【0010】以下に成分組成割合を上記の範囲とした理
由を記す。先ず、Cは単位%当り最も冷間鍛造性に大き
な効果をもつ元素であり、機械的性質、特に材料強度、
焼入れ性の面から重要である。即ち、クランク軸にあっ
ては全体的に所定の機械的強度を必要とするとともに、
ウォーム及びテーパ部など局部的に高硬度が要求され
る。このように局部的に高硬度が要求される部分を鍛造
後の焼入れで硬度を上げるために、Cの割合を0.46
〜0.48wt%とする。
The reasons for setting the component composition ratio in the above range will be described below. First, C is an element having the greatest effect on the cold forgeability per unit%, and has a mechanical property, especially a material strength,
It is important in terms of hardenability. That is, the crankshaft needs a predetermined mechanical strength as a whole,
High hardness is locally required such as a worm and a tapered portion. In order to increase the hardness by quenching after forging a portion where high hardness is required locally, the proportion of C is set to 0.46.
0.40.48 wt%.

【0011】またSiは原料の銑鉄中に存在し、製鋼の
過程で殆ど除去されるが、製鋼過程の最後に脱酸剤とし
て添加されることがあり、S48Cでは0.15〜0.
35wt%含まれ、一部は鋼中に入りフェライトに固溶す
るが、鍛造性を阻害するので冷間鍛造素材としてはでき
るだけ少ないことが好ましく0.14wt%以下とする。
[0011] Further, Si is present in pig iron as a raw material and is almost removed during the steel making process, but may be added as a deoxidizing agent at the end of the steel making process.
Although 35 wt% is contained and part enters steel and forms a solid solution with ferrite, it is preferably as little as possible and preferably 0.14 wt% or less as a cold forging material because it inhibits forgeability.

【0012】またMnは製鋼の過程でも多少残るが、脱
酸剤として添加されるため、S48Cには0.60〜
0.90wt%含まれている。このMnはSと結合して硫
化マンガンとして鋼中に分散し、一部はフェライト中に
固溶するが、Sに結合しやすいMnはMnSとなり、こ
のMnSは鍛造成形時の割れの起点となりやすい為、低
減させることが望ましいが、フェライト中に固溶するM
nは焼きを入れやすくし、結晶粒の成長を抑える。この
ため、Mn量は0.55〜0.65wt%にする。
Although Mn remains to some extent in the steelmaking process, it is added as a deoxidizing agent.
0.90 wt% is contained. This Mn combines with S and is dispersed in the steel as manganese sulfide, and a part of the Mn is dissolved in ferrite. However, Mn that easily bonds to S becomes MnS, and this MnS tends to be a starting point of a crack during forging. Therefore, it is desirable to reduce it, but M which forms a solid solution in ferrite
n facilitates baking and suppresses the growth of crystal grains. For this reason, the amount of Mn is set to 0.55 to 0.65 wt%.

【0013】またPはフェライト中に固溶し、多量に含
まれる場合は鉄の一部と化合してリン化鉄になるが、P
がフェライト中に固溶するとフェライトは伸びが減じら
れるようになり、常温における衝撃値も減じられて加工
時に割れが生じやすくなる。そしてこのPはS48Cで
は0.03wt%まで許容されており、冷間鍛造素材とし
ては、この許容値が高すぎる。そこで、Pの割合を0.
015wt%以下とする。
P is dissolved in ferrite in a solid solution. When P is contained in a large amount, it is combined with a part of iron to form iron phosphide.
When a solid solution forms in ferrite, elongation of the ferrite is reduced, the impact value at room temperature is also reduced, and cracks are easily generated during processing. And this P is allowed to 0.03 wt% in S48C, and this allowable value is too high for a cold forging material. Therefore, the ratio of P is set to 0.
015 wt% or less.

【0014】またSはMnの一部と化合してMnSにな
り、このMnSは冷間鍛造時に生じる表面割れの起点と
なり、S48Cでは0.035wt%まで許容されている
が、冷間鍛造素材としては、許容値が高すぎる。そこ
で、Sの割合を0.015wt%以下とする。
S combines with a part of Mn to form MnS, and this MnS becomes a starting point of a surface crack generated at the time of cold forging, and is allowed to be up to 0.035 wt% in S48C. Is too high. Therefore, the ratio of S is set to 0.015 wt% or less.

