JP2000510910A - Method and apparatus for treating the inner surface of a container - Google Patents

Method and apparatus for treating the inner surface of a container

Info

Publication number
JP2000510910A
JP2000510910A JP09541920A JP54192097A JP2000510910A JP 2000510910 A JP2000510910 A JP 2000510910A JP 09541920 A JP09541920 A JP 09541920A JP 54192097 A JP54192097 A JP 54192097A JP 2000510910 A JP2000510910 A JP 2000510910A
Authority
JP
Japan
Prior art keywords
container
plasma
treating
gas
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP09541920A
Other languages
Japanese (ja)
Inventor
ピエール・フェイエ
ミシェル・フッソン
Original Assignee
テトラ ラバル ホールディングス アンド ファイナンス エス アー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テトラ ラバル ホールディングス アンド ファイナンス エス アー filed Critical テトラ ラバル ホールディングス アンド ファイナンス エス アー
Publication of JP2000510910A publication Critical patent/JP2000510910A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45568Porous nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/02Linings or internal coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Abstract

(57)【要約】 被処理容器(1)の内面に、プラズマ処理が施され、例えば、清浄化され、活性化され、殺菌され又はコーティングされる。この場合、プラズマは内部部材(3)と被処理容器(1)との間の狭い空間に閉じ込められ、内部部材(3)は、被処理容器(1)の内部の形状に対応させられ、中空であり、プロセスに応じて、非導電材料又はマイクロ波を透過させない有孔質状態又は多孔質状態の壁を有する。内部部材(3)はガス/蒸気混合物の供給源に接続され、前記ガス/蒸気混合物は、内部部材(3)の壁を通して内部部材(3)と被処理容器(1)の内面との間の空間に押し込まれる。壁を介してガス/蒸気混合物を押し込むときに十分な圧力降下が生じ、内部部材(3)内の圧力(p2)がプラズマを励起するには高過ぎ、内部部材(3)外の圧力(p1)がプラズマを励起するには十分に低くなるように、内部部材(3)の有孔質状態又は多孔質状態が設計される。狭い開口を備えた被処理容器(1)に適用することができるように、内部部材(3)は、好ましくは、弾性を有し、かつ、膨張可能な材料から成り、圧力差によって膨張するように設計される。 (57) [Summary] The inner surface of the container to be treated (1) is subjected to plasma treatment, for example, cleaned, activated, sterilized or coated. In this case, the plasma is confined in a narrow space between the inner member (3) and the container (1), and the inner member (3) is made to correspond to the internal shape of the container (1) and is hollow. And, depending on the process, have walls in a non-conductive material or in a porous or porous state that are impermeable to microwaves. The inner member (3) is connected to a source of a gas / steam mixture, said gas / steam mixture passing between the inner member (3) and the inner surface of the treated vessel (1) through the wall of the inner member (3). Pushed into space. Sufficient pressure drop occurs when pushing the gas / vapor mixture through the wall, the pressure (p 2 ) inside the inner member (3) is too high to excite the plasma, and the pressure outside the inner member (3) ( The porous or porous state of the inner member (3) is designed such that p 1 ) is sufficiently low to excite the plasma. The inner member (3) is preferably made of a resilient and expandable material, so that it can be applied to the container (1) with a narrow opening, so that it expands due to the pressure difference. Designed to.

