JP2001002463A - Production of alumina member - Google Patents

Production of alumina member

Info

Publication number
JP2001002463A
JP2001002463A JP11168016A JP16801699A JP2001002463A JP 2001002463 A JP2001002463 A JP 2001002463A JP 11168016 A JP11168016 A JP 11168016A JP 16801699 A JP16801699 A JP 16801699A JP 2001002463 A JP2001002463 A JP 2001002463A
Authority
JP
Japan
Prior art keywords
alumina
sintered body
sintering
density
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11168016A
Other languages
Japanese (ja)
Inventor
Takashi Morita
敬司 森田
Koichi Imura
浩一 井村
Sachiyuki Nagasaka
幸行 永坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP11168016A priority Critical patent/JP2001002463A/en
Publication of JP2001002463A publication Critical patent/JP2001002463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain alumina having a density nearly equal to the true density, to enable the production on a large scale and to stably supply a product having a complex shape, such a belljar. SOLUTION: The high density alumina sintered body is obtained by adding an amount of 20 to 100 ppm of a MgO component to easily sinterable alumina having the purity of 99.99 wt.%, granulating the resulting mixture, forming, calcining the formed material under the atmosphere and sintering the calcined body at 1,300 to 1,400 deg.C in a hydrogen atmosphere. The suitable alumina sintered body has crystal grain sizes of 0.5 to 5.0 μm and a bulk density of >=3.98 g/cm3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミナ部材の製
造方法に関する
The present invention relates to a method for manufacturing an alumina member.

【0002】[0002]

【従来の技術】エッチャーやP−CVD装置(プラズマ
化学蒸着装置)で使用するマイクロ波透過部材たとえば
板や窓は、材質の高強度性とマイクロ波透過性が重要で
ある。
2. Description of the Related Art A microwave transmitting member such as a plate or a window used in an etcher or a P-CVD apparatus (plasma chemical vapor deposition apparatus) is required to have high strength and microwave transmitting property.

【0003】一般には、純度99.9wt%以上の高純
度アルミナ・セラミックスや窒化アルミがマイクロ波透
過部材の材料として用いられている。
[0003] Generally, high-purity alumina ceramics and aluminum nitride having a purity of 99.9 wt% or more are used as materials for microwave transmitting members.

【0004】アルミナ・セラミックスの場合、熱衝撃に
弱いため、高強度化が望まれている。そして、アルミナ
・セラミックスは結晶粒子径を小さくしなければ、強度
を高めることが困難である。ところが、結晶粒径を小さ
くするには、焼結温度を1300〜1400℃の低温に
する必要がある。しかし、アルミナ・セラミックスを低
温で焼成すると、結晶粒子間に残留気孔が残る。その際
の密度は3.96g/cm3程度であり、真密度の3.
98g/cm3にはおよばない。そして、この気孔残留
が欠陥となって、強度向上につながらない。
[0004] Alumina ceramics are susceptible to thermal shock, and are desired to have higher strength. It is difficult to increase the strength of alumina ceramics unless the crystal particle diameter is reduced. However, in order to reduce the crystal grain size, the sintering temperature needs to be as low as 1300 to 1400 ° C. However, when alumina ceramics are fired at a low temperature, residual pores remain between crystal grains. The density at that time is about 3.96 g / cm 3, which is the true density of 3.96 g / cm 3.
It does not reach 98 g / cm 3 . Then, the residual pores become defects and do not lead to an improvement in strength.

【0005】残留気孔を減らすために、HIP(ホット
・アイソスタティック・プレス)やHP(ホットプレ
ス)焼結法を用いなければれば、高強度のアルミナ・セ
ラミックスが実現できない不都合が生じる。
[0005] Unless HIP (hot isostatic press) or HP (hot press) sintering is used to reduce the residual pores, there arises a disadvantage that high-strength alumina ceramics cannot be realized.

【0006】たとえば、HIP焼成は、通常の常圧焼成
と異なり、量産に適していない。また、ベルジャー形状
のセラミック製品の製造が困難である。
For example, HIP firing is not suitable for mass production, unlike ordinary normal pressure firing. Further, it is difficult to manufacture a bell jar-shaped ceramic product.