【0015】またCuは高温加熱ではFeより酸化が少な
いため、表面に富化して赤熱脆性を起こすので、概ね当
量のNiを添加して赤熱脆性を防止する。一方CuはPと
同様に微量の含有によりフェライト硬さを増加させ、冷
間鍛造性を損うことが考えられる為、0.15wt%以下
とする。
Since Cu is less oxidized than Fe when heated at high temperature, it enriches the surface and causes red-hot embrittlement. Therefore, approximately equivalent amount of Ni is added to prevent red-hot embrittlement. On the other hand, Cu, like P, may increase ferrite hardness by a small amount and impair the cold forgeability, so that Cu is set to 0.15 wt% or less.

【0016】またNiは前記した効果の他に、焼入れ性
を増し、低温脆性を防止し、耐食性を改善するため、S
48Cと同量添加する。更にCrは焼入性、焼戻し抵抗
を大にし、耐食性を高め安定した炭化物を作りやすいた
め、S48Cと同量程度含有せしめる。
In addition to the above-mentioned effects, Ni also has an effect of increasing hardenability, preventing low-temperature brittleness, and improving corrosion resistance.
Add the same amount as 48C. Further, Cr increases the hardenability and tempering resistance, increases the corrosion resistance, and easily forms a stable carbide. Therefore, Cr is contained in the same amount as S48C.

【0017】上記成分の素材を冷間鍛造するに当って
は、先ず1回目の球状化焼鈍処理を施して内部の炭化物
を球状化した後、所定の断面減少率で引抜き加工し、所
望の寸法に切断した後、更に2回目の球状化焼鈍処理に
よって内部の炭化物の分散を促進し球状化率を高めるよ
うにしておけば、硬度が低下して成形性が良くなり、ま
た表層部の伸び率も良くなって好適である。
In cold forging the material of the above-mentioned components, first, a first spheroidizing annealing treatment is performed to spheroidize the internal carbides, and thereafter, drawing is performed at a predetermined cross-sectional reduction rate to obtain a desired size. If the spheroidizing treatment is further promoted by increasing the spheroidizing rate by promoting the dispersion of the internal carbides by the second spheroidizing annealing treatment, the hardness is reduced and the formability is improved, and the elongation rate of the surface layer portion is improved. Is also preferred.

【0018】以下の(表1)に示す成分組成の炭素鋼を
使用してクランク軸を冷間鍛造で成形し、(表2)に示
すような色々な加熱保持時間で時効処理するとともに、
時効処理前の表面硬度(HRC)と時効処理後の表面硬
度(HRC)及び内部硬度(HRC)を測定し、X線回
析により金属結晶の格子定数を分析した。ここで、時効
処理の温度は300℃であり、(表2)のNo.Aは時
効処理なしである。
Crankshafts are formed by cold forging using carbon steel having the composition shown in (Table 1) below, and are subjected to aging treatment for various heating and holding times as shown in (Table 2).
The surface hardness (HRC) before the aging treatment, the surface hardness (HRC) after the aging treatment, and the internal hardness (HRC) were measured, and the lattice constant of the metal crystal was analyzed by X-ray diffraction. Here, the temperature of the aging treatment was 300 ° C. A is without aging treatment.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】そして、時効処理前後の硬度(HRC)と
平均格子定数の相関関係を比較分析したところ(表3)
に示すようになり、平均格子定数(d値)が大きいほど
硬度(HRC)が高いことが判明した。
The correlation between the hardness (HRC) before and after the aging treatment and the average lattice constant was compared and analyzed (Table 3).
It was found that the larger the average lattice constant (d value), the higher the hardness (HRC).

【0022】[0022]

【表3】 [Table 3]

【0023】そしてこのことは、原子間に格子欠陥を多
く含むほど、即ち平均格子定数(d値)が大きいほど硬
度が高くなることを意味し、時効処理によって硬度が高
まるのは、低温加熱に引き続く常温までの大気放冷によ
って、結晶間に析出が生じることと、転位を多く固着で
きるからだと推定される。
This means that the greater the number of lattice defects between atoms, that is, the greater the average lattice constant (d value), the higher the hardness. This is presumed to be due to the fact that subsequent cooling to the ambient temperature to the atmosphere causes precipitation between crystals and that many dislocations can be fixed.