Description

【発明の詳細な説明】 容器の内面を処理する方法及び装置 本発明は、包装容器産業の分野におけるものであり、第1の独立請求項の包括 部分に対応する方法及び該方法を実施するための装置に関する。前記方法及び装 置は、容器、特に、瓶(びん)のように狭い開口を有し、各種の材料、例えば、 プラスチック又は厚紙のように感熱性を有する材料から成る容器の内面にプラズ マ処理を施すためのものである。 従来、包装容器、又は包装容器の材料の表面に、主として、保護層又は他の特 定の機能を備えた層を積層するため、及び表面を清浄化したり、活性化したり、 殺菌したりするためにプラズマ処理が施される。多くの場合、該プラズマ処理に は、プラズマ化学蒸着法又はプラズマ重合法が適用されるが、スパッタリング又 はその他の公知のプロセスを適用することもできる。 プラズマは、プラズマ処理が施される表面、すなわち、被処理面の領域におい て、適切な減圧状態、及び高周波(例えば、40〔MHz〕)の交番電場又は電 磁波場(例えば、マイクロ波の場)を形成することによって励起される。そして 、プラズマ化学蒸着法においては、ガス及び蒸気のうちの少なくとも一方の最適 な混合物(以下「ガス及び/又は蒸気混合物」という。)がプラズマを通して流 されることによって、被処理面上に化学反応を誘引する化学的に活性な粒子が形 成される。 経験によると、プラズマ処理によって得られる表面の質は、プラズマの領域又 は被処理面の領域における交番電場又は電磁波場の一様性、ガス及び/又は蒸気 混合物の集中度合の一様性等に依存する。そして、プラズマ処理の種類及び設定 の仕方によっては、プラズマを維持するために多量のエネルギーが必要になるの で、プラズマ処理を施そうとする容器、すなわち、被処理容器に大きい熱負荷が 加わることになる。したがって、被処理容器を感熱性の低い容器に限るか、被処 理容器を冷却する必要が生じる。 平坦(たん)な基材にプラズマ処理を施す場合、公知の方法で被処理面の品質 を良好にすることができるが、被処理面が平坦でない場合には問題が生じる。 DE−3632748、DE−3908418、WO−95/21948及び WO−93/24243の各公報には、例えば、瓶のような容器の内面に施され るプラズマ処理が記載されている。 DE−3632748はプラスチック製の容器のコーティングのためのプロセ スに関するものである。この場合、真空室内に容器が置かれ、ガス及び/又は蒸 気混合物の供給源に接続されたガス及び/又は蒸気混合物供給管の開放端が容器 内に置かれる。また、前記ガス及び/又は蒸気混合物供給管は、真空室の壁に対 して絶縁される。そして、前記真空室の真空引きが行われるとともに、真空室の 壁はマイクロ波発生装置に連結される。この場合、励起されたプラズマが真空室 内に充満するので、容器の内面だけでなく、ガス及び/又は蒸気混合物供給管、 容器の外面及び真空室の壁にプラズマ処理が施されることになり、多量のエネル ギーが消費されてしまう。そこで、被処理容器が真空引きに対して十分な機械的 強度を有している場合には、真空室の真空引きを行う必要はなく、被処理容器の 真空引きを行うだけでよい。その場合、プラズマは被処理容器内に閉じ込められ るので、エネルギーの消費量は少なくなり、被処理容器内、並びにガス及び/又 は蒸気混合物供給管にだけプラズマ処理が施されることになる。また、被処理容 器が置かれる室を気密にする必要がなくなる。 そして、DE−3908418には同様のプロセスが記載されている。該プロ セスにおいて、金属材料から成るガス及び/又は蒸気混合物供給管は、被処理容 器内に必要なガス及び/又は蒸気混合物を供給するために使用されるとともに、 高周波発生器に連結された二つの電極のうちの一つとして、又はマイクロ波放出 器として使用される。DE−3632748に記載されたプロセスの場合と同様 に、被処理容器が真空引きに対して十分な機械的強度を有していない場合、及び 被処理容器が、金属製であって、電極として使用されたり、マイクロ波を透過さ せなかったりする場合、プラズマは被処理容器内外で励起され、また、沈積プロ セスにおいて、沈積が容器の内面だけでなく容器の外面及び真空室の壁にも発生 してしまう。 WO−95/21948には、瓶のような容器の内面のコーティングのための 同様のプロセスが記載されている。この場合、容器内に蒸気発生器が配設され、 該蒸気発生器は、ガス及び/又は蒸気混合物供給管並びに電極として使用される 。そして、プラズマ処理を良好に行うために、蒸気発生器は容器の軸に沿って移 動させられ、容器はプラズマ処理が行われている間回転させられる。 WO−93/24243には、容器の内面のプラズマ処理のプロセスが記載さ れており、該プロセスにおいては、プラズマが別の室において励起され、酸化ガ ス混合物がプラズマ室に流される。このとき、活性核種が生成されて被処理容器 内に急激に流入し、前記活性核種が他の反応物質と混合し、交番電場内において 、被処理容器の内面にコーティングを施す。ここで、被処理容器内において反応 混合物を均等に分配するために、活性核種及び他の反応物質の吸入管を特定した り、被処理容器を回転させたり、被処理容器を活性核種及び/又は他の反応物質 の吸入管に対して移動させたりする。この方法においては、プラズマの容積と被 処理容器又はプラズマ室の容積とは直接的に相関しないので、プラズマの容積を 必要最小限にまで小さくすることができる。一方、電場は、瓶の領域において維 持されなければならない。 本発明の目的は、容器、特に、狭い開口を有し、感熱性を有する材料から成る 容器の内面にプラズマ処理を施すための方法及び装置を提供することを目的とす る。本発明の方法及び装置は、プラズマ処理が行われている間のエネルギーの消 費量を少なくし、被処理容器に加わる熱負荷を小さくするためのものである。そ して、本発明の方法は、公知の方法と比べて、ガス及び/又は蒸気混合物を均等 に分配するのを容易にするためのものである。また、本発明の装置は、単純な構 成で、バッチ的操作、すなわち、一つの装置において複数の被処理容器に同時に プラズマ処理を施すためのものである。さらに、本発明の装置は、異なった形状 及びサイズの被処理容器に対してプラズマ処理を容易に施すためのものである。 これらの目的は請求の範囲において定義された方法及び装置によって達成され る。 本発明の方法によれば、被処理容器内に配設された一つの電極と前記被処理容 器外に配設された他の一つの電極との間に高周波電場を形成することによって、 又は、被処理容器内にマイクロ波放出器を配設することによって、被処理容器内 にプラズマが維持される。該プラズマは、被処理容器内の全体を満たすのではな く、被処理容器の内面と被処理容器内に配設された内部部材との間に閉じ込めら れる。該内部部材は、被処理容器の壁に沿って、かつ、被処理容器の内面の全領 域にわたって薄い層を残して、被処理容器内を満たすような形状を有する。前記 薄い層は、5〜15〔mm〕、好ましくは約10〔mm〕の、できる限り一定な 幅を有する。そして、前記室内に被処理容器が置かれる。 この場合、発生させられる圧力は次のとおりである。すなわち、内部部材内の 圧力は、プラズマを励起するには高過ぎる値に、内部部材と被処理容器の壁との 間の圧力は、プラズマを励起するのに適した程度に低い値に、被処理容器の外側 の圧力は、被処理容器の機械的強度によるが、好ましくは、プラズマを励起する には高過ぎる値か又は低過ぎる値にされる。 内部部材は、プラズマを被処理容器の内面に沿った薄い層の中に閉じ込めるた めに配設されるとともに、プラズマ処理に必要なガス及び/又は蒸気混合物を供 給する供給装置として配設される。そのために、内部部材は、中空で、かつ、有 孔質状態又は多孔質状態にされ、ガス及び/又は蒸気混合物は、内部部材の壁の 穴又は内部部材の気孔を通る間に所定の値だけ圧力が低くなる。また、狭い開口 又は口を備えた被処理容器にプラズマ処理を施すことができるように、内部部材 は、被処理容器の開口を通して中に挿入することができるような細い形状から、 被処理容器の内部形状に対応する作業時の形状にまで膨張させられる。そして、 内部部材を作業時の形状に維持するために、内部部材内に供給されるガス及び/ 又は蒸気混合物の圧力が調整される。なお、内部部材は、内部に圧力を加えなく ても作業時の形状が維持され、内部の圧力を低くすることによって細い形状にな るものでもよい。 内部部材の有孔質状態又は多孔質状態は、内部部材の内側から外側に十分な量 のガス及び/又は蒸気混合物を流したときに、十分に大きい圧力差が形成され、 内部部材内においてプラズマが励起されず、内部部材外においてプラズマが励起 されるように設計される。 また、内部部材の全体は、使用されるマイクロ波、他の電磁波、又は電場に対 して透過性を有する材料によって形成される。なお、電極又は波放出器(例えば 、マイクロ波放出器)は内部部材内に配設される。 プラズマ中におけるガス及び/又は蒸気混合物の集中状態をできる限り均一に するために、内部部材の壁の有孔質状態又は多孔質状態において、内部部材の表 面に規則的なパターンが形成される。例えば、被処理容器の形状が複雑であるた めに、異なる幅のプラズマ領域が形成される場合、前記パターンは、一層広い( 内部部材と被処理容器の壁との距離が一層長い)プラズマ領域において、一層多 くの又は大きい、孔(あな)又は気孔が形成され、一層多くのガス及び/又は蒸 気混合物が内部部材の壁を通過するように設計される。 本発明の方法を、例えば、プラスチック製の瓶の内面に無機物、例えば、Si Ox又はAlOxの保護層を沈積させるために適用すると、第1に、被処理容器の 内面の状態を全体にわたって一様にすることができ、第2に、エネルギーの消費 量を少なくすることができるので、熱又は放電によってコーティング層又は被処 理容器が損傷するのを防止することができる。 本発明の方法及び装置は、以下の図面に基づいて詳細に説明される。 第1図は本発明の方法及び装置の原理を示す図である。 第2図及び第3図は、特定の応用のための内部部材の二つの具体例をより詳細に 示す図である。 第1図には、本発明の装置の一つの具体的な実施の形態に基づく本発明の方法 の原理が示される。被処理容器1は、該被処理容器1をセットするために開閉自 在(開放された状態は図示されない。)にされた室2内に配設される。該室2は 、図示されない真空ポンプに接続されて真空引きが行われ、室2内の圧力が制御 される。また、前記被処理容器1の口は室2に対して閉じられ、被処理容器1は 、図示されない真空ポンプに接続されて真空引きが行われ、被処理容器1内の圧 力が制御される。そして、内部部材3は、作業時の膨張させられた状態(3)、 及び被処理容器1の口を介して被処理容器1内に挿入するために収縮させられた 細い状態(3’)を採る。また、内部部材3の口は被処理容器1の口を介して装 置6に接続され、該装置6によって、ガス及び/又は蒸気混合物の供給容器6’ 、又は同様の供給源からのガス及び/又は蒸気混合物の流量が調整される。また 、前記内部部材3内には電極又は放出器4が配設され、該電極又は放出器4は、 内部部材3の口を介して高周波電圧源5又はマイクロ波発生器に接続される。 室2は、例えば、支持部分及びカバー部分の二つの部分から成り、前記支持部 分には被処理容器1内に真空を形成するための真空接続部、内部部材3、該内部 部材3にガス及び/又は蒸気混合物を供給するための接続部、並びに電極又は放 出器4が取り付けられ、前記カバー部分は前記支持部分上に緊密に配設される。 なお、複数の被処理容器1に同時にプラズマ処理を施すことができるように、前 記室2を変形することができる。その場合、電極又は放出器4を備えた複数の内 部部材が、互いに十分に距離を置いて配設される。 本発明の方法は次のように実施される。すなわち、まず、内部部材3へのガス 及び/又は蒸気混合物の供給が停止され、内部部材3内の加圧状態が解除される ことによって、又は積極的に加圧状態を解除することによって、内部部材3が収 縮させられる。次に、室2が開放され、被処理容器1が内部部材3上にセットさ れ、被処理容器1の口が対応する真空接続部に固定される。そして、室2が閉鎖 され、室2内及び被処理容器1内の真空引きが同時に行われる。続いて、ガス及 び/又は蒸気混合物の供給が開始され、電源スイッチがオンにされることによっ て、内部部材3が膨張させられ、プラズマが交番電場又は電磁波場において励起 される。このような条件のもとで、ガス及び/又は蒸気混合物は、内部部材3か らプラズマ領域を通って被処理容器1の排気部(真空接続部)に流れ、かつ、流 量が制御される。その結果、被処理容器1に、設定された時間だけプラズマ処理 が施される。そして、電源スイッチがオフにされ、システムが停止させられて、 室2が開放され、被処理容器1が取り外される。 異なる形状の被処理容器1にプラズマ処理を施そうとする場合、この装置にお いて、内部部材、及び必要に応じて被処理容器1の口に接続される真空接続部だ けが交換される。 例えば、内部部材3と被処理容器1の壁との間のプラズマ領域における圧力p1 は10-3〜10-2〔mbar〕にされ、中空の内部部材3内の圧力p2は10〜 100〔mbar〕にされ、室2内の圧力p3は10-3〔mbar〕より低いか 、又は100〔mbar〕より高くされる。 前記被処理容器1が十分な機械的強度を有している場合、圧力p3を大気圧と 等しくして室3を大気に開放するか、又は、マイクロ波を使用するときで被処理 容器1がマイクロ波を透過しない材料で形成されているときは、室3を除去する こともできる。 前述されたように、本発明の方法及び装置は、被処理容器1の内面をコーティ ングしたり活性化したり殺菌したりするための各種のプラズマ処理に適用するこ とができる。すなわち、プラスチック材料、例えば、ポリエチレンテトラフタレ ート、PEN、ポリエチレン、ポリアミド、ポリプロピレン等から成る被処理容 器1を酸化シリコンによってコーティングすることができる。このコーティング は、有機シリコン化合物(例えば、ヘキサメチルジシロキサン、1,1,3,3-テトラ メチルシロキサン、メチルジメトキシシラン、ビニルトリメチルシラン又はビニ ルトリメトキシシラン)、酸素、及びヘリウム、アルゴン等の不活性ガスから成 るガス及び/又は蒸気混合物を使用するプラズマ蒸着法として行われる。 同様のプロセスにおいては、プラスチック材料だけでなく、例えば、厚紙、紙 、金属、セラミック又はガラスによって形成された被処理容器に、他の無機化合 物又は有機化合物が沈積される。これらすべてのプロセスは、本発明の方法に従 った被処理容器1の内面を処理するために適用される。 プラズマプロセスがコーティングプロセスである場合、内部部材3がコーティ ングされるのを防止することはできない。しかし、内部部材3が一連のコーティ ングサイクルの間で膨張し収縮する場合、内部部材3のコーティングは、コーテ ィングが臨界的な厚さになると、変形に伴って除去される。したがって、内部部 材3は自動的に自己浄化を行う。 第2図は特定の内部形状を有する被処理容器1にプラズマ処理を施すための内 部部材3の具体例を第1図よりも詳細に示す断面図である。内部部材3は、作業 時の膨張させられた状態(3)、及び被処理容器1の口11を介して被処理容器 1内に挿入するために収縮させられた細い状態(3’)を採る。