JP2000504417A6 - 放射電磁界アナライザ - Google Patents

放射電磁界アナライザ Download PDF

Info

Publication number
JP2000504417A6
JP2000504417A6 JP1997526638A JP52663897A JP2000504417A6 JP 2000504417 A6 JP2000504417 A6 JP 2000504417A6 JP 1997526638 A JP1997526638 A JP 1997526638A JP 52663897 A JP52663897 A JP 52663897A JP 2000504417 A6 JP2000504417 A6 JP 2000504417A6
Authority
JP
Japan
Prior art keywords
mode
radiation
electromagnetic field
waveguide
scene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1997526638A
Other languages
English (en)
Other versions
JP2000504417A (ja
JP3798025B2 (ja
Inventor
ジエンキンズ,リチヤード・マイクル
デバルークス,ロバート・ウイリアム・ジヨン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UK Secretary of State for Defence
Original Assignee
UK Secretary of State for Defence
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB9601645A external-priority patent/GB2309608A/en
Application filed by UK Secretary of State for Defence filed Critical UK Secretary of State for Defence
Priority claimed from PCT/GB1997/000166 external-priority patent/WO1997027500A1/en
Publication of JP2000504417A publication Critical patent/JP2000504417A/ja
Publication of JP2000504417A6 publication Critical patent/JP2000504417A6/ja
Application granted granted Critical
Publication of JP3798025B2 publication Critical patent/JP3798025B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

放射電磁界アナライザ(10)は、シーンから受信する放射の空間モードスペクトルを解析する手段を提供する。多モード導波路実施形態では、レーザ(24)からの光は、アルミナ導波路構造(12)を介してシーンに向けられる。レーザ光の一部分は、レーザ放射を一連のモードの1つに選択的に変換するモード生成器(28)に向けられる。シーンから戻ってくるレーザ光は、モード生成器からの光と混合され、干渉信号を生成する。これらの信号は検出器(34)によって測定され、プログラムされたコンピュータ(36)によって解析される。生成器(28)によって生成されるモードを順次変え、結果的に得られる信号を解析することによって、シーンから戻ってくるモードのスペクトルが得られる。

Description

放射電磁界アナライザ
本発明は放射電磁界アナライザに関する。レーザ源がコヒーレントな放射によりシーン(scene)を照射すると、反射電磁界には、その三次元構造およびその表面の性質に関するかなりの量の情報が含まれる。こうした電磁界の解析により、目標探索、追跡、および非協同識別手順(non-cooperative identification procedure)のための重要な基礎が得られる。基本モード局部発振器を有する単開口単検出器ヘテロダイン検出システムは、シーンから反射される電磁界の基本モード成分しか検出することができず、その結果、かなりの量の潜在的に有用な情報が失われる。マイクロ波領域では、この問題は、副開口の配列を使用することによって克服される。各副開口に到達する放射は、別個の局部発振源および検出器によりコヒーレントに検出される。このようにして、配列を横切る電磁界は、区分的に測定される。かなり短い波長の光学放射および関係する様々な技術のため、レーザ放射により照射したシーンからの電磁界反射の解析における副開口受信配列概念の実現は、実際問題として困難であることが証明されている。
本発明の目的は、代替的形態の放射電磁界アナライザを提供することである。
本発明は、シーンから受信する少なくとも部分的にコヒーレントな放射を解析する放射電磁界アナライザであって、シーンからの前記受信放射を複数の直交空間放射モード電磁界と結合して干渉信号を提供する放射結合器と、干渉信号を検出し、シーンからの放射の解析を空間モードスペクトルの形で提供する検出手段とを含むことを特徴とするアナライザを提供する。
干渉信号を生成するためには、コヒーレンス度が受信した放射と直交空間放射モード信号との間に存在しなければならない。「シーン」という用語は、地上のシーンおよび空中の航空機など個々の目標や物体の両方をはじめとする視野内の任意の物体を含むものとして、包括的な意味で使用する。シーンからの放射は、自由空間モード(例えばエルミート−ガウス(Hermite-Gaussian)の直交集合または多モード導波路(例えば方形断面導波路のハイブリッドEHmnモード、ただしmおよびnは1以上の整数のモード次数)の直交集合により特徴付けられる。導波路モード解析に関し、シーンからの電磁界Einputは、導波路の入口開口上に結像し、そこでモードスペクトルを励起する。このプロセスは、次のように表わすことができる。
Figure 2000504417
ここでAmnおよびφmnはそれぞれ、mn番目の導波路モードEHmnの複素振幅の絶対値および位相である。
例えば、断面積が2a×2bの無損失方形導波路の一般的な場合、EHmnモードの電磁界振幅は、mおよびnが奇数の場合、次のような形:
Figure 2000504417
を取り、mおよびnが偶数の場合、次のような形:
Figure 2000504417
を取る。ここで、
Figure 2000504417
であり、λcは、導波路のコア内の完全平面波の波長である。
シーンから受信された放射によって導波路内で励起されるモードスペクトルと、可変モード生成器によって生成されシーンからの放射に対して周波数オフセットしている既知のモードとを混合することによって、シーンからの放射により導波路内で励起されるモードの相対振幅および位相は、生成されるうなり信号の検出器を用いる適切な測定により決定することができる。
本発明は、シーンからの放射によって励起されるモードを使用してシーンを分類する、という利点を提供する。したがって、本発明のアナライザに基づくシステムは、特定の放射モードが検出されるとき、したがって特定の目標または物体が存在するときに、人間のオペレータを頼ることなく、それを登録するように設定することができる。さらに、シーンがモードによって分類されるので、シーン情報は、シーン放射に存在するモードのリストにより、これらのモードの振幅および位相と共に表すことができる。
好適な実施形態では、シーン放射モードと生成されたモードを、多モード導波路構造内で結合する。生成されるモードは、2つの平面波(または2つの完全な平面波に可能な限り近似する2つの波)を、適切な角度および適切な位相で、多モード導波路へ注入することに基づく生成器(またはモード変換器)によって、生成することが好ましい。
代替的に、モードの生成は、多モード導波路構造にレーザ放射を供給するレーザ源によって達成することができる。この場合、該レーザ源は周波数固定され、シーン照射のために提供される別のレーザからは周波数オフセットする。
放射電磁界アナライザは、直列または並列配列の幾つかのアナライザの1つとすることができる。その場合、各アナライザは、任意の導波路モードまたは一連のモードの解析用に配列することができる。アナライザは、1つの可変モード変換器から供給することができる。代替的に、配列内の各アナライザがそれ自身のモード生成器またはモード変換器を持つこともできる。
放射電磁界アナライザは、可変モード生成器またはモード変換器によって生成されるモードを制御するため、およびアナライザによって測定されるモードスペクトルを解析するためにも、コンピュータシステムを具備することが好ましい。
別の態様では、放射電磁界アナライザは、レーザレーダシステムの一部として配置することができる。
本発明をより十分に深く理解できるように、ここでその実施形態を、単なる例として、添付の図面を参照しながら説明する。
図1は、本発明の放射電磁界アナライザの略断面図である。
図2は、図1の放射電磁界アナライザに組み込まれた多モード導波路構造の斜視図である。
図3は、図1のアナライザの可変モード変換器の斜視図である。
図4は、方形導波路のモードの放射結合を放射入力方向の関数として示す。
図5は、図4のモード間の相対位相オフセットを示す。
図6は、図1の放射電磁界アナライザのビームスプリッタ内の放射伝搬の略図である。
図7は、図3のモード変換器によって生成される導波路モードの一連の解説図である。
図8は、図3のモード変換器によって生成される放射モードのプロフィルを示す。
図9および図10は、図1の放射電磁界アナライザの性能の理論的予測を示す。
図11は、図9に示す理論的結果の実験測定である。
図12は、図10に示す理論的結果の実験測定である。
図13は、レーザレーダシステムに組み込まれた本発明のアナライザの略図である。
図1を参照すると、一般に符号10で示す放射電磁界アナライザの略図が示されている。これは、4つの実質的に同一の多モード導波路を有する多モード導波路構造12を組み込んでいる。すなわち、放射入力導波路14、モード変換導波路16、放射送受導波路18、および検出導波路20の4つである。
入力導波路14は、入力開口22を有する。CO2レーザ源24は、入力開口22に放射を向かわせるように配置される。モード変換導波路16は開口26を有する。開口26には、可変モード変換器28が配置される。モード変換器28については、後で詳しく説明する。これは、変換導波路16から基本モード放射を受け取り、それを多数の所望のモードのどれか1つの放射へ変換するように構成される。必要なモードの放射により、それは次に変換導波路16へ送り返される。放射を所望のモードの放射へ変換する以外に、放射の位相変調または周波数オフセットも、モード変換器で生成される。
送受導波路18は開口30を有する。導波路18からの放射は、開口30およびレンズ系31を介して、多モード導波路構造12の外部の自由空間モードに結合される。また、外部物体からの自由空間モードの放射は、レンズ系31および開口30を介して、導波路モードで送受導波路18へ結合される。
検出導波路20は開口32を有する。検出システム34は、検出導波路20から発生する放射を、開口32を介して検出するように構成される。検出システム34は、検出導波路20から発生した放射の記録および解析のために、コンピュータシステム36に接続される。
多モード導波路構造12は、開口22、26、30、32の反対側の導波路14ないし20の端部に配置されたビームスプリッタ38を組み込んでいる。ビームスプリッタ38は、入射放射の反射と透過が実質的に等しくなるように配置されている(つまりこれは50:50ビームスプリッタである)。これは、入力導波路14からの放射が変換導波路16へ反射し、入力導波路14からの放射が送受導波路18へ透過するように配置されている。同様に、変換導波路16からの放射は検出導波路20へ透過し、また入力導波路14へ反射する。さらに、送受導波路18からの放射は検出導波路20へ反射し、また入力導波路14へ透過する。
次に、放射電磁界アナライザ10の動作を一般的に説明する。さらに詳しい理論的解析については、後述する。レーザ源24からの基本モード放射は、EH11モードで、すなわち基本モード放射として、入力導波路18に結合されるように配置される。基本モード放射は、入力導波路14に沿ってビームスプリッタ38へ伝搬する。放射の実質的に50%がビームスプリッタ38を透過して送受導波路18へ伝搬する。放射の残りの実質的に50%は、変換導波路16へ反射する。導波路16および18両方における放射は、基本モードでそれぞれの開口26、30へ伝搬する。
開口30から出た放射は、本質的にTEM00自由空間放射モードに結合する。これはシーン(図示せず)を照射し、シーンから反射した放射は、開口30を介して送受導波路18へ結合される。放射は、EHmnの形の多数の導波路モードに結合される。ここで、mおよび/またはnは1以上である。
開口26から出た基本モード放射は、可変モード変換器28へ入る。変換器28は基本モードEH11放射をより高い次数の導波路モードEHmnに変換する。変換器28は、制御された順序でモードを生成することによって、モード変換を実行する。変換器28は、制御ライン40を介して、コンピュータ36によって制御される。変換器28は、EH11からEHmnまでの範囲内の全てのモードを生成する。任意の特定の1つの設定では、モード変換器は単一のモードだけを生成する。m=n=10では、分解能は10×10の副開口の配列を有する先行技術の放射電磁界アナライザと同等である。
変換器によって生成されるモードは、開口26を介して、変換導波路16へ伝送される。モード変換器内の位相変調器は、生成されたモードに正弦波位相変調を行なう。1つの実施では、位相変調器は、積み重ねた圧電体に搭載された完全反射鏡の形を取る。積み重ねた圧電体は、cos(ωt)の形の時間依存型の鏡の軸方向運動を生成する正弦状可変電圧によって駆動される。ここでωは駆動周波数である。駆動電圧の振幅は、線形運動の限界がλ/2となるように構成される。ここでλは導波路のコアにおける平面波の波長である。鏡のこの運動は、鏡から反射されるビームに正弦曲線的に変化する移相(0→360゜)を引き起こす。
可変モード変換器28からの位相変調放射は、変換導波路16に沿ってビームスプリッタ38に向かって伝搬する。送受導波路18に結合されたシーンまたは物体からの放射は、導波路18に沿ってビームスプリッタ38に向かって伝搬する。変換器28からの放射とシーンまたは物体からの放射は、ビームスプリッタ38を介して混合され、その後検出器34へ伝送される。
導波路モードの直交性のため、検出器によって測定されるパワー変動のピーク間振幅は、シーンまたは物体からのEHmnモードが可変モード変換器によって生成されるEHmnモードと等しい場合、非ゼロになるだけである。例えば、モード変換器28がEH31モードを生成する場合、シーンからの放射からもモードEH31が励起されるときには、送受導波路18に有限パワー変動が生じるだけである。結果的に得られるパワーの正弦曲線的変動は、コンピュータ36によって記録され、シーンからの電磁界のEH31成分の絶対値と位相を演繹するために使用される。従って、モード設定の知識、可変モード変換器28によって生成されるモードの相対振幅および位相、ならびに検出器34によって行われる正弦曲線的に変化するパワー測定の相対振幅および位相により、シーンから受け取る放射に存在する全てのEHmn放射モードの複素振幅を決定することができる。
これにより、シーンからの放射電磁界を、送受導波路で励起されるEHmnモードに従って特徴付けることができる。解析に使用するモードの次数が高いほど、シーンの放射電磁界を特徴付けることのできる分解能は高くなる。低い次数のモードは、シーンのバルク特性に関する情報を提供することができる。例えば、2つの強度ピークを持つEH21の存在は、シーンに2つの主要な垂直成分が存在することを示す。逆に、モードEH10,10のように、より高次のモードは、シーンにおけるより小寸法の詳細に関する情報を提供する。したがって、シーン放射電磁界は、それが励起するEHmnモードによって特徴付けることができる。シーン放射電磁界は較正することができる。すなわち、既知の物体の電磁界をそれから生成されるEHmnモードで特徴付けておき、次に、その物体に対応するEHmnモードが検出器34で受信されたときに、それを登録するようにアナライザ10を構成する。その後、アナライザ10によって検出すべき物体が最初に、それらが励起するEHmnモードによって較正されている監視システムの基礎として、アナライザ10を使用することができる。
図2は、図1の多モード導波路構造12の斜視図である。多モード導波路構造12は、アルミナから製造される。これは3層で構成されている。すなわち、中空導波路の下部壁を形成する基板層210と、中空導波路の垂直壁を形成するタイル213の配列で構成される導波路層212と、破線で示された中空導波路の上部壁を形成する最上層214の3層である。
導波路層212は、図1に示す入力導波路14、モード変換導波路16、放射送受導波路18、および検出導波路20の形状を規定する。結果的に得られる中空導波路14ないし20の各々は、辺2aの一定した方形断面の導波路である。ここでaは1ミリメートルに等しい。
次に、導波路14ないし20の配置について、軸216を参照して説明する。モード変換導波路16および検出導波路20は、x方向に伸長するそれぞれの中心長手軸218、220を有する。軸220は軸218から正のy方向に0.93mmだけずれている。同様に、入力導波路14と送受導波路18は、それぞれy方向に伸長する中心長手軸222、224を有する。軸222は軸224から正のx方向に0.93mmずれている。
導波路層212は、2つのスロット226、228をも有する。これらはそれぞれ導波路14と20の間、および導波路16と18の間に配置されている。導波路14ないし20の共通交差部232におけるスロット226、228には、ビームスプリッタ38が配置される。ビームスプリッタはセレン化亜鉛から製造され、厚さは1.9mmである。入射光の50%が透過され、50%が反射されるように、多重誘電体被膜がその表面に蒸着されている。
導波路14ないし20は、導波路層212の端部にそれぞれの開口22、26、30、32を有する。レーザ源24は、長手軸222上に中心に配置されている。可変モード変換器28は、変換導波路16の開口26から1.0mm離れて、軸218上に中心に配置されている。検出器34はテルル化カドミウム水銀(CMT)の4.0mm冷却方形チップであり、軸220上に中心に配置されている。これは、開口32から放出される全ての放射を捕捉するように配置されている。
図3は、図1の可変モード変換器28の斜視図を示す。これは、4つの中空導波路を含む多モード導波路構造310を組み込んでいる。構造310は、3つの層312、314、316で構成される。層312は中空導波路の下部壁を形成する基板313を含み、層314は中空導波路の垂直壁を形成するタイル315の配列で構成され、破線で示される層316は、中空導波路の上部壁を形成する頂板317である。
タイル315の配列は4つの多モード導波路318、320、322、324を形成する。導波路318は入力導波路であり、導波路320は第1モード変換導波路であり、導波路322は第2モード変換導波路であり、導波路324はモード検査導波路である。各導波路は、辺2.0mmの方形断面の導波路である。各導波路318ないし324は、層314の対応する縁部にそれぞれの開口326、328、330、332を有する。
導波路318ないし324は、対応する中心長手軸334、338、340、336を有する。軸338は軸334から、軸342によって示されるように正のy方向に、0.93mmずれている。同様に、軸336は軸340から正のx方向に0.93mmずれている。動作中、軸334は図2の軸218と平行かつ同軸になる。
層314は、その厚さ全体に伸長する2つのスロット344、346を有する。スロット334は、導波路318と324の交差部に位置する。スロット346は、導波路320と322の交差部に位置する。スロット334、346は各々、厚さ1.96mmのセレン化亜鉛ビームスプリッタ348を支持する。
第1および第2モード変換導波路320、322は、それぞれの対応するモード変換ミラー350、352を有する。これらは、開口328、330から約1.0mm離れた距離に、軸336、338に沿って中心に配置される。ミラー350、352は、それぞれのモータ付き取付け台(図示せず)上に取り付けられる。取付け台により、ミラー350、352は選択された軸を中心にして回転することができる。ミラー350は、中心軸354、356を中心にして回転可能である。これらの軸はそれぞれ、z方向に平行な垂直軸、およびy方向に平行な水平軸である。ミラー352は、それぞれz方向およびy方向に平行な中心軸358、360を中心にして、回転可能である。さらに、ミラー350、352とこれらに対応する導波路の開口328、330との間の距離は、取付け台のリニアモータによって変化できる。ミラーの運動は、図1のコンピュータ36によって制御される。
モード変換器28は、開口26からの光が変換器28の入力導波路318の開口326内へ結合されるように、多モード導波路構造12に隣接して配置される。
次に、モード変換器28の動作について説明する。開口326に入った基本モード放射は、入力導波路318に沿ってビームスプリッタ348へ伝搬する。ビームスプリッタ348は50:50ビームスプリッタであるので、基本的に入射放射の半分がそれを透過して第1モード変換導波路320へ進む。残りの実質的な部分は第2モード変換導波路322へ反射する。放射は導波路320、322に沿って伝搬し、開口328、330から出る。放射はミラー350、352に入射し、反射して開口328、330へ戻る。
ミラー350、352から導波路320、322へ反射した放射の結合は、ミラー350、352の傾斜の角度に依存する。図4は、ミラー350からの反射後に導波路320に結合されたモードの絶対値の大きさの変化のグラフを示す。同じグラフが、ミラー352から導波路322へ結合された放射にも適用される。導波路に結合された導波路モードの絶対値が、それぞれのミラーの傾斜角によって変化することが分かる。正の傾斜は、ミラー350、352のそれぞれの垂直軸(すなわちz軸)358、360を中心とする時計方向の回転に関係する。負の傾斜は反時計方向の回転に関係する。図4のグラフはEHmnモードの場合であり、ここでnは1である。
グラフから、傾斜がゼロのときには、EH11放射モードだけがそれぞれの導波路に結合されることが分かる。しかし、正の傾斜が大きくなるにつれて、EH11モードの絶対値は、11.0ミリラジアンの傾斜で実質的に0になるまで低下していく。逆に、EH21モードの絶対値は、傾斜約2.5ミリラジアンの最大値まで、正の傾斜で急速に増加する。しかし、モードEH21の絶対値の最大振幅は、EH11モードの最大振幅に匹敵する値に達せず、むしろその値の約3分の2に限定される。
より高い正の傾斜では、その他のより高次のモード、すなわちEH31、EH41、EH51等も、それぞれの導波路に結合し始める。これらのモードは、ミラーの傾斜がそれぞれ約4.0、5.5、および7.0ミリラジアンのときに最大振幅になる。これらの最大値は、EH21モードの場合と実質的に同じである。負のミラー傾斜の場合、全てのモードの絶対値は、正の傾斜の場合と同じであるが、それらの位相が異なる。EH11を除く(この場合の最大値は傾斜がゼロのときに達成される)任意のモードの振幅を最大にするために必要なミラーの傾斜は、式:θ=mλc/8aによって適正な近似値まで予測することができる。ここで’θ’はラジアン単位の傾斜であり、’m’はEHml番目のモードのモード次数であり、’λc’は導波路のコア内の平面波の波長(中空導波路の場合、自由空間の平面波の波長)、aは導波路の半幅である。例えばm=3、λ=10.6μm、a=1.0mmの場合、θ=0.003975ラジアン、すなわち約4ミリラジアンとなり、図4の数値予測と良好に一致する。
図4は、励起モードの絶対値がミラー傾斜の関数としていかに変化するかを強調しているが、図5は、それに加えて、モード間の位相のずれもいかにミラー傾斜の関数であるかを示している。正のミラー傾斜の場合、非対称モードEH21、EH41が、対称モードEH11、EH31、EH51から90゜(またはπ/2)だけずれていることが分かる。逆に、負のミラー傾斜の場合、非対称モードは270゜(3π/2)だけずれる。
図4および図5から、特定のミラー傾斜角では、多数のモードがそれぞれの導波路に結合することが分かる。例えば、4ミリラジアンの正の傾斜の場合、モードEH11、EH21、EH31、EH41、およびEH51からの寄与がある。しかし、モードの絶対値の大きさは異なる。基本モードの絶対値は、EH51の場合と同じく、約0.05であり、モードEH21およびEH41の絶対値は約0.25であり、EH41の絶対値は0.4の値で最大になる。
略述した技術によってシーンからの放射を解析する場合、モード変換器28が任意のときに実質的に単一のEHmnモードを生成することが望ましい。複数のモードを生成すると、これらは、解析すべきシーン放射電磁界からの複数のモードと重なり合い、複数のうなり信号が発生する。したがって、検出器34によって検出される放射にどのモードが存在するかを決定するために、より複雑な信号処理技術が必要になる。モード変換器によって単一モードを生成することができれば、解析をかなり単純にすることができる。
基本的に純粋なモードを生成する目的で、任意のミラー傾斜に対し、任意のときにモード変換器28からほぼ1つだけのモードが生成されるように、対称モードと非対称モードを分離することができる。モードは、ビームスプリッタ348におけるコヒーレント混合プロセスによって分離することができる。
図6は、ビームスプリッタにおける放射の伝搬の略図を示す。ビームスプリッタ384は2つの面600、602を有する。面600は反射防止膜を有し、面602は多重誘電体被膜を有し、50%の透過と50%の反射を達成する。したがって、ビームスプリッタ348に向かって伝搬してきた放射は、面602から導波路320および322へそれぞれ等しい比率で透過および反射する。反射は実際には、高屈折率のビームスプリッタ348とそれに隣接する低屈折率の空気との界面で発生する。ミラー352からこの界面へ接近する放射の場合、放射は低屈折率の媒体内を移動し、空気とビームスプリッタ348の高屈折率媒体との界面で反射する。この反射を行なう放射は、位相変化を生じない。逆に、ミラー350からこの界面へ接近する放射はビームスプリッタの高屈折率の媒体内を移動し、低屈折率の媒体すなわちビームスプリッタ348を取り巻く空気との界面から反射する。この反射を行なう放射は、πラジアンまたは180度の位相のずれを生じる。
放射を導波路320、322に結合した後、ミラー350、352から反射した放射は、点604の位置で再び反射および透過を生じる。したがって、ミラー350、352からの放射は、点604の位置で結合することができ、モードを導波路318または324の両方に結合させることができる。所与のEHmnモードの強度を出力導波路318で最大にするためには、導波路320、322を介して点604の位置におけるミラー350、352からの放射間の位相差が、次式を満足しなければならない。
φmn350mn352=p2π
ここでpは整数であり、φmn350はミラー350から導波路318へ注入されるEHmnモードの位相であり、φmn352はミラー352から導波路318へ注入される同モードの位相である。
所与のモードについてこの状況を達成するために、ミラー350は、距離xにわたってx方向に横方向の運動(導波路の軸に沿った軸方向の運動)をするように構成する。この運動により、φmn350に、次式で与えられる位相変化φcが生じる。
Figure 2000504417
ここで、λmnはEHmnモードの波長である。レーザ源24はCO2レーザであるので、自由空間放射の波長は10.6μmである。位相変化φcを求めるには、x=λmnφc/4πの運動が必要である。実際問題として、同様のモードが同相であるためには、(φmn352−φmn350)が2πラジアンの整数倍となるように、φcを調整しなければならない。
図5から、ミラー350がz軸に対して正に傾斜している場合(図3参照)、非対称モードEH21、EH41、EH61等は対称モードから90゜ずれ、ミラー350がz軸に対して負に傾斜している場合、非対称モードEH21、EH41、EH61等は対称モードから270゜ずれることが分かる。ミラー350が正に傾斜し、ミラー352が正に傾斜している(これは、ビームスプリッタ348で反射した後、モードの相対位相に関する限り、出力導波路318内では事実上の負の傾斜に等しい)状況を考慮し、適切な位相シフトの適用によって、ミラー350の圧電制御変位を介して適用した場合、ミラー350からビームスプリッタ348によって出力導波路318へ透過される対称モードが、ミラー352からビームスプリッタ348によって出力導波路318へ反射される対称モードと同位相になるように構成する。すると、これらの対称モードは、点604の位置で建設的に干渉し、対称モードのビームを生成し、これらは導波路318へ結合される。逆に、同じミラー傾斜で、ミラー350、352からの透過および反射非対称モードは、点604で位相がずれ、導波路318の出力電磁界で破壊的に干渉する。同時に、これらの非対称モードは、導波路324の出力電磁界で同位相になり、建設的に干渉するが、導波路324の出力電磁界の対称モードは位相がずれ、破壊的に干渉する。
逆に、導波路318の出力電磁界で対称モード間の破壊的干渉が達成されるようにミラー350を配置する場合、非対称モードは同位相になり、建設的に干渉する。同時に、導波路324では、出力対称モードは建設的に干渉し、非対称モードは存在しない。
上記の状況では、導波路324に結合されるモードセットを、導波路318の出力電磁界に生成されるモード、すなわちモード変換器28からの出力の検査として使用することができる。例えば、非対称モードが導波路318を介して出力される場合、導波路324は対称モードを含むはずであり、その逆のことも言える。導波路324は、モードの解析のために、その出力開口322の反対側に検出器配列(図示せず)を含むことができる。
上記説明は、モード変換器28からの出力放射をいかにして対称モードまたは非対称モードのいずれかに選択できるか、および式θ=mλc/8aに従ってミラー350、352の傾斜の大きさを選択することによって、任意のモードの純度をいかに最大化できるかを実証している。しかし、モード変換器への入力が完全な平面波でなければ、これらの設定の各々における出力は複数のモードを含むことがあり、したがって、さらに、望ましくないモードの効果を抑制する必要がある。これは以下のように達成される。
図4のグラフから、ミラー傾斜がゼロの場合、生成される唯一のモードが基本モードEH11であることが分かる。4.0ミリラジアンのミラー傾斜では、EH31が生成される優勢なモードであるが、EH51やEH11モードからのわずかな寄与もある。非対称モードは、上述の通り排除できるので、ここでは無視される。基本モードEH11の振幅は傾斜ゼロで生成される唯一のモードであるので、ミラー350、352の傾斜をゼロに設定したモード変換器28でアナライザの出力を測定することにより、基本モードEH11の振幅を直接確認することができる。
EH31モードの振幅は、モード変換器のミラーを+2.5ミリラジアンの傾斜に設定し、アナライザの出力を測定することによって決定することができる。図4から、EH31およびEH11からの寄与は実質的に同一であり、その他の全ての対称モードは非常に低い大きさである。ミラー傾斜が2.5ミリラジアンのときのEH11モードの振幅は、傾斜ゼロのときの上記測定から決定することができる。図4のグラフから、EH11モードの振幅は、周知の通り、ミラーの傾斜と共に変化し、任意の傾斜時の振幅は、傾斜ゼロ字の振幅から求めることができる。2.5ミリラジアン時のEH11の振幅が分かると、EH31モード信号への寄与を演繹することができる。同様に、ミラー傾斜が5.5ミリラジアンのときのEH51モードの振幅は、前に求めたEH11およびEH31モードの知識、およびモード変換器28のミラーをこのミラー傾斜に設定した状態でのアナライザの出力の知識から、決定することができる。
同様に、図4から、PZTの適切な設定によって非対称モードが選択された場合、EH21モードの振幅は、モード変換器内のミラーを+1.5ミリラジアンの傾斜に設定したときのアナライザからの出力を測定することによって、決定することができる。ここで、モード変換器の出力は、大部分がEH21モードによるものであり、EH41はごくわずかに寄与をするだけである。+4.0ミリラジアンでは、EH21およびEH41による寄与は同一であり、その他の全ての非対称モードの振幅は極めて小さくなる。この状況でアナライザからの出力を測定し、EH21モードの寄与について補正することによって、EH41モードの振幅(すなわち絶対値)を演繹することができる。
以上から、対称モードまたは非対称モードだけが生成されるように構成することにより、また様々な傾斜角度すなわちミラー350および352で生成されるモードの知識により、アナライザによって受信されるシーン放射電磁界を、存在する個々のモードによって特徴付けることができることが分かる。
以上は、EHmlモードの生成に関連していた。これは、ミラー350、352をそれらの垂直軸を中心にして同じ向きに傾斜させることによって達成される。EH1nのモードは、ミラー350、352をそれらの水平(yまたはx)軸を中心にして、同じ方向に回転することによって生成することができる(回転が同じ向きでなければならないという要件は、ビームスプリッタからの反射が像を反転するという事実から生じる)。その結果得られるモードのグラフは実質的に図4および図5のグラフと同一であるが、“n”の数字が変化し、“m”の数字は1に固定される。
mおよびnの両方が1より大きい高次モードも、モード変換器28によって生成することができる。これは、ミラー350、352をそれらの水平軸および垂直軸の両方を中心として同時に傾斜して、達成することができる。EHmn次モードは、ミラー350、352を、m次モードについては、図4に関連して行なったように、垂直軸を中心にして必要な傾斜まで傾斜し、n次モードについては適切な傾斜が得られるまで水平軸を中心にして傾斜することによって、得られる。これらの高次モードの場合、ミラー350、352を、それらの水平軸を中心にして反対の向きに傾斜しなければならず、それらの垂直軸を中心とする傾斜は同じ向きを持たなければならない。
図7aおよび7bは、様々な設定時にモード変換器28によって生成されるモード出力を示す。図7aは、モード変換器28がモードEH11からEH10,1までを生成するように設定されたときに、導波路316から出力される放射強度パターンを示す。例えば、EH41の強度パターンは、横1列に並んだ4つの強度ピークを含む。図7bは、モード変換器28がモードEH11からEH1,10までを生成するように設定されたときに、導波路316から出力される放射パターンを示す。例として、EH17のパターンは縦1列に並んだ7つの強度ピークを含む。基本モードEH11は、中心に単一の強度ピークを含む。一般に、中間モードのパターンは、縦列および横列の強度ピークの様々な組合せを含む。EHmn次のモードはm×nの強度ピークを有する。
図8は、モード変換器28によって生成されるモードのうち4つのモード、すなわちEH11、EH21、EH31、およびEH41の準3次元プロフィルを示す。これらのモードはそれぞれ、1つ、2つ、3つ、および4つの強度ピークを含むことが分かる。
モード変換器28からの放射は、開口26を介して、変換導波路16へ結合される。シーンからの多モード放射は、開口30を介して、送受導波路18へ結合される。それぞれの変換導波路16および送受導波路18内の放射は、50:50ビームスプリッタ38へ向かって伝搬する。
シーンからの放射は、それぞれの複素振幅Apqexp(iφpq)を持つEHpqモードの線形結合で構成される。EHpqモードは、開口26で導波路18に結合される入力光電磁界Einputによって生成される。したがって、Einputは、Epqモードによって次のように表わすことができる。
Figure 2000504417
基本的に、導波路18は、その入口開口26で、光電磁界Einputのフーリエ解析を実行する。そのとき、複素振幅はフーリエ級数の係数となり、導波路18で励起されるモードは、シーンからの電磁界のモード表現である。
導波路16、18内の放射モードは次に、ビームスプリッタ38で混合される。モード変換器の各EHrs設定について、正弦曲線的に変化する最大振幅Yの変位内でモード変換器のミラー350、352を同時に動かすことにより、検出器でうなり信号が生成される。変換器からのEHrsモードの位相がπラジアンだけ変化することを確実にするためには、正弦曲線的に変化する電圧を圧電トランスデューサに印加することによって実現される、少なくとも2.65μmの変位が必要である。
変換器からのEHrsモードとシーンからのモードスペクトルとのコヒーレントなうなりの結果、うなり電磁界が形成され、これは検出導波路20に沿って伝搬する。これは開口32から出て、検出器34で検出される。これらの条件下で、検出器34で生成される時間依存型2D強度プロフィルは、次式によって得られる。
Figure 2000504417
ここでApqおよびArsは、それそれシーン電磁界のモードおよびモード生成器によって生成されるモードの複素振幅の絶対値であり、ρはこれらの引数の差(ρpq−ρrs)、すなわちこれらの位相差である。導波路の断面積全体に対し積分することにより、導波路から出て行く全ての放射を捕捉する検出器に入っていくパワーの時間変動成分は、次式:
Figure 2000504417
によって得られ、Pbのピーク間値は次式:
Figure 2000504417
によって得られる。
導波路モードの直交性のため、モードが同一次数の場合、すなわちp=rおよびq=sが同時に成り立つ場合、積分項およびしたがってPbのピーク間振幅は必ずゼロ以外の値となる。この条件下で、Pbのピーク間振幅の値とArsの大きさの知識を結合することにより、EHpqモードの複素振幅の絶対値Apqを直接求めることができる。さらに、モード可変局部発振器の様々なモード設定について、Pbの正弦曲線的変化と圧電変調器駆動信号との間の相対位相ずれの比較測定を行なうことにより、モード間の相対位相差を求めることもできる。このようにして、入力電磁界の各モードの複素振幅を測定することができ、したがって、電磁界の完全な形を演繹することができる。
実際問題として、入力電磁界のモードの相対位相の正確な測定は、次の2つの重要な前提に基づく。
(i)導波路の入口開口(解析される電磁界を結像させる場所)と検出器との間の導波路の光路長は、モード変換器からの出力と検出器との間の導波路光路長に等しい。そうでない場合には、モード分散方程式に基づいて、測定値に補正を行なわなければならない。
(ii)モード変換器の出力面に生成される個々のモードは、全て同じ相対位相を有する。そうでない場合には、初期セットアップ手順で、相対位相ずれを確立しなければならない。これは、既知の入力電磁界の注入、例えば傾斜ミラーから反射されるEH11に基づくことができる。このようにして演繹される位相ずれの値は、電磁界解析プロセスの計算段階で、測定データを補正するために使用することができる。代替的に、位相ずれデータは、生成される各モードについて、適切な直流オフセット電圧レベルをモード変換器の位相変調器に印加することによって、生成されるモード間のゼロ位相ずれを確立するために使用することができる。このプロセスは、各副開口の後ろの混合点に印加される局部発振器信号の位相が同じになることを確実にするために、フェーズドアレー受信機で行なわなければならない「フェーズアップ」手順に類似している。
アナライザ10は使用前に、送受導波路18の開口30に目標ミラー(図示せず)を配置することによって、較正することができる。このミラーは、図4のモードと同様のモードを生成するように傾斜することができる。したがって、変換器28からのEHmnモードと目標ミラーによって生成されるモードとを重ね合わせることによって、導波路18内を伝搬するモードの相対位相を検出器34の出力から演繹することができる。変換器28によって生成されるモードの振幅と位相は分かっており、目標ミラーによって生成されるモードの振幅も分かっている。これにより、相対モード位相を演繹することができる。
次に、モード変換器によって生成されるモード間の位相のずれを考慮した較正手順を、より詳しく考察する。図1に関連して、開口30に配置した目標ミラーが、z軸に対し−4.0ミリラジアンだけ傾斜している状況を考察する。図4から、これによりモードEH11、EH21、EH31、EH41、およびEH51が励起することが分かる。モード変換器をEH11に調整し、モード変換器の位相変調器に印加される駆動信号の標本と検出器からの出力との間の位相差χ1を測定する。実際には、これは、オシロスコープを用いて実行することができる。次に、EH2が得られるようにモード変換器を調整し、位相差の測定を繰り返す。今度の結果は値χ2である。図5から、χ2−χ1は270゜となることが分かっており、χ2の補正はχ2cと規定され、χ2+χ2c−χ1=270゜となるように計算される。χ2cの値は記録される。同様の方法で、この値の傾斜の大きさによって励起される他のモードの位相補正も計算される。次に目標ミラーを−9.0ミリラジアン傾斜し、この結果、モードEH51、EH61、EH71、EH81、およびEH91が励起する。この値の傾斜は、最初のデータセットにあったEH51を含めるために選択された。EH11およびEH51を含む測定値の初期集合からEH11に対する相対位相のずれを測定する。実際問題として起こりそうにないことであるが、回転軸が厳密に導波路の軸を通らない限り、ミラー傾斜が1つの値から別の値に変化するときに、ミラー表面の軸ずれも影響を受け、そのために追加の未知の位相のずれが発生するので、測定が行われるモードの集合を重複する戦略は重要である。
直交x軸に対する目標ミラーの傾斜、および水平軸と垂直軸の両方に対する複合傾斜により、大きいモードスペクトルへのアクセスが可能になる。この文脈において、前述の通り、所与のモードのセットを励起するために必要なミラー傾斜の値は、θ=nλ/8aによってかなりの近似値が得られる。ここで、nは集合の中心のモードに関連する数であり、aは導波路の半幅である。例えば、EH31を集合の中心にしたい場合、n=3であり、λ=10.6μm、a=1.0mmとすると、前に使用したように、θ=4ミリラジアンとなる。EH33モードを励起する集合の中心にしたい場合には、ミラーをx軸およびz軸の両方に対し40ミリラジアンだけ傾斜させる。コンピュータ制御されたミラー取付け台および適切なインタフェース電子工学を用いて、セットアッププロセス全体を自動化することができる。
図4に示す任意の値の傾斜の大きさにおける傾斜入力電磁界を解析したい場合には、少なくともモードEH11ないしEH51を生成するモード可変局部発振器が必要になる。次に、5つのモードの各々について順番に、絶対値と位相の測定を行なうことが必要になる。入力電磁界の独特な性質のために、範囲内のどこでも同時に励起するモードの最大数は5であることに注目することは興味深い。実物体の像は、励起されるモードの数および次数の両方の点で、ずっと複雑なモードスペクトルになる可能性が高い。そうした像を解析できる分解能は、多数の要素によって異なるが、それらは次のようなものを含む。
(i)モード可変局部発振器でアクセスできる最高次数のモード。
(ii)それが生成するモードの純度。
(iii)実行できるモードの振幅および位相の測定の精度。
暫定的に変化する電磁界では、別の重要な要素として、行われる測定に要する時間がある。これは、解析が行われるモードの数および各測定に要する時間によって異なる。後者自体が、Pbのピーク間値をいかに素早く求めることができるかによって異なり、これがさらに位相変調周波数の関数である。信号対雑音の問題も、測定全体の分解能および時間に影響するようである。
上述の電磁界解析の方法は、局部発振器が同調できるモードの各々における順次測定の実行に依存するので、潜在的には非常に高速であるが、原則的に実時間のフェーズドアレーより本質的に低速である。しかし、このモード解析法は、単一開口および単一検出器だけで非常に精巧なコヒーレント電磁界測定システムを形成できるという点で、フェーズドアレーに比べて重要な技術的利点を備えている。したがって、モード可変局部発振器を付加することにより、既存の単一開口単一検出器システムをグレードアップすることができる。さらに、システムからの複合モード振幅出力により、物体電磁界の直接フーリエ変換が得られ、画像処理、パターン認識、およびデータ保存に関する限り、重要な利点が得られる。測定の速度向上の関係において、異なるモードで作動する幾つかの局部発振器を使用して、電磁界の異なる空間成分の同時測定を行なうシステムを考えることができる。フェーズドアレーシステムに関連して、モード解析法は、各副開口に次ぐ分解能の向上をもたらすために使用することができる。フェーズドアレー技術とモード解析技術の結合に基づくハイブリッドシステムは、コヒーレント受信機の設計の新たな方法につながるかもしれない。
図9および図10は、シーン自体が導波路18の出口に配置され、−10ミリラジアンないし+10ミリラジアン傾斜されたミラーである場合に、検出器34によって受信されるうなり信号のピーク間振幅がいかに変化するかの予測を示す。図9は、モード変換器が基本EH11モードを生成するように設定された場合に関連し、図10は、モード変換器がEH12モードを生成するように設定された場合に関連する。信号最大値は、モード変換器が同調されているモードへの結合が最大になる目標ミラーの傾斜角度で記録されることが分かる。図11および図12は、図9および図10に示した理論的予測と、モード変換器をそれぞれEH11およびEH21に同調した場合に実験的に生成された結果との比較を示す。
多モード導波路に基づくモード変換器は、様々な設計が可能である。基本的に、ここで説明するモード変換器の設計は、マイケルソン(Michelson)干渉計の多モード導波路版である。干渉計は、基本モードの入力電磁界を2つの成分に分割する目的に使用され、次に、分割された成分は、再結合される前に、反対の向きの適切な傾斜の大きさを与えられる。マッハ−ツェンダ(Mach-Zehnder)干渉計の多モード導波路版は、同様の機能の提供することができる。マイケルソン版およびマッハ−ツェンダー版のモード変換器では、TEM00入力ビームの腰部のサイズを増大することによって、モード純度の向上を達成することができる。入力電磁界が平面波である場合、生成されるモードは完全になる。しかし、入力ビームの腰部wが0.7aより大きいTEM00入力電磁界の場合、入力面と完全反射傾斜可能ミラーとの間の導波路の光路長は、入力電磁界再生を行なうために必要な多モード導波路の長さの整数倍でなければならない。多モード導波路のこの長さは、中空誘電体導波路の場合、L=(2a)2/λとして表わされる。
モード生成プロセスの最も一般的な実施は、相対する傾斜を持ち、間に適切な位相のずれがある2つの平面波ビームを多モード導波路内に発射することによって達成される。導波路は長さをゼロとする、すなわち開口とすることができる。傾斜したビームは、音響−光学変調器または電子−光学変調器によって生成することができる。これらの実施形態において、シーン照射、モード生成、および電磁界解析のプロセスは、これらを独立して実行すれば、簡素化することができる。そうした実施形態では、レーザ源からの出力を主要成分と微小成分に分割することができる。主要成分は、シーンを照射するために使用し、微小成分はモード生成器への入力として機能する。モード生成器からの出力は次に、モード解析を実行することができるように、別個の多モード干渉計で、シーンから反射した電磁界と混合される。
モード可変局部発振器に必要なモードのスペクトルを生成する別の方法も可能である。例えば、可変モード変換器28を、方形断面を有し制御可能な多モード出力を提供する導波路レーザに置き換えることができる。共振器ミラーを傾斜することにより、空洞の長さを変化させることにより、および可動ワイヤグリッドを共振器ミラーの上に配置することにより、利得媒体を励起する方法を変えることによって、より高次のモードを生成することができる。この構成では、基本準ガウスモードで作動する別個のレーザ源24を使用して、シーンを照射する。レーザ源24およびモード可変レーザの周波数の相対ドリフトを防止するために、これらを安定させる場合、既知の高周波うなり信号を生成するために、相互に対してこれらの周波数オフセットを行なうことができる。モード可変レーザの異なるレーザモードが異なる振動周波数を持つということは、モード可変レーザが作動するモードをうなり周波数から識別できることをも意味する。これは、モード可変レーザを所与のモードに固定するための判別子として使用することができる。例えば、レーザのモード出力が圧電式空洞長制御装置に印加される電圧の関数として変化する場合、空洞の長さが、所与のうなり周波数が生成され従って所与の横モードが生成される値に維持されるように、電子帰還回路を設計することができる。
モード生成器/変換器によって生成されるモードを、多モード導波路構造で分析される電磁界と混合し、次に結果的に得られた電磁界を多モード導波路の出口に配置された検出器で検出するという文脈で、概念を説明した。混合プロセスは、多モード導波路では必要ない。混合は、自由空間に取り付けられた多重誘電体エタロンで発生し、その結果得られた電磁界を、自由空間に取り付けられた検出器の表面で検出するように構成することができる。この実施形態が正しく作動するためには、モード変換器/生成器で生成されるモードが検出器に正確に結合する必要がある。この実施形態を理解するために、検出器を長さゼロの多モード導波路と考えると便利である。
これまで説明した実施形態は、方形断面の導波路の直交モードの文脈における電磁界解析を考慮しただけである。解析は、より一般的な分類の方形断面の導波路のモードまたは円形断面の導波路のベッセルモードで行なうことができる。パワー直交集合のモードを支持する任意の導波路を、アナライザの基礎として使用することができる。
これまで説明した実施形態は、パワー直交導波路モードの文脈における電磁界解析を考慮しただけである。解析は、生成できる任意の集合のパワー直交光電磁界関数で理解することができる。これらは、直交座標自由空間系に関連して規定されるエルミート−ガウスモード、または円筒座標自由空間系のラゲール−ガウス(Laguerre-Gaussian)モードとすることができる。これらの実施において、モードの横方向の大きさは、その次数によって変化する。モードの次数が高いほど、その幅は大きくなる。この場合、検出器は、解析に必要な最高次数のモードを捕捉するのに充分な大きさでなければならない。これは、全てのモードの横方向の大きさが導波路の断面積によって規定される導波路モードの実現とは異なる。
これまで説明した実施形態は、解析プロセスが多モード導波路または幅広く使用されるマイケルソン干渉計の自由空間版で行われる電磁界解析を考慮しただけである。多モード導波路および自由空間版のマッハ−ツェンダ干渉計の両方を含む、他の形の干渉計を使用して、電磁界解析プロセスを実行することができる。多モード導波路のみに基づくマッハ−ツェンダ型干渉計の使用も可能である。ここでは、適切に設計された多モード導波路が、ここに記載した実施形態のエタロンの代わりに使用される。その結果得られる全波導波路干渉計は、(i)解析される電磁界、および(ii)モード変換器/生成器からの出力、を搬送するために2つの多モード入力導波路を有する。これらの入力導波路は、混合機能を備えた別の幅広の多モード導波路部に続いている。混合プロセスの結果得られる電磁界は、2つの多モード出力導波路に搬送される。一方の出口に配置された検出器は、うなり測定を行なうために使用される。全波導波路の形の干渉計は、モード生成器/変換器の基礎としても使用することができる。全波導波路モード生成器/変換器の統合された光学的実施では、電気光学位相変調器またはSAW装置を使用して、ここで詳細に説明した実施形態の傾斜ミラーによって生成される線形移相を生成することができる。そうした変調器は、モード変換器からの出力と解析するシーン電磁界との間の周波数オフセットを提供するためにも使用できる。
アナライザ10は、同様のアナライザの配列に組み込むことができる。配列は、シーンからの反射電磁界を受信するように構成することができる。10のような個々の各アナライザは、28のようなモード変換器でひと組のモードを生成するように構成することができる。例えば、アナライザ10は、モードEH11ないしEH10を検出するように構成することができ、第2アナライザはモードEH21ないしEH2,10等を検出するように構成することができる。これにより、シーンから反射されたモードをより迅速に解析することができる。このような応用は、シーンの性質を高速で解析しなければならない監視業務に特に有用である。
各々が全スペクトルのモードを検出するように構成されたアナライザの配列は、代替形のフェーズドアレー受信機として使用することができる。この構成では、任意の副開口の電磁界分解能、およびしたがってアレー全体の分解能は、各副開口で基本モード局部発振器だけの使用に基づく従来のフェーズドアレ−受信機で達成可能な分解能より、著しく向上する。
これまで説明した概念の多モード導波路実施形態では、多モード導波路は事実上中空であり、ミリメートル単位の断面を有する。このような導波路には、誘電体クラッドで囲まれた空芯がある。CO2レーザ源からの10.6μm放射の場合、その適切な複素屈折率特性(すなわち10.6μm時にn<1)のため、低損失導波路を形成するという点で、多結晶アルミナが適正なクラッド材である。このような誘電体材料を使用する場合、中空多モード導波路構造は、誘電体材料の一連の板から製造することができる。代替的に、ブロック状の誘電体材料から製造し、エッチングまたは機械加工によりブロックに導波路を形成することができる。
中空導波路を統合した光学構造は、日本の京セラから入手した多結晶アルミナの固体片から製作され、コンピュータ数値制御(CNC)機械加工工程を使用して、中空導波路およびビームスプリッタ38やビームスプリッタ348などの光学部品を受け入れるスロットの両方を形成した。CNC機械加工は、2段階工程で実施された。第1段階では、粗フライス削り工程を使用して、過剰なアルミナの大部分を除去した。第2段階では、治具研削盤を使用して、最終完成品を入手した。この2段階工程を使用して、±0.5mradの角度の位置合わせ許容差を持つ構成部品位置合せスロットを形成することができ、2.0mm幅の導波路で98%を越える基本モード忠実度(導波路間結合により規定された)を維持する中空導波路を形成することができた。
多モード導波路は中空導波路である必要はなく、固体クラッドを有する固体コア導波路とすることもできる。そのような導波路では、コアとクラッド間の屈折率の比は、導波路が多くのモードを支持できるように構成される。GaAs/AlGaAs導波路を多モードとなるように設計することができる。導波路構造は、適切に設計されたエピタキシャル層に、イオンビーム支援エッチング技術を使用してエッチングされる。数マイクロメートルの断面を持つGaAs/AlGaAs導波路は、多くのモードを支持するように設計することができる。この文脈で、ここで説明するアナライザの概念により達成される電磁界の分解能は、測定を行うことができるモードの最高次数に依存し、測定を行なうために使用される検出器の横方向の大きさには依存しないので、適正な高次モードのスペクトルを支持する小寸法の導波路に基づくシステムが、非常に高い分解能の電磁界解析能力を持つことができる、ということに注目することは興味深い。このようなアナライザは、コヒーレント顕微鏡法に有用であり、また、小寸法の検出器配列が利用できない電磁スペクトルの位置で、電磁界測定を行なうのにも非常に有用である。
これまで説明した実施形態では、放射はCO2レーザ源からの10.6μm放射であった。原則的に、正しい光学/導波路技術およびレーザ/メーザ源を使用すると、その基礎をなす概念は、電磁スペクトル全体に適用される。
基礎をなす概念の実施は、レーザ源の使用のみに基づく必要はない。狭線幅の準コヒーレント光源を、レーザの代替物として使用することができる。この文脈において、遠距離の天文学的物体からの光も、適切なアナライザの実現で解析することができる。このような実施では、2つの受信開口がある。1つの開口から受信した光は、モード変換器の基本モード入力を提供するために、フィルタを通してモード選別される。モード変換器からの出力は、もう1つの開口から受信した電磁界と混合される。受信した電磁界の基本モード成分の多様性のために、モード変換器への入力の基本モードの内容は様々に異なるので、これを監視し、モード振幅測定に適切な補正を施すために使用しなければならない。
さらに別の実施形態では、アナライザを送信機として作動するように構成することができる。アナライザの出力における相対モード振幅および位相の適切な制御により、独立して生成されるEHmnモードの適切な総和から、送信ビームを生成することができる。
次に、図13を参照すると、本発明の放射電磁界アナライザを組み込んだ、一般に符号700で示されるレーザレーダシステムが示されている。システム700内の放射ビームの偏波方向は、図の面およびそれに直交する方向の線形偏波にそれぞれ対応する、矢印702および円704によって示される。システム700は、10.6μmの自由空間波長を持ち、2mmのビーム径を持つ、約5Wパワーの出力放射ビーム708のCO2レーザ源706を組み込んでいる。セレン化亜鉛の平板から作製され、多重誘電体被膜が真空蒸着されたビームスプリッタ710がビーム708の経路に置かれ、透過ビーム712および反射ビーム714をそれぞれ9:1の比率の強度で規定する。透過ビーム712の経路には、経路に対しブルースター(Brewster)角で傾斜したセレン化亜鉛板716、4分の1波長板718、および凹レンズ720と凸レンズ722の望遠鏡配列がある。
反射ビーム714の経路には、2分の1波長板724、音響光学変調器726、および前述のモード変換器28と同様の可変モード変換器728がある。変調器726は、+πおよび−πラジアンの変調限度内で、60MHzの位相変調周波数で入射光の位相変調を行なう。モード変換器728は、結合器プレート732および500MHzの帯域幅を持つ液体窒素冷却式テルル化カドミウム水銀検出器734に向けられる、モード制御可能な出力ビーム730を有する。検出器734は、コンピュータ(図示せず)を組み込んだ信号処理装置736に接続され、次にこれはモード変換器728のモード制御入力738に接続される。
レーダシステム700は、以下のように作動する。レーザビーム708は図の平面内で直線偏波し、ビームスプリッタ710によって部分的に透過し、部分的に反射する。透過したビーム712はセレン化亜鉛板716に入射し、その偏波方向のために、そこを効率的に透過して、板716と4分の1波長板718との間に位置する領域742における外向きのビームを形成する。領域742における外向きのビームは次に4分の1波長板718を透過し、これにより、直線偏波された外向きのビームは、4分の1波長板718と凹レンズ720との間に位置する領域744における円偏波された外向きのビームに変化する。領域744における円偏波された外向きのビームは次に、凹レンズ720および凸レンズ722によって拡大され、平行にされたコヒーレント拡大ビーム740を形成する。ビーム740は、5kmのオーダーとすることができる距離にある遠隔シーンを照射する。ビーム740が5kmの距離にある遠隔シーンに入射すると、その直径は、ビームの発散の結果、約1メートルとなる。入射コヒーレント放射は遠隔シーンから反射または散乱し、反射または散乱した放射の一部が、レンズ720、722を介してレーダシステムに再侵入し、領域744にリターンビームを形成する。レーダシステム700に再侵入したコヒーレント放射の強度は、約数フェムトワットである。領域744のリターンビームは次に4分の1波長板718を透過し、これにより、領域744における円偏波されたリターンビームは、領域742における直線偏波されたリターンビームに変化する。領域742における直線偏波されたリターンビームは次にセレン化亜鉛板716に入射し、これにより、領域742におけるリターンビームの成分が効率的に反射され、領域742の外向きのビームに対し直交方向に偏波した反射ビーム746を形成する。反射ビーム746は結合器プレート732に入射し、そこから経路748に沿って検出器734内に反射する。
反射ビーム714は2分の1波長板724を透過し、π/2ラジアンの偏波回転を行ない、その後、音響光学変調器726を透過して、モード変換器728へ入る。モード変換器728は、ビーム714に含まれる入力放射を、モード制御入力738に供給された制御信号によって個々に選択される一連の異なるモードに変換する。これらのモードは出力されて、ビーム730を形成する。ビーム730は、結合器プレート732を透過して検出器734へ入射し、そこで、結合器プレート732から反射されたビーム746と干渉する。検出器734に入射した放射は出力信号を形成し、これは信号処理装置736へ伝達される。反射ビーム714に60MHzの位相変調を行なう音響光学変調器726の効果は、検出器734の出力信号に60MHzの周期的変化を生じることである。検出器734の出力信号の最大強度と最小強度の差は、可変モード変換器728によって生成される特定の選択された放射モード、およびレーザ706の任意の出力パワーに対し、遠隔シーンから反射されたレーザ放射の大きさの目安を提供する。検出器734で生成された出力信号は処理装置736へ伝達され、ここで信号は解析され、モード変換器728のモード制御入力738に供給された制御信号によって選択されたモードの各々に対する最大放射強度と最小放射強度の差に対応する出力データを提供する。
上述したこの形の信号解析の利点は、検出器734に入射する放射の平均レベルが無視されることであるが、例えばレーザ706から放出されるビーム708に含まれる放射パワーの無作為のゆらぎのために生じる、こうした平均レベルの無作為のゆらぎは、上述の出力データの信号対雑音比を劣化させる効果がある。したがって、遠隔シーンからのコヒーレント放射の反射から生じたものではない放射のビーム746への結合を最小化しようと努めることは有益である。しかし、検出器734からの信号の最大値と最小値の差が、遠隔シーンから反射される放射の量に比例し、しかも可変モード変換器728から放出されるビーム730の利用可能なパワーによって制限されないことを確実にするために、モード変換器728から放出されるビーム730のパワーは少なくとも、遠隔シーンから反射され、かつレーザレーダシステム700に再侵入する受信放射に予想される最大パワーより大きいことを確実にすることが望ましい。検出器734からの信号における雑音は、検出器734自体で生じる雑音から生じるより、ビーム730における無作為のパワーのゆらぎから生じる方が顕著であることを確実にするために、ビーム730のパワーは1ミリワットのオーダとすることができる。ビーム708の放射の満足できる分割は、ビームスプリッタ710に適切な9:1の分割比を選択し、かつプレート716と4分の1波長板718をレーザレーダシステム700に組み込み、遠隔シーンへ出て行きそこから戻ってくる放射の成分を分離することによって、達成される。
可変モード変換器728は、遠隔シーンから反射される放射に存在する特定の空間モードを選択的に測定することを可能にする。ビーム746、730に存在する放射モードが似ていなければ、検出器734で干渉信号は生成されない。したがって、レーザレーダシステム700は、シーンから反射される放射に存在する各モード内に含まれるモードのタイプおよびエネルギを測定することができる。
2つのレンズ720、722は、直径が数ミリの細いビームが遠隔シーンに向けて放出された場合に発生する回折効果を減少するために、ビーム740の直径が約5cmになるように、ビーム712の直径を約20倍に増大する。
上述のレーザレーダシステム700は、遠隔シーンからレーダシステム700に再侵入する反射または散乱した放射に含まれ、遠隔シーンの特色を特徴付けるパワーおよびモードのために、ビーム740が当てられる遠隔シーンに存在する特色を識別することができる。
レーザレーダシステム700の変更例では、可変モード変換器728が、上述のような個々の純粋モードではなく、多数のモードを同時に出力ビーム730に出力する。この代替実施形態では、モード変換器728のモード制御入力738に供給される制御信号によって、ビーム730のモード比較が変化する。次に、ビーム730に同時に存在する各モードによる、検出器734で測定される干渉信号への寄与が、一連の測定を行なうことによって決定される、ここでビーム730に存在するモードの相対強度は、測定ごとに異なる。モード制御入力738に供給される所与の制御信号に対するビーム730のモード構成の事前の知識とマトリックス計算によって、遠隔シーンから反射される放射に存在する個々のモードの強度を決定することができる。
レーザレーダシステム700のさらに別の実施形態では、遠隔シーンにおけるビーム740の直径より大きい遠隔シーンの領域全体にビーム740を走査させるために、レンズ722と遠隔シーンとの間に、駆動式傾斜可能ミラーを含むビーム走査ユニットを追加することができる。さらに、レーザレーダシステム700が、レンズ720、722からレーザレーダシステム700へ再侵入する反射または散乱放射に含まれるフェムトワットからミリワットまでの広い範囲のパワーに対応できるようにするために、モード変換器728と結合器プレート732との間に可変減衰器を挿入することができる。
ここに記載した基礎的概念は、個々のモードを位相、周波数、または振幅変調した後、多重化し、多モード伝搬媒体で伝送する通信システムの基礎としても使用できる。各モードで搬送される情報はその後、モード生成器の適切な出力とのコヒーレント混合によって抽出することができる。
【明細書】
放射電磁界アナライザ
本発明は、放射電磁界アナライザに関する。
レーザ源がコヒーレントな放射によりシーン(scene)を照射すると、反射電磁界には、その三次元構造およびその表面の性質に関するかなりの量の情報が含まれる。こうした電磁界の解析により、目標探索、追跡、および非協同識別手順(non-cooperative identification procedure)のための重要な基礎が得られる。基本モード局部発振器を有する単開口単検出器へテロダイン検出システムは、シーンから反射される電磁界の基本モード成分しか検出することができず、その結果、かなりの量の潜在的に有用な情報が失われる。マイクロ波領域では、この問題は、副開口の配列を使用することによって克服される。各副開口に到達する放射は、別個の局部発振源および検出器によりコヒーレントに検出される。このようにして、配列を横切る電磁界は、区分的に測定される。かなり短い波長の光学放射および関係する様々な技術のため、レーザ放射により照射したシーンからの電磁界反射の解析における副開口受信配列概念の実現は、実際問題として困難であることが証明されている。
米国特許第US−A−4340304号は、コヒーレントであるが直交方向に偏波された2つのビームを別々に試験領域および基準アームに向かわせ、それらが戻ってきた後、再結合し、これらが干渉して干渉パターンを生成するように偏光フィルタに通すようにした干渉計システムを開示している。パターンは、平面内の多数の個々の検出点で検出される。それによって各点に対し電気信号が生成される。信号を処理し、使用したビームの波長より高い分解能で光路差の情報を得る。このシステムは、単一モード動作用に構成されている。
本発明の目的は、代替的形態の放射電磁界アナライザを提供することである。
本発明は、シーンから受信する少なくとも部分的にコヒーレントな放射を解析する放射電磁界アナライザであって、前記アナライザは、干渉信号を提供する放射結合器と、干渉信号を検出する検出手段とを組み込んでおり、
(i)放射結合器は、シーンからの前記受信した放射を複数の直交空間放射モード電磁界の各々と結合して、干渉信号を提供するように構成されること、および
(ii)検出手段は、シーンからの放射の解析を空間モードスペクトルの形で提供するように構成されること、を特徴とする放射電磁界アナライザを提供する。
干渉信号を生成するためには、コヒーレンス度が受信した放射と直交空間放射モード信号との間に存在しなければならない。「シーン」という用語は、地上のシーンおよび空中の航空機など個々の目標や物体の両方をはじめとする視野内の任意の物体を示すために、包括的な意味で使用する。
【特許請求の範囲】
【請求項1】シーンから受信する少なくとも部分的にコヒーレントな放射を解析する放射電磁界アナライザ(10)であって、前記アナライザは、干渉信号を提供する放射結合器(12)と、干渉信号を検出する検出手段(34)とを組み込んでおり、
(i)放射結合器(12)は、シーンからの前記受信した放射を複数の直交空間放射モード電磁界の各々と結合して、干渉信号を提供するように構成されること、および
(ii)検出手段(34)は、シーンからの放射の解析を空間モードスペクトルの形で提供するように構成されること、を特徴とする放射電磁界アナライザ。
【請求項2】放射結合器が多モード導波路構造(12)を含むことを特徴とする請求項1に記載の放射電磁界アナライザ。
【請求項3】少なくとも1つのモードの放射を異なるモードの放射に変換することによって、空間放射モード電磁界を生成する放射変換器(28)を含むことを特徴とする請求項1に記載の放射電磁界アナライザ。
【請求項4】放射変換器が、基本モード入力からひと組の空間放射モード電磁界を生成する手段を提供することを特徴とする請求項3に記載の放射電磁界アナライザ。
【請求項5】放射変換器が、2つの軸を中心として回転してひと組の放射モード電磁界を生成するように構成された少なくとも1つのミラー(350)を組み込むことを特徴とする請求項3に記載の放射電磁界アナライザ。
【請求項6】放射電磁界アナライザが少なくとも2つのそのようなミラー(350、352)を組み込むことを特徴とする請求項5に記載の放射電磁界アナライザ。
【請求項7】放射変換器が、対称または非対称モード電磁界を選択的に生成する手段を含むことを特徴とする請求項6に記載の放射電磁界アナライザ。
【請求項8】放射変換器が、いずれかの特定のときに実質的に1つの放射モード電磁界の信号を生成するように構成されることを特徴とする請求項6または7に記載の放射電磁界アナライザ。
【請求項9】放射変換器が、適切に傾斜し位相がずれた2つの光ビームを単一の多モード導波路に発射する手段を含むことを特徴とする請求項3に記載の放射電磁界アナライザ。
【請求項10】放射電磁界アナライザが、放射結合器を介してシーンを照射するように構成された主レーザ源(24)を含むことを特徴とする請求項1ないし9のいずれか一項に記載の放射電磁界アナライザ。
【請求項11】放射結合器が、シーンから受信した放射に対し空間放射モード電磁界を位相変調することによって干渉信号を生成するように構成されることを特徴とする請求項1から10のいずれか一項に記載の放射電磁界アナライザ。
【請求項12】放射結合器が誘電体ビームスプリッタ(38)を組み込むことを特徴とする請求項1に記載の放射電磁界アナライザ。
【請求項13】放射結合器が多モード導波路干渉結合器を含むことを特徴とする請求項1または2に記載の放射電磁界アナライザ。
【請求項14】放射電磁界アナライザがレーザレーダシステム(700)内に組み込まれ、レーダシステムはさらに、シーンを照射するため、および放射変換器(728)に基準信号(714)を提供するためのレーザ放射源(706)と、シーンによって反射される放射を受信し、かつ前記受信した放射を前記アナライザに入力する手段(722、720、718、716)と、前記受信した放射にモード解析を実行する処理手段(736)とを含むことを特徴とする請求項3に記載の放射電磁界アナライザ(732、728)。
【請求項15】シーンから受信する少なくとも部分的にコヒーレントな放射を解析する放射電磁界アナライザ(10)であって、干渉信号を提供する処理手段(12)と干渉信号を検出する検出手段(34)とが組み込まれ、シーンからの前記受信した放射を1つ以上の直交空間放射モード電磁界と結合して干渉信号を提供するように処理手段が統合され構成され、シーンからの放射の解析を空間モードスペクトルの形で提供するように検出手段が構成されていることを特徴とする放射電磁界アナライザ(10)。
【請求項16】処理手段(12)が、シーンからの前記放射を前記直交放射モード電磁界と結合して干渉信号を提供する1つ以上の光学部品(38)と、前記放射および放射モード電磁界を光学部品(38)へおよび光学部品(38)から誘導する1つ以上の導波路構造(14、16、18、20)とを含むことを特徴とする請求項15に記載の放射電磁界アナライザ。
【請求項17】処理手段(12)が、導波路構造を実現しかつ光学部品(38)を位置決めする位置決め手段を組み込んだ単一構成体の1つ以上の要素(210、213、214)を含むことを特徴とする請求項16に記載の放射電磁界アナライザ。
【請求項18】要素(210、213、214)がアルミナ材で構成されることを特徴とする請求項17に記載の放射電磁界アナライザ。

Claims (14)

  1. シーンから受信する少なくとも部分的にコヒーレントな放射を解析する放射電磁界アナライザ(10)であって、シーンからの前記受信した放射を複数の直交空間放射モード電磁界の各々と結合して干渉信号を提供する放射結合器(12)と、干渉信号を検出してシーンからの放射の解析を空間モードスペクトルの形で提供する検出手段(34)とを含むことを特徴とする放射電磁界アナライザ。
  2. 放射結合器が多モード導波路構造(12)を含むことを特徴とする請求項1に記載の放射電磁界アナライザ。
  3. 少なくとも1つのモードの放射を異なるモードの放射に変換することによって、空間放射モード電磁界を生成する放射変換器(28)を含むことを特徴とする請求項1に記載の放射電磁界アナライザ。
  4. 放射変換器が、基本モード入力からひと組の空間放射モード電磁界を生成する手段を提供することを特徴とする請求項3記載の放射電磁界アナライザ。
  5. 放射変換器が、2つの軸を中心として回転してひと組の放射モード電磁界を生成するように構成された少なくとも1つのミラー(350)を組み込むことを特徴とする請求項3に記載の放射電磁界アナライザ。
  6. 放射電磁界アナライザが少なくとも2つのそのようなミラー(350、352)を組み込むことを特徴とする請求項5に記載の放射電磁界アナライザ。
  7. モード変換器が、対称または非対称モード電磁界を選択的に生成する手段を含むことを特徴とする請求項6に記載の放射電磁界アナライザ。
  8. 放射変換器が、いずれかの特定のときに実質的に1つの放射モード電磁界の信号を生成するように構成されることを特徴とする請求項6または7に記載の放射電磁界アナライザ。
  9. 放射変換器が、適切に傾斜し位相がずれた2つの光ビームを単一の多モード導波路に発射する手段を含むことを特徴とする請求項3に記載の放射電磁界アナライザ。
  10. 放射電磁界アナライザが、放射結合器を介してシーンを照射するように構成された主レーザ源(24)を含むことを特徴とする請求項1ないし9のいずれか一項に記載の放射電磁界アナライザ。
  11. 放射結合器が、シーンから受信した放射に対し空間放射モード電磁界を位相変調することによって干渉信号を生成するように構成されることを特徴とする請求項1から10のいずれか一項に記載の放射電磁界アナライザ。
  12. 放射結合器が誘電体ビームスプリッタ(38)を組み込むことを特徴とする請求項1に記載の放射電磁界アナライザ。
  13. 放射結合器が多モード導波路干渉結合器を含むことを特徴とする請求項1または2に記載の放射電磁界アナライザ。
  14. 放射電磁界アナライザがレーザレーダシステム(700)内に組み込まれ、レーダシステムはさらに、シーンを照射するため、および放射変換器(728)に基準信号(714)を提供するためのレーザ放射源(706)と、シーンによって反射される放射を受信し、かつ前記受信した放射を前記アナライザに入力する手段(722、720、718、716)と、前記受信した放射にモード解析を実行する処理手段(736)とを含むことを特徴とする請求項3に記載の放射電磁界アナライザ(732、728)。
JP52663897A 1996-01-26 1997-01-22 放射電磁界アナライザ Expired - Fee Related JP3798025B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB9601645.6 1996-01-26
GB9601645A GB2309608A (en) 1996-01-26 1996-01-26 A radiation field analyzer
GBGB9615240.0A GB9615240D0 (en) 1996-01-26 1996-07-19 Radiation field analyser
GB9615240.0 1996-07-19
PCT/GB1997/000166 WO1997027500A1 (en) 1996-01-26 1997-01-22 Radiation field analyzer

Publications (3)

Publication Number Publication Date
JP2000504417A JP2000504417A (ja) 2000-04-11
JP2000504417A6 true JP2000504417A6 (ja) 2006-02-16
JP3798025B2 JP3798025B2 (ja) 2006-07-19

Family

ID=26308537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52663897A Expired - Fee Related JP3798025B2 (ja) 1996-01-26 1997-01-22 放射電磁界アナライザ

Country Status (8)

Country Link
EP (1) EP0876625B1 (ja)
JP (1) JP3798025B2 (ja)
CN (1) CN1105310C (ja)
CA (1) CA2242518C (ja)
DE (1) DE69714014T2 (ja)
GB (1) GB2323990B (ja)
RU (1) RU2155356C2 (ja)
WO (1) WO1997027500A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2328738B (en) * 1997-06-16 2002-03-06 Secr Defence Radiation field analyser
GB0201950D0 (en) 2002-01-29 2002-03-13 Qinetiq Ltd Multimode interference optical waveguide device
GB0201969D0 (en) 2002-01-29 2002-03-13 Qinetiq Ltd Integrated optics devices
GB0306008D0 (en) * 2003-03-15 2003-04-23 Qinetiq Ltd Optical device
GB0306634D0 (en) * 2003-03-22 2003-04-30 Qinetiq Ltd Optical wavelength division multiplexer/demultiplexer device
GB2404450A (en) * 2003-07-26 2005-02-02 Qinetiq Ltd Variable optical attenuator with movable reflector and hollow core waveguides
RU2319305C2 (ru) * 2005-09-30 2008-03-10 Валентин Николаевич Самойлов Способ передачи и приема информации и устройство для его осуществления
GB0801492D0 (en) * 2008-01-28 2008-03-05 Qinetiq Ltd Optical transmitters and receivers for quantum key distribution
US8121487B2 (en) 2008-02-05 2012-02-21 Honeywell International Inc. System and method for free space micro machined optical bench
WO2011158134A2 (en) * 2010-06-15 2011-12-22 Koninklijke Philips Electronics N.V. Automated crystal identification achieved via modifiable templates
JP5411318B2 (ja) * 2012-06-04 2014-02-12 日本電信電話株式会社 光部品位置調整方法
CN104090331B (zh) * 2014-06-30 2017-01-11 北京工业大学 一种高效紧凑矩形环谐振腔波导型光滤波器
US9921256B2 (en) * 2015-09-08 2018-03-20 Cpg Technologies, Llc Field strength monitoring for optimal performance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340304A (en) * 1978-08-11 1982-07-20 Rockwell International Corporation Interferometric method and system
US4305666A (en) * 1979-10-24 1981-12-15 Massachusetts Institute Of Technology Optical heterodyne detection system and method
US4716414A (en) * 1984-05-10 1987-12-29 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Super resolution imaging system
US4914443A (en) * 1988-07-26 1990-04-03 At&T Bell Laboratories Angle diversity signal separator using mode conversion

Similar Documents

Publication Publication Date Title
US5917596A (en) Radiation field analyzer using interference patterns
US6847029B2 (en) Multiple-source arrays with optical transmission enhanced by resonant cavities
Koepf Optical processor for phased-array antenna beam formation
US7397596B2 (en) Surface and subsurface detection sensor
JP3798025B2 (ja) 放射電磁界アナライザ
EP3673294A1 (en) Coherent optical distance measurement apparatus and method
KR101544962B1 (ko) 기하학적 두께와 굴절률 측정을 위한 투과형 광섬유 간섭 장치
JP2000504417A6 (ja) 放射電磁界アナライザ
KR101566383B1 (ko) 기하학적 두께와 굴절률 측정을 위한 반사형 광섬유 간섭 장치
US7313299B2 (en) Laser beam transformation and combination using tapered waveguides
WO2020236571A1 (en) 360 degrees field of view scanning lidar with no movable parts
CN115542345A (zh) Fmcw激光雷达、自动驾驶系统及可移动设备
JP2839369B2 (ja) 誘導ブリルアン散乱を用いた光キャリヤーの発生装置
JPH0575322A (ja) 能動アンテナの制御方法
Fattinger et al. Modified Mach–Zender laser interferometer for probing bulk acoustic waves
WO2021199027A1 (en) Method and apparatus for mapping and ranging based on coherent-time comparison
JP5421013B2 (ja) 位置決め装置及び位置決め方法
WO2024045550A1 (zh) 激光雷达的发射模块、收发装置和激光雷达
JP2001194268A (ja) 光分散測定装置およびそれを用いた測定方法
KR100441480B1 (ko) 방사전자계분석기
CN110068978B (zh) 一种相位自补偿的非经典光场发生器
CN115667841A (zh) 用于测量距离的方法和装置
GB2328738A (en) Radiation field analyzer
US20220404472A1 (en) Lidar system comprising two diffractive components
Zhou et al. A multi-purpose SAIL demonstrator design and its principle experimental verification