【0024】また、図5は時効処理前の金属組織を示す
TEM写真(100,000倍)、図6は時効処理後の
金属組織を示すTEM写真(100,000倍)であ
り、これらの写真から時効処理後には時効処理前に比較
して結晶間に存在する析出物の数が増加していることが
確認される。この析出物の数の増加若しくは転位の固
着、あるいはこれらの相乗効果によって硬度が向上して
いると考えられる。
FIG. 5 is a TEM photograph (100,000 times) showing the metal structure before the aging treatment, and FIG. 6 is a TEM photograph (100,000 times) showing the metal structure after the aging treatment. From this, it is confirmed that the number of precipitates existing between the crystals is increased after the aging treatment compared to before the aging treatment. It is considered that the hardness is improved due to the increase in the number of the precipitates, the fixation of dislocations, or the synergistic effect thereof.

【0025】また、時効処理条件として、250〜35
0℃の温度で1〜2.5時間保持し、その後常温まで放
冷することで硬度や機械的強度の向上を最大に得ること
ができる。このことは、(表1)〜(表3)に示す分析
結果からも明らかである。(表3)のNo.C(時効時
間1.0H)未満では硬度の上昇が少なく、No.D〜
No.F(時効時間1.5〜2.5H)の間をピークに
して、No.G(時効時間4H)では過時効となり、硬
度が低下している。
The aging conditions are 250 to 35.
By maintaining the temperature at 0 ° C. for 1 to 2.5 hours and then allowing it to cool to room temperature, the improvement in hardness and mechanical strength can be maximized. This is clear from the analysis results shown in (Table 1) to (Table 3). No. of (Table 3). When the aging time is less than C (age time: 1.0H), the increase in hardness is small. D ~
No. No. F (aging time 1.5 to 2.5 H) was peaked. At G (aging time 4H), overaging has occurred and the hardness has decreased.

【0026】[0026]

【発明の実施の形態】本発明の実施の形態について添付
した図面に基づき説明する。図1は分割クランク軸の組
立完成図、図2は時効処理前後のクランク軸の硬度測定
試験のタイミング及び測定ポイントを説明する説明図、
図3は本発明に係るクランク軸の機械的強度試験の結果
図、図4は連続した冷間鍛造工程の一例を示す工程図で
ある。
Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is an assembly drawing of a split crankshaft, FIG. 2 is an explanatory diagram for explaining the timing and measurement points of a hardness measurement test of the crankshaft before and after aging treatment,
FIG. 3 is a diagram showing a result of a mechanical strength test of the crankshaft according to the present invention, and FIG. 4 is a process diagram showing an example of a continuous cold forging process.

【0027】図1に示すクランクシャフト1は、軸付き
円盤状の左右の分割型クランク軸1a、1bと、これら
クランク軸1a、1bのウェイト部のピン穴pに結合さ
れる結合ピン1cを備えており、左右のクランク軸1
a、1bはそれぞれ連続した冷間鍛造により別々に成形
された後、それぞれ本発明に係る時効処理が施され、そ
の後結合ピン1cで一体化される。
The crankshaft 1 shown in FIG. 1 includes left and right divided crankshafts 1a and 1b each having a disk shape with a shaft, and a connecting pin 1c which is connected to a pin hole p of a weight portion of the crankshafts 1a and 1b. Left and right crankshaft 1
After each of a and 1b is separately formed by continuous cold forging, each is subjected to an aging treatment according to the present invention, and then integrated by the connecting pin 1c.

【0028】先ず、成形後の時効処理について説明する
前に、ビレットから連続した冷間鍛造により分割型クラ
ンク軸を成形する工程の概要について説明する。
First, before explaining the aging treatment after forming, an outline of a step of forming a split crankshaft by continuous cold forging from a billet will be described.

