JP2000346836A - Diagnosing method of cable connection part - Google Patents

Diagnosing method of cable connection part

Info

Publication number
JP2000346836A
JP2000346836A JP11157174A JP15717499A JP2000346836A JP 2000346836 A JP2000346836 A JP 2000346836A JP 11157174 A JP11157174 A JP 11157174A JP 15717499 A JP15717499 A JP 15717499A JP 2000346836 A JP2000346836 A JP 2000346836A
Authority
JP
Japan
Prior art keywords
reinforcing layer
diagnosing
insulating reinforcing
cable
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11157174A
Other languages
Japanese (ja)
Other versions
JP4001439B2 (en
Inventor
Masahiko Nakade
雅彦 中出
Toshiya Matsui
俊哉 松井
Terushi Katagai
昭史 片貝
Toshihiro Nakagawa
敏裕 中川
Takanori Yamazaki
孝則 山崎
Yasuo Fujiyoshi
泰夫 藤吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP15717499A priority Critical patent/JP4001439B2/en
Publication of JP2000346836A publication Critical patent/JP2000346836A/en
Application granted granted Critical
Publication of JP4001439B2 publication Critical patent/JP4001439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a diagnosing method of a cable connection part that can allow diagnosis of the connection part in a power cable line without receiving an influence from cables. SOLUTION: A connection part 12 in one of a plurality of phases constituting a power cable line is disassembled to recover an insulating reinforcement layer 9, the oxidation degree, amount of residual antioxidant, oxidation induction period, thermal decomposition starting temperature, and elongation during breaking of this insulating reinforcement layer 9 are measured, and based on the measurement result, the service life of the connection parts of the entire cable line is judged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ケーブル接続部の
診断方法に関し、特に、架橋化ポリエチレン絶縁電力ケ
ーブル等のケーブル線路における接続部の耐用寿命を判
定するのに好適なケーブル接続部の診断方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of diagnosing a cable connection, and more particularly to a method of diagnosing a cable connection suitable for determining the service life of a connection in a cable line such as a crosslinked polyethylene insulated power cable. About.

【0002】[0002]

【従来の技術】図3に、架橋化ポリエチレン絶縁電力ケ
ーブルの接続部の構成例を示す。1a、1bは、導体2
の上に半導電層3、架橋化ポリエチレンの絶縁体4、外
部半導電層5およびシース6を順に形成した架橋化ポリ
エチレン電力ケーブルを示し、圧縮スリーブ7により導
体2が接続されている。
2. Description of the Related Art FIG. 3 shows an example of the structure of a connecting portion of a crosslinked polyethylene insulated power cable. 1a and 1b are conductors 2
Shows a cross-linked polyethylene power cable in which a semiconductive layer 3, a cross-linked polyethylene insulator 4, an outer semi-conductive layer 5 and a sheath 6 are formed in this order, and a conductor 2 is connected by a compression sleeve 7.

【0003】8は圧縮スリーブ7から内部半導電層3に
かけて巻き付けられた内部半導電テープ、9は一方のケ
ーブル1aの絶縁体4から他方のケーブル1bの絶縁体
4にかけて形成された絶縁補強層を示し、エチレン・プ
ロピレンラバー等をベース材とした自己融着性絶縁テー
プの巻き付けによって構成されている。10は絶縁補強
層9の上に巻き付けられた外部半導電テープ、11は外
部保護層を示す。
Reference numeral 8 denotes an internal semiconductive tape wound around the compression sleeve 7 and the internal semiconductive layer 3, and 9 denotes an insulating reinforcing layer formed from the insulator 4 of one cable 1a to the insulator 4 of the other cable 1b. As shown in the figure, a self-fusing insulating tape based on ethylene / propylene rubber or the like is wound. Reference numeral 10 denotes an external semiconductive tape wound on the insulating reinforcing layer 9, and reference numeral 11 denotes an external protective layer.

【0004】22〜77kVクラスの高電圧ケーブルに
おいて、この構成の接続部は広く普及しており、定期的
に接続部の点検が行われている。従来、この種の接続部
の劣化診断は、ケーブルと一括した状態のもとで直流耐
圧、直流漏れ電流を測定したり、あるいはtanδを測
定することによって行われている。
[0004] In a 22 to 77 kV class high-voltage cable, the connection portion of this configuration is widely spread, and the connection portion is regularly inspected. Conventionally, this kind of deterioration diagnosis of a connection portion is performed by measuring a DC withstand voltage and a DC leakage current or measuring tan δ in a state where the cable and the cable are combined.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来のケーブ
ル接続部の診断方法によると、ケーブルと接続部の複合
評価となるために、ケーブルからの影響を排除すること
が難しく、このため、接続部の劣化だけを対象とした診
断を行うことは困難であった。
However, according to the conventional method of diagnosing a cable connection part, it is difficult to eliminate the influence from the cable because the composite evaluation of the cable and the connection part is required. It was difficult to make a diagnosis only for the deterioration of

【0006】従って、本発明の目的は、電力ケーブル線
路における接続部の診断をケーブルからの影響を受けず
に行うことのできるケーブル接続部の診断方法を提供す
ることにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method of diagnosing a cable connection portion in which a connection portion of a power cable line can be diagnosed without being affected by a cable.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、自己融着性絶縁テープの巻き付けによる
絶縁補強層を有した接続部を有し、ケーブルがゴム、プ
ラスティックスによって絶縁された電力ケーブル線路の
前記接続部を診断するケーブル接続部の診断方法におい
て、前記電力ケーブル線路を構成する複数の相のいずれ
か1相の前記接続部を解体して前記絶縁補強層を回収
し、回収した前記絶縁補強層を対象として、酸化度合、
残留酸化防止剤の量、酸化誘導期、熱分解開始温度、お
よび破断時の伸びによって制定された測定項目の少なく
とも1つを測定し、測定した結果と前記測定項目のそれ
ぞれに予め定められている判定基準を比較して、前記電
力ケーブル線路全体の接続部の耐用寿命を判定すること
を特徴とするケーブル接続部の診断方法を提供するもの
である。
In order to achieve the above object, the present invention has a connecting portion having an insulating reinforcing layer formed by winding a self-fusing insulating tape, and a cable is insulated by rubber or plastics. In the method for diagnosing a cable connection part for diagnosing the connection part of the power cable line, the connection part of any one of a plurality of phases constituting the power cable line is disassembled to collect the insulating reinforcing layer. , For the collected insulation reinforcing layer, the degree of oxidation,
At least one of the measurement items established by the amount of the residual antioxidant, the oxidation induction period, the thermal decomposition start temperature, and the elongation at break is measured, and the measurement results and the measurement items are predetermined. It is an object of the present invention to provide a method of diagnosing a cable connection portion, wherein a criterion is compared to determine a service life of a connection portion of the entire power cable line.

【0008】また、本発明は、上記の目的を達成するた
め、自己融着性絶縁テープの巻き付けによる絶縁補強層
を有した接続部を有し、ケーブルがゴム、プラスティッ
クスによって絶縁された電力ケーブル線路の前記接続部
を診断するケーブル接続部の診断方法において、前記電
力ケーブル線路を構成する複数の相のいずれか1相の前
記接続部を解体して前記絶縁補強層を回収し、回収した
前記絶縁補強層の酸化誘導期を、示差走査熱分析器を使
用して複数の異なる所定の温度において測定し、測定し
た酸化誘導期と前記複数の異なる所定の温度に基づいて
アーレニウスプロットによる酸化開始時間および温度の
関係グラフを作成し、前記関係グラフの温度軸に前記絶
縁補強層の運転時の温度を当てはめたとき、前記関係グ
ラフの酸化開始時間軸が示す時間を前記電力ケーブル線
路全体の接続部の耐用寿命と判定することを特徴とする
ケーブル接続部の診断方法を提供するものである。
In order to achieve the above object, the present invention provides a power cable having a connecting portion having an insulating reinforcing layer by winding a self-fusing insulating tape, wherein the cable is insulated by rubber or plastics. In the method for diagnosing a cable connection portion for diagnosing the connection portion of a line, the connection portion of any one of a plurality of phases constituting the power cable line is disassembled to recover the insulating reinforcing layer, and the recovered The oxidation induction period of the insulation reinforcing layer is measured at a plurality of different predetermined temperatures using a differential scanning calorimeter, and oxidation is started by an Arrhenius plot based on the measured oxidation induction period and the plurality of different predetermined temperatures. A relationship graph of time and temperature is created, and when the temperature at the time of operation of the insulating reinforcing layer is applied to the temperature axis of the relationship graph, at the start of oxidation of the relationship graph There is provided a method of diagnosing cable connection, characterized in that to determine the time indicated axis and the power cable line entire connection portion of the useful life.

【0009】さらに、本発明は、上記の目的を達成する
ため、自己融着性絶縁テープの巻き付けによる絶縁補強
層を有した接続部を有し、ケーブルがゴム、プラスティ
ックスによって絶縁された電力ケーブル線路の前記接続
部を診断するケーブル接続部の診断方法において、前記
電力ケーブル線路を構成する複数の相のいずれか1相の
前記接続部を解体して前記絶縁補強層を回収し、回収し
た前記絶縁補強層の熱分解開始温度を熱重量分析器によ
り測定して測定結果から前記絶縁補強層の劣化を意味す
る一定の重量減少率を示すまでの活性化エネルギーを求
め、求めた前記活性化エネルギーから複数の異なる所定
の温度において前記一定の重量減少率を示すのに要する
時間を算出し、算出した時間と前記複数の異なる所定の
温度に基づいてアーレニウスプロットによる時間および
温度の関係グラフを作成し、前記関係グラフの温度軸に
前記絶縁補強層の運転時の温度を当てはめたとき、前記
関係グラフの時間軸が示す時間を前記電力ケーブル線路
全体の接続部の耐用寿命と判定することを特徴とするケ
ーブル接続部の診断方法を提供するものである。
Further, in order to achieve the above object, the present invention provides a power cable having a connecting portion having an insulating reinforcing layer by winding a self-fusing insulating tape, wherein the cable is insulated by rubber or plastics. In the method for diagnosing a cable connection portion for diagnosing the connection portion of a line, the connection portion of any one of a plurality of phases constituting the power cable line is disassembled to recover the insulating reinforcing layer, and the recovered The thermal decomposition onset temperature of the insulating reinforcing layer was measured by a thermogravimetric analyzer, and the activation energy was determined from the measurement result until the insulating reinforcing layer showed a constant weight loss rate meaning the deterioration of the insulating reinforcing layer. The time required to exhibit the constant weight loss rate at a plurality of different predetermined temperatures is calculated based on the calculated time and the plurality of different predetermined temperatures. A relationship graph of time and temperature is created by a Rhenius plot, and when the temperature during the operation of the insulating reinforcing layer is applied to the temperature axis of the relationship graph, the time indicated by the time axis of the relationship graph indicates the entire power cable line. And a method of diagnosing the cable connection portion, which is characterized in that the service life of the connection portion is determined to be useful.

【0010】上記のいずれか1相に複数の接続部が存在
する場合には、多くの場合、そのうちの1つの接続部が
解体の対象となる。従って、1個の接続部によって線路
全体の診断が行われ、診断の結果に問題がなければ、絶
縁補強層を回収された接続部は再度組み立てられ、ケー
ブル線路を構成する1相として復帰させられる。測定項
目は、最低1つということになるが、できるだけ多くの
項目を測定して総合的に判定することが好ましい。
When a plurality of connecting portions exist in any one of the above phases, in most cases, one of the connecting portions is to be dismantled. Accordingly, the entire line is diagnosed by one connecting portion, and if there is no problem in the result of the diagnosis, the connecting portion from which the insulating reinforcing layer has been recovered is reassembled and returned as one phase constituting the cable line. . Although there is at least one measurement item, it is preferable to measure as many items as possible and make a comprehensive judgment.

【0011】上記に言う自己融着性絶縁テープとは、対
象物に巻き付けたときに巻き付け層間の界面が消失して
融着一体化する性質を有したテープのことであり、たと
えば、エチレン・プロピレンラバー、あるいはエチレン
・プロピレン・ジエンラバー等のゴム類によって構成さ
れる。
The self-fusing insulating tape referred to above is a tape having a property that when wound around an object, the interface between the wound layers disappears and is fused and integrated. It is made of rubber or rubbers such as ethylene propylene diene rubber.

【0012】診断の対象となる電力ケーブルは、主とし
て架橋化ポリエチレンを絶縁体として有するケーブルと
なるが、エチレン・プロピレンラバーなどの他のゴム、
プラスティックスを絶縁体とするケーブルであっても差
し支えない。
The power cable to be diagnosed is a cable mainly having crosslinked polyethylene as an insulator, but other rubber such as ethylene / propylene rubber,
A cable using plastics as an insulator may be used.

【0013】[0013]

【発明の実施の形態】次に、本発明によるケーブル接続
部の診断方法の実施の形態を説明する。図3のように、
エチレン・プロピレンラバーの自己融着性絶縁テープの
巻き付けによる絶縁補強層9を有し、66kV×325
mm2 (1a側)と66kV×250mm2 (1b側)
の架橋化ポリエチレン絶縁電力ケーブルを接続した接続
部12をケーブル1a、1bとともに布設現場より撤去
し、回収した。
Next, an embodiment of a method for diagnosing a cable connection portion according to the present invention will be described. As shown in FIG.
It has an insulating reinforcing layer 9 formed by winding a self-fusing insulating tape of ethylene / propylene rubber, and has 66 kV × 325.
mm 2 (1a side) and 66 kV × 250 mm 2 (1b side)
The connection part 12 to which the crosslinked polyethylene insulated power cable of the above was connected together with the cables 1a and 1b was removed from the installation site and collected.

【0014】次に、このケーブル1a、1bと接続部1
2を実験場に布設し、105℃において42kVの電圧
を課電して長期通電試験を実施したところ、2,877
時間経過後に接続部12に絶縁破壊が発生した。接続部
12を解体して、絶縁破壊が絶縁補強層9において発生
しているのを確認した後、絶縁補強層9を接続部12か
ら切り離し、切り離した絶縁補強層9と新しいエチレン
・プロピレンラバーの自己融着性絶縁テープ(以下、新
テープという)を対象として、以下の測定を実施した。
Next, the cables 1a and 1b and the connecting portion 1
2 was laid at the experimental site, and a voltage of 42 kV was applied at 105 ° C. to perform a long-term conduction test.
After a lapse of time, insulation breakdown occurred in the connection portion 12. After disassembling the connecting portion 12 and confirming that insulation breakdown has occurred in the insulating reinforcing layer 9, the insulating reinforcing layer 9 is separated from the connecting portion 12, and the separated insulating reinforcing layer 9 and a new ethylene-propylene rubber are removed. The following measurements were performed on a self-fusing insulating tape (hereinafter, referred to as a new tape).

【0015】1.酸化度合 フーリエ変換赤外分光計による全反射法で絶縁補強層の
酸化度合を測定した結果を表1に示す。メチレン基(吸
光帯2,920cm-1)とカルボニル基(1,730c
-1)と二重結合(1,600cm-1)の吸光度に基づ
き、メチレン基を基準としたカルボニル基の比率と二重
結合の比率を求めたものである。
1. Oxidation degree Table 1 shows the result of measuring the oxidation degree of the insulating reinforcing layer by a total reflection method using a Fourier transform infrared spectrometer. Methylene group (absorption band 2,920 cm -1 ) and carbonyl group (1,730 c
m -1) and on the basis of the absorbance of the double bond (1,600cm -1), in which determined the ratio of the ratio and the double bond of the carbonyl group relative to the methylene group.

【0016】[0016]

【表1】 [Table 1]

【0017】この表によれば、新テープに比べて絶縁補
強層の劣化が進んでいることが認められる。内層、中
層、外層においてカルボニル基の比率に差はないが、新
テープの0.01>に比較すると平均で0.03以上と
比率が高く、さらに、内層の二重結合の比率も高い数値
を示している。
According to this table, it is recognized that the insulation reinforcing layer is more deteriorated than the new tape. Although there is no difference in the ratio of carbonyl groups in the inner layer, the middle layer, and the outer layer, the ratio is higher at 0.03 or more on average compared to 0.01> of the new tape, and the ratio of double bonds in the inner layer is also higher. Is shown.

【0018】従って、これらのことから言えることは、
(カルボニル基の吸光度)/(メチレン基の吸光度)が
0.03以上で、(二重結合の吸光度)/(メチレン基
の吸光度)が0.2以上になると、絶縁破壊を起こす危
険があるということであり、接続部12の耐用寿命の判
定をこれに基づいて行うことが可能となる。そして、こ
の判定を電力ケーブル線路全体の接続部の寿命判定とす
ることができる(以下、各測定項目とも同じ)。
Therefore, what can be said from these facts is that
If (absorbance of carbonyl group) / (absorbance of methylene group) is 0.03 or more and (absorbance of double bond) / (absorbance of methylene group) is 0.2 or more, there is a danger of causing dielectric breakdown. That is, the service life of the connection portion 12 can be determined based on the service life. Then, this determination can be made as the life determination of the connection portion of the entire power cable line (hereinafter, the same applies to each measurement item).

【0019】2.残留酸化防止剤の量 試料を有機溶剤に入れ、含有物を抽出し、抽出液を濃縮
したものをガスクロマトグラフィーにかけ、定量評価を
行った。表1に、その結果を示す。この表によれば、絶
縁補強層中の酸化防止剤の量は新テープに比較して大き
く減少しており、特に、内層の量は新テープに比べ、5
0%以下に減少している。従って、この結果から言える
ことは、酸化防止剤が半減した状態になると、絶縁破壊
の危険性が高まることであり、この点は、接続部の耐用
寿命を知るうえにおいて重要な判断基準となる。
2. Amount of residual antioxidant A sample was placed in an organic solvent, the content was extracted, and the extract was concentrated and subjected to gas chromatography for quantitative evaluation. Table 1 shows the results. According to this table, the amount of the antioxidant in the insulating reinforcing layer is greatly reduced as compared with the new tape, and in particular, the amount of the inner layer is 5 times smaller than that of the new tape.
It has decreased to 0% or less. Therefore, what can be said from this result is that when the antioxidant is reduced by half, the danger of dielectric breakdown increases, and this point is an important criterion for knowing the useful life of the connection part.

【0020】[0020]

【表2】 [Table 2]

【0021】3.酸化誘導期 示差走査熱分析器を使用して酸化吸光度を測定した。評
価は、200℃(一定)の空気中において発熱が開始す
る温度を求めることによって行った。表3はその結果を
まとめたもので、これによれば、絶縁補強層の外層は、
新テープと同程度の酸化誘導期を示しているが、中層、
内層と短くなっており、特に、内層においては、一段と
短い100分を示している。従って、これによって言え
ることは、絶縁補強層の酸化誘導期が100分以下にな
ると、絶縁破壊が近いということであり、このことは、
耐用寿命を判定するうえにおいて重要な基準となる。
3. Oxidation induction period Oxidation absorbance was measured using a differential scanning calorimeter. The evaluation was performed by determining the temperature at which heat generation started in air at 200 ° C. (constant). Table 3 summarizes the results, according to which the outer layer of the insulating reinforcing layer is
It shows the same oxidation induction period as the new tape, but the middle layer,
It is shorter than the inner layer, and in particular, the inner layer shows a shorter time of 100 minutes. Therefore, what can be said by this is that when the oxidation induction period of the insulating reinforcing layer becomes 100 minutes or less, dielectric breakdown is close, which means that
It is an important criterion in determining the useful life.

【0022】[0022]

【表3】 [Table 3]

【0023】4.熱分解開始温度 熱重量分析器を使用し、5℃/分の速度で昇温させたと
きの熱分解開始温度を測定した。絶縁補強層と新テープ
の対比において特徴的なことは、絶縁補強層の場合に
は、熱分解開始温度、つまり測定におけるピーク温度
(メインピークと表示)以外に、熱分解開始温度に至る
過程で他のピーク温度(サブピークと表示)が認められ
ることである。新テープにはこれがない。
4. Thermal decomposition onset temperature Using a thermogravimetric analyzer, the thermal decomposition onset temperature when the temperature was raised at a rate of 5 ° C./min was measured. What is characteristic in the comparison between the insulating reinforcing layer and the new tape is that, in the case of the insulating reinforcing layer, in addition to the thermal decomposition start temperature, that is, the peak temperature in the measurement (indicated as the main peak), the process of reaching the thermal decomposition start temperature Another peak temperature (designated sub-peak) is to be recognized. The new tape does not have this.

【0024】表4は、測定の結果を示したもので、絶縁
補強層には顕著なサブピークが確認されるのに対して、
新テープにはこれが顕著に現れない。従って、熱分解開
始温度の測定においてサブピークが顕著に現れた場合に
は、絶縁破壊の恐れがあるということであり、このこと
は、ケーブル接続部の耐用寿命を判定する場合に重要な
基準となる。
Table 4 shows the results of the measurement. A remarkable sub-peak was confirmed in the insulating reinforcing layer.
This is not noticeable in the new tape. Therefore, if a sub-peak appears remarkably in the measurement of the pyrolysis onset temperature, there is a risk of dielectric breakdown, which is an important criterion when judging the service life of the cable connection. .

【0025】[0025]

【表4】 [Table 4]

【0026】5.破断時の伸び 引張試験機によって破断時の伸びを測定した。表5がそ
の測定結果である。新テープの場合には、900〜1,
025%の伸びを示すのに比べ、絶縁補強層の伸びは外
層、中層および内層の順に低下し、特に、内層は440
%という低い水準に低下している。
[5] Elongation at break The elongation at break was measured by a tensile tester. Table 5 shows the measurement results. In the case of a new tape, 900-1
Compared to the case of showing an elongation of 025%, the elongation of the insulating reinforcing layer decreases in the order of the outer layer, the middle layer and the inner layer.
% Has fallen to a low level.

【0027】従って、この事実から言えることは、絶縁
補強層の破断時の伸びが、初期値に対して50%以下の
水準に減少しているときには、絶縁破壊の危険が高いと
いうことであり、この点も接続部の耐用寿命の判定にお
いて重要な基準となる。
Therefore, it can be said from this fact that when the elongation at break of the insulating reinforcing layer is reduced to a level of 50% or less of the initial value, there is a high risk of dielectric breakdown, This point is also an important criterion in determining the useful life of the connection.

【0028】[0028]

【表5】 [Table 5]

【0029】6.異なる温度における酸化誘導期 表6は、200℃、210℃および220℃において測
定した酸化誘導期のデータである。図1は、これらのデ
ータに基づくアーレニウスプロットの結果を示したもの
である。温度と酸化開始時間(寿命)の関係が示され、
従って、このグラフの温度軸に絶縁補強層の運転時にお
ける常用温度と最高予想温度(図の場合90℃と105
℃)を当てはめれば、酸化開始時間軸から接続部の寿命
を知ることができる。 グラフに引かれた斜めの線と9
0℃および105℃の交点における酸化開始時間が寿命
となる。従って、このグラフに基づけば、接続部の耐用
寿命を容易に判定することができ、それに基づいて電力
ケーブル線路全体の接続部の寿命を判定することができ
る。
6. Induction Period at Different Temperatures Table 6 shows the data of the induction period measured at 200 ° C, 210 ° C and 220 ° C. FIG. 1 shows the results of an Arrhenius plot based on these data. The relationship between temperature and oxidation start time (life) is shown,
Therefore, the normal temperature and the maximum expected temperature (90 ° C. and 105 ° C. in the case of FIG.
C), the life of the connection can be known from the oxidation start time axis. 9 diagonal lines drawn on the graph
The oxidation start time at the intersection of 0 ° C. and 105 ° C. becomes the life. Therefore, based on this graph, the service life of the connection can be easily determined, and the life of the connection of the entire power cable line can be determined based on the service life.

【0030】[0030]

【表6】 [Table 6]

【0031】7.異なる昇温速度における熱分解開始温
度 表7は、試料の重量を10%減少させるのに要する加熱
時間の算出結果を示したものである。熱重量分析器を使
用し、昇温速度を5℃/分、10℃/分および20℃/
分に設定して熱分解開始温度を測定した結果から、重量
減少を10%と設定したときの活性化エネルギーを求
め、その結果をもとに重量を10%減少させるのに要す
る加熱時間を算出したものが表7である。
7. Table 7 shows the calculation results of the heating time required to reduce the weight of the sample by 10% at different heating rates. Using a thermogravimetric analyzer, the heating rate was 5 ° C / min, 10 ° C / min and 20 ° C / min.
From the result of measuring the thermal decomposition onset temperature in minutes, the activation energy when the weight loss is set to 10% is obtained, and the heating time required to reduce the weight by 10% is calculated based on the result. Table 7 shows the results.

【0032】[0032]

【表7】 [Table 7]

【0033】図2は、表7のデータをアーレニウスプロ
ットしたグラフを示す。時間(寿命)と温度の関係を示
したもので、このグラフの温度軸に絶縁補強層の運転時
における常用温度と最高予想温度を当てはめれば、時間
軸から寿命を知ることができる。従って、このグラフに
基づけば、接続部の耐用寿命を容易に判定することが可
能となる。図1および図2のグラフを函数化し、これを
パーソナルコンピュータ等のプログラムに投入して耐用
寿命の判定を自動化することは可能である。
FIG. 2 shows a graph obtained by Arrhenius plotting of the data in Table 7. The relationship between time (life) and temperature is shown. If the normal temperature and the highest expected temperature during the operation of the insulating reinforcing layer are applied to the temperature axis of this graph, the life can be known from the time axis. Therefore, based on this graph, the service life of the connection portion can be easily determined. It is possible to convert the graphs of FIG. 1 and FIG. 2 into functions and input them to a program such as a personal computer to automate the determination of the service life.

【0034】[0034]

【発明の効果】以上説明したように、本発明によるケー
ブル接続部の診断方法によれば、電力ケーブル線路の接
続部を解体することをベースとしているため、ケーブル
からの影響を受けることなく接続部の診断を行うことが
でき、しかも、線路を構成する複数の相のうちの1相の
接続部だけを診断の対象としているので、接続部の数に
関係なく最低の損失で電力ケーブル線路全体の耐用寿命
を判定することができる。
As described above, according to the method for diagnosing a cable connection portion according to the present invention, since the connection portion of the power cable line is disassembled as a base, the connection portion is not affected by the cable. Diagnosis can be performed, and only one phase connection among a plurality of phases constituting the line is targeted for diagnosis. Therefore, regardless of the number of connections, the entire power cable line can be diagnosed with minimum loss. The service life can be determined.

【0035】また、絶縁補強層を自己融着性絶縁テープ
によって構成したケーブル接続部が対象であるため、接
続部からの絶縁補強層の回収が容易であるとともに、診
断結果が良好な場合の接続部の再構成も容易に行うこと
ができ、さらに、耐用寿命の判定を、回収した絶縁補強
層の酸化度合、残留酸化防止剤の量、酸化誘導期、熱分
解開始温度、破断時の伸び、あるいは酸化誘導期と熱分
解開始温度に基づくアーレニウスプロットによる寿命時
間と温度との関係グラフに基づいて行うため、正しい判
定を行うことができる。
Also, since the cable connecting portion in which the insulating reinforcing layer is formed of a self-fusing insulating tape is a target, the insulating reinforcing layer can be easily collected from the connecting portion, and the connection in the case where the diagnosis result is good. Reconstruction of the part can also be easily performed, and further, the determination of the service life is determined by the degree of oxidation of the collected insulating reinforcing layer, the amount of the residual antioxidant, the oxidation induction period, the thermal decomposition start temperature, the elongation at break, Alternatively, since the determination is performed based on the relationship graph between the life time and the temperature based on the Arrhenius plot based on the oxidation induction period and the thermal decomposition onset temperature, a correct determination can be made.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるケーブル接続部の診断方法の実施
の形態において、酸化誘導期の測定に基づいて作成され
た寿命時間と温度との関係を示すグラフ。
FIG. 1 is a graph showing a relationship between life time and temperature created based on measurement of an oxidation induction period in an embodiment of a method for diagnosing a cable connection portion according to the present invention.

【図2】本発明によるケーブル接続部の実施の形態にお
いて、熱分解開始温度の測定に基づいて作成された寿命
時間と温度との関係を示すグラフ。
FIG. 2 is a graph showing a relationship between a life time and a temperature created based on measurement of a pyrolysis onset temperature in the embodiment of the cable connecting portion according to the present invention.

【図3】ケーブル接続部の構造を示す説明図。FIG. 3 is an explanatory diagram showing a structure of a cable connection unit.

【符号の説明】[Explanation of symbols]

1a、1b 架橋化ポリエチレン電力ケーブル 4 絶縁体 9 絶縁補強層 12 接続部 1a, 1b Cross-linked polyethylene power cable 4 Insulator 9 Insulation reinforcing layer 12 Connection

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松井 俊哉 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式社 電力技術研究所内 (72)発明者 片貝 昭史 茨城県日立市日高町5丁目1番1号 日立 電線株式会社パワーシステム研究所内 (72)発明者 中川 敏裕 茨城県日立市日高町5丁目1番1号 日立 電線株式会社日高工場内 (72)発明者 山崎 孝則 茨城県日立市日高町5丁目1番1号 日立 電線株式会社パワーシステム研究所内 (72)発明者 藤吉 泰夫 茨城県日立市日高町5丁目1番1号 日立 電線株式会社日高工場内 Fターム(参考) 2G024 AD31 BA12 CA17 CA30  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Toshiya Matsui 4-1 Egasakicho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Within the Power Technology Research Institute, Tokyo Electric Power Company (72) Inventor Akishi Katagai Hidaka-cho, Hitachi-shi, Ibaraki 5-1-1, Hitachi Cable, Ltd. Power System Laboratory (72) Inventor Toshihiro Nakagawa 5-1-1, Hidaka-cho, Hitachi City, Ibaraki Pref. Hitachi Cable, Ltd. Hidaka Factory (72) Inventor Takanori Yamazaki Ibaraki Hitachi Power Systems Research Laboratories 5-1-1, Hidaka-cho, Hitachi, Japan (72) Inventor Yasuo Fujiyoshi 5-1-1, Hidaka-cho, Hitachi, Ibaraki F-term in the Hidaka Factory, Hitachi Cable, Ltd. (Reference) 2G024 AD31 BA12 CA17 CA30

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】自己融着性絶縁テープの巻き付けによる絶
縁補強層を有した接続部を有し、ケーブルがゴム、プラ
スティツクスによって絶縁された電力ケーブル線路の前
記接続部を診断するケーブル接続部の診断方法におい
て、 前記電力ケーブル線路を構成する複数の相のいずれか1
相の前記接続部を解体して前記絶縁補強層を回収し、 回収した前記絶縁補強層を対象として、酸化度合、残留
酸化防止剤の量、酸化誘導期、熱分解開始温度、および
破断時の伸びによって制定される測定項目の少なくとも
1つを測定し、測定した結果と前記測定項目のそれぞれ
に予め定められている判定基準を比較して、前記電力ケ
ーブル線路全体の接続部の耐用寿命を判定することを特
徴とするケーブル接続部の診断方法。
1. A cable connecting portion having a connecting portion having an insulating reinforcing layer formed by winding a self-fusing insulating tape and diagnosing the connecting portion of a power cable line in which a cable is insulated by rubber and plastics. In the diagnostic method, any one of a plurality of phases constituting the power cable line may be used.
Disassembling the connection part of the phase and recovering the insulating reinforcing layer, for the recovered insulating reinforcing layer, the degree of oxidation, the amount of the remaining antioxidant, the oxidation induction period, the thermal decomposition start temperature, and the At least one of the measurement items established by the elongation is measured, and the measured result is compared with a predetermined criterion for each of the measurement items to determine a service life of a connection portion of the entire power cable line. A method for diagnosing a cable connection part, comprising:
【請求項2】前記酸化度合に基づく前記耐用寿命の判定
は、フーリエ変換赤外分光計で吸光度を測定したとき、
前記絶縁補強層の(カルボニル基の吸光度)/(メチレ
ン基の吸光度)が0.03以上で、(二重結合の吸光
度)/(メチレン基の吸光度)が0.2以上のときを寿
命とすることを特徴とする請求項1項記載のケーブル接
続部の診断方法。
2. The method according to claim 2, wherein the determination of the service life based on the degree of oxidation is performed by measuring an absorbance using a Fourier transform infrared spectrometer.
The life is defined as (absorbance of carbonyl group) / (absorbance of methylene group) of the insulating reinforcing layer being 0.03 or more and (absorbance of double bond) / (absorbance of methylene group) being 0.2 or more. The method for diagnosing a cable connection part according to claim 1, wherein:
【請求項3】前記残留酸化防止剤の量に基づく前記耐用
寿命の判定は、前記絶縁補強層が含む酸化防止剤の量が
初期値に比べて50%以下に低下したときを寿命とする
ことを特徴とする請求項1項記載のケーブル接続部の診
断方法。
3. The determination of the service life based on the amount of the residual antioxidant is such that the life is determined when the amount of the antioxidant contained in the insulating reinforcing layer is reduced to 50% or less of an initial value. The method for diagnosing a cable connection part according to claim 1, wherein:
【請求項4】前記酸化誘導期に基づく前記耐用寿命の判
定は、示差走査熱分析器で200℃において測定したと
き、前記絶縁補強層の酸化誘導期が100分以下のとき
を寿命とすることを特徴とする請求項1項記載のケーブ
ル接続部の診断方法。
4. The determination of the service life based on the oxidation induction period, wherein the life is determined when the oxidation induction period of the insulating reinforcing layer is 100 minutes or less when measured at 200 ° C. by a differential scanning calorimeter. The method for diagnosing a cable connection part according to claim 1, wherein:
【請求項5】前記熱分解開始温度に基づく前記耐用寿命
の判定は、一定速度で昇温させられる前記絶縁補強層の
熱分解開始温度を熱重量分析器で測定したとき、熱分解
開始時のピーク温度以外に熱分解開始温度に至る過程で
他のピーク温度が生じたときを寿命とすることを特徴と
する請求項1項記載のケーブル接続部の診断方法。
5. The determination of the service life based on the thermal decomposition start temperature is performed when a thermal decomposition start temperature of the insulating reinforcing layer, which is heated at a constant rate, is measured by a thermogravimetric analyzer. The method for diagnosing a cable connection part according to claim 1, wherein a life is defined as a time when another peak temperature occurs in a process of reaching a thermal decomposition start temperature other than the peak temperature.
【請求項6】前記破断時の伸びに基づく前記耐用寿命の
判定は、前記絶縁補強層の破断時の伸びが前記自己融着
性絶縁テープの初期値に比べて50%以下に低下したと
きを寿命とすることを特徴とする請求項1項記載のケー
ブル接続部の診断方法。
6. The determination of the service life based on the elongation at break is made when the elongation at break of the insulating reinforcing layer is reduced to 50% or less as compared with the initial value of the self-fusing insulating tape. 2. The method for diagnosing a cable connection part according to claim 1, wherein the life is determined.
【請求項7】自己融着性絶縁テープの巻き付けによる絶
縁補強層を有した接続部を有し、ケーブルがゴム、プラ
スティックスによって絶縁された電力ケーブル線路の前
記接続部を診断するケーブル接続部の診断方法におい
て、 前記電力ケーブル線路を構成する複数の相のいずれか1
相の前記接続部を解体して前記絶縁補強層を回収し、 回収した前記絶縁補強層の酸化誘導期を、示差走査熱分
析器を使用して複数の異なる所定の温度において測定
し、 測定した酸化誘導期と前記複数の異なる所定の温度に基
づいてアーレニウスプロットによる酸化開始時間および
温度の関係グラフを作成し、 前記関係グラフの温度軸に前記絶縁補強層の運転時の温
度を当てはめたとき、前記関係グラフの酸化開始時間軸
が示す時間を前記電力ケーブル線路全体の接続部の耐用
寿命と判定することを特徴とするケーブル接続部の診断
方法。
7. A cable connecting portion for diagnosing said connecting portion of a power cable line having a connecting portion having an insulating reinforcing layer formed by winding a self-fusing insulating tape, wherein said cable is insulated by rubber or plastics. In the diagnostic method, any one of a plurality of phases constituting the power cable line
The connection portion of the phase was disassembled to recover the insulating reinforcing layer, and the oxidation induction period of the collected insulating reinforcing layer was measured at a plurality of different predetermined temperatures using a differential scanning calorimeter and measured. When a graph showing the relationship between the oxidation start time and the temperature based on the Arrhenius plot is created based on the oxidation induction period and the plurality of different predetermined temperatures, and when the temperature during operation of the insulating reinforcing layer is applied to the temperature axis of the relationship graph. Diagnosing a cable connection portion, wherein a time indicated by an oxidation start time axis of the relationship graph is determined as a service life of a connection portion of the entire power cable line.
【請求項8】自己融着性絶縁テープの巻き付けによる絶
縁補強層を有した接続部を有し、ケーブルがゴム、プラ
スティックスによって絶縁された電力ケーブル線路の前
記接続部を診断するケーブル接続部の診断方法におい
て、 前記電力ケーブル線路を構成する複数の相のいずれか1
相の前記接続部を解体して前記絶縁補強層を回収し、 回収した前記絶縁補強層の熱分解開始温度を熱重量分析
器により測定して測定結果から前記絶縁補強層の劣化を
意味する一定の重量減少率を示すまでの活性化エネルギ
ーを求め、 求めた前記活性化エネルギーから複数の異なる所定の温
度において前記一定の重量減少率を示すのに要する時間
を算出し、 算出した時間と前記複数の異なる所定の温度に基づいて
アーレニウスプロットによる時間および温度の関係グラ
フを作成し、 前記関係グラフの温度軸に前記絶縁補強層の運転時の温
度を当てはめたとき、前記関係グラフの時間軸が示す時
間を前記電力ケーブル線路全体の接続部の耐用寿命と判
定することを特徴とするケーブル接続部の診断方法。
8. A cable connecting portion for diagnosing said connecting portion of a power cable line, wherein said connecting portion has an insulating reinforcing layer formed by winding a self-fusing insulating tape, and said cable is insulated by rubber or plastics. In the diagnostic method, any one of a plurality of phases constituting the power cable line
Disassembling the connection part of the phase, recovering the insulating reinforcing layer, measuring the thermal decomposition onset temperature of the recovered insulating reinforcing layer with a thermogravimetric analyzer, and determining from the measurement results that the insulating reinforcing layer is deteriorated. The activation energy required to indicate the weight loss rate is calculated, and the time required to indicate the constant weight reduction rate at a plurality of different predetermined temperatures is calculated from the obtained activation energy. Create a relationship graph of time and temperature by Arrhenius plot based on different predetermined temperatures of, when applying the temperature during the operation of the insulating reinforcement layer to the temperature axis of the relationship graph, the time axis of the relationship graph A method for diagnosing a cable connection, wherein the indicated time is determined as the service life of the connection of the entire power cable line.
JP15717499A 1999-06-03 1999-06-03 Diagnostic method for cable connections Expired - Fee Related JP4001439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15717499A JP4001439B2 (en) 1999-06-03 1999-06-03 Diagnostic method for cable connections

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15717499A JP4001439B2 (en) 1999-06-03 1999-06-03 Diagnostic method for cable connections

Publications (2)

Publication Number Publication Date
JP2000346836A true JP2000346836A (en) 2000-12-15
JP4001439B2 JP4001439B2 (en) 2007-10-31

Family

ID=15643817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15717499A Expired - Fee Related JP4001439B2 (en) 1999-06-03 1999-06-03 Diagnostic method for cable connections

Country Status (1)

Country Link
JP (1) JP4001439B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120213246A1 (en) * 2011-02-23 2012-08-23 Hitachi Cable, Ltd. Method for Evaluating Life of Cable Insulating Coating Material
JP2013032958A (en) * 2011-08-02 2013-02-14 Hitachi Cable Ltd Deterioration degree determination method of resin material containing antioxidant, life determination method, life prediction method, life test method, and computer program
JP2013178271A (en) * 2013-05-16 2013-09-09 Hitachi Cable Ltd Life inspection method of cable coating material
JP2015072141A (en) * 2013-10-01 2015-04-16 住友ゴム工業株式会社 Life prediction method of polymer material
JP2019045328A (en) * 2017-09-04 2019-03-22 東京電力ホールディングス株式会社 Remaining life assessment method of insulation tape

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706609B (en) * 2012-05-29 2015-07-29 东南大学 Based on the damaged cable recognition methods of angle monitor during temperature variation
CN102706615B (en) * 2012-05-30 2015-07-29 东南大学 The slack line progressive-type recognition method of generalized displacement of support temperature variation cable force monitoring
CN103852296A (en) * 2014-03-10 2014-06-11 东南大学 Strain monitoring error cable load linear displacement identification method
CN103852314A (en) * 2014-03-10 2014-06-11 东南大学 Linear displacement hybrid monitoring damaged cable load identification method
CN103884523A (en) * 2014-03-10 2014-06-25 东南大学 Method for recognizing damaged cables and loads by monitoring angular displacement and cable force
CN103852290A (en) * 2014-03-10 2014-06-11 东南大学 Recognition method for problematic cable loads through generalized displacement and strain monitoring
CN103852318A (en) * 2014-03-10 2014-06-11 东南大学 Problem cable load linear displacement progressive recognition method based on space coordinate monitoring
CN103884524A (en) * 2014-03-10 2014-06-25 东南大学 Method for recognizing fault rod loads based on generalized displacement angle monitoring
CN103852329A (en) * 2014-03-10 2014-06-11 东南大学 Damaged cable load generalized displacement recognition method through mixed monitoring

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120213246A1 (en) * 2011-02-23 2012-08-23 Hitachi Cable, Ltd. Method for Evaluating Life of Cable Insulating Coating Material
JP2012173183A (en) * 2011-02-23 2012-09-10 Hitachi Cable Ltd Service life inspection method of cable coating material
US8668382B2 (en) 2011-02-23 2014-03-11 Hitachi Metals, Ltd. Method for evaluating life of cable insulating coating material
JP2013032958A (en) * 2011-08-02 2013-02-14 Hitachi Cable Ltd Deterioration degree determination method of resin material containing antioxidant, life determination method, life prediction method, life test method, and computer program
JP2013178271A (en) * 2013-05-16 2013-09-09 Hitachi Cable Ltd Life inspection method of cable coating material
JP2015072141A (en) * 2013-10-01 2015-04-16 住友ゴム工業株式会社 Life prediction method of polymer material
JP2019045328A (en) * 2017-09-04 2019-03-22 東京電力ホールディングス株式会社 Remaining life assessment method of insulation tape

Also Published As

Publication number Publication date
JP4001439B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP2000346836A (en) Diagnosing method of cable connection part
JP6198698B2 (en) Dissipation factor and apparatus, power cable diagnostic apparatus and method
WO2006073016A1 (en) Superconductive cable withstand voltage test method
JP6336164B2 (en) Power cable diagnostic apparatus and method
CN110850196A (en) Service life electric stress and/or thermal stress test platform for crosslinked polyethylene power cable
JP3970199B2 (en) Cable insulation deterioration life diagnosis method
Rajalakshmi et al. Analysis of Partial Discharge in underground cable joints
JP2016511918A (en) Method in the manufacture of an insulated high voltage DC termination or joint
Mecheri et al. Characterization of laboratory aged MV XLPE cables using dielectric losses factor measurements
CN113138325B (en) Rapid diagnosis method for loss decoupling of insulating low-frequency medium of crosslinked polyethylene cable
CN114186392B (en) XLPE cable aging degree evaluation method
Yoda et al. Development of 500 kV cross-linked polyethylene insulated power cable
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
Marungsri et al. Investigation life time model of 22 kV XLPE cable for distribution system applications in Thailand
Mazzanti Analysis of the effects of load cycling and thermal transients on polymer-insulated HVAC cable life
Coughlan et al. Review of the Effectiveness of Impulse Testing for the Evaluation of Cable Insulation Quality and Recommendations for Quality Testing
JP3779840B2 (en) Cross-linked polyethylene insulated power cable connection.
JP2961756B2 (en) Method for determining insulation deterioration of rotating machine coil
CN102692589B (en) Medium-voltage crosslinked polyethylene cable terminal unshaded corona test method
Hongyan Investigation on distribution XLPE cable joint failure modes and detection
Sami et al. Effect of electro-thermal, load cycling and thermal transients stresses on high voltage XLPE and EPR power cable life
Kosuke et al. Proposal of a Diagnostic Method on Insulating Materials for Cables using a Partial Heating Technique in Current-Integral Charge Method
Tzimas et al. Assessing the ageing state of extruded HVDC cables with dielectric spectroscopy measurements
Champion et al. Short term and long term testing programme on 230 kV XLPE cable system
Liu et al. Research on Insulation Problems of the Polymer Insulated Busbar with Tape Winding Insulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140824

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees