JP2000347148A - Half-band optical signal processing unit - Google Patents

Half-band optical signal processing unit

Info

Publication number
JP2000347148A
JP2000347148A JP11162374A JP16237499A JP2000347148A JP 2000347148 A JP2000347148 A JP 2000347148A JP 11162374 A JP11162374 A JP 11162374A JP 16237499 A JP16237499 A JP 16237499A JP 2000347148 A JP2000347148 A JP 2000347148A
Authority
JP
Japan
Prior art keywords
optical
optical signal
coupler
couplers
signal processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11162374A
Other languages
Japanese (ja)
Other versions
JP3535042B2 (en
Inventor
Kaname Jinguji
要 神宮寺
Akira Himeno
明 姫野
Manabu Oguma
学 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16237499A priority Critical patent/JP3535042B2/en
Publication of JP2000347148A publication Critical patent/JP2000347148A/en
Application granted granted Critical
Publication of JP3535042B2 publication Critical patent/JP3535042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a half-band optical signal processing uint whose circuit constitution is not redundant and also in which the degree of freedom of a design is large. SOLUTION: In this optical signal processing unit, two lines of optical waveguides 21, 22 are coupled with N pieces of optical couplers 23-0 to 23-(N-1) or 23-1 to 23-N while having the difference 2L of optixal path lengths and also emitting sides of optical signals or incident sides of the optical singnals of the optical waveguides 21, 22 are connected with a 3 dB optical coupler 25 while having the difference L of optical path lengths and more-over, phase shifters 24-1 to 24-N are provided at least one side of N places on the optical waveguides 21, 22 held among these optical couplers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、画像処理、音声処
理、光通信、光コンピューティング等の分野で、高度な
光信号処理を行うための光信号処理装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical signal processing device for performing advanced optical signal processing in fields such as image processing, audio processing, optical communication, and optical computing.

【0002】[0002]

【従来の技術】近年、光通信、光交換、光コンピューテ
ィング等の分野で、光信号を電気信号に変換せず、光の
ままで広帯域、高速にフィルタリング処理を行うことが
可能な光信号処理器が注目を集めている。特に、光信号
を多重化し伝送を行う光周波数多重通信において、伝搬
してきた周波数多重信号光に対し、周波数毎にフィルタ
リング処理を行う光周波数フィルタは、重要な部品であ
る。
2. Description of the Related Art In recent years, in the fields of optical communication, optical switching, optical computing, and the like, optical signal processing that does not convert an optical signal into an electric signal and that can perform filtering processing in a wide band and at a high speed with light as it is. The vessel is attracting attention. In particular, in optical frequency multiplexing communication in which optical signals are multiplexed and transmitted, an optical frequency filter that performs filtering processing for each frequency with respect to propagated frequency multiplexed signal light is an important component.

【0003】従来、このような目的のために用いられる
光信号処理器としては、光導波路を遅延線として用いる
光遅延線信号処理器が多く用いられている。光遅延線信
号処理器は、遅延線としての光導波路、光結合器、位相
シフタにより構成される。その特性は電気のディジタル
フィルタと等価であり、ディジタルフィルタと同様の多
彩なフィルタ処理が実現可能なため、光遅延線信号処理
器は近年、非常に注目されている。光遅延線信号処理器
の伝送特性は電気のディジタルフィルタと等価であるこ
とから、その周波数応答は周波数に対して周期的であ
る。
Conventionally, as an optical signal processor used for such a purpose, an optical delay line signal processor using an optical waveguide as a delay line has been widely used. The optical delay line signal processor includes an optical waveguide as a delay line, an optical coupler, and a phase shifter. The optical delay line signal processor has received much attention in recent years because its characteristics are equivalent to those of an electric digital filter, and various filter processes similar to those of a digital filter can be realized. Since the transmission characteristic of the optical delay line signal processor is equivalent to that of an electric digital filter, its frequency response is periodic with respect to frequency.

【0004】光遅延線信号処理器は、リング導波路、フ
ァブリペロ干渉計のような帰還路を含む光信号処理器
と、帰還路を含まない光信号処理器に大別することがで
きる。本発明は後者の帰還路を含まない光信号処理器に
関するものである。
Optical delay line signal processors can be broadly classified into optical signal processors including a return path such as a ring waveguide and a Fabry-Perot interferometer, and optical signal processors not including a return path. The present invention relates to the latter optical signal processor that does not include the return path.

【0005】帰還路を含まない光信号処理器は群遅延分
散が零、言い換えると直線位相の光信号処理器が実現で
きる等、帰還路を含む光信号処理器にはない有利な点が
ある。本発明では、以下、帰還路を含まない光信号処理
器のみに限定して記述する。
An optical signal processor not including a feedback path has advantages that an optical signal processor including a feedback path does not have, such as an optical signal processor having zero group delay dispersion, in other words, a linear phase optical signal processor. In the present invention, only the optical signal processor not including the return path will be described below.

【0006】本発明では、ハーフバンド特性を、図1の
ように、光パワー透過率|G(ω)|2
[0006] In the present invention, the half-band characteristics, as shown in FIG. 1, the optical power transmission | G (ω) | 2 is

【0007】[0007]

【数1】 (Equation 1)

【0008】の関係を有するフィルタ特性と定義する。
ここで、ω0は周期周波数である。図1のフィルタ特性
はさらに周波数に対して対称な光パワー透過率|G
(ω)|2=|G(−ω)|2を有しているが、この対称
性はハーフバンド特性の定義として要求しないことにす
る。
[0008] The filter characteristic is defined as follows.
Here, ω 0 is a periodic frequency. The filter characteristic of FIG. 1 further has an optical power transmittance | G
(Ω) | 2 = | G (−ω) | 2 , but this symmetry is not required as a definition of the half-band characteristic.

【0009】[従来例1]図2は従来の(帰還路を含ま
ない)光信号処理器の代表的な例(特願平5−1490
81号参照)を示すもので、図中、1,2は光導波路、
1a,2aは入力ポート、1b,2bは出力ポート、3
−0,3−1,3−2,3−3,……,3−(M−
1),3−Mは光結合器、4−1,4−2,4−3,…
…,4−Mは位相シフタである。
FIG. 2 shows a typical example of a conventional optical signal processor (not including a feedback path) (Japanese Patent Application No. 5-1490).
No. 81 in the figure, 1 and 2 are optical waveguides,
1a and 2a are input ports, 1b and 2b are output ports, 3
−0,3-1,3-2,3-3,..., 3- (M−
1), 3-M is an optical coupler, 4-1, 4-2, 4-3, ...
.., 4-M are phase shifters.

【0010】この回路構成では、光結合器3−0〜3−
Mに挟まれたM(Mは自然数)箇所の2本の光導波路
1,2の光路長差は全て等しくL(Lは0以上の実数)
である。この回路構成により、周波数に対して周期的な
フィルタ特性を持ち、ディジタルフィルタのFIR型
(Finite Impulse Response)
と等価な光信号処理機能が実現される。この例では、光
結合器3−0〜3−Mと位相シフタ4−1〜4−Mを制
御することにより、任意のFIR特性を実現することが
できる。
In this circuit configuration, the optical couplers 3-0 to 3-0
The optical path length differences of the two optical waveguides 1 and 2 at M (M is a natural number) sandwiched between M are all equal L (L is a real number equal to or greater than 0).
It is. With this circuit configuration, the digital filter has a filter characteristic that is periodic with respect to frequency, and is an FIR type (Finite Impulse Response) digital filter.
An optical signal processing function equivalent to the above is realized. In this example, an arbitrary FIR characteristic can be realized by controlling the optical couplers 3-0 to 3-M and the phase shifters 4-1 to 4-M.

【0011】しかし、この回路構成は本発明で目指して
いるハーフバンド特性等の特殊なフィルタ特性を実現す
るためには、冗長過ぎるという問題があった。
However, this circuit configuration has a problem that it is too redundant to realize a special filter characteristic such as a half-band characteristic aimed at by the present invention.

【0012】[従来例2]図3は従来の光信号処理器の
他の例、ここではハーフバンド特性に対する図2の回路
構成の冗長性を解決するために考案された例(K.Ji
nguji et.al.”Two−port opt
ical waveguide circuits c
omposed of cascaded Mach−
Zehnder Interferometers w
ith point−symmetrical con
figurations”J.Lightwave T
echnol.,vol.14,no.10,199
6,pp.2301−2310(特に、Fig.12)
参照)を示すものである。同図において、11,12は
光導波路、11a,12aは入力ポート、11b,12
bは出力ポート、13−0,13−1,13−2,13
−3,13−4は光結合器、14−1,14−2,14
−3,14−4は位相シフタである。
FIG. 3 shows another example of a conventional optical signal processor, here an example (K. Ji) designed to solve the redundancy of the circuit configuration of FIG.
nguji et. al. "Two-port opt
ical waveguide circuits c
omposed of cascaded Mach-
Zehnder Interferometers w
is point-symmetrical con
figures "J. Lightwave T"
echnol. , Vol. 14, no. 10,199
6, pp. 2301-2310 (particularly FIG. 12)
Reference). In the figure, 11 and 12 are optical waveguides, 11a and 12a are input ports, 11b and 12
b is an output port, 13-0, 13-1, 13-2, 13
-3 and 13-4 are optical couplers, 14-1, 14-2 and 14
Reference numerals -3 and 14-4 denote phase shifters.

【0013】この回路構成では光結合器を5個有し、全
体の回路構成が点対称性を有している。即ち、0番目の
光結合器13−0と4番目の光結合器13−4は等しい
結合率を有し、1番目の光結合器13−1と3番目の光
結合器13−3は等しい結合率を有している。また、1
番目の位相シフタ14−1と4番目の位相シフタ14−
4は等しい位相シフト量を有し、2番目の位相シフタ1
4−2と3番目の位相シフタ14−3は等しい位相シフ
ト量を有している。この回路構成により平坦な透過域と
阻止域を持つハーフハンド特性が実現されることが知ら
れている。
This circuit configuration has five optical couplers, and the overall circuit configuration has point symmetry. That is, the 0th optical coupler 13-0 and the fourth optical coupler 13-4 have the same coupling ratio, and the first optical coupler 13-1 and the third optical coupler 13-3 are equal. It has a binding rate. Also, 1
The fourth phase shifter 14-1 and the fourth phase shifter 14-
4 have the same amount of phase shift, and the second phase shifter 1
4-2 and the third phase shifter 14-3 have the same phase shift amount. It is known that this circuit configuration realizes a half-hand characteristic having a flat transmission region and a blocking region.

【0014】しかし、この回路構成は光結合器の数が5
個と限られており、設計可能なハーフバンド特性も限ら
れており、設計の自由度が少ないという欠点があった。
However, this circuit configuration has five optical couplers.
There is a drawback that the number of individual half-band characteristics is limited and the degree of freedom in design is small.

【0015】[0015]

【発明が解決しようとする課題】前述したように、従来
例1では設計の自由度は大きいが、回路構成は冗長であ
り、ハーフバンド光信号処理器を実現するためには、余
分な回路素子含んでいる。また、従来例2では、回路素
子数が固定であるため、設計の自由度が少ないという問
題があった本発明の目的は、回路構成が冗長でなく、し
かも設計の自由度が大きいハーフバンド光信号処理器を
提供することにある。
As described above, the conventional example 1 has a large degree of freedom in design, but has a redundant circuit configuration, and requires extra circuit elements to realize a half-band optical signal processor. Contains. Further, in the second conventional example, the number of circuit elements is fixed, so that there is a problem that the degree of freedom in design is small. It is to provide a signal processor.

【0016】[0016]

【課題を解決するための手段】本発明では、従来の問題
点を解決するため、図4に示した回路構成を採用してい
る。同図(a)は請求項1に対応する構成であり、同図
(b)は請求項2に対応する構成である。
In order to solve the conventional problems, the present invention employs the circuit configuration shown in FIG. FIG. 1A shows a configuration corresponding to claim 1, and FIG. 1B shows a configuration corresponding to claim 2.

【0017】図4(a)では、N(Nは自然数)個の光
結合器23−0,23−1,23−2,23−3,…
…,23−(N−1),25に挟まれた2本の光導波路
21,22の光路長差が、光信号入射側から2L,2
L,2L,……,2L,L(……は全て2Lを表す。)
(Lは0以上の実数)であり、最も光出射端に近い光結
合器25が3dBカップラである。また、位相を制御す
るための位相シフタ24−1,24−2,24−3,…
…,24−Nが各導波路上に設けられている。
In FIG. 4A, N (N is a natural number) optical couplers 23-0, 23-1, 23-2, 23-3,...
, 23- (N-1), 25, the optical path length difference between the two optical waveguides 21, 22 is 2L, 2 from the optical signal incident side.
L, 2L, ..., 2L, L (... represents all 2L)
(L is a real number equal to or greater than 0), and the optical coupler 25 closest to the light emitting end is a 3 dB coupler. Also, phase shifters 24-1, 24-2, 24-3,...
.., 24-N are provided on each waveguide.

【0018】図4(b)では、N(Nは自然数)個の光
結合器25,23−1,23−2,23−3,……,2
3−Nに挟まれた2本の光導波路21,22の光路長差
が、光信号入射側からL,2L,2L,……,2L,2
L(……は全て2Lを表す。)(Lは0以上の実数)で
あり、最も光入射端に近い光結合器25が3dBカップ
ラである。また、同様に、位相を制御するための位相シ
フタ24−1,24−2,24−3,……,24−Nが
各導波路上に設けられている。
In FIG. 4B, N (N is a natural number) optical couplers 25, 23-1, 23-2, 23-3,...
The optical path length difference between the two optical waveguides 21 and 22 sandwiched between 3-N is L, 2L, 2L,..., 2L, 2 from the optical signal incident side.
L (... represents all 2L) (L is a real number equal to or greater than 0), and the optical coupler 25 closest to the light incident end is a 3 dB coupler. Similarly, phase shifters 24-1, 24-2, 24-3,..., 24-N for controlling the phase are provided on each waveguide.

【0019】このように、本発明の回路構成は、従来の
光信号処理器が、回路構成が等しい光路長差Lのみを採
用していたのに対し、2Lというような2倍の光路長差
を採用していることに大きな特徴がある。
As described above, according to the circuit configuration of the present invention, the conventional optical signal processor employs only the optical path length difference L having the same circuit configuration, whereas the double optical path length difference such as 2L is used. There is a great feature in adopting

【0020】また、請求項3では、請求項1または請求
項2の構成において、出射端あるいは入射端にある3d
Bカップラを除いた全ての光結合器を結合率可変な光結
合器に置き換えている。
According to a third aspect of the present invention, in the configuration of the first or second aspect, the 3d at the exit end or the entrance end
All optical couplers except for the B coupler are replaced with optical couplers with variable coupling ratios.

【0021】本発明の請求項1または請求項2に対応す
る構成は、基本的には従来例1の構成からいくつかの素
子を減らした特殊なケースに相当する。具体的には、従
来例1の回路構成で、θ1,θ3,θ5,……,θN-2の光
結合器を除き、θNの光結合器を3dBカップラに置き
換えれば、請求項1の回路構成になる。同様に、請求項
2の回路構成は、従来例1の回路構成で、θ0の光結合
器を3dBカップラに置き換え、θ2,θ4,θ6,…
…,θN-1の光結合器を除けば得られる。
A configuration corresponding to claim 1 or 2 of the present invention basically corresponds to a special case in which some elements are reduced from the configuration of the conventional example 1. Specifically, in the circuit configuration of Conventional Example 1, except for the optical couplers of θ 1 , θ 3 , θ 5 ,..., Θ N-2 , the optical coupler of θ N is replaced with a 3 dB coupler. The circuit configuration of item 1 is obtained. Similarly, the circuit configuration of claim 2 is the same as the circuit configuration of the conventional example 1, except that the optical coupler of θ 0 is replaced by a 3 dB coupler, and θ 2 , θ 4 , θ 6 ,.
..., except for the optical coupler of θ N-1 .

【0022】このように、本発明が従来例1より回路素
子数を大幅に減らせるのは、式(1)で表されるハーフ
バンド特性に固有な対称性を利用して不必要な素子を減
らすことに成功したためである。このため、設計の自由
度は従来例1と同等に大きく、素子数は約半分程度に減
らすことが可能となった。従って、本発明では、従来例
1の回路構成の冗長性と従来例2の設計の自由度の問題
を同時に解決できる。
As described above, the present invention can greatly reduce the number of circuit elements as compared with the prior art 1 because unnecessary elements are eliminated by utilizing the symmetry inherent in the half-band characteristic represented by the equation (1). This is because we have succeeded in reducing it. Therefore, the degree of freedom of design is as large as that of the conventional example 1, and the number of elements can be reduced to about half. Therefore, according to the present invention, the problem of the redundancy of the circuit configuration of Conventional Example 1 and the degree of freedom of design of Conventional Example 2 can be solved simultaneously.

【0023】また、請求項3に対応する構成によれば、
光結合器の結合率、位相シフタの位相シフト量をともに
自由に設定可能となるため、一つの回路で任意のハーフ
バンド特性を持つプログラマブルな光信号処理器が実現
できるという大きな特徴を持つ。
According to a third aspect of the present invention,
Since the coupling ratio of the optical coupler and the phase shift amount of the phase shifter can both be freely set, there is a great feature that a programmable optical signal processor having an arbitrary half-band characteristic can be realized by one circuit.

【0024】[0024]

【発明の実施の形態】以下、実施の形態により本発明に
ついて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments.

【0025】[実施の形態1]実施の形態1では図4
(a)の回路構成を採用した。同図において、21,2
2は光導波路、21a,22aは光入力ポート、21
b,22bは出力ポート、23−0,23−1,23−
2,23−3,……,23−(N−1)は光結合器、2
4−1,24−2,24−3,……,24−Nは位相シ
フタ、25は3dBカップラである。
[Embodiment 1] In Embodiment 1, FIG.
The circuit configuration shown in FIG. In FIG.
2 is an optical waveguide, 21a and 22a are optical input ports, 21
b, 22b are output ports, 23-0, 23-1, 23-
2, 23-3,..., 23- (N-1) are optical couplers,
.., 24-N are phase shifters, and 25 is a 3 dB coupler.

【0026】本実施の形態を例に、本発明の回路構成が
式(1)で示したハーフバンド特性を実現可能であるこ
とを示す。説明のために、段数はN(Nは自然数)とす
る。
Taking this embodiment as an example, it will be shown that the circuit configuration of the present invention can realize the half-band characteristic shown in equation (1). For the sake of explanation, the number of stages is assumed to be N (N is a natural number).

【0027】今、図5中の波線で囲まれた光路長差2L
の導波路部分を表す2行2列の伝達行列が
Now, an optical path length difference 2L surrounded by a broken line in FIG.
Is a 2-by-2 transfer matrix representing the waveguide portion of

【0028】[0028]

【数2】 (Equation 2)

【0029】と記述されるとする。Let us say that

【0030】ここで、Here,

【0031】[0031]

【数3】 (Equation 3)

【0032】を表し、下付き記号「*」はG*(z)=G
*(1/z*)(上付き記号「*」は通常の複素共役を表
す。)を表すものとする。
Where the subscript “ * ” is G * (z) = G
* (1 / z * ) (the superscript “ * ” represents a normal complex conjugate).

【0033】一般に、光遅延線光信号処理器の周期周波
数は、その回路が持つ最小の光路長差により決定され
る。今回の場合、周期周波数ω0は光路長差Lによっ
て、ω0=2π(c/L)(cは光速)と算出される。
式(2)の伝達行列の各行列要素は
In general, the periodic frequency of an optical delay line optical signal processor is determined by the minimum optical path length difference of the circuit. In this case, the periodic frequency ω 0 is calculated from the optical path length difference L as ω 0 = 2π (c / L) (c is the speed of light).
Each matrix element of the transfer matrix of equation (2) is

【0034】[0034]

【数4】 (Equation 4)

【0035】と表される。G1(z),H1(z)の両伝
達関数ともにz-2,z-4,z-6というように偶数次の項
しか含まないのは、光路長差が2Lと2倍の光路長差を
持つためである。
## EQU2 ## Both the transfer functions of G 1 (z) and H 1 (z) include only the even-order terms such as z −2 , z −4 , and z −6, because the optical path length difference is 2L and twice as large. This is because they have a long difference.

【0036】出力端側の光路長差Lを持つ導波路部分を
含めた全体の光回路の伝達行列を求めると、
When the transfer matrix of the entire optical circuit including the waveguide portion having the optical path length difference L at the output end is obtained,

【0037】[0037]

【数5】 (Equation 5)

【0038】と求められる。ここで、Is required. here,

【0039】[0039]

【数6】 (Equation 6)

【0040】である。Is as follows.

【0041】式(5)では、光路長差L上の位相シフタ
24−Nの位相シフト量ψNは0,πとしている。G
(z),H(z)は伝達行列のユニタリ性より、
In equation (5), the phase shift amount ψ N of the phase shifter 24-N on the optical path length difference L is set to 0, π. G
(Z) and H (z) are given by the unitary property of the transfer matrix.

【0042】[0042]

【数7】 (Equation 7)

【0043】の関係が成立する。式(1)で表されるハ
ーフバンド特性はz変数を用いて書き直すと
The following relationship is established. The half-band characteristic represented by the equation (1) can be rewritten using the z variable.

【0044】[0044]

【数8】 (Equation 8)

【0045】と表される。このことから、式(6)を用
いると、ハーフバンド特性は
## EQU5 ## From this, using equation (6), the half-band characteristic becomes

【0046】[0046]

【数9】 (Equation 9)

【0047】と書き直すことができる。Can be rewritten.

【0048】本発明の回路構成では、G(z),H
(z)が式(5)の関係を満たすことから
In the circuit configuration of the present invention, G (z), H
Since (z) satisfies the relationship of equation (5)

【0049】[0049]

【数10】 (Equation 10)

【0050】の関係が成立する。式(9)では、G
1(z),H1(z)がともに偶数次しか含まないことを
利用している。
The following relationship is established. In equation (9), G
The fact that both 1 (z) and H 1 (z) include only even orders is used.

【0051】この結果より、G(z),H(z)が式
(8)のハーフバンド特性を満たし、本発明の回路構成
がハーフハンド特性を持つことが示される。
From these results, it is shown that G (z) and H (z) satisfy the half-band characteristics of Expression (8), and the circuit configuration of the present invention has half-hand characteristics.

【0052】本発明のもう一つの回路構成である図4
(b)の回路構成でも、同様にしてハーフバンド特性を
満たすことを示すことができる。
FIG. 4 shows another circuit configuration of the present invention.
It can be shown that the circuit configuration of FIG.

【0053】式(4)から分かるように、本発明の回路
構成によれば、N段構成で(2N−1)次のフィルタ特
性が実現できることが分かる。このことは、言い換える
と、従来例1の回路構成で(2N−1)次のフィルタ特
性を実現するためには、(2N−1)段の回路構成が必
要であるが、本発明の回路構成ではN段で良いというこ
とである。
As can be seen from equation (4), according to the circuit configuration of the present invention, it is understood that the (2N-1) -order filter characteristic can be realized with the N-stage configuration. In other words, in order to realize the (2N-1) -order filter characteristics with the circuit configuration of the first conventional example, a circuit configuration of (2N-1) stages is necessary. Then, N stages are sufficient.

【0054】このように、本発明の回路構成は従来例1
に比べ、約半分の素子数で等価なハーフバンドフィルタ
が実現できることが分かる。本発明の回路構成において
素子数を減らすことに成功したのは、式(1)で表され
るハーフバンド特性の対称性を利用して、余分な回路素
子を除くことに成功したためである。
As described above, the circuit configuration of the present invention is the same as that of the conventional example 1.
It can be seen that an equivalent half-band filter can be realized with about half the number of elements as compared with. The reason why the number of elements was successfully reduced in the circuit configuration of the present invention is that the use of the symmetry of the half-band characteristic represented by the equation (1) succeeded in removing extra circuit elements.

【0055】本実施の形態では、チェビシェフ特性を実
現する光信号処理器を石英系平面光回路を用いて作製し
た。位相シフタとしては、導波路上に形成したヒータを
用いた。温度により屈折率が変化する熱光学効果を用い
て、ヒータ加熱部の光路長差を変化させることにより位
相を制御した。段数Nは4段とし、100GHzの周期
周波数を実現するため、導波路長差を2.07mmとし
た。光結合器の結合率と位相シフタの位相シフト量の設
定値の一覧を表1に示す。
In this embodiment, an optical signal processor for realizing the Chebyshev characteristic is manufactured using a quartz-based planar optical circuit. As the phase shifter, a heater formed on the waveguide was used. The phase was controlled by changing the optical path length difference of the heater heating unit using the thermo-optic effect in which the refractive index changes with temperature. The number of stages N was four, and the waveguide length difference was 2.07 mm in order to realize a periodic frequency of 100 GHz. Table 1 shows a list of setting values of the coupling ratio of the optical coupler and the phase shift amount of the phase shifter.

【0056】[0056]

【表1】 [Table 1]

【0057】この設定値を基に設計し作製した光信号処
理器の光パワー透過率スペクトルの測定結果を図6に示
す。得られた光パワー透過特性は、透過域の透過率−
0.025dB、阻止域の透過率−58dB、透過バン
ドのバンドエッジ0.15ω0、透過バンドのバンドエ
ッジ0.35ω0であった。
FIG. 6 shows the measurement results of the optical power transmittance spectrum of the optical signal processor designed and manufactured based on the set values. The obtained optical power transmission characteristic is obtained by comparing the transmittance of the transmission area by −
0.025 dB, a transmittance of −58 dB in a stop band, a band edge of a transmission band of 0.15ω 0 , and a band edge of a transmission band of 0.35ω 0 .

【0058】[実施の形態2]実施の形態2も同様に図
4(a)の回路構成を採用した。この実施の形態では、
最大平坦特性を実現する光信号処理器を石英系平面光回
路を用いて作製した。段数Nは4段とし、100GHz
の周期周波数を実現するため、導波路長差を2.07m
mとした。光結合器の結合率と位相シフタの位相シフト
量の設定値の一覧を表2に示す。
[Second Embodiment] A second embodiment also employs the circuit configuration shown in FIG. In this embodiment,
An optical signal processor realizing the maximum flatness was fabricated using a quartz-based planar optical circuit. The number of stages N is 4 stages, 100 GHz
Waveguide frequency difference of 2.07 m
m. Table 2 shows a list of setting values of the coupling ratio of the optical coupler and the phase shift amount of the phase shifter.

【0059】[0059]

【表2】 [Table 2]

【0060】この設定値を基に設計し作製した光信号処
理器の光パワー透過率スペクトルの測定結果を図7に示
す。作製された光信号処理器の光パワー透過率は、設計
通り最大平坦性が実現されていることが分かる。
FIG. 7 shows the measurement results of the optical power transmittance spectrum of the optical signal processor designed and manufactured based on the set values. It can be seen that the optical power transmittance of the manufactured optical signal processor achieves the maximum flatness as designed.

【0061】[実施の形態3]本実施の形態は、請求項
3に基づき、図4(a)の回路構成における光結合器を
結合率可変な光結合器に置き換えたものである。図8に
今回用いた回路構成を示す。
[Embodiment 3] In this embodiment, based on claim 3, the optical coupler in the circuit configuration of FIG. 4A is replaced by an optical coupler having a variable coupling ratio. FIG. 8 shows the circuit configuration used this time.

【0062】この回路構成は図4(a)の光結合器23
−0,23−1,……,23−(N−1)を、それぞれ
結合率可変な光結合器26−0,26−1,……,26
−(N−1)で置き換えている。ここでは、結合率可変
な光結合器26−0〜26−(N−1)として、光路長
差の等しい光導波路と、2個の3dBカップラ27−
0,27−1,……,27−(N−1)と、導波路上に
設けた位相シフタ28−0,28−1,……,28−
(N−1)とよりなる対称マッハツェンダ干渉計構成の
結合率可変光結合器を採用した。
This circuit configuration corresponds to the optical coupler 23 shown in FIG.
, 23- (N-1) are respectively connected to optical couplers 26-0, 26-1,.
-(N-1). Here, as the optical couplers 26-0 to 26- (N-1) whose coupling ratios are variable, the optical waveguides having the same optical path length difference and the two 3 dB couplers 27-
, 27- (N-1) and phase shifters 28-0, 28-1,..., 28- provided on the waveguide.
A variable coupling rate optical coupler having a symmetric Mach-Zehnder interferometer configuration composed of (N-1) was employed.

【0063】この結合率可変光結合器26−0〜26−
(N−1)では、位相シフタ28−0〜28−(N−
1)の位相シフト量を変化させることにより、任意の結
合率が実現される。この結合率可変光結合器を用いるこ
とにより、一つの回路で任意のハーフバンド特性が得ら
れるプログラマブル性を実現することができる。
The variable coupling rate optical couplers 26-0 to 26-
In (N-1), the phase shifters 28-0 to 28- (N-
By changing the phase shift amount of 1), an arbitrary coupling ratio can be realized. By using this variable coupling ratio optical coupler, it is possible to realize the programmability of obtaining an arbitrary half-band characteristic with one circuit.

【0064】本実施の形態でも、プログラマブルな光信
号処理器を石英系平面光回路を用いて作製した。段数N
は4段とし、100GHzの周期周波数を実現するた
め、導波路長差を2.07mmとした。プログラマブル
性を確認するため、実際に実施の形態1と実施の形態2
の回路パラメータを設定し、それぞれチェビシェフタイ
プ、最大平坦タイプのハーフバンド特性が得られること
を確認した。
Also in this embodiment, a programmable optical signal processor was manufactured using a quartz-based planar optical circuit. Number of stages N
Has four steps, and the waveguide length difference is 2.07 mm in order to realize a periodic frequency of 100 GHz. In order to confirm the programmability, the first and second embodiments are actually used.
It was confirmed that the half-band characteristics of the Chebyshev type and the maximum flat type were obtained, respectively.

【0065】以上、実施の形態を用いて本発明の構成及
び作用を説明したが、本発明はこれらの実施の形態に限
定されるものではない。例えば、本発明では石英系平面
光回路を用いたが、半導体、LiNbO3等の別の材料
で平面光回路を形成することも可能である。また、平面
光回路の代わりに光ファイバを用いて光遅延回路を作る
ことも可能である。また、位相制御の方法として、各実
施の形態では熱光学効果を利用したが、電気光学効果等
の他の手法により、位相制御を行うことも可能である。
As described above, the configuration and operation of the present invention have been described with reference to the embodiments. However, the present invention is not limited to these embodiments. For example, although a quartz-based planar optical circuit is used in the present invention, it is also possible to form a planar optical circuit with another material such as a semiconductor or LiNbO 3 . Further, it is also possible to make an optical delay circuit by using an optical fiber instead of the planar optical circuit. Further, although the thermo-optical effect is used in each embodiment as a phase control method, the phase control can be performed by another method such as an electro-optical effect.

【0066】また、図4(図5も含む。)及び図8に示
した実施の形態の回路構成において、光路長差を持って
光結合器に挟まれた各2本の光導波路は、光路長の長い
方が全て一側(図4及び図8では図面の上方)に揃えら
れている。しかし、本発明は光路長の長い(もしくは短
い)方の光導波路を全て一側に揃えた構成に限定される
ものではなく、光路長の長い(もしくは短い)方の光導
波路をどのように配置するかは任意であり、例えば、奇
数番目の光路長の長い方の光導波路を一側(図面の上
方)に配置し、偶数番目の光路長の長い方の光導波路を
他側(図面の下方)に配置するような構成をとることも
可能である。さらにまた、本発明は位相シフタの配置に
ついても、光路長の長い方の光導波路に設けた構成に限
定されるものではなく、各位相シフタを光路長の長い方
の光導波路に設けるか、光路長の短い方の光導波路に設
けるかは任意である。
In the circuit configuration of the embodiment shown in FIG. 4 (including FIG. 5) and FIG. 8, each of the two optical waveguides sandwiched between the optical couplers with an optical path length difference is an optical path. The longer ones are all aligned on one side (in FIGS. 4 and 8, above the drawings). However, the present invention is not limited to a configuration in which all of the optical waveguides having a longer (or shorter) optical path length are aligned on one side, and how the optical waveguides having a longer (or shorter) optical path length are arranged. This is optional. For example, an odd-numbered optical waveguide having a longer optical path length is arranged on one side (upper side in the drawing), and an even-numbered optical waveguide having a longer optical path length is arranged on the other side (lower side in the drawing). ) Can be adopted. Furthermore, the present invention is not limited to the configuration in which the phase shifters are provided in the optical waveguide having the longer optical path length. Each phase shifter is provided in the optical waveguide having the longer optical path length. The arrangement in the shorter optical waveguide is optional.

【0067】このように、本発明は、素子の組合せ方を
表す回路構成に関するものであり、その回路の物理的な
実現手段には拘束されない。また、各実施の形態で述べ
た回路パラメータは設計例の一つに過ぎず、この数値に
より限定されるものではないことも併せて述べておく。
As described above, the present invention relates to a circuit configuration representing a method of assembling elements, and is not restricted by physical means for realizing the circuit. In addition, it is also noted that the circuit parameters described in each embodiment are only one of the design examples and are not limited by the numerical values.

【0068】[0068]

【発明の効果】本発明は、光信号処理機能として代表的
なハーフバンド特性を実現する必要最小限の回路素子を
含む最小構成の回路構成を提供するものである。本発明
により、従来の光信号処理器の半分程度の個数の回路素
子により回路を構成することができ、回路の小型化が可
能である。また、素子数が少なくできることから、回路
パラメータの調整に必要な時間も大幅に短縮可能であ
る。このように、本発明はハーフバンド光信号処理器を
量産する上で、その経済効果は非常に大きい。
The present invention provides a circuit configuration of a minimum configuration including a minimum necessary circuit element for realizing a typical half band characteristic as an optical signal processing function. According to the present invention, a circuit can be constituted by about half the number of circuit elements of a conventional optical signal processor, and the circuit can be reduced in size. Further, since the number of elements can be reduced, the time required for adjusting circuit parameters can be significantly reduced. As described above, the present invention has a great economic effect in mass-producing the half-band optical signal processor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で定義するハーフバンド特性を示す図FIG. 1 is a diagram showing a half-band characteristic defined by the present invention.

【図2】従来の光信号処理器の一例を示す構成図FIG. 2 is a configuration diagram showing an example of a conventional optical signal processor.

【図3】従来の光信号処理器の他の例を示す構成図FIG. 3 is a configuration diagram showing another example of a conventional optical signal processor.

【図4】本発明の光信号処理器の実施の形態の一例を示
す構成図
FIG. 4 is a configuration diagram showing an example of an embodiment of an optical signal processor of the present invention.

【図5】本発明の光信号処理器がハーフバンド特性を持
つことの説明図
FIG. 5 is a diagram illustrating that the optical signal processor of the present invention has a half-band characteristic.

【図6】図4(a)の回路構成を持つ実施の形態1にお
ける光信号処理器のチェビシェフタイプの透過特性の測
定結果を示す図
FIG. 6 is a diagram showing a measurement result of a Chebyshev type transmission characteristic of the optical signal processor according to the first embodiment having the circuit configuration of FIG. 4A;

【図7】図4(a)の回路構成を持つ実施の形態2にお
ける光信号処理器の最大平坦タイプの透過特性の測定結
果を示す図
FIG. 7 is a diagram showing a measurement result of a transmission characteristic of a maximum flat type of the optical signal processor according to the second embodiment having the circuit configuration of FIG. 4A;

【図8】本発明の光信号処理器の実施の形態の他の例を
示す構成図
FIG. 8 is a configuration diagram showing another example of the embodiment of the optical signal processor of the present invention.

【符号の説明】[Explanation of symbols]

21,22:光導波路、21a,22a:入力ポー卜、
21b,22b:出力ポート、23−0〜23−N:光
結合器、24−1〜24−N:位相シフタ、25:3d
Bカップラ、26−0〜26−(N−1):結合率可変
な光結合器、27−0〜27−(N−1):結合率可変
な光結合器を構成する3dBカップラ、28−0〜28
−(N−1):結合率可変な光結合器を構成する結合率
調整用位相シフタ。
21, 22: optical waveguide, 21a, 22a: input port,
21b, 22b: output port, 23-0 to 23-N: optical coupler, 24-1 to 24-N: phase shifter, 25: 3d
B coupler, 26-0 to 26- (N-1): Optical coupler with variable coupling ratio, 27-0 to 27- (N-1): 3 dB coupler constituting an optical coupler with variable coupling ratio, 28- 0-28
-(N-1): a coupling ratio adjusting phase shifter constituting an optical coupling device having a variable coupling ratio.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小熊 学 東京都新宿区西新宿3丁目19番2号 日本 電信電話株式会社内 Fターム(参考) 2H079 AA06 BA03 CA07 EA04 EA05 EB27  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Manabu Oguma F-term (reference) 2H079 AA06 BA03 CA07 EA04 EA05 EB27 in Nippon Telegraph and Telephone Co., Ltd. 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2本の光導波路と、該2本の光導波路を
N+1(Nは自然数)箇所の異なる位置で結合するN+
1個の光結合器と、該N+1個の光結合器にそれぞれ挟
まれたN箇所の前記2本の光導波路上の少なくとも一方
に設けられた位相シフタとよりなる構成を有し、 光信号出射側の最も端にある1個の光結合器が3dBカ
ップラであり、 前記N+1個の光結合器にそれぞれ挟まれたN箇所の前
記2本の光導波路が、光信号入射側から2L,2L,2
L,……,2L,L(……は全て2Lを表す。)(Lは
0以上の実数)の光路長差を持つことを特徴とするハー
フバンド光信号処理器。
1. An optical system comprising: two optical waveguides; and N + coupling the two optical waveguides at N + 1 (N is a natural number) different positions.
The optical signal output device has a configuration including one optical coupler and a phase shifter provided on at least one of the two optical waveguides at N locations sandwiched between the (N + 1) optical couplers. One of the optical couplers at the end on the side is a 3 dB coupler, and the two optical waveguides at N locations sandwiched between the (N + 1) optical couplers are 2L, 2L, and 2L from the optical signal incident side. 2
A half-band optical signal processor having an optical path length difference of L,..., 2L, L (... represents all 2L) (L is a real number equal to or greater than 0).
【請求項2】 2本の光導波路と、該2本の光導波路を
N+1(Nは自然数)箇所の異なる位置で結合するN+
1個の光結合器と、該N+1個の光結合器にそれぞれ挟
まれたN箇所の前記2本の光導波路上の少なくとも一方
に設けられた位相シフタとよりなる構成を有し、 光信号入射側の最も端にある1個の光結合器が3dBカ
ップラであり、 前記N+1個の光結合器にそれぞれ挟まれたN箇所の前
記2本の光導波路が、光信号入射側からL,2L,2
L,……,2L,2L(……は全て2Lを表す。)(L
は0以上の実数)の光路長差を持つことを特徴とするハ
ーフバンド光信号処理器。
2. An optical system comprising: two optical waveguides; and N + coupling the two optical waveguides at N + 1 (N is a natural number) different positions.
The optical signal input device comprises: one optical coupler; and a phase shifter provided on at least one of the two optical waveguides at N locations sandwiched between the (N + 1) optical couplers. One of the optical couplers at the end on the side is a 3 dB coupler, and the two optical waveguides at N locations sandwiched between the (N + 1) optical couplers are L, 2L, 2
L, ..., 2L, 2L (... represents all 2L) (L
A half-band optical signal processor having an optical path length difference of 0 or more.
【請求項3】 3dBカップラを除く残りの全ての光結
合器が結合率可変であることを特徴とする請求項1また
は2記載のハーフバンド光信号処理器。
3. The half-band optical signal processor according to claim 1, wherein all the remaining optical couplers except the 3 dB coupler have variable coupling ratios.
JP16237499A 1999-06-09 1999-06-09 Half-band optical signal processor Expired - Lifetime JP3535042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16237499A JP3535042B2 (en) 1999-06-09 1999-06-09 Half-band optical signal processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16237499A JP3535042B2 (en) 1999-06-09 1999-06-09 Half-band optical signal processor

Publications (2)

Publication Number Publication Date
JP2000347148A true JP2000347148A (en) 2000-12-15
JP3535042B2 JP3535042B2 (en) 2004-06-07

Family

ID=15753369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16237499A Expired - Lifetime JP3535042B2 (en) 1999-06-09 1999-06-09 Half-band optical signal processor

Country Status (1)

Country Link
JP (1) JP3535042B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350656A (en) * 2001-05-24 2002-12-04 Sumitomo Electric Ind Ltd Plane waveguide type optical filter
JP2008209955A (en) * 2002-12-06 2008-09-11 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexing/demultiplexing circuit equipped with phase generating function
JP2010134224A (en) * 2008-12-05 2010-06-17 Oki Electric Ind Co Ltd Optical multiplexing/demultiplexing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350656A (en) * 2001-05-24 2002-12-04 Sumitomo Electric Ind Ltd Plane waveguide type optical filter
JP2008209955A (en) * 2002-12-06 2008-09-11 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexing/demultiplexing circuit equipped with phase generating function
JP4494495B2 (en) * 2002-12-06 2010-06-30 日本電信電話株式会社 Optical multiplexing / demultiplexing circuit with phase generation function
JP2010134224A (en) * 2008-12-05 2010-06-17 Oki Electric Ind Co Ltd Optical multiplexing/demultiplexing device

Also Published As

Publication number Publication date
JP3535042B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
Jinguji et al. Optical half-band filters
Lenz et al. General optical all-pass filter structures for dispersion control in WDM systems
Jinguji et al. Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations
US7221821B2 (en) Hitless errorless trimmable dynamic optical add/drop multiplexer devices
US8781331B2 (en) Controllable optical add/drop multiplexer
EP2049929B1 (en) Ultra-narrow bandpass filter
JP3698944B2 (en) Reconfigurable merge / branch for fiber optic communication systems
CN112630892A (en) Four-channel coarse wavelength division multiplexer based on non-equal-arm wide Mach-Zehnder interferometer
JP4022766B2 (en) Chromatic dispersion device
EP1299967B1 (en) Bragg grating assisted mmimi-coupler for tunable add-drop multiplexing
US5526439A (en) Optical filter using electro-optic material
JP3535042B2 (en) Half-band optical signal processor
Madsen Subband all-pass filter architectures with applications to dispersion and dispersion-slope compensation and continuously variable delay lines
Madsen A multiport frequency band selector with inherently low loss, flat passbands, and low crosstalk
JP2002071978A (en) Optical multiplexer/demultiplexer improved in group delay characteristic
JP4902447B2 (en) Chromatic dispersion compensation circuit
JP2004233619A (en) Optical switch and optical wavelength router
US7356219B2 (en) Integrated optical add/drop device having switching function
Madsen Optical filter synthesis
EP3874327B1 (en) Optical finite impulse response filter with rate flexibility and multi-wavelength operation capability based on integrated delay lines with micro-ring resonators
Jinguji et al. Synthesis of one-input M-output optical FIR lattice circuits
WO2024038494A1 (en) Gain equalizer
Pérez et al. Compact programmable RF-photonic filters using integrated waveguide mesh processors
WO2020145257A1 (en) Optical signal processing device
Cincotti et al. Logarithmic wavelength demultiplexers

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3535042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term