【0029】まず、ビレットの組成成分は、Cが0.4
6〜0.48wt%、Siが0.14wt%以下、Mnが
0.55〜0.65wt%、Pが0.015wt%以下、S
が0.015wt%以下、Cuが0.15wt%以下、Ni
が0.20wt%以下、Crが0.35wt%以下含まれ、
残部がFeと不純物からなる炭素鋼としている。
First, the composition of the billet is such that C is 0.4
6 to 0.48 wt%, Si is 0.14 wt% or less, Mn is 0.55 to 0.65 wt%, P is 0.015 wt% or less, S
Is 0.015 wt% or less, Cu is 0.15 wt% or less, Ni
0.20 wt% or less, Cr 0.35 wt% or less,
The balance is carbon steel composed of Fe and impurities.

【0030】上記成分組成の棒材からビレットを製造す
る方法は、酸洗を行った後、第1回目の球状化焼鈍を行
い、セメンタイトを球状化して素材全体の加工性を向上
させ、内部まで歪みを与えることができるようにすると
ともに、パーライトの微細化を図る。次に、酸洗、ボン
デ処理を行って引抜き加工を行って、限界据込み率の向
上を図る。次いで、この棒材を所望の寸法に切断し、こ
れを酸洗した後、2回目の球状化焼鈍を行い、炭化物の
分散を図るとともに球状化率を高めるようにしている。
そして2回目の球状化焼鈍が終えると、ショットブラス
ト、ボンデ処理を行って表面調整を行い、冷間鍛造用ビ
レットを得る。
The method for producing a billet from a rod having the above-mentioned composition is as follows: after pickling, a first spheroidizing annealing is performed to spheroidize cementite to improve the workability of the entire material, and to improve the inside of the material. Distortion can be given, and pearlite is miniaturized. Next, pickling and bonding are performed and a drawing process is performed to improve the limit upsetting rate. Next, the bar is cut into a desired size, pickled, and then subjected to a second spheroidizing annealing to disperse carbides and increase the spheroidizing rate.
When the second spheroidizing annealing is completed, the surface is adjusted by performing shot blasting and bonding to obtain a billet for cold forging.

【0031】以上の要領で製造したビレットを準備する
と、図4に示すように、第1工程として多段形状の中間
素材を成形し、次いで第2工程で大径部の径を広げるよ
う据え込み、第3工程で大径部の厚みを左右非対称に荒
地成形してウェイト部としての概略の形状に仕上げる。
そして第4工程で大径部を左右非対称形状に仕上成形し
て必要に応じてスプライン部やセンタ孔等を必要箇所に
形成する。そして、第5工程では、大径部の一部にピン
穴pを打抜くと同時に、大径部の外周のバリを同時に打
ち抜き、これら一連の冷間鍛造を連続的に、しかも中間
焼鈍することなく成形するようにしている。
When the billet manufactured in the above manner is prepared, as shown in FIG. 4, a multi-stage intermediate material is formed as a first step, and then the large-diameter portion is set up in a second step to expand the diameter. In the third step, the thickness of the large-diameter portion is formed in rough land asymmetrically in the left and right direction to finish the approximate shape as the weight portion.
In the fourth step, the large-diameter portion is finish-formed into a left-right asymmetrical shape, and a spline portion, a center hole, and the like are formed at necessary portions as necessary. In the fifth step, a pin hole p is punched in a part of the large-diameter portion, and at the same time, burrs on the outer periphery of the large-diameter portion are punched out simultaneously. Without molding.

【0032】本発明に係る時効処理は、以上のような手
順で成形されたクランク軸に対して施され、250〜3
50℃の温度で1〜2.5時間保持した後、常温まで放
冷することで行われる。
The aging treatment according to the present invention is applied to the crankshaft formed in the above-described procedure, and
After holding at a temperature of 50 ° C. for 1 to 2.5 hours, it is performed by allowing to cool to room temperature.