【0007】従来、温度勾配の急な使用条件では、通常
強度(曲げ強度で350MPa程度)のアルミナ・ベル
ジャーまたはアルミナ板は破損している。この対策とし
て、500MPa以上の高強度・高純度アルミナ製のマ
イクロ波透過板やベルジャーが必要である。
[0007] Conventionally, under a use condition with a steep temperature gradient, an alumina bell jar or an alumina plate having normal strength (bending strength of about 350 MPa) has been broken. As a countermeasure, a microwave transmitting plate or bell jar made of high-strength and high-purity alumina of 500 MPa or more is required.

【0008】[0008]

【発明が解決しようとする課題】本発明は、アルミナが
真密度に近くなり、大量生産やベルジャー等の複雑形状
の製品が安定して供給できるようにすることを目的とし
ている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide alumina having a density close to the true density, and to be able to stably supply mass-produced products and products having complicated shapes such as bell jars.

【0009】[0009]

【課題を解決するための手段】本発明の解決手段は、請
求項1〜5に記載のアルミナ部材の製造方法である。
Means for Solving the Problems The solution of the present invention is a method for producing an alumina member according to claims 1 to 5.

【0010】[0010]

【発明の実施の形態】本発明においては、まず易焼結性
でかつアルミナ純度99.99wt%以上のアルミナ粉
末を使用し、それにMgO成分を20〜100ppm添
加する。そのあと、これを造粒して、成形する。その成
形品を酸素を含む雰囲気で600〜1100℃で仮焼す
る。そのとき、仮焼品に焼結が進行しないようにする。
その後、水素雰囲気中1300〜1400℃で成形品を
焼結して高密度アルミナ焼結体の製品を作る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, first, alumina powder which is easy to sinter and has an alumina purity of 99.99 wt% or more is used, and 20 to 100 ppm of an MgO component is added thereto. Then, this is granulated and molded. The molded product is calcined at 600 to 1100 ° C. in an atmosphere containing oxygen. At that time, sintering is not performed on the calcined product.
Thereafter, the molded product is sintered at 1300 to 1400 ° C. in a hydrogen atmosphere to produce a high-density alumina sintered product.

【0011】好ましくは800〜900℃で仮焼する。Preferably, calcination is performed at 800 to 900 ° C.

【0012】アルミナ焼結体の結晶粒径は0.5〜5μ
mとする。また、アルミナ焼結体のかさ密度は、3.9
8g/cm3以上とする。
The grain size of the alumina sintered body is 0.5 to 5 μm.
m. The bulk density of the alumina sintered body was 3.9.
8 g / cm 3 or more.

【0013】アルミナ焼結体は、マイクロ波透過板や透
過ベルジャーとして構成する。
The alumina sintered body is constituted as a microwave transmitting plate or a transmitting bell jar.

【0014】本明細書において、仮焼とは、脱脂を意味
するものである。本発明では仮焼を600〜1100℃
(好ましくは800〜900℃)で行う。この温度を超
える温度では、仮焼においても多少焼結が進行し、閉気
孔が存在する仮焼体ができてしまい、これを再度焼結し
ても、この閉気孔は残存してしまう。
In this specification, calcination means degreasing. In the present invention, calcining is performed at 600 to 1100 ° C.
(Preferably 800 to 900 ° C.). At a temperature higher than this temperature, sintering proceeds to some extent even in calcination, and a calcined body having closed pores is formed. Even if this is sintered again, the closed pores remain.

【0015】本発明での仮焼は、好ましくは、50〜7
0℃/hrで昇温することが好ましい。また、焼結は、
1000℃までは50〜70℃/hrで昇温し、これ以
降は15〜30℃/hrで昇温することが好ましい。こ
のようにすることによって、より確実に高密度化及び高
強度化がはかれる。また、気泡を残存させない焼結体の
製造が容易に達成される。
[0015] The calcination in the present invention is preferably carried out at 50-7.
Preferably, the temperature is raised at 0 ° C./hr. Also, sintering is
It is preferred that the temperature be raised up to 1000 ° C. at a rate of 50 to 70 ° C./hr, and thereafter from 15 to 30 ° C./hr. By doing so, the density and strength can be more reliably increased. In addition, the production of a sintered body that does not leave bubbles is easily achieved.

