JP2000354952A - Polishing member, polishing method, polishing device, manufacture of semiconductor device and semiconductor device - Google Patents

Polishing member, polishing method, polishing device, manufacture of semiconductor device and semiconductor device

Info

Publication number
JP2000354952A
JP2000354952A JP2000025386A JP2000025386A JP2000354952A JP 2000354952 A JP2000354952 A JP 2000354952A JP 2000025386 A JP2000025386 A JP 2000025386A JP 2000025386 A JP2000025386 A JP 2000025386A JP 2000354952 A JP2000354952 A JP 2000354952A
Authority
JP
Japan
Prior art keywords
polishing
polishing member
polished
semiconductor device
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000025386A
Other languages
Japanese (ja)
Inventor
Shiro Maruguchi
士郎 丸口
Akira Ishikawa
彰 石川
Tatsuya Chiga
達也 千賀
Takashi Arai
孝史 新井
Akira Miyaji
章 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2000025386A priority Critical patent/JP2000354952A/en
Priority to KR10-2001-7011397A priority patent/KR100471527B1/en
Priority to CN00805734A priority patent/CN1345264A/en
Priority to DE60039054T priority patent/DE60039054D1/en
Priority to PCT/JP2000/001544 priority patent/WO2000059680A1/en
Priority to US09/856,272 priority patent/US6749714B1/en
Priority to EP00908066A priority patent/EP1211023B1/en
Priority to CNB200310117928XA priority patent/CN1312742C/en
Priority to TW090123178A priority patent/TW530348B/en
Priority to TW089105310A priority patent/TW511174B/en
Publication of JP2000354952A publication Critical patent/JP2000354952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To heighten the polishing speed and to improve stepped part eliminating performance by forming at least a machining surface part of a polishing member from no-foam resin, suitable for use in a flattening polishing process for a semiconductor device and forming a projecting and recessed part made by concentric, spiral, grid-like groove structure. SOLUTION: With a polishing agent 6 dropped from a supply part 5 interposed between a polishing pad 2 as a polishing member and a wafer 4 as a material to be polished, both 2, 4 of them are moved relatively to polish the polishing wafer 4. In thus constructed device, at least the machining surface part of the polishing pad 2 is made of non-foam resin and provided with plural projecting and recessed parts of a groove structure. The groove structure is one or combination of two selected from a group of concentric, spiral, grid-like, triangular grid-like and radial grooves, and the section of the recessed part and the projecting part of the projecting and recessed part is rectangular, trapezoidal or triangular. Thus, supplied polishing agent can effectively contribute to polishing to improve polishing efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、研磨部材及び研磨
方法、特にULSI等の半導体を製造するプロセスにお
いて実施される半導体デバイスの平坦化研磨プロセスに
用いるのに好適なCMP用研磨部材、それを用いた研磨
方法、前記研磨部材を用いた研磨装置、半導体デバイス
製造方法、及び半導体デバイスに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing member and a polishing method, and more particularly, to a polishing member for CMP suitable for use in a flattening polishing process of a semiconductor device performed in a process of manufacturing a semiconductor such as ULSI. The present invention relates to a polishing method used, a polishing apparatus using the polishing member, a semiconductor device manufacturing method, and a semiconductor device.

【0002】[0002]

【従来の技術】半導体集積回路の高集積化、微細化に伴
って半導体製造プロセスの工程が増加し複雑になってき
ている。これに伴い、半導体デバイスの表面は必ずしも
平坦ではなくなってきている。表面に於ける段差の存在
は配線の段切れ、局所的な抵抗の増大などを招き、断線
や電気容量の低下をもたらす。また、絶縁膜では耐電圧
劣化やリークの発生にもつながる。
2. Description of the Related Art As the degree of integration and miniaturization of semiconductor integrated circuits increases, the number of steps in a semiconductor manufacturing process increases and becomes more complicated. Along with this, the surface of a semiconductor device is not necessarily flat. The presence of a step on the surface causes disconnection of the wiring, an increase in local resistance, and the like, resulting in disconnection and a decrease in electric capacity. In addition, in the case of an insulating film, withstand voltage degradation and leakage may occur.

【0003】一方、半導体集積回路の高集積化、微細化
に伴って光リソグラフィの光源波長は短くなり、開口数
いわゆるNAが大きくなってきていることに伴い、半導体
露光装置の焦点深度が実質的に浅くなってきている。焦
点深度が浅くなることに対応するためには、今まで以上
にデバイス表面の平坦化が要求されている。このような
半導体表面を平坦化する方法としては、化学的機械的研
磨(Chemical Mechanical Polishing又はChemical Mecha
nical Planarization 、これよりCMP と呼ぶ)技術が有
望な方法と考えられている。
On the other hand, the light source wavelength of optical lithography has been shortened with the increase in the degree of integration and miniaturization of semiconductor integrated circuits, and the numerical aperture, or NA, has been increased. It is getting shallower. In order to cope with the shallow depth of focus, flattening of the device surface is required more than ever. As a method of flattening such a semiconductor surface, a chemical mechanical polishing (Chemical Mechanical Polishing or Chemical Mecha
(Nical Planarization, hereinafter referred to as CMP) is considered a promising method.

【0004】CMP は図5に示すような装置を用いて行わ
れている。図5で1はCMP 装置、10は研磨体、3は研
磨ヘッド、4はウェハ、5は研磨剤供給部、6は研磨剤
である。研磨体10は、定盤7の上に研磨パッド2を貼
り付けたものである。研磨パッド2としては、発泡ポリ
ウレタンのような発泡性の樹脂よりなるシート状のもの
が多く用いられている。研磨ヘッド3は適当な手段によ
り矢印方向に回転運動し、また研磨体10は適当な手段
により矢印方向に回転運動する。この過程でウェハ4
は、研磨剤6と研磨パッド2の作用により被研磨面が研
磨される。
[0004] CMP is performed using an apparatus as shown in FIG. In FIG. 5, 1 is a CMP apparatus, 10 is a polishing body, 3 is a polishing head, 4 is a wafer, 5 is an abrasive supply section, and 6 is an abrasive. The polishing body 10 is obtained by attaching a polishing pad 2 on a surface plate 7. As the polishing pad 2, a sheet-like material made of a foamable resin such as foamed polyurethane is often used. The polishing head 3 is rotated in the direction of the arrow by a suitable means, and the polishing body 10 is rotated in the direction of the arrow by a suitable means. In this process, the wafer 4
The surface to be polished is polished by the action of the polishing agent 6 and the polishing pad 2.

【0005】従来の発泡性の樹脂よりなるシート状の研
磨パッド(以下発泡性の研磨パッドと呼ぶ)を用いる場
合、ウェハ全体での研磨均一性は良い。しかしながら、
発泡性の研磨パッドは、一般に、(1) 縁だれが大きい、
(2) 荷重がかかると圧縮変形を起こす、などの問題があ
り、これらのことから、発泡性の研磨パッドは、パター
ン付のウェハでの段差解消性、即ち、研磨平坦性は良く
なかった。そこで、最近では、無発泡でより硬質の樹脂
より成る研磨パッド(以下無発泡の研磨パッドと呼ぶ)
が検討されている。
When a sheet-like polishing pad made of a conventional foaming resin (hereinafter referred to as a foaming polishing pad) is used, the polishing uniformity over the entire wafer is good. However,
Foaming polishing pads generally have (1) large edge droop,
(2) There is a problem that a compressive deformation is caused when a load is applied. For these reasons, the foaming polishing pad is not good in removing the step on the patterned wafer, that is, the polishing flatness. Therefore, recently, a polishing pad made of a non-foamed and harder resin (hereinafter referred to as a non-foamed polishing pad)
Is being considered.

【0006】無発泡の研磨パッドは硬質の高分子材料の
表面に溝構造から成る凹凸を形成し、研磨対象物、この
場合はウェハ表面を研磨するものである。無発泡の研磨
パッドを用いることによって、発泡性の研磨パッドを使
用した場合の問題であった、段差解消性の問題が解決さ
れた。
The non-foamed polishing pad forms irregularities having a groove structure on the surface of a hard polymer material and polishes an object to be polished, in this case, a wafer surface. By using a non-foaming polishing pad, the problem of eliminating the step, which was a problem when a foaming polishing pad was used, was solved.

【0007】[0007]

【発明が解決しようとする課題】一般に研磨パッドの研
磨速度を決定する重要な因子として研磨パッド表面に於
ける研磨剤の保持性と流動性がある。研磨剤の保持性の
点で、硬質の無発泡の研磨パッドは、発泡性の研磨パッ
ドに及ばない。従来の無発泡の研磨パッドを定盤上に固
定して、研磨剤を供給しながら定盤を高速で回転させた
場合には、遠心力により研磨剤が研磨パッドの外に飛ば
されてしまうため、研磨剤の保持性が低いので、供給さ
れる研磨剤が有効に研磨速度向上に寄与しないという問
題があった。
Generally, important factors that determine the polishing rate of a polishing pad include the retention and fluidity of the polishing agent on the polishing pad surface. Hard non-foamed polishing pads are inferior to foamed polishing pads in terms of abrasive retention. If the conventional non-foamed polishing pad is fixed on the surface plate and the surface plate is rotated at a high speed while supplying the abrasive, the abrasive is blown out of the polishing pad by centrifugal force. In addition, since the retention of the abrasive is low, there is a problem that the supplied abrasive does not effectively contribute to the improvement of the polishing rate.

【0008】本発明はこの点を解決するためになされた
ものであり、供給される研磨剤が有効に研磨に寄与し、
研磨剤供給に対して効率的な研磨が可能な、研磨剤の保
持性と流動性が高いために研磨速度が高く、且つ、傷の
発生が少なく、尚且つ段差解消性に優れた無発泡の研磨
部材及びこれを用いた研磨方法、研磨装置を提供するこ
とを課題としている。
The present invention has been made to solve this problem, and the supplied abrasive effectively contributes to polishing.
Efficient polishing for abrasive supply, high polishing rate due to high abrasive retention and fluidity, and low scratch generation, non-foaming with excellent step resolution It is an object to provide a polishing member, a polishing method and a polishing apparatus using the same.

【0009】また、本発明は、研磨工程のコストダウン
を図るとともに工程効率化を図り、それにより従来の半
導体デバイス製造方法に比べて低コストで半導体デバイ
スを製造することができる半導体デバイス製造方法、及
び低コストの半導体デバイスを提供することを課題とし
ている。
Further, the present invention provides a semiconductor device manufacturing method capable of manufacturing a semiconductor device at low cost as compared with a conventional semiconductor device manufacturing method by reducing the cost of the polishing step and improving the process efficiency. Another object of the present invention is to provide a low-cost semiconductor device.

【0010】[0010]

【課題を解決するための手段】上記問題を解決する為
に、本発明は第一に「研磨部材と研磨対象物との間に研
磨剤を介在させた状態で、前記研磨部材と前記研磨対象
物を相対移動させることにより、前記研磨対象物を研磨
する研磨装置に用いる前記研磨部材において、前記研磨
部材の少なくともその加工面部が、無発泡の樹脂から成
り、溝構造から成る複数の凹凸部を有し、前記溝構造が
同心円状、螺旋状、格子状、三角格子状、放射状の溝の
群から選ばれた一つあるいは二つ以上の組み合せから成
ることを特徴とする研磨部材(請求項1)」を提供す
る。
In order to solve the above-mentioned problems, the present invention firstly provides a method of manufacturing a semiconductor device, comprising the steps of: "a polishing member is interposed between a polishing member and an object to be polished; By relatively moving the object, in the polishing member used in the polishing apparatus for polishing the object to be polished, at least a processing surface portion of the polishing member is made of non-foamed resin, a plurality of uneven portions having a groove structure, The polishing member according to claim 1, wherein the groove structure comprises one or a combination of two or more selected from the group of concentric, spiral, lattice, triangular lattice, and radial grooves. )"I will provide a.

【0011】第二に「前記凹凸部の凹部(溝部)及び凸
部の断面が、矩形、台形、及び3角形から選ばれた一種
類以上の形状を各々有することを特徴とする請求項1記
載の研磨部材(請求項2)」を提供する。
Second, the cross section of the concave portion (groove portion) and the convex portion of the concave and convex portion has at least one shape selected from a rectangle, a trapezoid, and a triangle. Polishing member (claim 2). "

【0012】第三に「前記矩形、前記台形、または前記
3角形の形状が、以下の条件を充たすことを特徴とする
請求項2記載の研磨部材 a≧b、b≧0、c≧0 (ここで、aは凸部の底辺の長さ、bは凸部の上辺の長
さ、cは凹部の底辺の長さである。)(請求項3)」を
提供する。
Third, the polishing member according to claim 2, wherein the shape of the rectangle, the trapezoid, or the triangle satisfies the following condition: a ≧ b, b ≧ 0, c ≧ 0 ( Here, a is the length of the bottom of the projection, b is the length of the top of the projection, and c is the length of the bottom of the depression.) (Claim 3) ".

【0013】第四に「前記矩形、前記台形、または前記
3角形の形状が、以下の条件を充たすことを特徴とする
請求項3記載の研磨部材 0.0mm≦b≦3.0mm、0.1mm≦a+c≦
5.0mm、d≧0.1mm (ここで、dは凹部の深さである。)(請求項4)」を
提供する。
Fourth, the polishing member according to claim 3, wherein the shape of the rectangle, the trapezoid, or the triangle satisfies the following condition: 0.0 mm ≦ b ≦ 3.0 mm, 0. 1mm ≦ a + c ≦
5.0 mm, d ≧ 0.1 mm (where d is the depth of the concave portion) (Claim 4).

【0014】第五に「前記凹凸部の凹部(溝部)の断面
が、曲部を有する形状であることを特徴とする請求項1
記載の研磨部材(請求項5)」を提供する。
Fifth, "the cross section of the concave portion (groove portion) of the concave and convex portion has a shape having a curved portion.
The polishing member according to claim 5 is provided.

【0015】第六に「前記曲部を有する形状が、以下の
条件を充たすことを特徴とする請求項5記載の研磨部材 0.0mm≦e≦3.0mm、0.1mm≦e+f≦
5.0mm、g≧0.1mm (ここで、eは凸部の上辺の長さ、fは凹部の上辺の長
さ、gは凹部の深さである。)(請求項6)」を提供す
る。
Sixth, the polishing member according to claim 5, wherein the shape having the curved portion satisfies the following condition: 0.0 mm ≦ e ≦ 3.0 mm, 0.1 mm ≦ e + f ≦
5.0 mm, g ≧ 0.1 mm (where e is the length of the upper side of the convex portion, f is the length of the upper side of the concave portion, and g is the depth of the concave portion.) I do.

【0016】第七に「前記凹凸部が凹凸の周期構造を有
することを特徴とする請求項1〜6何れか1項記載の研
磨部材(請求項7)」を提供する。
Seventh, the present invention provides "a polishing member according to any one of claims 1 to 6, wherein the uneven portion has a periodic structure of unevenness."

【0017】第八に「前記無発泡の樹脂が、ビッカース
硬度が1.5kg/mm2 以上または圧縮ヤング率が2
5kg/mm2 以上を充たすことを特徴とする請求項1
〜7何れか1項記載の研磨部材(請求項8)」を提供す
る。
Eighth, the non-foamed resin has a Vickers hardness of 1.5 kg / mm 2 or more or a compression Young's modulus of 2
2. The method according to claim 1, wherein the weight is 5 kg / mm 2 or more.
The polishing member according to any one of claims 7 to 7 (claim 8) "is provided.

【0018】第九に「研磨部材と研磨対象物との間に研
磨剤を介在させた状態で、前記研磨部材と前記研磨対象
物を相対移動させることにより、前記研磨対象物を研磨
する研磨方法において、請求項1〜8何れか1項記載の
研磨部材を用いることを特徴とする研磨方法(請求項
9)」を提供する。
Ninth, a polishing method for polishing the object to be polished by relatively moving the polishing member and the object to be polished in a state in which an abrasive is interposed between the polishing member and the object to be polished. , A polishing method (claim 9) using the polishing member according to any one of claims 1 to 8 is provided.

【0019】第十に「前記研磨部材の温度を管理する段
階と、前記研磨部材をビッカース硬度1.5kg/mm
2 以上または圧縮ヤング率25kg/mm2 以上を充た
した条件で研磨する段階を有することを特徴とする請求
項9記載の研磨方法(請求項10)」を提供する。
Tenth, "controlling the temperature of the polishing member, and setting the polishing member to a Vickers hardness of 1.5 kg / mm.
The polishing method according to claim 9, characterized in that it comprises a step of polishing under the conditions satisfying more or compressive Young's modulus 25 kg / mm 2 or more to provide (claim 10). "

【0020】第十一に「前記研磨対象物が、半導体デバ
イスが形成されたウェハであることを特徴とする請求項
1〜8何れか1項記載の研磨部材(請求項11)」を提
供する。
Eleventh, there is provided "a polishing member according to any one of claims 1 to 8, wherein the object to be polished is a wafer on which semiconductor devices are formed (claim 11)." .

【0021】第十二に「前記研磨対象物が、半導体デバ
イスが形成されたウェハであることを特徴とする請求項
9、10何れか1項記載の研磨方法(請求項12)」を
提供する。
Twelfthly, there is provided a "polishing method according to any one of claims 9 and 10, wherein the object to be polished is a wafer on which semiconductor devices are formed. .

【0022】第十三に「研磨部材と研磨対象物との間に
研磨剤を介在させた状態で、前記研磨部材と前記研磨対
象物を相対移動させることにより、前記研磨対象物を研
磨する研磨装置において、前記研磨部材に請求項1〜
8、11何れか1項記載の研磨部材を用いることを特徴
とする研磨装置(請求項13)」を提供する。
Thirteenth, a polishing method for polishing the polishing object by relatively moving the polishing member and the polishing object in a state where an abrasive is interposed between the polishing member and the polishing object. In the apparatus, the polishing member is provided with any one of claims 1 to 5.
A polishing apparatus (claim 13) using the polishing member according to any one of claims 8 and 11 is provided.

【0023】第十四に「請求項13記載の研磨装置を用
いて半導体シリコンウエハの表面を平坦化する工程を有
することを特徴とする半導体デバイス製造方法(請求項
14)」を提供する。
Fourteenthly, there is provided a "method of manufacturing a semiconductor device, characterized by comprising a step of flattening the surface of a semiconductor silicon wafer by using the polishing apparatus of the present invention.

【0024】第十五に「請求項14記載の半導体デバイ
ス製造方法により製造されることを特徴とする半導体デ
バイス(請求項15)」を提供する。
A fifteenth aspect provides a "semiconductor device characterized by being manufactured by the semiconductor device manufacturing method according to a fourteenth aspect (claim 15)."

【0025】[0025]

【発明の実施の形態】以下図を用いて、本発明の実施形
態を具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings.

【0026】図1は本発明の第1の実施形態による研磨
部材の加工面部の溝構造から成る凹凸部の拡大断面を示
す図であり、aは凸部の底辺の長さ、bは凸部の上辺の
長さ、cは凹部(溝部)の底辺の長さ、dは溝の深さを
表している。ここで、凹凸部は周期構造を取ることが好
ましく、この場合、図1に於けるpは凹凸部の凹凸の周
期構造のピッチ(以下溝のピッチと呼ぶ)であり、p−
bは溝(凹部の上部)の幅である。図1では、研磨部材
の加工面部のみを示したが、本発明になる研磨部材は、
少なくともその加工面部が無発泡の樹脂から成る溝構造
を有していれば、シート状でもプレート状でも良く、ま
た異種の材料を積層した多層構造でも、剛性のある平面
プレート上に成型されたプレート状のものでも良い。
FIG. 1 is an enlarged cross-sectional view of a concave / convex portion having a groove structure in a processing surface portion of a polishing member according to a first embodiment of the present invention, where a is the length of the bottom of the convex portion, and b is the convex portion. , C represents the length of the bottom of the recess (groove), and d represents the depth of the groove. Here, it is preferable that the uneven portion has a periodic structure. In this case, p in FIG. 1 is the pitch of the periodic structure of the unevenness of the uneven portion (hereinafter referred to as the pitch of the groove), and p−
b is the width of the groove (upper part of the recess). In FIG. 1, only the processing surface portion of the polishing member is shown, but the polishing member according to the present invention includes:
If at least the processed surface has a groove structure made of non-foamed resin, it may be in the form of a sheet or a plate, or a multi-layer structure in which different materials are laminated, or a plate molded on a rigid flat plate It may be a shape.

【0027】ここでプレストン(Preston)の式によれ
ば、研磨速度は、研磨部材と研磨対象物の相対速度のみ
ならず、研磨対象物と研磨部材との接触面での圧力に比
例する。研磨速度は、更に有効接触面積にも比例するの
で、単位面積当たりの荷重が同一で相対速度が同一の
時、接触面積は大きいほど研磨速度は向上する。ここで
有効接触面積の有効の意味は、研磨部材と研磨対象物と
の接触状態は、未加圧時と研磨中の加圧時とでは異なる
ため、また、研磨部材と研磨対象物との当たりが不完全
なことがあるため、研磨中の接触面積は、図面から単純
に計算される値とは異なる値である、実効的(有効的)
な値を取るという意味である。無発泡の研磨パッドで
は、接触面積が単に大きいだけでは、研磨剤が前記接触
面の隅々にまで供給されない、即ち研磨剤の流動性が低
くなるために、研磨速度を上げることができない。研磨
剤が前記接触面の隅々にまで供給されるようにするに
は、溝の密度を高めれば良い。しかしながら、ただ単に
溝の密度を高め、溝の総面積を増加させるだけでは、研
磨速度の向上に余り有効ではない。溝の総面積と接触面
積の和は、研磨部材の加工面の面積に等しいから、溝の
総面積の増加は接触面積を減少させ、接触面積の減少は
以上の議論から研磨速度を低下させるからである。従っ
て、溝の密度を高めても、溝の総面積を増加させると、
研磨剤の流動性向上の効果、従って研磨速度向上の効果
を相殺するであろう。流動性を高め、且つ、接触面積を
減らさないためには、溝の密度は高いだけでは不充分で
あり、同時に溝幅を狭くしなければならない。溝の幅を
狭く、且つ、溝のピッチを小さくし、溝の密度を高める
ことによって、研磨剤が接触面の隅々にまで供給され、
研磨速度が向上するのである。
According to Preston's equation, the polishing speed is proportional to not only the relative speed of the polishing member and the object to be polished but also the pressure at the contact surface between the object to be polished and the polishing member. Since the polishing rate is further proportional to the effective contact area, when the load per unit area is the same and the relative speed is the same, the polishing rate increases as the contact area increases. Here, the meaning of the effective contact area is effective because the contact state between the polishing member and the object to be polished is different between when the polishing member is not pressurized and when it is pressurized during polishing. May be incomplete, so the contact area during polishing is different from the value calculated simply from the drawing.
It means that it takes a certain value. With a non-foamed polishing pad, simply having a large contact area does not allow the polishing agent to be supplied to every corner of the contact surface, that is, the flowability of the polishing agent is low, so that the polishing rate cannot be increased. In order to supply the abrasive to all corners of the contact surface, the density of the grooves may be increased. However, simply increasing the density of the grooves and increasing the total area of the grooves is not very effective in improving the polishing rate. Since the sum of the total area of the groove and the contact area is equal to the area of the working surface of the polishing member, an increase in the total area of the groove decreases the contact area, and a decrease in the contact area decreases the polishing rate from the above discussion. It is. Therefore, even if the groove density is increased, if the total area of the groove is increased,
The effect of increasing the flowability of the abrasive, and thus the effect of increasing the polishing rate, will be offset. In order to increase the fluidity and not reduce the contact area, it is not enough that the groove density is high alone, and at the same time, the groove width must be reduced. By narrowing the width of the groove, reducing the pitch of the groove, and increasing the density of the groove, the abrasive is supplied to every corner of the contact surface,
The polishing rate is improved.

【0028】ここで、重要なのは溝の役割である。溝は
研磨部材の凸部を形成する機能、研磨剤を接触面である
凸部に供給して研磨剤の流動性を確保する機能のみなら
ず、研磨屑または凝集した研磨剤中の研磨粒(以下凝集
した研磨粒と呼ぶ)をそこから排出する重要な機能を担
っているのである。その意味で余り溝の幅は小さくない
方が良い。余り小さいと、研磨屑または凝集した研磨粒
が排出される途中で溝の中に詰まってしまうため、研磨
屑または凝集した研磨粒の研磨部材の加工面の外部への
排出が損なわれ、これが研磨中に研磨対象物に接触する
ことによって傷の発生の原因になるからである。
Here, what is important is the role of the groove. The grooves not only have the function of forming the convex portion of the polishing member, the function of supplying the abrasive to the convex portion, which is the contact surface, and the function of ensuring the fluidity of the abrasive, but also the abrasive grains in the polishing dust or the aggregated abrasive. This is an important function of discharging aggregated abrasive grains) therefrom. In that sense, the width of the surplus groove should not be too small. If it is too small, the polishing debris or agglomerated abrasive grains will be clogged in the groove while being discharged, so that the discharge of the polishing debris or the agglomerated abrasive grains to the outside of the processing surface of the polishing member will be impaired, and this will cause polishing. The reason for this is that the contact with the polishing object during the polishing may cause scratches.

【0029】以上の理由により、溝のピッチは、粗過ぎ
ても、逆に細か過ぎても良くなく、また、溝の幅は広過
ぎても、逆に狭過ぎても良くなく、各々最適値を有す
る。
For the above reasons, the pitch of the groove may not be too coarse or conversely fine, and the width of the groove may not be too wide or conversely narrow. Having.

【0030】図1で、好ましい溝の幅(p−b)の範囲
はそこから排出される研磨屑または凝集した研磨粒の寸
法に依存し、酸化シリコン系スラリーの場合0.05m
m以上4.5mm以下が好ましい。
In FIG. 1, the preferred range of the groove width (p−b) depends on the size of the polishing dust or agglomerated abrasive grains discharged therefrom.
m or more and 4.5 mm or less are preferable.

【0031】溝のピッチpは、以上のように限定された
溝の幅の制限のもと、研磨剤の流動性の良さと、接触面
積の多さというお互いに矛盾する特性のバーゲンにより
決まり、実験の結果、0.1mm以上5.0mm以下が
好ましい。溝の凸部の上辺の長さbは、0.0mm以上
3.0mm以下が好ましい。
The pitch p of the grooves is determined by the bargain having mutually contradictory characteristics such as good flowability of the abrasive and a large contact area under the limitation of the width of the grooves limited as described above. As a result of an experiment, it is preferable that the distance be 0.1 mm or more and 5.0 mm or less. The length b of the upper side of the convex portion of the groove is preferably 0.0 mm or more and 3.0 mm or less.

【0032】更に、凸部の底辺の長さaと上辺の長さb
との関係は、a≧bであり、上辺の長さbは、b≧0で
あり、凹部の底辺の長さcは、c≧0であることが好ま
しい。尚、b=0のときは凸部の上辺はエッヂ状になる
が、このエッヂ状の凸部が研磨対象物に加圧される研磨
状態では、エッヂ部分は圧縮され、有限の面積で研磨対
象物に接触するので、b=0のときでも有効接触面積は
零にはならない。溝の深さdの下限は研磨屑または凝集
した研磨粒の排出性から決まり、0.1mm 以上が好まし
い。
Further, the length a of the bottom side of the projection and the length b of the top side thereof
It is preferable that a ≧ b, the length b of the upper side is b ≧ 0, and the length c of the bottom side of the concave portion is c ≧ 0. When b = 0, the upper side of the convex portion has an edge shape. However, in a polishing state in which the edge-shaped convex portion is pressed against the object to be polished, the edge portion is compressed and the object to be polished has a finite area. Since it comes into contact with an object, the effective contact area does not become zero even when b = 0. The lower limit of the depth d of the groove is determined by the dischargeability of polishing dust or agglomerated abrasive grains, and is preferably 0.1 mm or more.

【0033】図9は本発明の第2の実施形態による研磨
部材の加工面部の溝構造から成る凹凸部の拡大断面を示
す図である。第2の実施形態による研磨部材では、凹部
(溝部)の断面がU字形であるが、その他は、第1の実
施形態による研磨部材と同様であるので、第1の実施形
態による研磨部材と同様の部分については説明を省略す
る。第2の実施形態による研磨部材において、eは凸部
の上辺の長さ、fは凹部(溝部)の上辺の長さ、gは溝
の深さを表している。ここで、凹凸部は周期構造を取る
ことが好ましく、この場合、図9に於けるp2は凹凸部
の凹凸の周期構造のピッチ(以下溝のピッチと呼ぶ)で
ある。
FIG. 9 is an enlarged cross-sectional view of a concave / convex portion having a groove structure in a processing surface portion of a polishing member according to a second embodiment of the present invention. In the polishing member according to the second embodiment, the cross section of the concave portion (groove) is U-shaped, but the other portions are the same as the polishing member according to the first embodiment, and thus are the same as the polishing member according to the first embodiment. The description of the part is omitted. In the polishing member according to the second embodiment, e represents the length of the upper side of the convex portion, f represents the length of the upper side of the concave portion (groove), and g represents the depth of the groove. Here, it is preferable that the uneven portion has a periodic structure. In this case, p2 in FIG. 9 is the pitch of the periodic structure of the unevenness of the uneven portion (hereinafter, referred to as the pitch of the groove).

【0034】第1の実施形態による研磨部材と同様に、
第2の実施形態による研磨部材では、好ましい溝の幅f
の範囲はそこから排出される研磨屑または凝集した研磨
粒の寸法に依存し、酸化シリコン系スラリーの場合0.
05mm以上4.5mm以下が好ましい。
Similar to the polishing member according to the first embodiment,
In the polishing member according to the second embodiment, a preferable groove width f
The range depends on the size of abrasive dust or agglomerated abrasive grains discharged therefrom.
It is preferably from 05 mm to 4.5 mm.

【0035】溝のピッチp2は、以上のように限定され
た溝の幅の制限のもと、研磨剤の流動性の良さと、接触
面積の多さというお互いに矛盾する特性のバーゲンによ
り決まり、実験の結果、0.1mm以上5.0mm以下
が好ましい。溝の凸部の上辺の長さeは、0.0mm以
上3.0mm以下が好ましい。
The pitch p2 of the grooves is determined by the bargains having mutually contradictory characteristics such as good flowability of the abrasive and a large contact area under the above-mentioned limitation on the width of the grooves. As a result of an experiment, it is preferable that the distance be 0.1 mm or more and 5.0 mm or less. The length e of the upper side of the convex portion of the groove is preferably 0.0 mm or more and 3.0 mm or less.

【0036】尚、e=0のときは凸部の上辺はエッヂ状
になるが、このエッヂ状の凸部が研磨対象物に加圧され
る研磨状態では、エッヂ部分は圧縮され、有限の面積で
研磨対象物に接触するので、e=0のときでも有効接触
面積は零にはならない。溝の深さgの下限は研磨屑また
は凝集した研磨粒の排出性から決まり、0.1mm 以上が好
ましい。
When e = 0, the upper side of the convex portion has an edge shape. In a polishing state in which the edge-shaped convex portion is pressed against the object to be polished, the edge portion is compressed and has a finite area. Therefore, the effective contact area does not become zero even when e = 0. The lower limit of the depth g of the groove is determined by the dischargeability of polishing dust or agglomerated abrasive grains, and is preferably 0.1 mm or more.

【0037】第2の実施形態においては、研磨部材の加
工面部に凹部(溝部)の断面がU字形である溝が形成さ
れているが、溝がU字形であると、研磨剤の供給や排出
が容易であり、且つ、研磨部材の加工面と溝とがなす角
度も大きく取れるので、研磨部材の加工面に生じる鋭角
な部分の発生を抑えられる。これらにより、研磨対象物
の傷の発生を抑えることが可能である。
In the second embodiment, a groove having a U-shaped cross section is formed in the processing surface of the polishing member. If the groove has a U-shape, the supply and discharge of the abrasive are performed. This is easy, and the angle between the processing surface of the polishing member and the groove can be made large, so that the occurrence of an acute portion generated on the processing surface of the polishing member can be suppressed. With these, it is possible to suppress the occurrence of scratches on the object to be polished.

【0038】なお、第2の実施形態による研磨部材で
は、研磨部材の加工面に形成されている凹部(溝部)の
断面形状をU字形であるとしたが、U字形以外の曲率を
有する形状であっても良い。
In the polishing member according to the second embodiment, the recess (groove) formed on the processing surface of the polishing member has a U-shaped cross section. However, the polishing member has a shape other than the U-shape having a curvature. There may be.

【0039】第1及び第2の実施形態による研磨部材に
おいて、研磨速度を向上させるため、また傷をなくする
ために、溝の形状は重要であり、そのために、研磨剤の
流動性と保持性、研磨屑または凝集した研磨粒の排出性
を効果的に行うのに適したパターンが選ばれる。そのパ
ターンは、同心円状、螺旋状、格子状、三角格子状、放
射状の溝の群から選ばれた一つあるいは二つ以上の組み
合せが好ましい。この内、同心円状と放射状の溝が図6
に、格子状の溝が図7に、三角格子状の溝が図8に示さ
れている。
In the polishing member according to the first and second embodiments, the shape of the groove is important in order to improve the polishing rate and to eliminate scratches. In addition, a pattern suitable for effectively discharging abrasive dust or aggregated abrasive grains is selected. The pattern is preferably one or a combination of two or more selected from the group of concentric, spiral, lattice, triangular lattice, and radial grooves. Of these, concentric and radial grooves are shown in FIG.
FIG. 7 shows a lattice-shaped groove, and FIG. 8 shows a triangular lattice-shaped groove.

【0040】以上述べたように、研磨速度は接触面積に
比例する。ところが、一般に固体と固体との接触は点で
ある。本発明になる無発泡の研磨部材は、硬質の材料を
使っているので、実効的な接触面積が、図面から単純に
計算される値よりも低いために、研磨速度が期待値より
も低いことがある。凸部全体を研磨対象物になじませる
ためには工夫が要る。そのために、研磨パッドの材料の
樹脂の硬度の温度依存性を利用する。樹脂の硬度は温度
上昇と共に低くなる。研磨パッドの硬度を温度を上昇さ
せ、また温度管理することによって研磨対象物に対する
当たりを向上させるのである。図3には本発明の実施例
の研磨部材の材料である高分子材料が温度の上昇と共に
その硬度を低下させる様子を示している。図2に示すよ
うに、研磨速度は温度に依存して、温度が高くなるほど
研磨速度は上昇する。この研磨速度の上昇の原因には、
有効(実効的な)接触面積の増加の他に、スラリーの反
応性の向上がある。
As described above, the polishing rate is proportional to the contact area. However, contact between solids is generally a point. Since the non-foamed polishing member according to the present invention uses a hard material, the effective contact area is lower than a value simply calculated from the drawing, so that the polishing rate is lower than an expected value. There is. Some contrivance is required to make the entire convex portion conform to the object to be polished. For this purpose, the temperature dependence of the hardness of the resin of the polishing pad material is used. The hardness of the resin decreases with increasing temperature. By raising the temperature of the hardness of the polishing pad and controlling the temperature, the contact with the object to be polished is improved. FIG. 3 shows how the polymer material, which is the material of the polishing member according to the embodiment of the present invention, decreases in hardness as the temperature increases. As shown in FIG. 2, the polishing rate depends on the temperature, and the polishing rate increases as the temperature increases. Causes of this increase in polishing rate include:
In addition to increasing the effective (effective) contact area, there is an increase in the reactivity of the slurry.

【0041】硬質の無発泡の研磨部材の大きな特徴の一
つは平坦性、即ちパターンの段差解消を効率良く行うこ
とである。研磨部材の硬度が低下すると、その段差解消
性は悪化する。以下に、研磨部材の硬度と段差解消性と
の関係を調べる実験をした。500nm厚の4mm×4
mmのパターン膜の上に1μm厚の酸化珪素( Si
2)膜が形成され、初期段差が500nmのウェハ
を、材料の硬度を様々に変化させた研磨部材で700n
m研磨、除去したところ、研磨部材の材料のビッカース
硬度が1.5kg/mm2(1.5×107Pa) 以
上、あるいは圧縮ヤング率が25kg/mm2(2.5
×108Pa) 以上のときに、残留段差を150nm以
下にすることができることが分かった。
One of the major features of the hard, non-foamed abrasive member is
One is to improve the flatness, that is, to eliminate the pattern steps efficiently.
And When the hardness of the polishing member decreases, the step is eliminated
Sex worsens. Below, the hardness of the polishing member and the step-elimination property
An experiment was conducted to examine the relationship. 4mm × 4 with 500nm thickness
1 μm thick silicon oxide (Si)
O Two) Wafer on which film is formed and initial step is 500 nm
Is 700 n with a polishing member in which the hardness of the material is variously changed.
After polishing and removal, the Vickers of the material of the polishing member
Hardness is 1.5kg / mmTwo(1.5 × 107Pa)
Top or compression Young's modulus is 25kg / mmTwo(2.5
× 108Pa) In the above case, the residual step is reduced to 150 nm or less.
I found that it can be down.

【0042】このことから、ビッカース硬度1.5kg
/mm2 (1.5×107Pa)以上、あるいは圧縮ヤ
ング率25kg/mm2 (2.5×108Pa)以上を
維持でき、且つ最も温度の高い条件で研磨を行えば、最
も高い研磨速度と良好な平坦性の両方を得ることができ
る。
From this, Vickers hardness 1.5 kg
/ Mm 2 (1.5 × 10 7 Pa) or more, or a compression Young's modulus of 25 kg / mm 2 (2.5 × 10 8 Pa) or more, and the highest if the polishing is performed at the highest temperature. Both a polishing rate and good flatness can be obtained.

【0043】以上の研磨パッドは、図6、7、8で示し
た溝構造の適当な場所に孔を穿ち、研磨中の研磨状態を
その場で光学的に測定するために、測定光を通すための
測定窓を一カ所以上に設けても良い。また、その測定窓
の研磨対象物側の面に研磨対象物、研磨ヘッドが接触し
たときの傷発生を防止するために、ハードコートを施
し、その反対側の面に反射防止膜を施すのも好ましい。
更に本発明の研磨部材は、これを例えば従来例の図5に
示したような研磨装置に取り付ければ、研磨速度が高
く、段差解消性に優れ、且つ傷の発生のない研磨装置が
得られる。
The above-mentioned polishing pad makes holes at appropriate locations in the groove structure shown in FIGS. 6, 7 and 8, and transmits measurement light in order to optically measure the polishing state during polishing in situ. Measurement window may be provided at one or more locations. It is also possible to apply a hard coat on the surface of the measuring window on the side of the object to be polished to prevent scratching when the polishing head comes into contact, and to apply an anti-reflection film on the opposite surface. preferable.
Further, when the polishing member of the present invention is attached to, for example, a conventional polishing apparatus as shown in FIG. 5, a polishing apparatus having a high polishing rate, excellent step-elimination property and no scratches can be obtained.

【0044】図10は半導体デバイス製造プロセスを示
すフローチャートである。半導体デバイス製造プロセス
をスタートして、まずステップS200で、次に挙げるステ
ップS201〜S204の中から適切な処理工程を選択する。選
択に従って、ステップS201〜S204のいずれかに進む。
FIG. 10 is a flowchart showing a semiconductor device manufacturing process. When the semiconductor device manufacturing process is started, first, in step S200, an appropriate processing step is selected from the following steps S201 to S204. According to the selection, the process proceeds to any of steps S201 to S204.

【0045】ステップS201はシリコンウエハの表面を酸
化させる酸化工程である。ステップS202はCVD等により
シリコンウエハ表面に絶縁膜を形成するCVD工程であ
る。ステップS203はシリコンウエハ上に電極を蒸着等の
工程で形成する電極形成工程である。ステップS204はシ
リコンウエハにイオンを打ち込むイオン打ち込み工程で
ある。
Step S201 is an oxidation step for oxidizing the surface of the silicon wafer. Step S202 is a CVD step of forming an insulating film on the surface of the silicon wafer by CVD or the like. Step S203 is an electrode forming step of forming electrodes on the silicon wafer by steps such as vapor deposition. Step S204 is an ion implantation step of implanting ions into the silicon wafer.

【0046】CVD工程もしくは電極形成工程の後で、ス
テップS205に進む。ステップS205はCMP工程である。CMP
工程では本発明に係る研磨装置により、層間絶縁膜の平
坦化や、半導体デバイスの表面の金属膜の研磨によるダ
マシン(damascene)の形成等が行われる。
After the CVD step or the electrode forming step, the process proceeds to step S205. Step S205 is a CMP process. CMP
In the process, the polishing apparatus according to the present invention performs planarization of an interlayer insulating film, formation of a damascene by polishing a metal film on the surface of a semiconductor device, and the like.

【0047】CMP工程もしくは酸化工程の後でステップS
206に進む。ステップS206はフォトリソ工程である。フ
ォトリソ工程では、シリコンウエハへのレジストの塗
布、露光装置を用いた露光によるシリコンウエハへの回
路パターンの焼き付け、露光したシリコンウエハの現像
が行われる。さらに次のステップS207は現像したレジス
ト像以外の部分をエッチングにより削り、その後レジス
ト剥離が行われ、エッチングが済んで不要となったレジ
ストを取り除くエッチング工程である。
After the CMP step or the oxidation step, step S
Continue to 206. Step S206 is a photolithography process. In the photolithography process, a resist is applied to a silicon wafer, a circuit pattern is printed on the silicon wafer by exposure using an exposure apparatus, and the exposed silicon wafer is developed. Further, the next step S207 is an etching step in which portions other than the developed resist image are etched away, and then the resist is peeled off to remove unnecessary resist after etching.

【0048】次にステップS208で必要な全工程が完了し
たかを判断し、完了していなければステップS200に戻
り、先のステップを繰り返して、シリコンウエハ上に回
路パターンが形成される。ステップS208で全工程が完了
したと判断されればエンドとなる。
Next, in step S208, it is determined whether all necessary steps have been completed. If not, the process returns to step S200, and the previous steps are repeated to form a circuit pattern on the silicon wafer. If it is determined in step S208 that all steps have been completed, the process ends.

【0049】本発明に係る半導体デバイス製造方法で
は、CMP工程において本発明に係る研磨装置を用いてい
るため、研磨剤供給に対して効率的な研磨が可能であ
り、研磨剤の保持性と流動性が高いために研磨速度が高
く、且つ、シリコンウエハの傷の発生が少なく、尚且つ
段差解消性に優れている。これにより、CMP工程での歩
留まりが向上し、且つ工程効率が向上するので、従来の
半導体デバイス製造方法に比べて低コストで半導体デバ
イスを製造することができるという効果がある。
In the method of manufacturing a semiconductor device according to the present invention, since the polishing apparatus according to the present invention is used in the CMP process, efficient polishing can be performed with respect to the supply of the abrasive, and the polishing agent retainability and fluidity can be improved. Since the polishing property is high, the polishing rate is high, the generation of scratches on the silicon wafer is small, and the step-eliminating property is excellent. As a result, the yield in the CMP process is improved and the process efficiency is improved, so that there is an effect that a semiconductor device can be manufactured at a lower cost than a conventional semiconductor device manufacturing method.

【0050】なお、上記の半導体デバイス製造プロセス
以外の半導体デバイス製造プロセスのCMP工程に本発明
に係る研磨装置を用いても良い。
The polishing apparatus according to the present invention may be used in a CMP step of a semiconductor device manufacturing process other than the above-described semiconductor device manufacturing process.

【0051】本発明に係る半導体デバイスは、本発明に
係る半導体デバイス製造方法により製造される。これに
より、従来の半導体デバイス製造方法に比べて低コスト
で半導体デバイスを製造することができ、半導体デバイ
スの製造原価を低下させることができるという効果があ
る。 [実施例1]螺旋状のV溝( 溝のピッチ:0.5mm 、凸部
の上辺の長さ:0.15mm) と放射状の凹溝( 5度間隔、深
さ0.5mm)の両方を有するエポキシ樹脂からなる、無発泡
のシートをφ800mm ×20mmtのアルミベースプレート
上に固定し、これを研磨パッドとした。
The semiconductor device according to the present invention is manufactured by the semiconductor device manufacturing method according to the present invention. Thus, there is an effect that the semiconductor device can be manufactured at a lower cost than the conventional semiconductor device manufacturing method, and the manufacturing cost of the semiconductor device can be reduced. [Embodiment 1] Epoxy resin having both spiral V-grooves (groove pitch: 0.5 mm, upper side length of convex portion: 0.15 mm) and radial concave grooves (5 ° intervals, 0.5 mm depth) Was fixed on an aluminum base plate of φ800 mm × 20 mmt, which was used as a polishing pad.

【0052】次に、内径φ145mm のアルミニウム製リン
グ12に弾性膜13( ロデールニッタ製R201) を貼り、
このリング12を、Oリング16、14を介して図4に
示されるように配し、図4に示す研磨ヘッドを構成し
た。15はリテーナリングであり、これは研磨対象物4
の飛び出し防止用のリングである。17は研磨対象物4
を加圧するために正圧に保たれた気密空間であり、正圧
を与えるために圧縮気体が18、19から供給される。
この気密空間17と弾性膜13とにより、研磨ヘッド
は、リテーナリング15を含んだ全体系と独立に加圧出
来る構造になっている。
Next, an elastic film 13 (R201 made by Rodel Nitta) is attached to an aluminum ring 12 having an inner diameter of 145 mm.
The ring 12 was arranged via the O-rings 16 and 14 as shown in FIG. 4 to constitute the polishing head shown in FIG. Reference numeral 15 denotes a retainer ring, which is the object 4 to be polished.
This is a ring for preventing the protrusion of the ball. 17 is an object to be polished 4
Is a hermetic space kept at a positive pressure to pressurize the air, and compressed gas is supplied from 18 and 19 to give a positive pressure.
The airtight space 17 and the elastic film 13 allow the polishing head to be pressurized independently of the entire system including the retainer ring 15.

【0053】弾性膜13にSiO2 の熱酸化膜が1 μm
形成された6 インチのシリコンエハを表面張力で固定
し、以下に示す加工条件で研磨を行った。
The thermal oxide film of SiO 2 is 1 μm on the elastic film 13.
The formed 6-inch silicon wafer was fixed with surface tension and polished under the following processing conditions.

【0054】加工条件 ・研磨パッド回転数:50rpm ・研磨ヘッド回転数:50rpm ・揺動距離:30mm ・揺動回数:15 往復/ 分 ・研磨剤: キャボット社製SEMI Supers25 を2 倍に希釈 ・研磨剤流量:50ml/分 ・ウェハへの荷重: 400g/cm2(3.9×104Pa) プラテンの温度、従って研磨パッドの温度は50℃に維
持した。
Processing conditions Polishing pad rotation speed: 50 rpm Polishing head rotation speed: 50 rpm Oscillation distance: 30 mm Oscillation frequency: 15 reciprocations / minute Abrasives: SEMI Supers25 manufactured by Cabot Corp. diluted twice Agent flow rate: 50 ml / min Load on wafer: 400 g / cm 2 (3.9 × 10 4 Pa) The temperature of the platen, and thus the temperature of the polishing pad, was maintained at 50 ° C.

【0055】以上の条件で研磨した結果、研磨速度とし
て200nm/分が得られた。また、500nm厚の4
mm×4mmのパターン膜の上に1μm厚の酸化珪素(
SiO2 )膜を形成し、初期段差が500nmのウェハ
を、700nmの厚みだけ研磨、除去したところ、残留
段差は100nm以下であり、良好であった。また、傷
の発生もなかった。 [比較例1]研磨パッドの温度を室温にした時、実施例
と同様に、残留段差は100nm以下で良好であった
が、研磨速度は150nm/分に低下した。傷の発生は
なかった。 [比較例2]溝の凸部の上辺の長さを0.35mmに広げたこ
とを除いて、実施例1と同様の研磨パッドで、研磨パッ
ドの温度を50℃にして研磨を行った。研磨速度は実施例
1の200nm/分から180nm/分に低下した。研
磨剤の流動性が低下したためと考えられる。傷の発生は
なかった。
As a result of polishing under the above conditions, a polishing rate of 200 nm / min was obtained. Also, 4 nm thick 500 nm
1 μm thick silicon oxide (
An SiO 2 ) film was formed, and the wafer having an initial step of 500 nm was polished and removed by a thickness of 700 nm. The residual step was 100 nm or less, which was good. In addition, no scratch was generated. [Comparative Example 1] When the temperature of the polishing pad was set to room temperature, the residual step was as good as 100 nm or less as in the example, but the polishing rate was reduced to 150 nm / min. There were no scratches. Comparative Example 2 Polishing was performed using the same polishing pad as in Example 1 except that the length of the upper side of the convex portion of the groove was increased to 0.35 mm, and the temperature of the polishing pad was set to 50 ° C. The polishing rate was reduced from 200 nm / min of Example 1 to 180 nm / min. It is considered that the fluidity of the abrasive was reduced. There were no scratches.

【0056】[0056]

【発明の効果】以上の通り、本発明によれば、研磨剤の
供給量に対して従来の発泡性研磨パッドと同等の効率で
研磨可能であり、且つ研磨剤の流動性と接触面積の大き
さが最適化されているので、研磨速度が早く、また硬質
パッドであることからパターン付きウェハに対して段差
解消性が優れ、更にまた溝の幅が最適化されているの
で、研磨屑や研磨剤の凝集物の排出がスムーズに行わ
れ、更にまた傷の発生がない研磨部材及びこれを用いた
研磨方法、研磨装置を提供できる。
As described above, according to the present invention, the polishing can be performed with the same efficiency as the conventional foaming polishing pad with respect to the supply amount of the abrasive, and the fluidity of the abrasive and the size of the contact area can be increased. The polishing rate is optimized because of the optimized polishing rate, and because it is a hard pad, it has excellent elimination of steps for patterned wafers. It is possible to provide a polishing member capable of smoothly discharging the agglomerates of the agent and having no scratches, and a polishing method and a polishing apparatus using the same.

【0057】また、本発明は、研磨工程のコストダウン
を図るとともに工程効率化を図り、それにより従来の半
導体デバイス製造方法に比べて低コストで半導体デバイ
スを製造することができる半導体デバイス製造方法、及
び低コストの半導体デバイスを提供することができる。
Further, the present invention provides a semiconductor device manufacturing method capable of manufacturing a semiconductor device at a lower cost as compared with a conventional semiconductor device manufacturing method by reducing the cost of the polishing step and improving the process efficiency. And a low-cost semiconductor device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態における溝構造の断面
構造を説明する図である。
FIG. 1 is a diagram illustrating a cross-sectional structure of a groove structure according to a first embodiment of the present invention.

【図2】研磨速度と温度との関係を示す図である。FIG. 2 is a diagram showing a relationship between a polishing rate and a temperature.

【図3】研磨部材の硬度と温度との関係を示す図であ
る。
FIG. 3 is a diagram illustrating a relationship between hardness and temperature of a polishing member.

【図4】本発明に用いた研磨ヘッドの図である。FIG. 4 is a view of a polishing head used in the present invention.

【図5】CMP研磨装置の従来例を示す図である。FIG. 5 is a view showing a conventional example of a CMP polishing apparatus.

【図6】本発明の研磨部材の同心円状と放射状溝の組み
合わせの溝構造の平面図を示す。
FIG. 6 shows a plan view of a groove structure of a combination of concentric and radial grooves of the polishing member of the present invention.

【図7】本発明の研磨部材の格子状溝の溝構造の平面図
を示す。
FIG. 7 shows a plan view of a groove structure of a grid-like groove of the polishing member of the present invention.

【図8】本発明の研磨部材の三角格子状溝の溝構造の平
面図を示す。
FIG. 8 is a plan view of a groove structure of a triangular lattice groove of the polishing member of the present invention.

【図9】本発明の第2の実施形態における溝構造の断面
構造を説明する図である。
FIG. 9 is a diagram illustrating a cross-sectional structure of a groove structure according to a second embodiment of the present invention.

【図10】半導体デバイス製造プロセスを示すフローチ
ャートである。
FIG. 10 is a flowchart showing a semiconductor device manufacturing process.

【符号の説明】[Explanation of symbols]

1 CMP装置 2 研磨部材(研磨パッド) 3 研磨対象物保持部(研磨ヘッド) 4 研磨対象物(ウェハ) 5 研磨剤供給部 6 研磨剤 7 定盤 10 研磨体 11 研磨対象物保持部(研磨ヘッド)の主要部 12 アルミニウム製リング 13 弾性膜 14 Oリング 15 リテーナリング 16 Oリング 17 気密空間 18 高圧気体流入孔 19 高圧気体流入孔 20 凸部 21 凹部(溝部) DESCRIPTION OF SYMBOLS 1 CMP apparatus 2 Polishing member (polishing pad) 3 Polishing object holding part (polishing head) 4 Polishing target (wafer) 5 Polishing agent supply part 6 Polishing agent 7 Surface plate 10 Polishing body 11 Polishing target holding part (polishing head) 12) Aluminum ring 13 Elastic film 14 O-ring 15 Retainer ring 16 O-ring 17 Airtight space 18 High-pressure gas inlet hole 19 High-pressure gas inlet hole 20 Convex portion 21 Concave portion (groove)

フロントページの続き (72)発明者 新井 孝史 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 (72)発明者 宮地 章 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 Fターム(参考) 3C058 AA07 AA09 BC02 CB01 DA17Continued on the front page (72) Inventor Takashi Arai 3-2-2, Marunouchi, Chiyoda-ku, Tokyo Nikon Corporation (72) Inventor Akira Miyachi 3-2-2, Marunouchi, Chiyoda-ku, Tokyo Nikon Corporation F term (reference) 3C058 AA07 AA09 BC02 CB01 DA17

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】研磨部材と研磨対象物との間に研磨剤を介
在させた状態で、前記研磨部材と前記研磨対象物を相対
移動させることにより、前記研磨対象物を研磨する研磨
装置に用いる前記研磨部材において、前記研磨部材の少
なくともその加工面部が、無発泡の樹脂から成り、溝構
造から成る複数の凹凸部を有し、前記溝構造が同心円
状、螺旋状、格子状、三角格子状、放射状の溝の群から
選ばれた一つあるいは二つ以上の組み合せから成ること
を特徴とする研磨部材。
1. A polishing apparatus for polishing an object to be polished by relatively moving the polishing member and the object to be polished in a state in which an abrasive is interposed between the polishing member and the object to be polished. In the polishing member, at least a processing surface portion of the polishing member is made of a non-foamed resin and has a plurality of concave and convex portions having a groove structure, and the groove structure has a concentric shape, a spiral shape, a lattice shape, a triangular lattice shape. A polishing member comprising one or a combination of two or more selected from a group of radial grooves.
【請求項2】前記凹凸部の凹部(溝部)及び凸部の断面
が、矩形、台形、及び3角形から選ばれた一種類以上の
形状を各々有することを特徴とする請求項1記載の研磨
部材。
2. The polishing method according to claim 1, wherein a cross section of the concave portion (groove portion) and the convex portion of the concave and convex portion has at least one shape selected from a rectangle, a trapezoid, and a triangle. Element.
【請求項3】前記矩形、前記台形、または前記3角形の
形状が、以下の条件を充たすことを特徴とする請求項2
記載の研磨部材。 a≧b、b≧0、c≧0 (ここで、aは凸部の底辺の長さ、bは凸部の上辺の長
さ、cは凹部の底辺の長さである。)
3. The shape of the rectangle, the trapezoid, or the triangle satisfies the following condition.
The polishing member according to the above. a ≧ b, b ≧ 0, c ≧ 0 (where a is the length of the bottom of the protrusion, b is the length of the top of the protrusion, and c is the length of the bottom of the recess.)
【請求項4】前記矩形、前記台形、または前記3角形の
形状が、以下の条件を充たすことを特徴とする請求項3
記載の研磨部材。 0.0mm≦b≦3.0mm、0.1mm≦a+c≦
5.0mm、d≧0.1mm (ここで、dは凹部の深さである。)
4. The rectangular, trapezoidal or triangular shape satisfies the following condition.
The polishing member according to the above. 0.0mm ≦ b ≦ 3.0mm, 0.1mm ≦ a + c ≦
5.0 mm, d ≧ 0.1 mm (where d is the depth of the concave portion)
【請求項5】前記凹凸部の凹部(溝部)の断面が、曲部
を有する形状であることを特徴とする請求項1記載の研
磨部材。
5. The polishing member according to claim 1, wherein a cross section of the concave portion (groove portion) of the concave and convex portion has a shape having a curved portion.
【請求項6】前記曲部を有する形状が、以下の条件を充
たすことを特徴とする請求項5記載の研磨部材。 0.0mm≦e≦3.0mm、0.1mm≦e+f≦
5.0mm、g≧0.1mm (ここで、eは凸部の上辺の長さ、fは凹部の上辺の長
さ、gは凹部の深さである。)
6. The polishing member according to claim 5, wherein the shape having the curved portion satisfies the following conditions. 0.0mm ≦ e ≦ 3.0mm, 0.1mm ≦ e + f ≦
5.0 mm, g ≧ 0.1 mm (where e is the length of the upper side of the convex portion, f is the length of the upper side of the concave portion, and g is the depth of the concave portion.)
【請求項7】前記凹凸部が凹凸の周期構造を有すること
を特徴とする請求項1〜6何れか1項記載の研磨部材。
7. The polishing member according to claim 1, wherein said uneven portion has a periodic structure of unevenness.
【請求項8】前記無発泡の樹脂が、ビッカース硬度が
1.5kg/mm2 以上または圧縮ヤング率が25kg
/mm2 以上を充たすことを特徴とする請求項1〜7何
れか1項記載の研磨部材。
8. The non-foamed resin has a Vickers hardness of 1.5 kg / mm 2 or more or a compression Young's modulus of 25 kg.
Claims 1-7 any one polishing member, wherein the filling of / mm 2 or more.
【請求項9】研磨部材と研磨対象物との間に研磨剤を介
在させた状態で、前記研磨部材と前記研磨対象物を相対
移動させることにより、前記研磨対象物を研磨する研磨
方法において、請求項1〜8何れか1項記載の研磨部材
を用いることを特徴とする研磨方法。
9. A polishing method for polishing the object to be polished by relatively moving the polishing member and the object to be polished in a state where an abrasive is interposed between the polishing member and the object to be polished, A polishing method using the polishing member according to claim 1.
【請求項10】前記研磨部材の温度を管理する段階と、
前記研磨部材をビッカース硬度1.5kg/mm2 以上
または圧縮ヤング率25kg/mm2 以上を充たした条
件で研磨する段階を有することを特徴とする請求項9記
載の研磨方法。
10. A step of controlling the temperature of the polishing member;
The polishing method according to claim 9, wherein including the step of polishing with said polishing member Vickers hardness 1.5 kg / mm 2 or more or compressive Young's modulus 25 kg / mm 2 or more fills conditions.
【請求項11】前記研磨対象物が、半導体デバイスが形
成されたウェハであることを特徴とする請求項1〜8何
れか1項記載の研磨部材。
11. The polishing member according to claim 1, wherein the object to be polished is a wafer on which semiconductor devices are formed.
【請求項12】前記研磨対象物が、半導体デバイスが形
成されたウェハであることを特徴とする請求項9、10
何れか1項記載の研磨方法。
12. The object to be polished is a wafer on which semiconductor devices are formed.
The polishing method according to claim 1.
【請求項13】研磨部材と研磨対象物との間に研磨剤を
介在させた状態で、前記研磨部材と前記研磨対象物を相
対移動させることにより、前記研磨対象物を研磨する研
磨装置において、前記研磨部材に請求項1〜8、11何
れか1項記載の研磨部材を用いることを特徴とする研磨
装置。
13. A polishing apparatus for polishing an object to be polished by relatively moving the polishing member and the object to be polished in a state in which an abrasive is interposed between the polishing member and the object to be polished, A polishing apparatus using the polishing member according to claim 1 as the polishing member.
【請求項14】請求項13記載の研磨装置を用いて半導
体シリコンウエハの表面を平坦化する工程を有すること
を特徴とする半導体デバイス製造方法。
14. A method for manufacturing a semiconductor device, comprising the step of flattening the surface of a semiconductor silicon wafer by using the polishing apparatus according to claim 13.
【請求項15】請求項14記載の半導体デバイス製造方
法により製造されることを特徴とする半導体デバイス。
15. A semiconductor device manufactured by the semiconductor device manufacturing method according to claim 14.
JP2000025386A 1999-03-30 2000-02-02 Polishing member, polishing method, polishing device, manufacture of semiconductor device and semiconductor device Pending JP2000354952A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2000025386A JP2000354952A (en) 1999-04-05 2000-02-02 Polishing member, polishing method, polishing device, manufacture of semiconductor device and semiconductor device
KR10-2001-7011397A KR100471527B1 (en) 1999-03-30 2000-03-14 Polishing body, polisher, polishing method, and method for producing semiconductor device
CN00805734A CN1345264A (en) 1999-03-30 2000-03-14 Polishing body, polisher, plishing method and method for producing semiconductor device
DE60039054T DE60039054D1 (en) 1999-03-30 2000-03-14 GT POLISHING BODY, POLISHING DEVICE, POLISHING METHOD AND METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE (2002/23)
PCT/JP2000/001544 WO2000059680A1 (en) 1999-03-30 2000-03-14 Polishing body, polisher, polishing method, and method for producing semiconductor device
US09/856,272 US6749714B1 (en) 1999-03-30 2000-03-14 Polishing body, polisher, polishing method, and method for producing semiconductor device
EP00908066A EP1211023B1 (en) 1999-03-30 2000-03-14 Polishing body, polisher, polishing method, and method for producing semiconductor device
CNB200310117928XA CN1312742C (en) 1999-03-30 2000-03-14 Polishing disk, polishing machine and method for manufacturing semiconductor
TW090123178A TW530348B (en) 1999-03-30 2000-03-23 Polishing body, polishing device, polishing method and method for producing semiconductor device
TW089105310A TW511174B (en) 1999-03-30 2000-03-23 Polishing body, polishing method, polishing apparatus, and manufacturing method semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9817999 1999-04-05
JP11-98179 1999-04-05
JP2000025386A JP2000354952A (en) 1999-04-05 2000-02-02 Polishing member, polishing method, polishing device, manufacture of semiconductor device and semiconductor device

Publications (1)

Publication Number Publication Date
JP2000354952A true JP2000354952A (en) 2000-12-26

Family

ID=26439379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000025386A Pending JP2000354952A (en) 1999-03-30 2000-02-02 Polishing member, polishing method, polishing device, manufacture of semiconductor device and semiconductor device

Country Status (1)

Country Link
JP (1) JP2000354952A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059576A1 (en) * 2001-12-27 2003-07-24 Fujitsu Limited Abrasive grain burying device for lapping device
US7121938B2 (en) 2002-04-03 2006-10-17 Toho Engineering Kabushiki Kaisha Polishing pad and method of fabricating semiconductor substrate using the pad
US7591713B2 (en) 2003-09-26 2009-09-22 Shin-Etsu Handotai Co., Ltd. Polishing pad, method for processing polishing pad, and method for producing substrate using it
WO2013103142A1 (en) * 2012-01-06 2013-07-11 東レ株式会社 Polishing pad
WO2013129426A1 (en) * 2012-02-27 2013-09-06 東レ株式会社 Polishing pad
US9256010B2 (en) 2010-06-25 2016-02-09 Tokyo Institute Of Technology Thermochromic resin composite, method for adjusting clouding point of thermochromic resin composite, and dimmer
JP2022031724A (en) * 2016-03-24 2022-02-22 アプライド マテリアルズ インコーポレイテッド Textured small pad for chemical mechanical polishing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059576A1 (en) * 2001-12-27 2003-07-24 Fujitsu Limited Abrasive grain burying device for lapping device
US7189151B2 (en) 2001-12-27 2007-03-13 Fujitsu Limited Embedding tool designed to embed grains into faceplate for lapping apparatus
US7121938B2 (en) 2002-04-03 2006-10-17 Toho Engineering Kabushiki Kaisha Polishing pad and method of fabricating semiconductor substrate using the pad
US7591713B2 (en) 2003-09-26 2009-09-22 Shin-Etsu Handotai Co., Ltd. Polishing pad, method for processing polishing pad, and method for producing substrate using it
US7677957B2 (en) 2003-09-26 2010-03-16 Shin-Etsu Handotai Co., Ltd. Polishing apparatus, method for providing and mounting a polishing pad in a polishing apparatus, and method for producing a substrate using the polishing apparatus
US9256010B2 (en) 2010-06-25 2016-02-09 Tokyo Institute Of Technology Thermochromic resin composite, method for adjusting clouding point of thermochromic resin composite, and dimmer
WO2013103142A1 (en) * 2012-01-06 2013-07-11 東レ株式会社 Polishing pad
WO2013129426A1 (en) * 2012-02-27 2013-09-06 東レ株式会社 Polishing pad
JP2022031724A (en) * 2016-03-24 2022-02-22 アプライド マテリアルズ インコーポレイテッド Textured small pad for chemical mechanical polishing
JP7326405B2 (en) 2016-03-24 2023-08-15 アプライド マテリアルズ インコーポレイテッド Small textured pad for chemical-mechanical polishing

Similar Documents

Publication Publication Date Title
US6962521B2 (en) Edge polished wafer, polishing cloth for edge polishing, and apparatus and method for edge polishing
WO2000059680A1 (en) Polishing body, polisher, polishing method, and method for producing semiconductor device
JP2013042066A (en) Method of manufacturing semiconductor device
US6341997B1 (en) Method for recycling a polishing pad conditioning disk
KR100552435B1 (en) Planarization process to achieve improved uniformity across semiconductor wafers
KR100724659B1 (en) Method for manufacturing semiconductor device
KR100564125B1 (en) Polishing element, cmp polishing device and production method for semiconductor device
JP2000354952A (en) Polishing member, polishing method, polishing device, manufacture of semiconductor device and semiconductor device
JP3510036B2 (en) Method for manufacturing semiconductor device
KR100728545B1 (en) Polishing body, polishing devic, semiconductor device, and method of manufacturing semiconductor device
US6171180B1 (en) Planarizing a trench dielectric having an upper surface within a trench spaced below an adjacent polish stop surface
JP2001162520A (en) Abrasive element, planing device, method of manufacturing for semiconductor device, and semiconductor device
CN112372509B (en) Method and apparatus for changing initial state of polishing pad to hydrophilicity
JP2001212752A (en) Polishing body, polishing device, semiconductor device manufacturing method and semiconductor device
US6824452B1 (en) Polishing pad and process of chemical mechanical use thereof
JP3187216B2 (en) Method for manufacturing semiconductor device
JP2004128112A (en) Manufacturing method of semiconductor device
JP2001079755A (en) Abrasive body and polishing method
JP2000124173A (en) Manufacture for semiconductor device
JP2003086549A (en) Polishing tool, polishing device, semiconductor device and semiconductor device manufacturing method
JP2004296591A (en) Method for producing semiconductor device
JPWO2004105113A1 (en) Polishing body for CMP polishing, CMP polishing apparatus, CMP polishing method, and method for manufacturing semiconductor device
JP2004022886A (en) Polishing member, polishing device using the same, semiconductor device manufacturing method using it, and semiconductor device manufactured through the method
JPH1167765A (en) Method for manufacturing semiconductor device
US20080242198A1 (en) Multi-step planarizing and polishing method