【0033】ここで、図2は300℃の温度で、2時間
加熱したクランク軸の硬度測定試験の要領を示すもので
あり、図2(a)は硬度測定のタイミングを、図2
(b)は時効前の硬度測定ポイントを、図2(c)は時
効後の硬度測定ポイントの説明図である。そして、時効
前は、図2(b)に示すように、クランク軸の任意の4
箇所の表面硬度(HRC)を測定し、また試験体として
はNo1〜No3の3本のクランク軸とした。この結果
は(表4)の通りである。
FIG. 2 shows the procedure of a hardness measurement test of a crankshaft heated at a temperature of 300 ° C. for 2 hours, and FIG. 2A shows the timing of hardness measurement.
FIG. 2B is an explanatory diagram of hardness measurement points before aging, and FIG. 2C is an explanatory diagram of hardness measurement points after aging. Before the aging, as shown in FIG.
The surface hardness (HRC) of each part was measured, and three crankshafts No. 1 to No. 3 were used as test pieces. The results are as shown in (Table 4).

【0034】[0034]

【表4】 [Table 4]

【0035】また、時効処理後の硬度測定ポイントは図
2(c)に示すように、クランク軸の〜の7箇所の
表面硬度と内部硬度とした。この結果は(表5)の通り
である。
As shown in FIG. 2 (c), the hardness measurement points after the aging treatment were the surface hardness and the internal hardness at 7 points on the crankshaft. The results are as shown in (Table 5).

【0036】[0036]

【表5】 [Table 5]

【0037】この結果、No1クランク軸の場合は、時
効前の平均表面硬度(HRC)が23.6であったのに
対して、時効後の平均表面硬度(HRC)は23.9
で、平均内部硬度(HRC)は25.8に上昇してお
り、また、No2クランク軸の場合は、時効前の平均表
面硬度(HRC)が23.3であったのに対して、時効
後の平均表面硬度(HRC)は24.2で、平均内部硬
度(HRC)は24.7に上昇しており、No3クラン
ク軸の場合は、時効前の平均表面硬度(HRC)が2
3.4であったのに対して、時効後の平均表面硬度(H
RC)は24.4で、平均内部硬度(HRC)は24.
7に上昇しており、いずれの場合も時効処理によって硬
度(HRC)が上がっていることが確認される。
As a result, in the case of the No. 1 crankshaft, the average surface hardness (HRC) before aging was 23.6, whereas the average surface hardness (HRC) after aging was 23.9.
The average internal hardness (HRC) has increased to 25.8, and the average surface hardness (HRC) of the No. 2 crankshaft before aging was 23.3, whereas the average internal hardness (HRC) before aging was 23.3. Has an average surface hardness (HRC) of 24.2 and an average internal hardness (HRC) of 24.7. In the case of the No. 3 crankshaft, the average surface hardness (HRC) before aging is 2
The average surface hardness after aging (H
RC) is 24.4 and the average internal hardness (HRC) is 24.
In each case, it is confirmed that the hardness (HRC) is increased by the aging treatment.

【0038】また、図3は、クランク軸のスリップトル
クと単体疲労強度を測定した結果である。すなわち、図
3(a)に示すようなクランクシャフトにおいて、スリ
ップが開始する左側クランク軸のピン穴p周辺のトルク
は、所定のトルク値を満足することが確認された。
FIG. 3 shows the results of measuring the slip torque of the crankshaft and the fatigue strength of a single unit. That is, in the crankshaft as shown in FIG. 3A, it was confirmed that the torque around the pin hole p of the left crankshaft at which the slip started satisfies the predetermined torque value.

【0039】また、図3(b)に示すように、回転曲げ
疲労試験のS−N線図は、従来の熱間鍛造素材(黒塗り
つぶし)に較べて、本発明の時効処理材(白抜き)がほ
ぼ同等であることを示している。すなわち、回転曲げ強
度は、従来の熱間鍛造素材とほぼ同等の特性を有してい
る。
Further, as shown in FIG. 3 (b), the SN diagram of the rotating bending fatigue test shows that the aging treatment material of the present invention (white outline) is compared with the conventional hot forged material (black solid). ) Are almost equivalent. That is, the rotary bending strength has substantially the same characteristics as the conventional hot forging material.

【0040】また図3(c)に示すように、実体曲げ疲
労試験のS−N線図は、従来の熱間鍛造素材(黒塗りつ
ぶし)に較べて本発明の時効処理材(白抜き)がほぼ同
等であることを示している。即ち、実体曲げ強度も、従
来の熱間鍛造素材とほぼ同等の特性を有していることが
分る。
As shown in FIG. 3 (c), the SN diagram of the actual bending fatigue test shows that the aging treatment material (open area) of the present invention is compared with the conventional hot forging material (solid black). It shows that they are almost equivalent. That is, it can be seen that the actual bending strength has substantially the same characteristics as those of the conventional hot forging material.