内部部材3は弾 性的に膨張可能な材料、例えば、高分子材料から成る。そして、内部部材3は、 例えば、わずかだけ伸長させようとする部分において厚くされ、大きく伸長させ ようとする部分において薄くされ、このように内部部材3の厚さを局部的に変更 することによって、圧力差が大きくなったときの内部部材3の形状が変化する。 内部部材3は、微細な穴のパターンを有する有孔質状態又は多孔質状態にされ、 内部部材3と被処理容器1の壁との距離が比較的長いプラズマ領域Aにおいて、 孔又は気孔がより多く又は大きく形成される。 好ましくは、内部部材3の材料としては、少なくとも収縮させられた状態で、 内部部材3が自己支持することができるようなものが選択される。 第3図は、内面がコーティングされる被処理容器1内に配設された内部部材3 の他の具体例を示す断面図である。内部部材3は、多孔質材料、例えば、高分子 発泡体から成り、内部部材3の形状は被処理容器1の内部の形状に対応させられ る。そして、内部部材3を被処理容器1にセットするために、又は内部部材3を 被処理容器1から取り出すために、内部部材3に接続された供給管30を通して 内部部材3の真空引きが行われる。この場合、真空引きの効果によって内部部材 3内の気孔の寸法が小さくなる。したがって、内部部材3の全体の寸法が小さく なる。Description: METHOD AND APPARATUS FOR PROCESSING INNER CONTAINER OF A CONTAINER The present invention is in the field of packaging industry and corresponds to the generic part of the first independent claim and to implementing the method Device. The method and apparatus apply plasma treatment to the inner surface of a container, particularly a container having a narrow opening such as a bottle and made of various materials, for example, a heat-sensitive material such as plastic or cardboard. It is for. Conventionally, for the purpose of laminating a protective layer or a layer having another specific function on the surface of the packaging container or the material of the packaging container, and for cleaning, activating, or sterilizing the surface. Plasma treatment is performed. In many cases, a plasma chemical vapor deposition method or a plasma polymerization method is applied to the plasma treatment, but sputtering or other known processes can also be applied. The plasma generates an appropriate reduced pressure state and a high-frequency (for example, 40 [MHz]) alternating electric field or electromagnetic wave field (for example, a microwave field) in the surface to be subjected to the plasma treatment, that is, in the region of the surface to be treated. Excited by forming. In the plasma-enhanced chemical vapor deposition method, an optimal mixture of at least one of a gas and a vapor (hereinafter, referred to as a “gas and / or vapor mixture”) is caused to flow through the plasma to cause a chemical reaction on the surface to be processed. Attracting chemically active particles are formed. Experience has shown that the quality of the surface obtained by the plasma treatment depends on the uniformity of the alternating electric or electromagnetic field in the region of the plasma or of the surface to be treated, the uniformity of the concentration of the gas and / or vapor mixture, etc. I do. And, depending on the type and setting method of the plasma processing, a large amount of energy is required to maintain the plasma, so that a large thermal load is applied to the container to be subjected to the plasma processing, that is, the container to be processed. Become. Therefore, it is necessary to limit the container to be processed to a container having low heat sensitivity or to cool the container to be processed. When plasma processing is performed on a flat (straight) substrate, the quality of the surface to be processed can be improved by a known method, but a problem occurs when the surface to be processed is not flat. DE-A-6332748, DE-3908418, WO-95 / 21948 and WO-93 / 24243 describe, for example, a plasma treatment applied to the inner surface of a container such as a bottle. DE 36 32 748 relates to a process for coating plastic containers. In this case, the container is placed in a vacuum chamber and the open end of the gas and / or vapor mixture supply tube connected to the gas and / or vapor mixture supply is placed in the container. Also, the gas and / or vapor mixture supply pipe is insulated from the wall of the vacuum chamber. The vacuum chamber is evacuated, and the wall of the vacuum chamber is connected to a microwave generator. In this case, since the excited plasma fills the vacuum chamber, plasma treatment is performed not only on the inner surface of the container, but also on the gas and / or vapor mixture supply pipe, the outer surface of the container, and the wall of the vacuum chamber, A large amount of energy is consumed. Therefore, when the container to be processed has sufficient mechanical strength against evacuation, it is not necessary to evacuate the vacuum chamber, but only to evacuate the container to be processed. In that case, since the plasma is confined in the container to be processed, energy consumption is reduced, and the plasma processing is performed only in the container to be processed and the gas and / or vapor mixture supply pipe. Further, it is not necessary to make the chamber in which the container to be processed is placed airtight. DE-3908418 describes a similar process. In the process, a gas and / or vapor mixture supply pipe made of a metallic material is used to supply a required gas and / or vapor mixture into a vessel to be treated, and two gas and / or vapor mixtures are connected to a high frequency generator. Used as one of the electrodes or as a microwave emitter. As in the case of the process described in DE 36 32 748, if the container to be treated does not have sufficient mechanical strength for evacuation and if the container to be treated is made of metal and used as an electrode If the plasma is not transmitted or the microwave is not transmitted, the plasma is excited inside and outside of the container to be treated, and in the deposition process, the deposition occurs not only on the inner surface of the container but also on the outer surface of the container and the wall of the vacuum chamber. I will. WO-95 / 21948 describes a similar process for coating the inner surface of containers such as bottles. In this case, a steam generator is arranged in the vessel, which is used as a gas and / or steam mixture supply tube and as an electrode. Then, for good plasma processing, the steam generator is moved along the axis of the container, and the container is rotated while the plasma processing is performed. WO-93 / 24243 describes a process for plasma treatment of the inner surface of a container, in which a plasma is excited in a separate chamber and an oxidizing gas mixture is flowed into the plasma chamber. At this time, active nuclides are generated and rapidly flow into the container to be processed, the active nuclides are mixed with other reactants, and the inner surface of the container to be processed is coated in an alternating electric field. Here, in order to evenly distribute the reaction mixture in the container to be treated, a suction pipe for the active nuclide and other reactants is specified, the container to be treated is rotated, and the container to be treated is activated nuclide and / or Or moving it with respect to the suction pipe for other reactants. In this method, since the volume of the plasma does not directly correlate with the volume of the container to be processed or the plasma chamber, the volume of the plasma can be reduced to a necessary minimum. On the other hand, the electric field has to be maintained in the area of the bottle. It is an object of the present invention to provide a method and an apparatus for performing a plasma treatment on the inner surface of a container, in particular a container having a narrow opening and made of a heat-sensitive material. The method and apparatus of the present invention are intended to reduce the amount of energy consumed during plasma processing and to reduce the heat load applied to a container to be processed. The method according to the invention is intended to facilitate a more even distribution of the gas and / or vapor mixture compared to known methods. Further, the apparatus of the present invention has a simple configuration and is for batch operation, that is, for performing plasma processing on a plurality of containers to be processed simultaneously in one apparatus. Further, the apparatus of the present invention is for easily performing the plasma processing on the processing target containers having different shapes and sizes. These objects are achieved by a method and a device as defined in the claims. According to the method of the present invention, by forming a high-frequency electric field between one electrode disposed inside the container to be processed and another one electrode disposed outside the container to be processed, or By arranging the microwave emitter in the container to be processed, the plasma is maintained in the container to be processed. The plasma does not fill the entire inside of the container to be processed, but is confined between the inner surface of the container to be processed and an internal member provided in the container to be processed. The internal member has a shape that fills the inside of the container to be processed, leaving a thin layer along the wall of the container to be processed and over the entire area of the inner surface of the container to be processed. The thin layer has a width which is as constant as possible, from 5 to 15 mm, preferably about 10 mm. Then, a container to be processed is placed in the room. In this case, the pressure generated is as follows. That is, the pressure in the internal member is set to a value that is too high to excite the plasma, and the pressure between the internal member and the wall of the container is set to a value that is low enough to excite the plasma. The pressure outside the processing vessel depends on the mechanical strength of the processing vessel, but is preferably too high or too low to excite the plasma. The internal member is arranged to confine the plasma in a thin layer along the inner surface of the container to be treated, and is arranged as a supply device for supplying a gas and / or a vapor mixture required for the plasma treatment. To this end, the inner member is hollow and in a porous or porous state, and the gas and / or vapor mixture is passed by a predetermined value while passing through a hole in the wall of the inner member or a pore of the inner member. The pressure drops. In addition, the inner member has a narrow shape that can be inserted through the opening of the processing container so that the processing target container having the narrow opening or opening can be subjected to plasma processing. It is expanded to the working shape corresponding to the internal shape. Then, the pressure of the gas and / or vapor mixture supplied into the internal member is adjusted in order to maintain the internal member in the working shape. Note that the internal member may maintain its shape during operation without applying pressure to the inside, and may have a thin shape by reducing the internal pressure. The porous or porous state of the inner member is such that when a sufficient amount of gas and / or vapor mixture flows from the inside to the outside of the inner member, a sufficiently large pressure difference is formed and the plasma within the inner member Is not excited and the plasma is excited outside the internal member. Also, the entire internal member is formed of a material that is transparent to the microwaves, other electromagnetic waves, or electric fields used. Note that the electrode or the wave emitter (for example, a microwave emitter) is provided in the internal member. In order to make the concentration of the gas and / or vapor mixture in the plasma as uniform as possible, a regular pattern is formed on the surface of the inner member in the porous or porous state of the wall of the inner member. For example, when plasma regions having different widths are formed due to the complicated shape of the container to be processed, the pattern is formed in a wider plasma region (where the distance between the inner member and the wall of the container to be processed is longer). More or larger holes or pores are formed, and more gas and / or vapor mixture is designed to pass through the wall of the inner member. The method of the present invention, for example, inorganic substances on the inner surface of a plastic bottle, for example, when applied to depositing the protective layer of Si O x or AlO x, the first, over the entire state of the inner surface of the processing container Secondly, since the energy consumption can be reduced, the coating layer or the container to be treated can be prevented from being damaged by heat or discharge. The method and apparatus of the present invention will be described in detail with reference to the following drawings. FIG. 1 is a diagram showing the principle of the method and apparatus of the present invention. FIGS. 2 and 3 show two embodiments of the internal member for a particular application in more detail. FIG. 1 shows the principle of the method of the present invention based on one specific embodiment of the device of the present invention. The container 1 to be processed is disposed in a chamber 2 that can be opened and closed (an open state is not shown) for setting the container 1 to be processed. The chamber 2 is connected to a vacuum pump (not shown) to evacuate and control the pressure in the chamber 2. The opening of the processing container 1 is closed with respect to the chamber 2, and the processing container 1 is connected to a vacuum pump (not shown) to evacuate and control the pressure in the processing container 1. The internal member 3 is in an expanded state (3) at the time of operation and in a thin state (3 ′) contracted for insertion into the processing container 1 through the opening of the processing container 1. take. Also, the mouth of the inner member 3 is connected to the device 6 via the mouth of the container 1 to be treated, by means of which the gas and / or vapor mixture is supplied from the supply container 6 'or a similar source. Alternatively, the flow rate of the steam mixture is adjusted. Further, an electrode or emitter 4 is provided in the inner member 3, and the electrode or emitter 4 is connected to a high-frequency voltage source 5 or a microwave generator through an opening of the inner member 3. The chamber 2 is composed of, for example, two parts, a support part and a cover part. The support part has a vacuum connection part for forming a vacuum in the container 1 to be processed, an internal member 3, a gas and a gas. A connection for supplying a vapor mixture, as well as an electrode or emitter 4 is mounted, said cover part being arranged tightly on said support part. The chamber 2 can be modified so that a plurality of containers 1 can be simultaneously subjected to plasma processing. In that case, a plurality of internal members with electrodes or emitters 4 are arranged at a sufficient distance from each other. The method of the present invention is performed as follows. That is, first, the supply of the gas and / or the vapor mixture to the internal member 3 is stopped, and the pressurized state in the internal member 3 is released or the pressurized state is positively released. The member 3 is contracted. Next, the chamber 2 is opened, the processing container 1 is set on the internal member 3, and the opening of the processing container 1 is fixed to the corresponding vacuum connection. Then, the chamber 2 is closed, and the inside of the chamber 2 and the inside of the container 1 to be processed are simultaneously evacuated. Subsequently, the supply of the gas and / or vapor mixture is started and the power switch is turned on to expand the inner member 3 and excite the plasma in an alternating electric or electromagnetic field. Under such conditions, the gas and / or vapor mixture flows from the internal member 3 through the plasma region to the exhaust part (vacuum connection part) of the container 1 to be processed, and the flow rate is controlled. As a result, the processing target container 1 is subjected to the plasma processing for the set time. Then, the power switch is turned off, the system is stopped, the chamber 2 is opened, and the container 1 is removed. When plasma treatment is to be performed on the container 1 having a different shape, in this apparatus, only the internal member and, if necessary, the vacuum connection portion connected to the opening of the container 1 are replaced. For example, the pressure p 1 in the plasma region between the inner member 3 and the wall of the container 1 is set to 10 −3 to 10 −2 [mbar], and the pressure p 2 in the hollow inner member 3 is set to 10 to 100. is the [mbar], the pressure p 3 in the chamber 2 is lower than or 10-3 [mbar], or is higher than 100 [mbar]. If the object to be treated vessel 1 has a sufficient mechanical strength, or the chamber 3 by the pressure p 3 is equal to the atmospheric pressure is opened to the atmosphere, or, to be treated vessel when using microwave 1 When is formed of a material that does not transmit microwaves, the chamber 3 can be removed. As described above, the method and apparatus of the present invention can be applied to various types of plasma processing for coating, activating, or sterilizing the inner surface of the container 1 to be processed. That is, the container 1 made of a plastic material, for example, polyethylene tetraphthalate, PEN, polyethylene, polyamide, polypropylene, or the like can be coated with silicon oxide. The coating may be made of an organosilicon compound (e.g., hexamethyldisiloxane, 1,1,3,3-tetramethylsiloxane, methyldimethoxysilane, vinyltrimethylsilane or vinyltrimethoxysilane), oxygen, and helium, argon, etc. It is performed as a plasma deposition method using a gas and / or vapor mixture consisting of an active gas. In a similar process, other inorganic or organic compounds are deposited not only on the plastic material but also on the container to be processed, for example made of cardboard, paper, metal, ceramic or glass. All these processes are applied for treating the inner surface of the container 1 to be treated according to the method of the present invention. When the plasma process is a coating process, it is impossible to prevent the inner member 3 from being coated. However, if the inner member 3 expands and contracts during a series of coating cycles, the coating on the inner member 3 is removed with deformation when the coating reaches a critical thickness. Therefore, the internal member 3 automatically performs self-cleaning. FIG. 2 is a sectional view showing a specific example of the internal member 3 for performing the plasma processing on the processing target container 1 having a specific internal shape, in more detail than FIG. The internal member 3 takes an expanded state (3) during operation and a thin state (3 ′) contracted for insertion into the container 1 through the opening 11 of the container 1. . The inner member 3 is made of an elastically expandable material, for example, a polymer material. Then, the internal member 3 is thickened at a portion to be slightly extended and thinned at a portion to be greatly extended, for example, by locally changing the thickness of the internal member 3 as described above. The shape of the internal member 3 changes when the pressure difference increases. The inner member 3 is made to have a porous state or a porous state having a pattern of fine holes. Many or large formed. Preferably, the material of the internal member 3 is selected so that the internal member 3 can support itself at least in a contracted state. FIG. 3 is a cross-sectional view showing another specific example of the internal member 3 disposed in the container 1 to be processed whose inner surface is coated. The internal member 3 is made of a porous material, for example, a polymer foam, and the shape of the internal member 3 is made to correspond to the internal shape of the container 1 to be processed. Then, in order to set the internal member 3 in the container 1 to be processed or to remove the internal member 3 from the container 1 to be processed, the internal member 3 is evacuated through the supply pipe 30 connected to the internal member 3. . In this case, the size of the pores in the inner member 3 is reduced by the effect of evacuation. Therefore, the overall size of the internal member 3 is reduced.

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),OA(BF,BJ,CF ,CG,CI,CM,GA,GN,ML,MR,NE, SN,TD,TG),AP(GH,KE,LS,MW,S D,SZ,UG),EA(AM,AZ,BY,KG,KZ ,MD,RU,TJ,TM),AL,AM,AT,AU ,AZ,BA,BB,BG,BR,BY,CA,CH, CN,CU,CZ,DE,DK,EE,ES,FI,G B,GE,GH,HU,IL,IS,JP,KE,KG ,KP,KR,KZ,LC,LK,LR,LS,LT, LU,LV,MD,MG,MK,MN,MW,MX,N O,NZ,PL,PT,RO,RU,SD,SE,SG ,SI,SK,TJ,TM,TR,TT,UA,UG, US,UZ,VN,YU 【要約の続き】 ように設計される。────────────────────────────────────────────────── ─── Continuation of front page    (81) Designated countries EP (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, L U, MC, NL, PT, SE), OA (BF, BJ, CF) , CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP (GH, KE, LS, MW, S D, SZ, UG), EA (AM, AZ, BY, KG, KZ , MD, RU, TJ, TM), AL, AM, AT, AU , AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, G B, GE, GH, HU, IL, IS, JP, KE, KG , KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, N O, NZ, PL, PT, RO, RU, SD, SE, SG , SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU [Continuation of summary] Designed to be.

Claims (1)

【特許請求の範囲】 1.開口を備えた被処理容器(1)内にプラズマを形成し、該プラズマ中に特定 のガス及び/又は蒸気混合物を流し、被処理容器(1)の内面にプラズマ処理を 施すことによって容器の内面を処理する方法において、被処理容器(1)の内部 の形状に対応する形状を備えた内部部材(3)内にガス及び/又は蒸気混合物を 供給し、有孔質状態又は多孔質状態にされた内部部材(3)の壁を通して、前記 ガス及び/又は蒸気混合物を内部部材(3)と被処理容器(1)の内面との間の 空間に押し込んで所定の圧力降下を生じさせ、かつ、前記空間の真空引きを行っ て、プラズマを励起するのに適した圧力(p1)を前記空間内に形成し、プラズ マを励起するには高過ぎる圧力(p2)を内部部材(3)内に形成して、前記空 間内にプラズマを閉じ込めることを特徴とする容器の内面を処理する方法。 2.内部部材(3)と被処理容器(1)の内面との間の空間が5〜15〔mm〕 の幅にされる請求項1に記載の容器の内面を処理する方法。 3.内部部材(3)は、膨張可能にされ、収縮した状態で被処理容器(1)の開 口(11)内に挿入され、ガス及び/又は蒸気混合物が供給されて膨張して作業 時の形状になる請求項1又は2に記載の容器の内面を処理する方法。 4.内部部材(3)は、内部の真空引きを行うことによって収縮可能にされる請 求項1又は2に記載の容器の内面を処理する方法。 5.プラズマ処理が施される被処理容器(1)は室(2)内に配設され、被処理 容器(1)内の真空引きを行うのと同時に室(2)内の真空引きが行われる請求 項1〜4のいずれか1項に記載の容器の内面を処理する方法。 6.プラズマは、内部部材(3)内に配設されたマイクロ波の放出器によって補 助されて励起される請求項1〜5のいずれか1項に記載の容器の内面を処理する 方法。 7.プラズマは、内部部材(3)内に配設された電極、及び被処理容器(1)外 に配設された電極によって補助されて励起され、一方の電極は交流電圧源に接続 され、他方の電極はアースに接続される請求項1〜5のいずれか1項に記載の容 器の内面を処理する方法。 8.被処理容器(1)はプラスチック又は厚紙によって形成され、プラズマ処理 は酸化シリコン又は酸化アルミニウムによるプラズマ化学蒸着法によって行われ る請求項1〜7のいずれか1項に記載の容器の内面を処理する方法。 9.少なくともプラズマ処理を施そうとする被処理容器(1)内に交番電場又は 電磁波場を形成する手段(4、5)と、前記被処理容器(1)内にガス及び/又 は蒸気混合物を制御して供給する手段(6、6’)と、被処理容器(1)内の真 空引きを行う手段とを有するとともに、前記被処理容器(1)内にガス及び/又 は蒸気混合物を供給する手段(6、6’)は内部部材(3)を備え、該内部部材 (3)は、中空で被処理容器(1)内の形状に対応する形状を備え、かつ、設定 された圧力降下を生じさせるために有孔質状態又は多孔質状態の壁を備え、被処 理容器(1)の開口内に挿入可能にされることを特徴とする容器の内面を処理す る装置。 10.内部部材(3)と被処理容器(1)の内面との間の空間が5〜15〔mm 〕の幅にされる請求項9に記載の容器の内面を処理する装置。 11.内部部材(3)の壁は、弾性を有し、かつ、膨張可能な材料から成り、ガ ス及び/又は蒸気混合物の圧力によって膨張させられる請求項9又は10に記載 の容器の内面を処理する装置。 12.内部部材(3)は、内部の真空引きを行うことによって収縮可能にされる 請求項9又は10に記載の容器の内面を処理する装置。 13.被処理容器(1)をセットすることができ、かつ、内部の圧力を低くする ことができる室(2)を有する請求項9〜11のいずれか1項に記載の容器の内 面を処理する装置。 14.被処理容器(1)内に交番電場又は電磁波場を形成する手段(4、5)は 、内部部材(3)内にそれぞれ配設された電極又は放出器である請求項9〜12 のいずれか1項に記載の容器の内面を処理する装置。 15.放出器(4)はマイクロ波放出器である請求項14に記載の容器の内面を 処理する装置。[Claims] 1. A plasma is formed in a container (1) having an opening, a specific gas and / or vapor mixture is flowed into the plasma, and the inner surface of the container is subjected to plasma processing. In the method for treating a gas, a gas and / or a vapor mixture is supplied into an internal member (3) having a shape corresponding to the shape of the inside of the container (1) to be treated, and the mixture is made porous or porous. Through the wall of the internal member (3), the gas and / or vapor mixture is forced into the space between the internal member (3) and the inner surface of the container to be treated (1) to create a predetermined pressure drop; The space is evacuated to form a pressure (p 1 ) suitable for exciting plasma in the space, and a pressure (p 2 ) that is too high to excite plasma is generated in the internal member (3). And confine the plasma in the space Method of processing the inner surface of the container, characterized in Rukoto. 2. The method for treating the inner surface of a container according to claim 1, wherein the space between the inner member (3) and the inner surface of the container (1) to be treated has a width of 5 to 15 mm. 3. The inner member (3) is made expandable and inserted into the opening (11) of the container (1) to be processed in a contracted state, and is supplied with a gas and / or vapor mixture to expand to a working shape. A method for treating the inner surface of a container according to claim 1 or 2. 4. The method for treating the inner surface of a container according to claim 1 or 2, wherein the inner member (3) is made contractible by evacuating the interior. 5. The processing container (1) to be subjected to the plasma processing is disposed in the chamber (2), and the chamber (2) is evacuated at the same time as the processing chamber (1) is evacuated. Item 5. A method for treating the inner surface of a container according to any one of Items 1 to 4. 6. A method for treating the inner surface of a container according to any one of claims 1 to 5, wherein the plasma is excited with the aid of a microwave emitter arranged in the inner member (3). 7. The plasma is excited and assisted by an electrode disposed inside the internal member (3) and an electrode disposed outside the container (1) to be processed, and one of the electrodes is connected to an AC voltage source and the other is excited. The method for treating the inner surface of a container according to any one of claims 1 to 5, wherein the electrode is connected to ground. 8. The method for treating an inner surface of a container according to any one of claims 1 to 7, wherein the container (1) to be processed is formed of plastic or cardboard, and the plasma treatment is performed by a plasma chemical vapor deposition method using silicon oxide or aluminum oxide. . 9. Means (4, 5) for forming an alternating electric or electromagnetic wave field at least in the container (1) to be subjected to plasma processing, and controlling a gas and / or vapor mixture in the container (1). (6, 6 ') and means for evacuating the vessel (1) to be treated, and means for supplying a gas and / or vapor mixture into the vessel (1). 6, 6 ′) comprises an internal member (3), which is hollow and has a shape corresponding to the shape in the container (1) to be treated and produces a set pressure drop. An apparatus for treating the inner surface of a container, characterized in that the device has a wall in a porous state or a porous state and can be inserted into the opening of the container (1) to be processed. 10. The apparatus for processing the inner surface of a container according to claim 9, wherein the space between the inner member (3) and the inner surface of the container (1) to be processed has a width of 5 to 15 [mm]. 11. 11. The device for treating the inner surface of a container according to claim 9, wherein the walls of the inner member (3) are made of an elastic and expandable material and are expanded by the pressure of the gas and / or vapor mixture. . 12. Apparatus for treating the inner surface of a container according to claim 9 or 10, wherein the inner member (3) is made contractible by evacuating the interior. 13. The apparatus for processing an inner surface of a container according to any one of claims 9 to 11, further comprising a chamber (2) in which a container (1) to be processed can be set and an internal pressure can be reduced. . 14. The means (4, 5) for forming an alternating electric field or an electromagnetic wave field in the container (1) to be processed is an electrode or an emitter disposed respectively in the internal member (3). An apparatus for treating an inner surface of a container according to claim 1. 15. The apparatus for treating the inner surface of a container according to claim 14, wherein the emitter (4) is a microwave emitter.
JP09541920A 1996-05-22 1997-05-15 Method and apparatus for treating the inner surface of a container Pending JP2000510910A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH1283/96 1996-05-22
CH128396 1996-05-22
PCT/IB1997/000555 WO1997044503A1 (en) 1996-05-22 1997-05-15 Method and apparatus for treating inside surfaces of containers

Publications (1)

Publication Number Publication Date
JP2000510910A true JP2000510910A (en) 2000-08-22

Family

ID=4206808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09541920A Pending JP2000510910A (en) 1996-05-22 1997-05-15 Method and apparatus for treating the inner surface of a container

Country Status (4)

Country Link
EP (1) EP0907761A1 (en)
JP (1) JP2000510910A (en)
AU (1) AU2648297A (en)
WO (1) WO1997044503A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540364A (en) * 1999-03-30 2002-11-26 シデル Machine with a swivel for processing hollow bodies including an improved pressure distribution circuit
JP2008505744A (en) * 2004-07-08 2008-02-28 スィデル・パルティスィパスィヨン Method for treating a container having an evacuation stage and machine for carrying out this method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2799994B1 (en) 1999-10-25 2002-06-07 Sidel Sa DEVICE FOR TREATING A CONTAINER USING A LOW PRESSURE PLASMA COMPRISING AN IMPROVED VACUUM CIRCUIT
DE19963122A1 (en) * 1999-12-24 2001-06-28 Tetra Laval Holdings & Finance Plasma chemical vapor deposition assembly has a cylindrical structure with a waveguide system to couple the microwave energy with a gas feed to coat the interior of plastics containers of all shapes and sizes without modification
DE10001936A1 (en) * 2000-01-19 2001-07-26 Tetra Laval Holdings & Finance Microwave internal plasma-coating apparatus for bottles, has microwave coupling system at one end, opposite coaxial waveguide including gas supply tube
DE10004274A1 (en) * 2000-02-01 2001-08-02 Tetra Laval Holdings & Finance Apparatus to coat the inner surface of a hollow body comprises a feed pipe for process gas and a waste gas line outside of the hollow body connected to a waste gas pipe
EP1126504A1 (en) * 2000-02-18 2001-08-22 European Community Method and apparatus for inductively coupled plasma treatment
FR2807912B1 (en) * 2000-04-17 2003-06-27 Lasers Et Tech Avancees Bureau PLASMA PROCESS AND TORCH FOR TREATING A SURFACE IN A CAVITY, AND PLUG FILLING PLANT
DE10054653A1 (en) * 2000-11-03 2002-05-08 Ver Foerderung Inst Kunststoff Method and device for coating hollow bodies
KR101100963B1 (en) 2003-03-12 2011-12-29 도요 세이칸 가부시키가이샤 Microwave Plasma Processing Device and Plasma Processing Gas Supply Member
EP1619266B1 (en) * 2003-03-12 2010-05-12 Toyo Seikan Kaisya, Ltd. Method and apparatus for chemical plasma processing of plastic containers
DE102004020185B4 (en) * 2004-04-22 2013-01-17 Schott Ag Method and device for the inner coating of hollow bodies and use of the device
DE102007045216A1 (en) * 2007-09-21 2009-04-02 Khs Corpoplast Gmbh & Co. Kg Apparatus for the plasma treatment of workpieces
DE102008018902A1 (en) * 2008-04-14 2009-10-15 Iplas Innovative Plasma Systems Gmbh Apparatus and method for internal surface treatment of hollow bodies
DE102008034111A1 (en) * 2008-07-21 2010-01-28 Khs Ag Method and device for sterilizing and / or disinfecting
DE102011100635A1 (en) * 2011-05-05 2012-11-08 Beiersdorf Ag Containers for cosmetic and dermatological products
DE102012201955A1 (en) * 2012-02-09 2013-08-14 Krones Ag Power lance and plasma-enhanced coating with high-frequency coupling
DE102012206081A1 (en) * 2012-04-13 2013-10-17 Krones Ag Coating of containers with plasma nozzles
CN103866290B (en) * 2012-12-18 2018-11-23 上海品吉技术有限公司 PECVD device, the method and its application that irregular surface film is prepared using it
DE102013226814A1 (en) * 2013-12-20 2015-06-25 Christof-Herbert Diener Plasma system with a separately transportable vessel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4008405C1 (en) * 1990-03-16 1991-07-11 Schott Glaswerke, 6500 Mainz, De
US5308649A (en) * 1992-06-26 1994-05-03 Polar Materials, Inc. Methods for externally treating a container with application of internal bias gas
DE4318084A1 (en) * 1993-06-01 1994-12-08 Kautex Werke Gmbh Process and device for producing a polymeric outer layer in plastic blow mouldings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540364A (en) * 1999-03-30 2002-11-26 シデル Machine with a swivel for processing hollow bodies including an improved pressure distribution circuit
JP2008505744A (en) * 2004-07-08 2008-02-28 スィデル・パルティスィパスィヨン Method for treating a container having an evacuation stage and machine for carrying out this method

Also Published As

Publication number Publication date
AU2648297A (en) 1997-12-09
WO1997044503A1 (en) 1997-11-27
EP0907761A1 (en) 1999-04-14

Similar Documents

Publication Publication Date Title
JP2000510910A (en) Method and apparatus for treating the inner surface of a container
JP3070037B2 (en) Method of attaching barrier film to three-dimensional article
JP3123767U (en) High plasma applications for remote plasma cleaning
US5766362A (en) Apparatus for depositing barrier film on three-dimensional articles
EP1220281B1 (en) Method of treatment with a microwave plasma
EP0985741A1 (en) Modulated plasma glow discharge treatments for making super hydrophobic substrates
JP2001518685A (en) Method and apparatus for treating inner surface of plastic bottle in plasma-enhanced treatment
JPH10330945A (en) Method for coating hollow body, device for coating hollow body and vessel having at least one closable opening
US11898241B2 (en) Method for a treatment to deposit a barrier coating
KR101101026B1 (en) Microwave plasma processing method
JP2002151494A (en) Normal pressure plasma processing method and device therefor
US20030148041A1 (en) Volume-optimized reactor for simultaneously coating eyeglasses on both sides
JP4380185B2 (en) Chemical plasma treatment method for inner surface of plastic bottle
JP3790410B2 (en) Particle reduction method
JP2006005007A (en) Method and device for forming amorphous silicon layer
JP4794800B2 (en) Thin film deposition method and thin film deposition apparatus
JP2005159049A (en) Plasma deposition method
JP2002151507A (en) Semiconductor element manufacturing method and apparatus thereof
JP2003086523A (en) Plasma cvd unit, cleaning method and film-forming method
JPS63190635A (en) Treating device for microwave plasma
JP2004315879A (en) Microwave plasma treatment apparatus and treatment method
JPH09241850A (en) Cvd device
JP2004332058A (en) Apparatus and method for microwave plasma treatment
JPH06226086A (en) Plasma treating device
JPH06304471A (en) Method for forming fine particle and apparatus therefor