【0016】本発明によれば、焼結体の結晶粒径が0.
5〜5μmと比較的小さくなる。このような構造によ
り、500MPa以上の曲げ強度が得られる。従来の方
法(たとえば特開平6−157132号のような製造方
法)であると、結晶粒径は27〜35μであり、曲げ強
度は350MPa程度である。
According to the present invention, the sintered body has a crystal grain size of 0.1 mm.
It is relatively small, 5 to 5 μm. With such a structure, a bending strength of 500 MPa or more can be obtained. In the case of a conventional method (for example, a manufacturing method as disclosed in JP-A-6-157132), the crystal grain size is 27 to 35 μm, and the bending strength is about 350 MPa.

【0017】また、本発明の他の特徴は、易焼結性の高
純度アルミナ粉末を使用することである。易焼結性アル
ミナ粉末の製造方法の一例が特公平7−12927号に
示されている。
Another feature of the present invention is to use an easily sinterable high-purity alumina powder. An example of a method for producing an easily sinterable alumina powder is disclosed in Japanese Patent Publication No. 7-12927.

【0018】[0018]

【実施例】アルミナ原料として、純度99.99wt
%、平均粒子径0.4μmのアルミナ原料を使用した。
それに、MgOとしてMg(NO32・6H2Oを適量
添加した。また成形助剤(バインダ)としてPVAを2
wt%添加した。それらの混合物をスプレードライヤー
にて造粒を行った。このようにして作られた造粒粉を用
いて、98.1MPaにてラバープレス成形を行って成
形体をつくった。その後、一方では、成形体を大気中で
1200〜1500℃で焼成した。また、他方では、成
形体を大気中60℃/hrで昇温し、800℃で仮焼し
て脱脂した。そのあと、仮焼体を1200〜1500℃
で水素雰囲気で焼結を行った。得られた焼結体の曲げ強
度とtanδを測定した。
Example: Alumina raw material, purity 99.99wt
%, An alumina raw material having an average particle diameter of 0.4 μm was used.
An appropriate amount of Mg (NO 3 ) 2 .6H 2 O was added as MgO. PVA is used as a molding aid (binder).
wt% was added. The mixture was granulated with a spray drier. Using the granulated powder thus produced, a rubber press molding was performed at 98.1 MPa to form a molded body. Thereafter, on the one hand, the molded body was fired at 1200 to 1500 ° C. in the air. On the other hand, the molded body was heated in the air at a rate of 60 ° C./hr, calcined at 800 ° C., and degreased. After that, the calcined body is heated to 1200 to 1500 ° C.
For sintering in a hydrogen atmosphere. The bending strength and tan δ of the obtained sintered body were measured.

【0019】その測定結果は表1に示すとおりであっ
た。
The results of the measurement are as shown in Table 1.

【0020】[0020]

【表1】 表1において、左端に示す番号(No)は、実験例の番
号である。実験例1〜5、9、13は、本発明の範囲に
入らない比較例である。実験例6〜8、10〜12は本
発明の実施例である。
[Table 1] In Table 1, the number (No) shown at the left end is the number of the experimental example. Experimental Examples 1 to 5, 9, and 13 are comparative examples that do not fall within the scope of the present invention. Experimental examples 6 to 8 and 10 to 12 are examples of the present invention.

【0021】この結果、本発明の実施例においては、水
素雰囲気では真密度に達し、大気中より高密度になるこ
とが確認され、また気孔が減少したため、強度も高くな
っていることが判明した。
As a result, in the example of the present invention, it was confirmed that the density reached a true density in a hydrogen atmosphere and became higher than that in the atmosphere, and it was also found that the strength was increased because the pores were reduced. .

【0022】本発明の実施例である焼結体の材料を使用
して、ベルジャーとマイクロ波透過窓を製作したとこ
ろ、従来の製品より強度を約1.5倍に増加させること
が可能となった。しかも、安全率が向上した。
When a bell jar and a microwave transmitting window were manufactured using the material of the sintered body according to the embodiment of the present invention, it was possible to increase the strength by about 1.5 times as compared with the conventional product. Was. Moreover, the safety factor has been improved.

【0023】[0023]

【発明の効果】本発明は、焼成時の雰囲気を水素にする
ことで、気孔の移動速度を高めることが可能となった。
また、アルミナの真密度にすることが容易になった。さ
らに、大量生産や、ベルジャー等の複雑形状の製品が安
定して供給できるようになった。
According to the present invention, the moving speed of the pores can be increased by changing the atmosphere during firing to hydrogen.
Moreover, it became easy to make the true density of alumina. Further, it has become possible to stably supply mass-produced products and products having complicated shapes such as bell jars.

【0024】500MPa以上の高強度・高純度アルミ
ナ製のマイクロ波透過板やベルジャーが製造可能になっ
た。
A microwave transmitting plate and a bell jar made of high strength and high purity alumina of 500 MPa or more can be manufactured.

【0025】また、MgO添加量の調節により、マイク
ロ波透過性を変化させることができる。たとえば、Mg
O添加量少ない程、高透過率となる。
The microwave transmission can be changed by adjusting the amount of MgO added. For example, Mg
The smaller the amount of O added, the higher the transmittance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永坂 幸行 千葉県東金市小沼田字戌開1573番8 東芝 セラミックス株式会社東金工場内 Fターム(参考) 4G030 AA07 AA36 GA11 GA25 GA26 GA27 4K030 FA01 FA02 KA09 KA37 KA46 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yukiyuki Nagasaka 1573-8 Inukai, Onumada, Togane-shi, Chiba F-term in Toshiba Ceramics Co., Ltd. Togane Plant 4G030 AA07 AA36 GA11 GA25 GA26 GA27 4K030 FA01 FA02 KA09 KA37 KA46

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 易焼結性のアルミナ純度99.99wt
%以上のアルミナ粉末にMgO成分を20〜100pp
m添加し、これを造粒して成形し、酸素を含む雰囲気中
600〜1100℃で焼結が進行しないように仮焼した
後、水素雰囲気中1300〜1400℃で焼結してアル
ミナ焼結体にするアルミナ部材の製造方法。
1. Sinterable alumina purity of 99.99 wt.
% Or more of MgO component in alumina powder of 20-100pp
m, granulated and molded, calcined in an atmosphere containing oxygen at 600 to 1100 ° C. so that sintering does not progress, and then sintered at 1300 to 1400 ° C. in a hydrogen atmosphere to sinter alumina. A method for manufacturing an alumina member to be a body.
【請求項2】 易焼結性のアルミナ純度99.99wt
%以上のアルミナ粉末にMgO成分を20〜100pp
m添加し、これを造粒して成形し、酸素を含む雰囲気中
800〜900℃で焼結が進行しないように仮焼した
後、水素雰囲気中1300〜1400℃で焼結してアル
ミナ焼結体にするアルミナ部材の製造方法。
2. An easily sinterable alumina having a purity of 99.99 wt.
% Or more of MgO component in alumina powder of 20-100pp
m, granulated and molded, calcined in an oxygen-containing atmosphere at 800 to 900 ° C. so that sintering does not progress, and then sintered at 1300 to 1400 ° C. in a hydrogen atmosphere to obtain alumina sintering. A method for manufacturing an alumina member to be a body.
【請求項3】 上記アルミナ焼結体は、結晶粒径が0.
5〜5μm、かさ密度が3.98g/cm3以上である
ことを特徴とする請求項1又は2に記載のアルミナ部材
の製造方法。
3. The alumina sintered body has a crystal grain size of 0.3.
The method for producing an alumina member according to claim 1, wherein the alumina member has a bulk density of 5 to 5 μm and a bulk density of 3.98 g / cm 3 or more.
【請求項4】 上記アルミナ焼結体がマイクロ波透過部
材として構成されていることを特徴とする請求項1〜3
のいずれか1項に記載のアルミナ部材の製造方法。
4. The method according to claim 1, wherein the alumina sintered body is configured as a microwave transmitting member.
The method for producing an alumina member according to any one of the above items.
【請求項5】 上記アルミナ焼結体が透過ベルジャーと
して構成されていることを特徴とする請求項1〜3のい
ずれか1項に記載のアルミナ部材の製造方法。
5. The method for producing an alumina member according to claim 1, wherein the alumina sintered body is configured as a transmission bell jar.
JP11168016A 1999-06-15 1999-06-15 Production of alumina member Pending JP2001002463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11168016A JP2001002463A (en) 1999-06-15 1999-06-15 Production of alumina member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11168016A JP2001002463A (en) 1999-06-15 1999-06-15 Production of alumina member

Publications (1)

Publication Number Publication Date
JP2001002463A true JP2001002463A (en) 2001-01-09

Family

ID=15860253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11168016A Pending JP2001002463A (en) 1999-06-15 1999-06-15 Production of alumina member

Country Status (1)

Country Link
JP (1) JP2001002463A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180022590A (en) * 2016-08-23 2018-03-06 어플라이드 머티어리얼스, 인코포레이티드 Method to deposit aluminum oxy-fluoride layer for fast recovery of etch amount in etch chamber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180022590A (en) * 2016-08-23 2018-03-06 어플라이드 머티어리얼스, 인코포레이티드 Method to deposit aluminum oxy-fluoride layer for fast recovery of etch amount in etch chamber
KR102439193B1 (en) * 2016-08-23 2022-08-31 어플라이드 머티어리얼스, 인코포레이티드 Method to deposit aluminum oxy-fluoride layer for fast recovery of etch amount in etch chamber

Similar Documents

Publication Publication Date Title
EP1338581B1 (en) Method for producing aluminum titanate sintered object
JP6052735B2 (en) Fabrication method of high strength toughness ZrO2-Al2O3 solid solution ceramics
KR20170021282A (en) Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
JPH0383813A (en) Production of fine alpha-alumina powder
JP2005306635A (en) Coated alumina particle, alumina formed body, alumina sintered compact and method of manufacturing them
JP2001002463A (en) Production of alumina member
JP6325202B2 (en) Lanthanum boride sintered body and manufacturing method thereof
JP2005170728A (en) Yttrium oxide (y2o3) sintered compact and its producing method
JP6943963B2 (en) Alumina sintered body and its manufacturing method, and parts for semiconductor manufacturing equipment
JP3888714B2 (en) Alumina sintered body
Hanna et al. Characterization of porous Alumino-silicate bonded SiC-ceramics prepared by hand-pressing and extrusion methods
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPS63242964A (en) Alumina ceramics and manufacture
JP3882070B2 (en) Calcium zirconate / spinel composite porous body and production method thereof
JP2017171558A (en) Method for manufacturing defatted molded body of ceramic
JPH06100358A (en) Production of mullite sintered compact
JPH0733528A (en) Composite sintered ceramic, its production and semiconductor production jig made therefrom
Yamada SYNTHESIS AND CHARACTERISATION OF SINTERABLE SILICON NITRIDE POWDER
RU2045499C1 (en) METHOD FOR PRODUCTION OF CERAMIC MATERIAL BASED ON α-ALUMINUM OXIDE
JPH01301505A (en) Aluminum nitride powder and production thereof
RU2236389C2 (en) Method of fabricating products from lithium-aluminosilicate glass-ceramic material
Murata et al. Sinterability of magnesium-oxide powder containing spherical agglomerates
JPH0597523A (en) Production of sintered aluminum nitride
JPH07300365A (en) Sintered silicon nitride and production thereof
JPH0585812A (en) Alumina-based composite sintered compact and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628