【0041】[0041]

【発明の効果】以上のように本発明に係るクランク軸の
製造方法は、所定成分割合の炭素鋼から連続成形したク
ランク軸に対して、低温熱処理である時効処理を施して
硬度や機械的強度を高めるようにしたため、熱間鍛造素
材を使用するような表面処理のための機械加工や、精度
保証のための機械加工を廃止することができ、加工効率
の良い優れた精度のクランク軸を製造することができ
る。また、歩留りの向上も図られ、大幅なコスト削減が
可能である。
As described above, according to the method of manufacturing a crankshaft according to the present invention, a crankshaft continuously formed from a carbon steel having a predetermined component ratio is subjected to an aging treatment as a low-temperature heat treatment to provide hardness and mechanical strength. As a result, machining for surface treatment, such as using a hot forged material, and machining for assurance of accuracy can be eliminated, producing a crankshaft with excellent machining efficiency and excellent accuracy. can do. In addition, the yield is improved, and significant cost reduction is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】分割クランク軸の組立完成図FIG. 1 is an assembled view of a split crankshaft.

【図2】時効処理前後のクランク軸の硬度測定試験のタ
イミング及び測定ポイントを説明する説明図
FIG. 2 is an explanatory diagram illustrating timing and measurement points of a hardness measurement test of a crankshaft before and after aging treatment.

【図3】本発明に係るクランク軸の機械的強度試験の結
果図
FIG. 3 is a diagram showing a result of a mechanical strength test of a crankshaft according to the present invention.

【図4】連続した冷間鍛造工程の一例を示す工程図FIG. 4 is a process diagram showing an example of a continuous cold forging process.

【図5】時効処理前の金属組織を示すTEM写真(10
0,000倍)
FIG. 5 is a TEM photograph (10) showing a metal structure before aging treatment.
(0000 times)

【図6】時効処理後の金属組織を示すTEM写真(10
0,000倍)
FIG. 6 is a TEM photograph (10) showing the metal structure after the aging treatment.
(0000 times)

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年4月19日(2000.4.1
9)
[Submission date] April 19, 2000 (2004.1.
9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】因みに、S48Cの成分割合は、Cが0.
45〜0.51wt%、Siが0.15〜0.35wt%
Mnが0.6〜0.9wt%、Pが0.03wt%以下、S
が0.035wt%以下、Cuが0.3wt%以下、Niが
0.2wt%以下、Crが0.2wt%以下が基準とされて
いる。
[0005] Incidentally, the component ratio of S48C is such that C is 0.1%.
45-0.51 wt%, Si is 0.15-0.35 wt% ,
Mn is 0.6 to 0.9 wt%, P is 0.03 wt% or less, S
Is 0.035 wt% or less, Cu is 0.3 wt% or less, Ni is 0.2 wt% or less, and Cr is 0.2 wt% or less.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 正 埼玉県狭山市新狭山1丁目10番地1 ホン ダエンジニアリング株式会社内 (72)発明者 上川 満 埼玉県狭山市新狭山1丁目10番地1 ホン ダエンジニアリング株式会社内 (72)発明者 福田 文男 熊本県菊池郡大津町平川1500 本田技研工 業株式会社熊本製作所内 (72)発明者 松浦 英樹 熊本県菊池郡大津町平川1500 本田技研工 業株式会社熊本製作所内 Fターム(参考) 4E087 AA10 BA01 BA02 BA14 CA13 CA22 CA33 CB03 CB12 DA05 DB11 DB14 DB24 EC02 EC22 HA32 HA83 4K042 AA16 BA03 BA05 BA13 CA05 CA06 CA10 DA03 DA05 DC02 DC03 DE03  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tadashi Kobayashi 1-10-1 Shinsayama, Sayama City, Saitama Prefecture Honda Engineering Co., Ltd. (72) Inventor Mitsuru Kamikawa 1-10-1, Shinsayama, Sayama City, Saitama Prefecture Hong Inside Da Engineering Co., Ltd. (72) Inventor Fumio Fukuda 1500, Hirakawa, Otsu-cho, Kikuchi-gun, Kumamoto Honda Motor Co., Ltd.Kumamoto Factory (72) Inventor Hideki Matsuura 1500, Hirakawa, Otsu-cho, Kikuchi-gun, Kumamoto Honda Motor Co., Ltd F term in Kumamoto Factory (reference) 4E087 AA10 BA01 BA02 BA14 CA13 CA22 CA33 CB03 CB12 DA05 DB11 DB14 DB24 EC02 EC22 HA32 HA83 4K042 AA16 BA03 BA05 BA13 CA05 CA06 CA10 DA03 DA05 DC02 DC03 DE03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C(炭素)が0.46〜0.48wt%、
Si(珪素)が0.14wt%以下、Mn(マンガン)が
0.55〜0.65wt%、P(リン)が0.015wt%
以下、S(硫黄)が0.015wt%以下、Cu(銅)が
0.15wt%以下、Ni(ニッケル)が0.20wt%以
下、Cr(クロム)が0.35wt%以下含まれ、残部が
Fe(鉄)と不純物からなる炭素鋼を素材として連続し
た冷間鍛造を行ってクランク軸を成形し、その後、時効
処理を施すことを特徴とするクランク軸の製造方法。
(1) C (carbon) is 0.46 to 0.48 wt%,
0.14 wt% or less of Si (silicon), 0.55 to 0.65 wt% of Mn (manganese), 0.015 wt% of P (phosphorus)
Hereinafter, S (sulfur) contains 0.015 wt% or less, Cu (copper) contains 0.15 wt% or less, Ni (nickel) contains 0.20 wt% or less, Cr (chromium) contains 0.35 wt% or less, and the balance is A method for manufacturing a crankshaft, comprising: performing continuous cold forging using a carbon steel containing Fe (iron) and impurities as a raw material to form a crankshaft; and then performing aging treatment.
【請求項2】 C(炭素)が0.46〜0.48wt%、
Si(珪素)が0.14wt%以下、Mn(マンガン)が
0.55〜0.65wt%、P(リン)が0.015wt%
以下、S(硫黄)が0.015wt%以下、Cu(銅)が
0.15wt%以下、Ni(ニッケル)が0.20wt%以
下、Cr(クロム)が0.35wt%以下含まれ、残部が
Fe(鉄)と不純物からなる炭素鋼を素材とし、この素
材に第1の球状化焼鈍工程を施し、この第1の球状化焼
鈍工程の後に所定の断面減少率で引抜き加工する引抜き
工程を施し、この引抜き工程の後に内部の炭化物の分散
を促進し球状化率を高めるために行う第2の球状化焼鈍
工程を施してビレットを形成し、このビレットを用いて
連続した冷間鍛造を行ってクランク軸を成形し、その
後、時効処理を施すことを特徴とするクランク軸の製造
方法。
2. C (carbon) is 0.46 to 0.48 wt%,
0.14 wt% or less of Si (silicon), 0.55 to 0.65 wt% of Mn (manganese), 0.015 wt% of P (phosphorus)
Hereinafter, S (sulfur) contains 0.015 wt% or less, Cu (copper) contains 0.15 wt% or less, Ni (nickel) contains 0.20 wt% or less, Cr (chromium) contains 0.35 wt% or less, and the balance is A carbon steel made of Fe (iron) and impurities is used as a raw material, and a first spheroidizing annealing step is performed on the raw material, and after the first spheroidizing annealing step, a drawing step of drawing at a predetermined cross-sectional reduction rate is performed. After the drawing step, a billet is formed by performing a second spheroidizing annealing step performed to promote the dispersion of carbides inside and increase the spheroidization rate, and to perform continuous cold forging using the billet. A method for manufacturing a crankshaft, comprising forming a crankshaft and then subjecting it to aging treatment.
【請求項3】 請求項1または請求項2に記載のクラン
ク軸の製造方法において、前記時効処理は、250〜3
50℃の温度で1〜2.5時間保持し、その後常温まで
放冷することを特徴とするクランク軸の製造方法。
3. The method for manufacturing a crankshaft according to claim 1, wherein the aging treatment is performed in a range from 250 to 3 times.
A method for manufacturing a crankshaft, wherein the method is held at a temperature of 50 ° C. for 1 to 2.5 hours, and then cooled to room temperature.
JP17380499A 1999-05-20 1999-06-21 Crankshaft manufacturing method Expired - Fee Related JP3701145B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP17380499A JP3701145B2 (en) 1999-06-21 1999-06-21 Crankshaft manufacturing method
US10/789,322 US20040261918A1 (en) 1999-05-20 2004-02-26 Billet for cold forging, method of manufacturing billet for cold forging, method of continuously cold-forging billet, method of cold-forging
US10/789,347 US7093526B2 (en) 1999-05-20 2004-02-26 Forming die apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17380499A JP3701145B2 (en) 1999-06-21 1999-06-21 Crankshaft manufacturing method

Publications (2)

Publication Number Publication Date
JP2001003117A true JP2001003117A (en) 2001-01-09
JP3701145B2 JP3701145B2 (en) 2005-09-28

Family

ID=15967480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17380499A Expired - Fee Related JP3701145B2 (en) 1999-05-20 1999-06-21 Crankshaft manufacturing method

Country Status (1)

Country Link
JP (1) JP3701145B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138457A (en) * 2008-12-12 2010-06-24 Fuji Electronics Industry Co Ltd Hardening method and hardening apparatus
KR101467041B1 (en) * 2012-09-27 2014-12-02 현대제철 주식회사 Manufacturing method of crank shaft
CN114433648A (en) * 2022-02-11 2022-05-06 无锡天辰冷拉型钢有限公司 Cold-drawing processing method of high-carbon chromium bearing steel guide rail blank

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071752A (en) * 2013-01-21 2013-05-01 谭哲强 Forging process of crank blank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138457A (en) * 2008-12-12 2010-06-24 Fuji Electronics Industry Co Ltd Hardening method and hardening apparatus
KR101467041B1 (en) * 2012-09-27 2014-12-02 현대제철 주식회사 Manufacturing method of crank shaft
CN114433648A (en) * 2022-02-11 2022-05-06 无锡天辰冷拉型钢有限公司 Cold-drawing processing method of high-carbon chromium bearing steel guide rail blank
CN114433648B (en) * 2022-02-11 2024-04-12 无锡天辰冷拉型钢有限公司 Cold drawing processing method of high-carbon chromium bearing steel guide rail blank

Also Published As

Publication number Publication date
JP3701145B2 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
JP3915043B2 (en) Steel for forging production and method for producing forging
TWI606124B (en) Steel for mechanical structure for cold room processing and manufacturing method thereof
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
TW201812048A (en) Steel for machine structures for cold working and method for producing same
JPS589813B2 (en) Manufacturing method for non-thermal forged steel products
EP3272896B1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JP2001003117A (en) Production of crank shaft
JP2012020298A (en) Method for manufacturing forging
CN110468338A (en) 1Cr11Ni2W2MoV heat resisting steel and its quenching-and-tempering process method
TW200538559A (en) The crank shaft excellent in bending fatigue strength
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JP2006292108A (en) Crank shaft and its manufacturing method
JP2007107046A (en) Steel material to be induction-hardened
JP3833388B2 (en) Method for producing constant velocity joint with excellent cold workability and strength
JP2614653B2 (en) Manufacturing method of carburized parts with little heat treatment distortion
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability
JP4209600B2 (en) Method for producing retainer for constant velocity joint with excellent machinability and bending strength
JP6752624B2 (en) Manufacturing method of carburized steel
JP2003266144A (en) Cold forging method of crank
JPH10152754A (en) Case hardening steel and production of case hardening steel
WO2022210124A1 (en) Steel wire for machine structural component and manufacturing method therefor
TWI812127B (en) Steel wire for mechanical structural parts and manufacturing method thereof
JP3569158B2 (en) Billet for cold forging
JP4596577B2 (en) Manufacturing method of billet for cold forging
JPH10219353A (en) Production of exhaust valve

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees