CN103852318A - Problem cable load linear displacement progressive recognition method based on space coordinate monitoring - Google Patents

Problem cable load linear displacement progressive recognition method based on space coordinate monitoring Download PDF

Info

Publication number
CN103852318A
CN103852318A CN201410086596.1A CN201410086596A CN103852318A CN 103852318 A CN103852318 A CN 103852318A CN 201410086596 A CN201410086596 A CN 201410086596A CN 103852318 A CN103852318 A CN 103852318A
Authority
CN
China
Prior art keywords
cable structure
temperature
data
vector
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410086596.1A
Other languages
Chinese (zh)
Inventor
韩玉林
叶磊
韩佳邑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201410086596.1A priority Critical patent/CN103852318A/en
Publication of CN103852318A publication Critical patent/CN103852318A/en
Pending legal-status Critical Current

Links

Abstract

The invention provides a problem cable load linear displacement progressive recognition method based on space coordinate monitoring. The method includes the steps of determining whether a mechanical calculation reference model of a cable structure needs to be updated by monitoring the cable structural temperature and the environment temperature on the basis of space coordinate monitoring, obtaining a new mechanical calculation reference model, including the cable structure temperature and the environment temperature, of the cable structure, and carrying out calculation on the basis of the new mechanical calculation reference model to obtain a value change matrix of monitored data in unit damage. According to the approximate linear relation between the current value vector of monitored data and the current initial value vector of the monitored data and the approximate linear relation between the value change matrix of the monitored data in unit damage and the current nominal damage vector to be solved of evaluated objects, the non-inferior solution of the current nominal damage vector of the evaluated objects can be calculated. In this way, the linear displacement and the load variation quantity of a support and problem cables can be recognized when the temperature changes.

Description

The laddering recognition methods of space coordinate monitoring problem rope loaded line displacement
Technical field
Cable-stayed bridge, suspension bridge, the structures such as truss-frame structure have a common ground, be exactly that they have many parts that bear tensile load, as suspension cable, main push-towing rope, hoist cable, pull bar etc., the common ground of this class formation is with rope, cable or the rod member that only bears tensile load are support unit, for simplicity, this method is " Cable Structure " by such structure representation, and by all ropeway carrying-ropes of Cable Structure, carrying cable, and all rod members (being called again two power rod members) that only bear axial tension or axial compression load, unified be called " cable system " for simplicity, in this method, censure ropeway carrying-rope with " support cable " this noun, carrying cable and only bear the rod member of axial tension or axial compression load, sometimes referred to as " rope ", so when using " rope " this word in the back, truss-frame structure reality is just referred to two power rod members.Impaired and the lax pair Cable Structure of support cable is safely a significant threat, and this method is referred to as damaged cable and slack line the support cable of unsoundness problem, referred to as problem rope.In structure military service process, the correct identification of the health status to support cable or cable system is related to the safety of whole Cable Structure.In the time that environment temperature changes, the temperature of Cable Structure generally also can be along with changing, in the time that Cable Structure temperature changes, may there is displacement of the lines in Cable Structure bearing, the load that Cable Structure is born also may change, even if in fact the temperature of Cable Structure does not change, the load that Cable Structure is born also may change separately, the health status of Cable Structure also may change simultaneously, at this complex condition, this method is identified support wire displacement based on space coordinate monitoring (this method is called monitored volume coordinate " monitored amount "), the variable quantity of the load that problem rope and Cable Structure are born, belong to engineering structure health monitoring field.
Background technology
Reject load change, the displacement of Cable Structure support wire and structure temperature and change the impact on Cable Structure health status recognition result, thereby the variation of the health status of recognition structure is exactly current problem in the urgent need to address; Rejecting load change, the variation of Cable Structure health status and structure temperature and change the impact on Cable Structure support wire displacement recognition result, thereby identify exactly the displacement of Cable Structure support wire, is also current problem in the urgent need to address; Same, the variation of rejecting structure temperature, the displacement of Cable Structure support wire and structural health conditions change the impact of the recognition result of the variable quantity of the load that structure is born, significant equally to structural safety.Based on structural health monitoring technology, this method discloses a kind of effective ways that solve these three problems.
Summary of the invention
Technical matters: this method discloses a kind of method, three kinds of functions that existing method can not possess are realized, be respectively, one, reject support wire displacement, load change and structure temperature and change the impact on Cable Structure health status recognition result, thereby identify exactly the health status of support cable; Two, this method, in identifying problem rope, can also identify the variation of load simultaneously, and this method can be rejected the impact that support wire displacement, structure temperature variation and support cable health status change, and realizes the correct identification of load change degree; Three, this method can also be rejected load change, Cable Structure health status changes and structure temperature changes the impact on Cable Structure support wire displacement recognition result, thereby identifies exactly the displacement of Cable Structure support wire.
In Cable Structure military service process, Suo Changdu under support cable free state (now Suo Zhangli also claims that Suo Li is 0) (is called drift, this method specially refers to that support cable two supports the drift of that section of rope between end points) can change, one of object of this method will identify exactly drift the support cable changing has occurred, and identify the change amount of their drift, the Suo Li that this change amount is this rope adjusts provides direct basis, for convenient, the support cable that this method changes drift is referred to as slack line.
Technical scheme: in the method, censure the coordinate of bearing about the X, Y, Z axis of Descartes's rectangular coordinate system with " bearing volume coordinate ", also can be said to is the volume coordinate of bearing about X, Y, Z axis, bearing is called the volume coordinate component of bearing about this axle about the concrete numerical value of the volume coordinate of some axles, and in this method, also a volume coordinate component with bearing is expressed the concrete numerical value of bearing about the volume coordinate of some axles; Censure the angular coordinate of bearing about X, Y, Z axis with " bearing angular coordinate ", bearing is called the angular coordinate component of bearing about this axle about the concrete numerical value of the angular coordinate of some axles, and in this method, also an angular coordinate component with bearing is expressed the concrete numerical value of bearing about the angular coordinate of some axles; All by " bearing generalized coordinate " denotion bearing angular coordinate and bearing volume coordinate, in this method, also a generalized coordinate component with bearing is expressed the concrete numerical value of bearing about volume coordinate or the angular coordinate of an axle; Bearing is called support wire displacement about the change of the coordinate of X, Y, Z axis, also can say that the change of bearing volume coordinate is called support wire displacement, and in this method, also a translational component with bearing is expressed the concrete numerical value of bearing about the displacement of the lines of some axles; Bearing is called angular displacement of support about the change of the angular coordinate of X, Y, Z axis, and in this method, also an angular displacement component with bearing is expressed the concrete numerical value of bearing about the angular displacement of some axles; Generalized displacement of support denotion support wire displacement and angular displacement of support are all, and in this method, also a generalized displacement component with bearing is expressed bearing about the displacement of the lines of some axles or the concrete numerical value of angular displacement; Support wire displacement also can be described as translational displacement, and support settlement is support wire displacement or the translational displacement component at gravity direction.
The external force that object, structure are born can be described as load, and load comprises face load and volume load.Face load claims again surface load, is the load that acts on body surface, comprises two kinds of centre-point load and distributed loads.Volume load is that continuous distribution is in the load of interior of articles each point, as the deadweight of object and inertial force.
Centre-point load is divided into two kinds of concentrated force and concentrated couples, in coordinate system, for example, in Descartes's rectangular coordinate system, a concentrated force can resolve into three components, same, a concentrated couple also can resolve into three components, if load is actually centre-point load, in the method a concentrated force component or a concentrated couple component are called to a load, the now variation of load is embodied as the variation of a concentrated force component or a concentrated couple component.
Distributed load is divided into line distributed load and face distributed load, the description of distributed load at least comprises the zone of action of distributed load and the size of distributed load, the size of distributed load is expressed by distribution intensity, distribution for intensity distribution characteristics (for example uniform, the distribution characteristicss such as sine function) and amplitude is expressed, and (for example two distributed loads are all uniform, but its amplitude difference, can well-distributed pressure be the concept that example illustrates amplitude: same structure is born two different well-distributed pressures, two distributed loads are all uniformly distributed loads, but the amplitude of a distributed load is 10MPa, the amplitude of another distributed load is 50MPa).If load is actually distributed load, when this method is talked about the variation of load, in fact refer to the change of the amplitude of distributed load distribution intensity, and the distribution characteristics of the zone of action of distributed load and distribution intensity is constant.In coordinate system, a distributed load can be resolved into several components, if the amplitude of the distribution intensity separately of several components of this distributed load changes, and the ratio changing is all not identical, so in the method the component of these several distributed loads is regarded as to the independently distributed load of same quantity, now load just represents the component of a distributed load, also component identical the amplitude changing ratio of the intensity that wherein distributes can be synthesized to a distributed load or be called a load.
Volume load is that continuous distribution is in the load of interior of articles each point, as the deadweight of object and inertial force, the description of volume load at least comprises the zone of action of volume load and the size of volume load, the size of volume load is expressed by distribution intensity, distribution for intensity distribution characteristics (for example uniform, the distribution characteristicss such as linear function) and amplitude is expressed, and (for example two individual stow lotuses are all uniform, but its amplitude difference, can conduct oneself with dignity the concept of amplitude is described for example: the material difference of two parts of same structure, therefore density difference, so although the suffered volume load of these two parts is all uniform, but the amplitude of the suffered volume load of part may be 10kN/m 3, the amplitude of the suffered volume load of another part is 50kN/m 3).If load is actually volume load, actual treatment is the change of the amplitude of volume load distribution intensity in the method, and the distribution characteristics of the zone of action of volume load and distribution intensity is constant, while now mentioning in the method the change of load, in fact refer to the change of the amplitude of the distribution intensity of volume load, now, the load changing refers to the volume load that the amplitude of those distribution intensities changes.In coordinate system, one individual stow lotus can be resolved into several components (for example, in Descartes's rectangular coordinate system, volume load can resolve into the component about three axles of coordinate system, that is to say, in Descartes's rectangular coordinate system, volume load can resolve into three components), if the amplitude of the distribution intensity separately of several components of this volume load changes, and the ratio changing is all not identical, so in the method the component of this several body stow lotus is regarded as to the independently load of same quantity, also the volume sharing part of the load identical the amplitude changing ratio of the intensity that wherein distributes can be synthesized to an individual stow lotus or be called a load.
In the time that load is embodied as centre-point load, in the method, " load unit variation " in fact refers to " unit change of centre-point load ", similarly, " load change " specifically refers to " the big or small variation of centre-point load ", " load change amount " specifically refers to " the big or small variable quantity of centre-point load ", " load change degree " specifically refers to " the big or small intensity of variation of centre-point load ", " the actual change amount of load " refers to " the big or small actual change amount of centre-point load ", " load changing " refers to " centre-point load that size changes ", briefly, now " so-and-so load so-and-so variation " refers to " so-and-so centre-point load big or small so-and-so variation ".
In the time that load is embodied as distributed load, in the method, " load unit variation " in fact refers to " unit change of the amplitude of the distribution intensity of distributed load ", and the distribution characteristics of distributed load is constant, similarly, " load change " specifically refers to " variation of the amplitude of the distribution intensity of distributed load ", and the distribution characteristics of distributed load is constant, " load change amount " specifically refers to " variable quantity of the amplitude of the distribution intensity of distributed load ", " load change degree " specifically refers to " intensity of variation of the amplitude of the distribution intensity of distributed load ", " the actual change amount of load " specifically refers to " the actual change amount of the amplitude of the distribution intensity of distributed load ", " load changing " refers to " distributed load that the amplitude of distribution intensity changes ", briefly, now " so-and-so load so-and-so variation " refers to " amplitude of the distribution intensity of so-and-so distributed load so-and-so variation ", and the distribution characteristics of the zone of action of all distributed loads and distribution intensity is constant.
In the time that load is embodied as volume load, in the method, " load unit variation " in fact refers to " unit change of the amplitude of the distribution intensity of volume load ", similarly, " load change " refers to " variation of the amplitude of the distribution intensity of volume load ", " load change amount " refers to " variable quantity of the amplitude of the distribution intensity of volume load ", " load change degree " refers to " intensity of variation of the amplitude of the distribution intensity of volume load ", " the actual change amount of load " refers to " the actual change amount of the amplitude of the distribution intensity of volume load ", " load changing " refers to " the volume load that the amplitude of distribution intensity changes ", briefly, " so-and-so load so-and-so variation " refers to " amplitude of the distribution intensity of so-and-so volume load so-and-so variation ", and the distribution characteristics of the zone of action of all volume load and distribution intensity is constant.
This method specifically comprises:
A. for sake of convenience, it is evaluation object that this method unitedly calls evaluated support wire displacement component, support cable and load, if the quantity sum of the quantity of evaluated support wire displacement component, the quantity of support cable and load is N, the quantity of evaluation object is N; Determine the coding rule of evaluation object, by this rule, by evaluation object numberings all in Cable Structure, this numbering will be used for generating vector sum matrix in subsequent step; This method represents this numbering with variable k, k=1, and 2,3 ..., N; Determine specify by the measured point of monitored volume coordinate, give all specified points numbering; Determined each measurement point by monitored volume coordinate component, give all measured volume coordinate components numberings; Above-mentioned numbering will be used for generating vector sum matrix in subsequent step; " the whole monitored spatial data of Cable Structure " is made up of above-mentioned all measured volume coordinate components; For simplicity, in the method by " the monitored spatial data of Cable Structure " referred to as " monitored amount "; The quantity sum of all monitored amounts is designated as M, and M must not be less than N; In this method, must not be greater than 30 minutes to the time interval between any twice measurement of same amount Real-Time Monitoring, the moment of survey record data is called the physical record data moment; The external force that object, structure are born can be described as load, and load comprises face load and volume load; Face load claims again surface load, is the load that acts on body surface, comprises two kinds of centre-point load and distributed loads; Volume load is that continuous distribution is in the load of interior of articles each point, including the deadweight and inertial force of object; Centre-point load is divided into two kinds of concentrated force and concentrated couples, comprising in the coordinate system of Descartes's rectangular coordinate in tying up to, a concentrated force can resolve into three components, same, a concentrated couple also can resolve into three components, if load is actually centre-point load, in the method a concentrated force component or a concentrated couple component being counted or added up is a load, and the now variation of load is embodied as the variation of a concentrated force component or a concentrated couple component; Distributed load is divided into line distributed load and face distributed load, and the description of distributed load at least comprises the zone of action of distributed load and the size of distributed load, and the size of distributed load is expressed by distribution intensity, and distribution intensity is expressed by distribution characteristics and amplitude; If load is actually distributed load, when this method is talked about the variation of load, in fact refer to the change of the amplitude of distributed load distribution intensity, and the distribution characteristics of the zone of action of all distributed loads and distribution intensity is constant; Comprising in the coordinate system of Descartes's rectangular coordinate in tying up to, a distributed load can be resolved into three components, if the amplitude of the distribution intensity separately of three components of this distributed load changes, and the ratio changing is all not identical, so in the method three components of this distributed load being counted or added up is three distributed loads, and now load just represents the one-component of distributed load; Volume load be continuous distribution in the load of interior of articles each point, the description of volume load at least comprises the zone of action of volume load and the size of volume load, the size of volume load is expressed by distribution intensity, distribution intensity is expressed by distribution characteristics and amplitude; If load is actually volume load, actual treatment is the change of the amplitude of volume load distribution intensity in the method, and the distribution characteristics of the zone of action of all volume load and distribution intensity is constant, while now mentioning in the method the change of load, in fact refer to the change of the amplitude of the distribution intensity of volume load, now, the load changing refers to the volume load that the amplitude of those distribution intensities changes; Comprising in the coordinate system of Descartes's rectangular coordinate in tying up to, one individual stow lotus can be resolved into three components, if the amplitude of the distribution intensity separately of three components of this volume load changes, and the ratio changing is all not identical, and so in the method three components of this volume load being counted or added up is three distributed loads;
B. this method definition " the temperature survey calculating method of the Cable Structure of this method " is undertaken by step b1 to b3;
B1: inquiry or actual measurement obtain the temperature variant thermal conduction study parameter of Cable Structure composition material and Cable Structure environment of living in, utilize the geometry measured data of design drawing, as-constructed drawing and the Cable Structure of Cable Structure, utilize these data and parameter to set up the thermal conduction study computation model of Cable Structure, inquiry Cable Structure location is no less than the meteorological data in recent years of 2 years, statistics obtains interior during this period of time cloudy quantity and is designated as T cloudy day, in the method can not be seen to one of the sun daytime and be called all day the cloudy day, statistics obtain each cloudy day in T cloudy day 0 after the sunrise moment next day highest temperature and the lowest temperature between 30 minutes, the sunrise moment on the meteorology that the sunrise moment refers to base area revolutions and the rule that revolves round the sun is definite, do not represent necessarily can see the same day sun, can inquire about data or calculate sunrise moment of each required day by conventional meteorology, each cloudy day 0 after the sunrise moment next day highest temperature between 30 minutes deduct the maximum temperature difference that the lowest temperature is called this cloudy daily temperature, there is T cloudy day, just there is the maximum temperature difference of the daily temperature at T cloudy day, get maximal value in the maximum temperature difference of daily temperature at T cloudy day for reference to temperature difference per day, be designated as Δ T with reference to temperature difference per day r, between inquiry Cable Structure location and Altitude Region, place, be no less than temperature that the meteorological data in recent years of 2 years or actual measurement obtain Cable Structure environment of living in time with delta data and the Changing Pattern of sea level elevation, calculate the temperature of the Cable Structure environment of living in recent years that is no less than 2 years between Cable Structure location and Altitude Region, place about the maximum rate of change Δ T of sea level elevation h, get Δ T for convenience of narration hunit be DEG C/m, on the surface of Cable Structure, get " R Cable Structure surface point ", get the Specific Principles of " R Cable Structure surface point " narrates in step b3, the temperature of this R Cable Structure surface point will be obtained by actual measurement below, claim that the temperature data that actual measurement obtains is " R Cable Structure surface temperature measured data ", if utilize the thermal conduction study computation model of Cable Structure, obtain the temperature of this R Cable Structure surface point by Calculation of Heat Transfer, just claim that the temperature data calculating is " R Cable Structure surface temperature computational data ", from the residing minimum height above sea level of Cable Structure to the highest height above sea level, in Cable Structure, uniform choosing is no less than three different sea level elevations, the sea level elevation place choosing at each, at least choose two points at the intersection place on surface level and Cable Structure surface, from the outer normal of selected point straw line body structure surface, all outer normal directions of choosing are called " measuring the direction of Cable Structure along the Temperature Distribution of wall thickness ", measure Cable Structure crossing with " intersection on surface level and Cable Structure surface " along the direction of the Temperature Distribution of wall thickness, in the measurement Cable Structure of choosing along comprising the sunny slope outer normal direction of Cable Structure and in the shade outer normal direction of Cable Structure in the direction of the Temperature Distribution of wall thickness, measure Cable Structure along each and be no less than three points along direction uniform choosing in Cable Structure of the Temperature Distribution of wall thickness, measure all temperature that are selected a little, the temperature recording is called " Cable Structure is along the temperature profile data of thickness ", wherein along crossing with same " intersection on surface level and Cable Structure surface ", " measure the direction of Cable Structure along the Temperature Distribution of wall thickness " and measure " Cable Structure is along the temperature profile data of thickness " that obtain, be called in the method " identical sea level elevation Cable Structure is along the temperature profile data of thickness ", if chosen H different sea level elevation, at each sea level elevation place, choose B and measured the direction of Cable Structure along the Temperature Distribution of wall thickness, direction along each measurement Cable Structure along the Temperature Distribution of wall thickness has been chosen E point in Cable Structure, wherein H and E are not less than 3, B is not less than 2, if HBE is the product of H and B and E, corresponding total HBE " measuring the point of Cable Structure along the temperature profile data of thickness ", to obtain by actual measurement the temperature of this HBE " measuring the point of Cable Structure along the temperature profile data of thickness " below, claim that the temperature data that actual measurement obtains is " HBE Cable Structure is along thickness temperature measured data ", if utilize the thermal conduction study computation model of Cable Structure, obtain this HBE by Calculation of Heat Transfer and measure the temperature of Cable Structure along the point of the temperature profile data of thickness, just claim that the temperature data calculating is " HBE Cable Structure is along thickness temperature computation data ", if BE is the product of B and E, total BE " identical sea level elevation Cable Structure is along the temperature profile data of thickness " in sea level elevation place of choosing at each in this method, measure temperature in Cable Structure location according to meteorology and require to choose a position, will obtain the temperature of the Cable Structure place environment that meets the requirement of meteorology measurement temperature in this position actual measurement, in the on-site spaciousness of Cable Structure, unobstructed place chooses a position, this position should each of the whole year day can obtain this ground the most sufficient sunshine of getable this day, at the flat board of a carbon steel material of this position of sound production, be called reference plate, reference plate can not contact with ground, reference plate overhead distance is not less than 1.5 meters, the one side of this reference plate on the sunny side, be called sunny slope, the sunny slope of reference plate is coarse and dark color, the sunny slope of reference plate should each of the whole year day can obtain one flat plate on this ground the most sufficient sunshine of getable this day, the non-sunny slope of reference plate is covered with insulation material, Real-Time Monitoring is obtained to the temperature of the sunny slope of reference plate,
B2: Real-Time Monitoring obtains R Cable Structure surface temperature measured data of above-mentioned R Cable Structure surface point, Real-Time Monitoring obtains the temperature profile data of previously defined Cable Structure along thickness simultaneously, and Real-Time Monitoring obtains the temperature record of the Cable Structure place environment that meets the requirement of meteorology measurement temperature simultaneously, obtain being carved at sunrise the same day temperature measured data sequence of the Cable Structure place environment between 30 minutes after sunrise moment next day by Real-Time Monitoring, the temperature measured data sequence of Cable Structure place environment is arranged according to time order and function order by the temperature measured data that was carved at sunrise the Cable Structure place environment between 30 minutes after the sunrise moment next day same day, find maximum temperature and minimum temperature in the temperature measured data sequence of Cable Structure place environment, deduct and be carved at sunrise the maximum temperature difference between 30 minutes after sunrise moment next day on same day that minimum temperature obtains Cable Structure place environment by the maximum temperature in the temperature measured data sequence of Cable Structure place environment, be called environment maximum temperature difference, be designated as Δ T emax, temperature measured data sequence by Cable Structure place environment obtains the temperature of Cable Structure place environment about the rate of change of time by conventional mathematical computations, and this rate of change is also along with the time changes, obtain being carved at sunrise the same day measured data sequence of the temperature of the sunny slope of the reference plate between 30 minutes after sunrise moment next day by Real-Time Monitoring, the measured data sequence of the temperature of the sunny slope of reference plate is arranged according to time order and function order by the measured data that was carved at sunrise the temperature of the sunny slope of the reference plate between 30 minutes after the sunrise moment next day same day, find maximum temperature and minimum temperature in the measured data sequence of temperature of the sunny slope of reference plate, deduct and be carved at sunrise the maximum temperature difference between 30 minutes after sunrise moment next day on same day that minimum temperature obtains the temperature of the sunny slope of reference plate by the maximum temperature in the measured data sequence of the temperature of the sunny slope of reference plate, be called reference plate maximum temperature difference, be designated as Δ T pmax, obtain being carved at sunrise the same day Cable Structure surface temperature measured data sequence of all R Cable Structure surface points between 30 minutes after sunrise moment next day by Real-Time Monitoring, there is R Cable Structure surface point just to have R Cable Structure surface temperature measured data sequence, each Cable Structure surface temperature measured data sequence is arranged according to time order and function order by being carved at sunrise the Cable Structure surface temperature measured data between 30 minutes after the sunrise moment next day same day of a Cable Structure surface point, find maximum temperature and minimum temperature in each Cable Structure surface temperature measured data sequence, deduct and be carved at sunrise the maximum temperature difference between 30 minutes after sunrise moment next day on same day that minimum temperature obtains the temperature of each Cable Structure surface point by the maximum temperature in each Cable Structure surface temperature measured data sequence, there is R Cable Structure surface point just to have to be carved at sunrise R the same day maximum temperature difference numerical value between 30 minutes after sunrise moment next day, maximal value is wherein called Cable Structure surface maximum temperature difference, be designated as Δ T smax, obtain the temperature of each Cable Structure surface point about the rate of change of time by each Cable Structure surface temperature measured data sequence by conventional mathematical computations, the temperature of each Cable Structure surface point about the rate of change of time also along with the time changes, obtain being carved at sunrise the same day after sunrise moment next day between 30 minutes by Real-Time Monitoring, at synchronization, after HBE " Cable Structure is along the temperature profile data of thickness ", calculate the sea level elevation place that chooses at each and amount to maximum temperature in BE " identical sea level elevation Cable Structure is along the temperature profile data of thickness " and the difference of minimum temperature, the absolute value of this difference is called " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", choose H different sea level elevation and just had H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", claim that the maximal value in this H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference " is " Cable Structure thickness direction maximum temperature difference ", be designated as Δ T tmax,
B3: measure and calculate acquisition Cable Structure steady temperature data, first, determine the moment that obtains Cable Structure steady temperature data, the condition relevant to the moment that determines acquisition Cable Structure steady temperature data has six, Section 1 condition be obtain Cable Structure steady temperature data moment after being carved at sunset sunrise moment next day between 30 minutes on same day, the sunset moment refers to the sunset moment on base area revolutions and the definite meteorology of revolution rule, can inquire about data or calculate sunset moment of each required day by conventional meteorology, the a condition of Section 2 condition be after being carved at sunrise sunrise moment next day on same day between 30 minutes during this period of time in, reference plate maximum temperature difference Δ T pmaxwith Cable Structure surface maximum temperature difference Δ T smaxall be not more than 5 degrees Celsius, the b condition of Section 2 condition be after being carved at sunrise sunrise moment next day on same day between 30 minutes during this period of time in, measure the environment maximum error Δ T that calculates above emaxbe not more than with reference to temperature difference per day Δ T r, and reference plate maximum temperature difference Δ T pmaxafter deducting 2 degrees Celsius, be not more than Δ T emax, and Cable Structure surface maximum temperature difference Δ T smaxbe not more than Δ T pmax, only need meet in a condition of Section 2 and b condition one is just called and meets Section 2 condition, Section 3 condition is that the temperature of Cable Structure place environment is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time in the moment that obtains Cable Structure steady temperature data, Section 4 condition is that the temperature of each the Cable Structure surface point in R Cable Structure surface point is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time in the moment that obtains Cable Structure steady temperature data, Section 5 condition is in the moment that obtains Cable Structure steady temperature data, and the Cable Structure surface temperature measured data of each the Cable Structure surface point in R Cable Structure surface point is to be carved at sunrise the minimal value between 30 minutes after the sunrise moment next day same day, Section 6 condition is at the moment that obtains Cable Structure steady temperature data, " Cable Structure thickness direction maximum temperature difference " Δ T tmaxbe not more than 1 degree Celsius, this method is utilized above-mentioned six conditions, any one in following three kinds of moment is called to " the mathematics moment that obtain Cable Structure steady temperature data ", the first moment is to meet Section 1 in above-mentioned " condition relevant to the moment that determines the to obtain Cable Structure steady temperature data " moment to Section 5 condition, the second moment is the moment that only meets the Section 6 condition in above-mentioned " condition relevant to the moment that determines acquisition Cable Structure steady temperature data ", the third moment is to meet Section 1 in above-mentioned " condition relevant to the moment that determines the to obtain Cable Structure steady temperature data " moment to Section 6 condition simultaneously, be exactly in this method when one in the physical record data moment when obtaining the mathematics moment of Cable Structure steady temperature data, the moment that obtains Cable Structure steady temperature data is exactly the mathematics moment that obtains Cable Structure steady temperature data, be not any moment in the physical record data moment in this method if obtain the mathematics moment of Cable Structure steady temperature data, getting this method is the moment that obtains Cable Structure steady temperature data close to moment of those physical record data in the mathematics moment that obtains Cable Structure steady temperature data, this method will be used the amount at the moment survey record that obtains Cable Structure steady temperature data to carry out the relevant health monitoring analysis of Cable Structure, this method is approximate thinks that the Cable Structure temperature field in moment of obtaining Cable Structure steady temperature data is in stable state, i.e. the not temporal evolution of Cable Structure temperature in this moment, and this moment is exactly " obtaining the moment of Cable Structure steady temperature data " of this method, then, according to Cable Structure heat transfer characteristic, utilize " R the Cable Structure surface temperature measured data " and " HBE Cable Structure is along thickness temperature measured data " in the moment that obtains Cable Structure steady temperature data, utilize the thermal conduction study computation model of Cable Structure, obtain obtaining the Temperature Distribution of Cable Structure in moment of Cable Structure steady temperature data by conventional Calculation of Heat Transfer, now calculate by stable state in the temperature field of Cable Structure, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculating comprises the accounting temperature of R Cable Structure surface point in Cable Structure, the accounting temperature of R Cable Structure surface point is called R Cable Structure stable state surface temperature computational data, also comprise the accounting temperature of Cable Structure selected HBE " measuring the point of Cable Structure along the temperature profile data of thickness " above, the accounting temperature of HBE " measuring the point of Cable Structure along the temperature profile data of thickness " is called " HBE Cable Structure is along thickness temperature computation data ", in the time of R Cable Structure surface temperature measured data and R Cable Structure stable state surface temperature computational data correspondent equal, and when " HBE Cable Structure is along thickness temperature measured data " and " HBE Cable Structure is along thickness temperature computation data " correspondent equal, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculating is called " Cable Structure steady temperature data " in the method, " R Cable Structure surface temperature measured data " is now called " R Cable Structure stable state surface temperature measured data ", " HBE Cable Structure is along thickness temperature measured data " is called " HBE Cable Structure is along thickness steady temperature measured data ", get " R Cable Structure surface point " on the surface of Cable Structure time, the quantity of " R Cable Structure surface point " and necessary three conditions that meet that distribute, first condition is when Cable Structure temperature field is during in stable state, when the temperature of any point on Cable Structure surface be by " R Cable Structure surface point " in Cable Structure surface on the observed temperature linear interpolation of the adjacent point in this arbitrfary point while obtaining, on the Cable Structure surface that linear interpolation obtains, on the temperature of this arbitrfary point and Cable Structure surface, the error of the actual temperature of this arbitrfary point is not more than 5%, Cable Structure surface comprises support cable surface, second condition is that in " R Cable Structure surface point ", the quantity at the point of same sea level elevation is not less than 4, and uniform along Cable Structure surface at the point of same sea level elevation in " R Cable Structure surface point ", " R Cable Structure surface point " is not more than 0.2 DEG C divided by Δ T along the maximal value Δ h in the absolute value of all differences of the sea level elevation of adjacent Cable Structure surface point between two of sea level elevation hthe numerical value obtaining, gets Δ T for convenience of narration hunit be DEG C/m that the unit of getting Δ h for convenience of narration is m, " R Cable Structure surface point " refers to while only considering sea level elevation along the definition of adjacent Cable Structure surface point between two of sea level elevation, in " R Cable Structure surface point ", do not have a Cable Structure surface point, the sea level elevation numerical value of this Cable Structure surface point is between the sea level elevation numerical value of adjacent Cable Structure surface point between two, the 3rd condition is inquiry or obtains the rule at sunshine between Cable Structure location and Altitude Region, place by meteorology conventionally calculation, again according to the geometric properties of Cable Structure and bearing data, in Cable Structure, find and be subject to the sunshine-duration position of those surface points the most fully the whole year, in " R Cable Structure surface point ", having a Cable Structure surface point at least is the annual point being subject in the most sufficient those surface points of sunshine-duration in Cable Structure,
C. directly measure according to " the temperature survey calculating method of the Cable Structure of this method " the Cable Structure steady temperature data that calculate under original state, Cable Structure steady temperature data under original state are called initial Cable Structure steady temperature data, are designated as " initial Cable Structure steady temperature data vector T o", actual measurement or consult reference materials and obtain the temperature variant physical and mechanical properties parameter of the various materials that Cable Structure uses, obtain initial Cable Structure steady temperature data vector T in actual measurement osynchronization, directly measure the initial Suo Li that calculates all support cables, form initial rope force vector F o, according to data including Cable Structure design data, completion data obtain that all support cables are in free state that Suo Li is the length of 0 o'clock, the weight of cross-sectional area during in free state and the unit length during in free state, and the temperature of all support cables while obtaining these three kinds of data, utilize on this basis temperature variant physical function parameter and the mechanical property parameters of all support cables, obtain all support cables at initial Cable Structure steady temperature data vector T according to conventional physical computing osuo Li under condition is that the length of 0 o'clock all support cable, cross-sectional area and the Suo Li that Suo Li is 0 o'clock all support cable are the weight of the unit length of 0 o'clock all support cable, form successively the weight vector of the initial drift vector of support cable, the initial free unit length of initial free cross-sectional area vector sum, the coding rule of the element of the weight vector of the initial drift vector of support cable, the initial free unit length of initial free cross-sectional area vector sum and initial rope force vector F othe coding rule of element identical, obtain T in actual measurement otime, namely obtaining initial Cable Structure steady temperature data vector T othe synchronization in moment, directly measure the measured data that calculates initial Cable Structure, the measured data of initial Cable Structure is to comprise Cable Structure centre-point load measurement data, Cable Structure distributed load measurement data, Cable Structure volume load measurement data, Cable Structure bearing initial line displacement measurement data, the initial value of all monitored amounts, the initial rope force data of all support cables, initial Cable Structure modal data, initial Cable Structure strain data, initial Cable Structure geometric data, initial Cable Structure bearing generalized coordinate data, initial Cable Structure angle-data, initial Cable Structure spatial data is in interior measured data, in obtaining the measured data of initial Cable Structure, measurement calculates the data of the health status that can express support cable including the Non-destructive Testing Data of support cable, the data of the health status that can express support cable are now called support cable initial health data, the initial value of all monitored amounts forms monitored amount initial value vector C o, monitored amount initial value vector C othe coding rule of coding rule and M monitored amount identical, utilize support cable initial health data, Cable Structure bearing initial line displacement measurement data and Cable Structure load measurement data to set up evaluation object initial damage vector d o, vectorial d orepresent with initial mechanical calculating benchmark model A othe initial health of the evaluation object of the Cable Structure representing, evaluation object initial damage vector d oelement number equal N, d oelement and evaluation object be one-to-one relationship, vectorial d othe coding rule of element identical with the coding rule of evaluation object, if d oevaluation object corresponding to some elements be support cable, so a d in cable system othe numerical value of this element represent the initial damage degree of corresponding support cable, if the numerical value of this element is 0, represent that the corresponding support cable of this element is intact, do not damage, if its numerical value is 100%, represent that the corresponding support cable of this element has completely lost load-bearing capacity, lost the load-bearing capacity of corresponding proportion if its numerical value between 0 and 100%, represents this support cable, if d oevaluation object corresponding to some elements be some translational components of some bearings, d so othe numerical value of this element represent the initial value of this translational component of this bearing, if d oevaluation object corresponding to some elements be some load, in this method, get d othis element numerical value be 0, the initial value that represents the variation of this load is 0, if there is no Cable Structure bearing initial line displacement measurement data or can think that the displacement of Cable Structure bearing initial line is at 0 o'clock, vectorial d oin the each element numerical value relevant to the displacement of Cable Structure support wire get 0, if while not having the Non-destructive Testing Data of support cable and other can express the data of health status of support cable, or can think that structure original state is not damaged during without relaxed state, vectorial d oin the each element numerical value relevant to support cable get 0, initial Cable Structure bearing spatial data refers to the bearing spatial data under Cable Structure design point, and Cable Structure bearing initial line displacement measurement data refer to setting up initial mechanical calculating benchmark model A otime, the displacement of the lines that Cable Structure bearing occurs with respect to the bearing under Cable Structure design point,
The temperature variant physical and mechanical properties parameter of the various materials that d. use according to measured data, support cable initial health data, Cable Structure bearing initial line displacement measurement data, Cable Structure centre-point load measurement data, Cable Structure distributed load measurement data, Cable Structure volume load measurement data, the Cable Structure of the design drawing of Cable Structure, as-constructed drawing and initial Cable Structure, initial Cable Structure steady temperature data vector T owith all Cable Structure data that obtain with preceding step, set up the initial mechanical calculating benchmark model A of the Cable Structure that counts " Cable Structure steady temperature data " o, based on A othe Cable Structure computational data calculating must approach its measured data very much, and difference therebetween must not be greater than 5%; Corresponding to A o" Cable Structure steady temperature data " be exactly " initial Cable Structure steady temperature data vector T o"; Corresponding to A oevaluation object initial damage vector d for evaluation object health status orepresent; Corresponding to A omonitored amount initial value vector C for the initial value of all monitored amounts orepresent; T oand d oa oparameter, by A oinitial value and the C of all monitored amounts of obtaining of Mechanics Calculation result othe initial value of all monitored amounts that represent is identical, therefore also can say C oby A omechanics Calculation result composition, A in the method o, C o, d oand T oconstant;
E. in the method, alphabetical i, except representing that significantly, the place of number of steps, alphabetical i only represents cycle index, circulates for the i time; When the i time circulation starts, the current initial mechanical calculating benchmark model of Cable Structure that need to set up or that set up is designated as current initial mechanical calculating benchmark model A i o, A oand A i ocount temperature parameter, can accounting temperature change the Effect on Mechanical Properties to Cable Structure; When the i time circulation starts, corresponding to A i o" Cable Structure steady temperature data " with current initial Cable Structure steady temperature data vector T i orepresent vector T i odefinition mode and vector T odefinition mode identical, T i oelement and T oelement corresponding one by one; The current initial damage vector of evaluation object that the i time circulation needs while beginning is designated as d i o, d i ocable Structure A while representing this circulation beginning i othe health status of evaluation object, d i odefinition mode and d odefinition mode identical, d i oelement and d oelement corresponding one by one; When the i time circulation starts, the initial value of all monitored amounts, with the current initial value vector of monitored amount C i orepresent vectorial C i odefinition mode and vectorial C odefinition mode identical, C i oelement and C oelement corresponding one by one, the current initial value vector of monitored amount C i orepresent corresponding to A i othe concrete numerical value of all monitored amounts; T i oand d i oa i ocharacterisitic parameter, C i oby A i omechanics Calculation result composition; When circulation starts for the first time, A i obe designated as A 1 o, set up A 1 omethod for making A 1 oequal A o; When circulation starts for the first time, T i obe designated as T 1 o, set up T 1 omethod for making T 1 oequal T o; When circulation starts for the first time, d i obe designated as d 1 o, set up d 1 omethod for making d 1 oequal d o; When circulation starts for the first time, C i obe designated as C 1 o, set up C 1 omethod for making C 1 oequal C o;
F. from entering the circulation that is walked q step by f here; In structure military service process, according to " the temperature survey calculating method of the Cable Structure of this method " the constantly current data of Actual measurement acquisition Cable Structure steady temperature data, the current data composition current cable structure steady temperature data vector T of all " Cable Structure steady temperature data " i, vector T idefinition mode and vector T odefinition mode identical, T ielement and T oelement corresponding one by one; Obtain vector T in actual measurement itime, actual measurement obtains obtaining current cable structure steady temperature data vector T ithe Cable Structure of synchronization in moment in the currency of all monitored amounts, all these numerical value form monitored amount current value vector C i, vectorial C idefinition mode and vectorial C odefinition mode identical, C ielement and C oelement corresponding one by one, represent that identical monitored amount is at numerical value in the same time not; Obtain current cable structure steady temperature data vector T in actual measurement isynchronization, actual measurement obtains all M in Cable Structure 1the rope force data of root support cable, all these rope force data composition current cable force vector F, the element of vectorial F and vectorial F othe coding rule of element identical; Obtain current cable structure steady temperature data vector T in actual measurement isynchronization, Actual measurement obtains all M 1the volume coordinate of two supporting end points of root support cable, the volume coordinate of two the supporting end points in the horizontal direction difference of component is exactly two supporting end points horizontal ranges, two supporting end points horizontal range data of all support cables form current support cable two and support end points horizontal range vector, and current support cable two supports the coding rule and initial rope force vector F of the element of end points horizontal range vector othe coding rule of element identical;
G. according to current cable structure steady temperature data vector T i, upgrade current initial mechanical calculating benchmark model A according to step g 1 to g3 i o, the current initial value of monitored amount vector C i owith current initial Cable Structure steady temperature data vector T i o, and the current initial damage vector of evaluation object d i oremain unchanged;
G1. compare T iwith T i oif, T iequal T i o, A i o, C i oand T i oremain unchanged; Otherwise need to follow these steps to A i oand T i oupgrade;
G2. calculate T iwith T opoor, T iwith T odifference be exactly the variations of current cable structure steady temperature data about initial Cable Structure steady temperature data, T iwith T opoor represent with steady temperature change vector S, S equals T ideduct T o, S represents the variation of Cable Structure steady temperature data;
G3. to A oin Cable Structure apply temperature variation, the numerical value of the temperature variation applying is just taken from steady temperature change vector S, to A oin the temperature variation that applies of Cable Structure after obtain the current initial mechanical calculating benchmark model A that upgrades i o, upgrade A i otime, T i oall elements numerical value is also used T icorresponding replacement of all elements numerical value, upgraded T i o, so just obtained correctly corresponding to A i ot i o; Now d i oremain unchanged; When upgrading A i oafter, A i othe current initial damage of the evaluation object vector d for health status of rope i orepresent A i ocurrent cable structure steady temperature data vector T for Cable Structure steady temperature irepresent, upgrade C i omethod be: when upgrade A i oafter, obtain A by Mechanics Calculation i oin concrete numerical value all monitored amounts, current, these concrete numerical value compositions C i o;
H. at current initial mechanical calculating benchmark model A i obasis on, carry out several times Mechanics Calculation according to step h1 to step h4, set up unit damage monitored numerical quantity transformation matrices Δ C by calculating iwith evaluation object unit change vector D i u;
H1. in the time that the i time circulation starts, directly press step h2 to the listed method acquisition of step h4 Δ C iand D i u; In other moment, when in step g to A i oafter upgrading, must regain Δ C to the listed method of step h4 by step h2 iand D i uif, in step g not to A i oupgrade, directly proceed to herein step I and carry out follow-up work;
H2. at current initial mechanical calculating benchmark model A i obasis on carry out several times Mechanics Calculation, on calculation times numerical value, equal the quantity N of all evaluation objects, have N evaluation object just to have N calculating; According to the coding rule of evaluation object, calculate successively; Calculating each time hypothesis only has an evaluation object on the basis of original damage or load, to increase unit damage or load unit variation again, concrete, if this evaluation object is a support cable in cable system, so just suppose that this support cable increases unit damage again, if this evaluation object is the translational component of a direction of a bearing, just suppose that this bearing increases unit line displacement again at this sense of displacement, if this evaluation object is a load, just suppose that this load increases load unit again and changes, use D i ukunit damage or unit line displacement or the load unit variation of recording this increase, wherein k represents the numbering of the evaluation object that increases unit damage or unit line displacement or load unit variation, D i ukevaluation object unit change vector D i uan element, evaluation object unit change vector D i ucoding rule and the vectorial d of element othe coding rule of element identical; The evaluation object that increases again unit damage or unit line displacement or load unit variation in calculating is each time different from the evaluation object that increases again unit damage or unit line displacement or load unit variation in other calculating, calculate each time the current calculated value that all utilizes mechanics method to calculate all monitored amounts of Cable Structure, a monitored amount calculation current vector of current calculated value composition of all monitored amounts that calculate each time; In the time that k evaluation object of hypothesis increases unit damage or unit line displacement or load unit variation again, use C i ckrepresent corresponding " monitored amount calculation current vector "; While giving in this step the element numbering of each vector, should use same coding rule with other vector in this method, to ensure any one element in each vector in this step, with in other vector, number identical element, expressed the relevant information of same monitored amount or same target; C i ckdefinition mode and vectorial C odefinition mode identical, C i ckelement and C oelement corresponding one by one;
H3. the vectorial C calculating each time i ckdeduct vectorial C i oobtain a vector, then obtain " vectorial δ a C of numerical value change of monitored amount after the unit damage that each element of this vector is supposed divided by this calculating or unit line displacement or load unit variation numerical value i k"; There is N evaluation object just to have N " the numerical value change vector of monitored amount ";
H4. by this N " the numerical value change vector of monitored amount " according to the coding rule of N evaluation object, composition has " the unit damage monitored numerical quantity transformation matrices Δ C that N is listed as successively i"; Unit damage monitored numerical quantity transformation matrices Δ C ieach be listed as corresponding to a monitored amount unit change vector; Unit damage monitored numerical quantity transformation matrices Δ C ievery a line corresponding to same monitored amount the different unit change amplitude in the time that different evaluation objects increase unit damage or unit line displacement or load unit and change; Unit damage monitored numerical quantity transformation matrices Δ C icoding rule and the vectorial d of row othe coding rule of element identical, unit damage monitored numerical quantity transformation matrices Δ C ithe coding rule of coding rule and M monitored amount of row identical;
I. define the vectorial d of current name damage i cwith current actual damage vector d i, d i cand d ielement number equal the quantity of evaluation object, d i cand d ielement and evaluation object between be one-to-one relationship, d i celement numerical value represent nominal degree of injury or nominal displacement of the lines or the nominal load variable quantity of corresponding evaluation object, d i cand d iwith evaluation object initial damage vector d oelement coding rule identical, d i celement, d ielement and d oelement be one-to-one relationship;
J. according to monitored amount current value vector C iwith " the current initial value vector of monitored amount C i o", " unit damage monitored numerical quantity transformation matrices Δ C i" and " the vectorial d of current name damage i c" between the linear approximate relationship that exists, this linear approximate relationship can be expressed as formula 1, in formula 1 except d i cother outer amount is known, solves formula 1 and just can calculate the vectorial d of current name damage i c;
C i = C o i + ΔC i · d c i Formula 1
K. the current actual damage vector d that utilizes formula 2 to express ik element d i kwith the current initial damage vector of evaluation object d i ok element d i okwith the vectorial d of current name damage i ck element d i ckbetween relation, calculate current actual damage vector d iall elements;
Figure BDA0000475028050000152
formula 2
K=1 in formula 2,2,3 ..., N; Vector d ithe coding rule of element and formula (1) in vectorial d othe coding rule of element identical; d i krepresent the current actual health status of k evaluation object in the i time circulation, if this evaluation object is support cable, so a d in cable system i krepresent the order of severity of its current health problem, the support cable of unsoundness problem may be slack line, also may be damaged cable, d i knumerical response the degree of lax or damage of this support cable; If this evaluation object is load, so a d i krepresent the actual change amount of this load; If this evaluation object is translational component, so a d of a bearing i krepresent its current actual line displacement numerical value; By current evaluation object actual damage vector d iin with M 1the M that root support cable is relevant 1individual element takes out, the current actual damage vector of composition support cable d ci, the current actual damage vector of support cable d cithe coding rule and initial rope force vector F of element othe coding rule of element identical; The current actual damage vector of support cable d cih element representation Cable Structure in the current actual damage amount of h root support cable, h=1,2,3 ...., M 1; The current actual damage vector of support cable d cimiddle numerical value is not 0 the element support cable corresponding to unsoundness problem, from the support cable of these unsoundness problems, identifies damaged cable, and remaining is exactly slack line; The current actual damage vector of the support cable corresponding with damaged cable d ciin element numerical expression be the current actual damage of this damaged cable, element numerical value represents while being 100% that this support cable thoroughly loses load-bearing capacity, represents to lose the load-bearing capacity of corresponding proportion between 0 and 100% time; Utilize at current cable structure steady temperature data vector T iunder condition, walk the slack line that identifies and with the current actual damage vector of support cable d at l cithese slack lines of expressing, with the current actual equivalent damage degree of its relax level mechanics equivalence, utilize obtain in f step at current cable structure steady temperature data vector T icurrent cable force vector F under condition isupport end points horizontal range vector with current support cable two, utilize obtain in c step at initial Cable Structure steady temperature data vector T othe weight vector of the initial drift vector of the support cable under condition, the initial free unit length of initial free cross-sectional area vector sum, initial rope force vector F o, utilize current cable structure steady temperature data vector T ithe current steady temperature data of support cable that represent, utilize obtain in c step at initial Cable Structure steady temperature data vector T othe support cable initial steady state temperature data representing, utilize the temperature variant physical and mechanical properties parameter of the various materials that use in the Cable Structure of c step acquisition, count the impact of temperature variation on support cable physics, mechanics and geometric parameter, by by slack line with damaged cable carry out mechanics equivalence calculate slack line, with the relax level of current actual equivalent damage degree equivalence, mechanics equivalent condition is: one, the mechanics parameters without lax initial drift, geometrical property parameter, density and material during with not damaged of the rope of two equivalences is identical; Two, after lax or damage, the Suo Li of the slack line of two equivalences and damage rope be out of shape after overall length identical; While meeting above-mentioned two mechanics equivalent conditions, the mechanics function of two such support cables in Cable Structure is exactly identical, if replaced after damaged cable with equivalent slack line, any variation can not occur Cable Structure, and vice versa; The relax level of trying to achieve those and be judged as slack line according to aforementioned mechanics equivalent condition, relax level is exactly the change amount of support cable drift, has namely determined the long adjustment amount of rope of those support cables that need adjust Suo Li; Lax identification and the damage identification of support cable are so just realized; When calculating, institute's demand power is by current cable force vector F icorresponding element provides; This method is referred to as damaged cable and slack line the support cable of unsoundness problem, referred to as problem rope, so far this method has realized and has rejected problem rope identification impact, Cable Structure that support wire displacement, load change and structure temperature change, realize simultaneously and rejected support wire displacement, structure temperature variation and identification support cable health status variable effect, load change amount, also realized and rejected load change, structure temperature variation and identification support cable health status variable effect, support wire displacement;
L. try to achieve the vectorial d of current name damage i cafter, set up mark vector B according to formula 3 i, formula 4 has provided mark vector B ithe definition of k element;
B i = B 1 i B 2 i · · · B k i · · · B N i T Formula 3
Figure BDA0000475028050000172
formula 4
Element B in formula 4 i kmark vector B ik element, D i ukevaluation object unit change vector D i uk element, d i ckthe vectorial d of the current name damage of evaluation object i ck element, they all represent the relevant information of k evaluation object, k=1 in formula 4,2,3 ..., N;
If m. mark vector B ielement be 0 entirely, get back to step f and continue this circulation; If mark vector B ielement be not 0 entirely, enter next step, i.e. step n;
N. according to formula 5 calculate next time, i.e. the i+1 time current initial damage vector of the required evaluation object of circulation d i+1 oeach element;
Figure BDA0000475028050000173
formula 5
D in formula 5 i+1 okthe current initial damage vector of the required evaluation object d that next time, circulates for the i+1 time i+1 ok element, d i okthis, i.e. the current initial damage vector of the evaluation object of the i time circulation d i ok element, D i ukthe evaluation object unit change vector D of the i time circulation i uk element, B i kthe mark vector B of the i time circulation ik element, k=1 in formula 5,2,3 ..., N;
O. take off once, i.e. the i+1 time required current initial Cable Structure steady temperature data vector T of circulation i+1 oequal the current initial Cable Structure steady temperature data vector T of the i time circulation i o;
P. at initial mechanical calculating benchmark model A obasis on, to A oin Cable Structure apply temperature variation, the numerical value of the temperature variation applying is just taken from steady temperature change vector S, then to make the health status of rope be d i+1 oafter obtain be exactly next time, i.e. the i+1 time required Mechanics Calculation benchmark model A of circulation i+1; Obtain A i+1after, obtain A by Mechanics Calculation i+1in concrete numerical value all monitored amounts, current, these concrete numerical value compositions next time, i.e. the required vectorial C of the current initial value of monitored amount of the i+1 time circulation i+1 o;
Q. get back to step f, start circulation next time.
Beneficial effect: this method has realized three kinds of functions that existing method can not possess, respectively: one, reject the displacement of Cable Structure support wire, load change and structure temperature and change the impact on Cable Structure health status recognition result, thereby identify exactly the structure health monitoring method of problem rope; Two, reject the impact that the displacement of Cable Structure support wire, structure temperature variation and support cable health status change, realize the correct identification of load change degree; Three, reject the impact that load change, structure temperature variation and support cable health status change, realize the correct identification of Cable Structure support wire displacement.
Embodiment
This method adopts a kind of algorithm, and this algorithm is for identifying the variable quantity of support wire displacement, problem rope and load.When concrete enforcement, the following step is the one in the various steps that can take.
The first step: the quantity of first confirming the load that may change that Cable Structure bears.The feature of the load of bearing according to Cable Structure, confirm wherein " load likely changing ", or all load is considered as " load likely changing ", if total JZW the load that may change, the variable quantity that this method is expressed " load likely changing " by the intensity of variation of identification this JZW " load likely changing ".
If the quantity sum of the quantity of the quantity of the support wire displacement component of Cable Structure, the support cable of Cable Structure and JZW " load likely changing " is N.For sake of convenience, it is " evaluation object " that this method unitedly calls evaluated support cable and " load likely changing ", total N evaluation object.Give evaluation object serial number, this numbering will be used for generating vector sum matrix in subsequent step.
" the whole monitored spatial data of structure " described by the volume coordinate of a L assigned direction specified point and each specified point of K in structure, and the variation of structure space coordinate data is exactly the variation of all volume coordinate components of K specified point.Each total M(M=K × L) individual volume coordinate measured value or calculated value characterize structure space coordinate information.K and M must not be less than N.Comprehensive above-mentioned monitored amount, total M the monitored amount of whole Cable Structure, M must not be less than the quantity N of evaluation object.For simplicity, in the method by " monitored all parameters of Cable Structure " referred to as " monitored amount ".Give M monitored amount serial number, this numbering will be used for generating vector sum matrix in subsequent step.This method is with representing this numbering with variable j, j=1, and 2,3 ..., M.
According to the method providing in technical scheme and claims, adopt the conventional method including conventional temperature survey calculating method, determine " the temperature survey calculating method of the Cable Structure of this method ".
Second step: set up initial mechanical calculating benchmark model A o.
In Cable Structure completion, or setting up before health monitoring systems, calculating " Cable Structure steady temperature data " according to " the temperature survey calculating method of the Cable Structure of this method " measurement (can measure by conventional thermometry, for example use thermal resistance to measure), " Cable Structure steady temperature data " now use vector T orepresent, be called initial Cable Structure steady temperature data vector T o.Obtain T in actual measurement otime, namely at the synchronization in moment that obtains initial Cable Structure steady temperature data vector, use conventional method directly to measure the initial value of all monitored amounts that calculate Cable Structure, form monitored amount initial value vector C o.
Can be specifically in this method obtaining the synchronization in moment of so-and-so Cable Structure steady temperature data vector such as (such as initial or current) according to following method, use so-and-so method measurement to calculate the data of the monitored amount of so-and-so measured amount (all monitored amount of for example Cable Structure): (to comprise the temperature of Cable Structure place environment in survey record temperature, the temperature of the sunny slope of reference plate and Cable Structure surface temperature) time, for example, every temperature of 10 minutes survey records, so simultaneously equally also every 10 minutes the monitored amount of so-and-so measured amount of survey record (all monitored amount of for example Cable Structure) data.Once determine the moment that obtains Cable Structure steady temperature data, for example, be just called and obtaining the synchronization in moment of Cable Structure steady temperature data with the data of the monitored amount of so-and-so measured amount (all monitored amount of Cable Structure) of moment synchronization that obtain Cable Structure steady temperature data so, use so-and-so method to measure the data of the monitored amount of so-and-so measured amount that computing method obtain.
Use conventional method (consult reference materials or survey) to obtain temperature variant physical parameter (for example thermal expansivity) and the mechanical property parameters (for example elastic modulus, Poisson ratio) of the various materials that Cable Structure uses.
Obtain initial Cable Structure steady temperature data vector T in actual measurement osynchronization, directly measure the initial Suo Li that calculates all support cables, form initial rope force vector F o; According to Cable Structure design data, completion data obtain that all support cables are in free state that Suo Li is the length of 0 o'clock, the weight of cross-sectional area during in free state and the unit length during in free state, and the temperature of all support cables while obtaining these three kinds of data, utilize on this basis temperature variant physical function parameter and the mechanical property parameters of all support cables, obtain all support cables at initial Cable Structure steady temperature data vector T according to conventional physical computing osuo Li under condition is that the length of 0 o'clock all support cable, cross-sectional area and the Suo Li that Suo Li is 0 o'clock all support cable are the weight of the unit length of 0 o'clock all support cable, forms successively the initial drift vector l of support cable o, initial free cross-sectional area vector A oweight vector ω with initial free unit length o, the initial drift vector l of support cable o, initial free cross-sectional area vector A oweight vector ω with initial free unit length othe coding rule and initial rope force vector F of element othe coding rule of element identical.
Obtain initial Cable Structure steady temperature data vector T at Actual measurement otime, use conventional method Actual measurement to obtain the Actual measurement data of Cable Structure.The Actual measurement data of Cable Structure comprise that Non-destructive Testing Data of support cable etc. can express the data of the health status of rope, the initial geometric data of Cable Structure, rope force data, draw-bar pull data, Cable Structure bearing generalized coordinate data, initial Cable Structure bearing generalized coordinate data, Cable Structure bearing initial line displacement measurement data, Cable Structure centre-point load measurement data, Cable Structure distributed load measurement data, Cable Structure volume load measurement data, Cable Structure modal data, structural strain data, structure angle measurement data, the measured datas such as structure space measurement of coordinates data.Initial Cable Structure bearing spatial data refers to the bearing spatial data under Cable Structure design point, and Cable Structure bearing initial line displacement measurement data refer to setting up initial mechanical calculating benchmark model A otime, the displacement of the lines that Cable Structure bearing occurs with respect to the bearing under Cable Structure design point.The initial geometric data of Cable Structure can be the spatial data that the spatial data of the end points of all ropes adds a series of point in structure, and object is to determine according to these coordinate datas the geometric properties of Cable Structure.For cable-stayed bridge, the spatial data that initial geometric data can be the end points of all ropes adds the spatial data of some points on bridge two ends, so-called bridge type data that Here it is.Data, Cable Structure bearing initial line displacement measurement data and the Cable Structure load measurement data of utilizing the Non-destructive Testing Data etc. of support cable can express the health status of support cable are set up evaluation object initial damage vector d o, use d orepresent that Cable Structure is (with initial mechanical calculating benchmark model A orepresent) the initial health of evaluation object.If while not having the Non-destructive Testing Data of support cable and other can express the data of health status of support cable, or can think that structure original state is not damaged during without relaxed state, vectorial d oin the each element numerical value relevant to support cable get 0; If there is no Cable Structure bearing initial line displacement measurement data or can think that the displacement of Cable Structure bearing initial line is at 0 o'clock, vectorial d oin the each element numerical value relevant to the displacement of Cable Structure support wire get 0; If d oevaluation object corresponding to some elements be some load, in this method, get d othis element numerical value be 0, the initial value that represents the variation of this load is 0.Utilize the Non-destructive Testing Data of the design drawing, as-constructed drawing of Cable Structure and the measured data of initial Cable Structure, support cable, temperature variant physical and mechanical properties parameter and the initial Cable Structure steady temperature data vector T of various materials that Cable Structure is used o, utilize mechanics method (for example finite element method) to count " Cable Structure steady temperature data " and set up initial mechanical calculating benchmark model A o.
No matter which kind of method to obtain initial mechanical calculating benchmark model A by o, counting " Cable Structure steady temperature data " (is initial Cable Structure steady temperature data vector T o), based on A othe Cable Structure computational data calculating must approach its measured data very much, and error generally must not be greater than 5%.Like this can utility A ocalculate Suo Li computational data, strain computational data, Cable Structure shape computational data and displacement computational data under the analog case of gained, Cable Structure angle-data, Cable Structure spatial data etc., the measured data when approaching reliably institute's analog case and truly occurring.Model A oevaluation object initial damage vector d for the health status of middle support cable orepresent initial Cable Structure steady temperature data vector T for Cable Structure steady temperature data orepresent.Due to based on A othe evaluation that calculates all monitored amounts approaches the initial value (actual measurement obtains) of all monitored amounts very much, so also can be used in A obasis on, carry out Mechanics Calculation obtains, A othe evaluation of each monitored amount form monitored amount initial value vector C o.Corresponding to A o" Cable Structure steady temperature data " be exactly " initial Cable Structure steady temperature data vector T o"; Corresponding to A oevaluation object initial damage vector d for evaluation object health status orepresent; Corresponding to A omonitored amount initial value vector C for the initial value of all monitored amounts orepresent.T oand d oa oparameter, C oby A omechanics Calculation result composition.
The 3rd step: in the method, alphabetical i, except representing that significantly, the place of number of steps, alphabetical i only represents cycle index, circulates for the i time; When the i time circulation starts, the current initial mechanical calculating benchmark model of Cable Structure that need to set up or that set up is designated as current initial mechanical calculating benchmark model A i o, A oand A i ocount temperature parameter, can accounting temperature change the Effect on Mechanical Properties to Cable Structure; When the i time circulation starts, corresponding to A i o" Cable Structure steady temperature data " with current initial Cable Structure steady temperature data vector T i orepresent vector T i odefinition mode and vector T odefinition mode identical, T i oelement and T oelement corresponding one by one; The current initial damage vector of evaluation object that the i time circulation needs while beginning is designated as d i o, d i ocable Structure A while representing this circulation beginning i othe health status of evaluation object, d i odefinition mode and d odefinition mode identical, d i oelement and d oelement corresponding one by one; When the i time circulation starts, the initial value of all monitored amounts, with the current initial value vector of monitored amount C i orepresent vectorial C i odefinition mode and vectorial C odefinition mode identical, C i oelement and C oelement corresponding one by one, the current initial value vector of monitored amount C i orepresent corresponding to A i othe concrete numerical value of all monitored amounts; T i oand d i oa i ocharacterisitic parameter; C i oby A i omechanics Calculation result composition; When circulation starts for the first time, A i obe designated as A 1 o, set up A 1 omethod for making A 1 oequal A o; When circulation starts for the first time, T i obe designated as T 1 o, set up T 1 omethod for making T 1 oequal T o; When circulation starts for the first time, d i obe designated as d 1 o, set up d 1 omethod for making d 1 oequal d o; When circulation starts for the first time, C i obe designated as C 1 o, set up C 1 omethod for making C 1 oequal C o.
The 4th step: the hardware components of pass line structural healthy monitoring system.Hardware components at least comprises: space coordinate monitoring system, signal (data) collector, the computing machine and the panalarm of communicating by letter of monitored amount monitoring system (for example, containing spatial coordinate measuring system, signal conditioner etc.), Cable Structure temperature monitoring system (containing temperature sensor, signal conditioner etc.) and the supporting end points of Cable Structure ambient temperature measurement system (containing temperature sensor, signal conditioner etc.), support cable cable force monitoring system, support cable.The volume coordinate of the Suo Li of each monitored amount, each temperature, each root support cable, the supporting end points of each root support cable must arrive by monitored system monitoring, and the signal monitoring is transferred to signal (data) collector by monitoring system; Signal is delivered to computing machine through signal picker; Computing machine is responsible for the health monitoring software of the evaluation object of operation Cable Structure, comprises the signal that the transmission of tracer signal collector comes; In the time monitoring evaluation object health status and change, computer control communication panalarm is reported to the police to the personnel of monitor staff, owner and (or) appointment.
The 5th step: establishment the system software of installation and operation this method on computers, this software will complete the functions (being all work that can complete with computing machine in this specific implementation method) such as monitoring that this method required by task wants, record, control, storage, calculating, notice, warning.
The 6th step: step starts circulation running thus, in structure military service process, according to " the temperature survey calculating method of the Cable Structure of this method " the constantly current data of Actual measurement acquisition Cable Structure steady temperature data, the current data composition current cable structure steady temperature data vector T of all " Cable Structure steady temperature data " i, vector T idefinition mode and vector T odefinition mode identical, T ielement and T oelement corresponding one by one; In actual measurement vector T itime, namely obtaining current cable structure steady temperature data vector T ithe synchronization in moment: 1. vectorial C i, vectorial C idefinition mode and vectorial C odefinition mode identical, C ielement and C oelement corresponding one by one, represent that identical monitored amount is at numerical value in the same time not; 2. actual measurement obtains all M in Cable Structure 1the rope force data of root support cable, all these rope force data composition current cable force vector F i, the element of vectorial F and vectorial F othe coding rule of element identical; 3. Actual measurement obtains all M 1the volume coordinate of two supporting end points of root support cable, the volume coordinate of two the supporting end points in the horizontal direction difference of component is exactly two supporting end points horizontal ranges, all M 1two supporting end points horizontal range data of root support cable form current support cable two and support end points horizontal range vector l i x, current support cable two supports end points horizontal range vector l i xthe coding rule and initial rope force vector F of element othe coding rule of element identical.
The 7th step: obtaining current cable structure steady temperature data vector T iafter, relatively T iand T i oif, T iequal T i o, do not need A i oand T i oupgrade, otherwise need to be to current initial mechanical calculating benchmark model A i o, current initial Cable Structure steady temperature data vector T i owith the current initial value vector of monitored amount C i oupgrade, and the current initial damage vector of evaluation object d i oremain unchanged, update method is undertaken by technical scheme and claims regulation step.
The 8th step: at current initial mechanical calculating benchmark model A i obasis on, carry out several times Mechanics Calculation according to technical scheme and claims regulation step, set up unit damage monitored numerical quantity transformation matrices Δ C by calculating iwith evaluation object unit change vector D i u, concrete, if this evaluation object is a support cable in cable system, so just suppose that this support cable is at vectorial d i oon the basis of the existing damage of this support cable representing, there is again unit damage (for example getting 5%, 10%, 20% or 30% equivalent damage is unit damage), if this evaluation object is the translational component of a direction of a bearing, just suppose this bearing at this sense of displacement at vectorial d i oon the basis of the existing displacement of the lines of this bearing representing, there is again unit line displacement (10mm etc. are unit line displacement for for example 2mm, 5mm), if this evaluation object is a load, just suppose that this load is at vectorial d i oon the basis of the existing variable quantity of this load representing, increasing load unit changes (if this load is distributed load again, and this distributed load is line distributed load, load unit changes can get 1kN/m, 2kN/m, 3kN/m or 1kNm/m, 2kNm/m, 3kNm/m etc. for unit change; If this load is distributed load, and this distributed load is face distributed load, and load unit changes can get 1MPa, 2MPa, 3MPa or 1kNm/m 2, 2kNm/m 2, 3kNm/m 2deng being unit change; If this load is centre-point load, and this centre-point load is couple, and load unit changes can get 1kNm, 2kNm, 3kNm etc. for unit change; If this load is centre-point load, and this centre-point load is concentrated force, and load unit changes can get 1kN, 2kN, 3kN etc. for unit change; If this load is volume load, load unit changes can get 1kN/m 3, 2kN/m 3, 3kN/m 3deng being unit change).
The 9th step: set up linear relationship error vector e iwith vectorial g i.Utilize data (" the current initial value vector of monitored amount C above i o", " unit damage monitored numerical quantity transformation matrices Δ C i"); when the 8th step is calculated each time; in calculating each time the increase unit damage or unit line displacement or load unit variation of only having an evaluation object in hypothesis evaluation object; when hypothesis k(k=1,2,3; ..., N) when individual evaluation object increases unit damage or unit line displacement or load unit variation, calculate each time damage vector of composition, use d i tkrepresent this damage vector, corresponding monitored amount calculation current vector is C i tk(referring to the 8th step), damages vectorial d i tkelement number equal the quantity of evaluation object, vectorial d i tkall elements in only have the numerical value of an element to get to calculate each time in hypothesis increase unit damage or unit line displacement or the load unit changing value of the evaluation object that unit damage or unit line displacement or load unit change, d i tkthe numerical value of other element get 0, that is not that numbering and the supposition of 0 element increases the corresponding relation of the evaluation object that unit damage or unit line displacement or load unit change, is identical with the element of the same numbering of other vectors with the corresponding relation of this evaluation object; d i tkwith evaluation object initial damage vector d oelement coding rule identical, d i tkelement and d oelement be one-to-one relationship.By C i tk, C i o, Δ C i, d i tkbring formula (1) into, obtain a linear relationship error vector e i k, calculate each time a linear relationship error vector e i k; e i ksubscript k represent k(k=1,2,3 ..., N) and individual evaluation object increase unit damage or unit line displacement or load unit variation.There is N evaluation object just to have N calculating, just have N linear relationship error vector e i k, by this N linear relationship error vector e i kafter addition, obtain a vector, the new vector that each element of this vector is obtained after divided by N is exactly final linear relationship error vector e i.Vector g iequal final error vector e i.By vectorial g ibe kept on the hard disc of computer of operation health monitoring systems software, for health monitoring systems software application.
e k i = abs ( ΔC i · d tk i - C tk i + C o i ) - - - ( 1 )
The tenth step: define the vectorial d of current name damage i cwith current actual damage vector d i, d i cand d ielement number equal the quantity of evaluation object, d i cand d ielement and evaluation object between be one-to-one relationship, d i cand d ielement numerical value represent degree of injury or displacement of the lines amount or the load change degree of corresponding evaluation object, d i cand d iwith evaluation object initial damage vector d oelement coding rule identical, d i celement, d ielement and d oelement be one-to-one relationship.
The 11 step: according to monitored amount current value vector C iwith " the current initial value vector of monitored amount C i o", " unit damage monitored numerical quantity transformation matrices Δ C i" and " the vectorial d of current name damage i c" between the linear approximate relationship that exists, this linear approximate relationship can be expressed as formula (2), calculates the vectorial d of current name damage according to multi-objective optimization algorithm i cnoninferior solution, namely with reasonable error but can reflect more exactly the solution of the variation of the health status of evaluation object.
C i = C o i + ΔC i · d c i - - - ( 2 )
Can adopt the Objective Programming (Goal Attainment Method) in multi-objective optimization algorithm to solve the vectorial d of current name damage i cprocess, according to Objective Programming, formula (2) can transform the multi-objective optimization question shown in an accepted way of doing sth (3) and formula (4), γ is a real number in formula (3), R is real number field, area of space Ω has limited vectorial d i cthe span of each element.The meaning of formula (3) is to find a minimum real number γ, and formula (4) is met.G (d in formula (4) i c) by formula (5) definition, G (d in the product representation formula (4) of weighing vector W and γ in formula (4) i c) and vectorial g ibetween allow deviation.When actual computation vector W can with vectorial g iidentical.The concrete programming of Objective Programming realizes has had universal program directly to adopt.Use Objective Programming just can damage vectorial d in the hope of current name i c.
min imize γ γ ∈ R , d c i ∈ Ω - - - ( 3 )
G ( d c i ) - Wγ ≤ g i - - - ( 4 )
G ( d c i ) = abs ( ΔC i · d c i - C i + C o i ) - - - ( 5 )
The 12 step: according to current actual damage vector d idefinition and the definition of its element calculate current actual damage vector d ieach element, thereby can be by d idetermine the health status of evaluation object.The current actual damage vector of evaluation object d ik element d i krepresent the current actual health status of k evaluation object in the i time circulation.D i krepresent the current actual health status of k evaluation object in the i time circulation: if 1. this evaluation object is a support cable in cable system, d so i krepresent its current actual damage, d i kbe to represent that its corresponding support cable is without health problem at 0 o'clock, d i knumerical value is not the support cable that represents that its corresponding support cable is unsoundness problem at 0 o'clock, and the support cable of unsoundness problem may be slack line, also may be damaged cable, its numerical response the degree of lax or damage; If 2. this evaluation object is translational component, so a d of a bearing i krepresent its current actual line displacement numerical value; If 3. this evaluation object is load, so a d i krepresent that its current real load changes numerical value.
By current evaluation object actual damage vector d iin the M relevant to support cable 1individual element takes out, the current actual damage vector of composition support cable d ci, the current actual damage vector of support cable d cithe coding rule and initial rope force vector F of element othe coding rule of element identical.The current actual damage vector of support cable d cih element representation Cable Structure in the current actual damage amount of h root support cable, h=1,2,3 ...., M 1; The current actual damage vector of support cable d cimiddle numerical value is not 0 the element support cable corresponding to unsoundness problem, use lossless detection method to identify damaged cable from the support cable of these unsoundness problems, after differentiating, those do not find that support cable damage, unsoundness problem is exactly that lax rope has occurred, need exactly to adjust the rope of Suo Li, be exactly slack line, these ropes that need adjust Suo Li are at the current actual damage vector of support cable d ciin corresponding element numerical value (for example one of them element can be used d ci hrepresent) represent and the degree of injury of the relax level mechanics equivalence of these support cables, just determined thus slack line, the computing method of concrete slack illustrate below.The current actual damage vector of the support cable corresponding with damaged cable d ciin element numerical expression be the current actual damage of this damaged cable, so far just identified damaged cable and degree of injury thereof.Utilize the current actual damage vector of support cable d cislack line and the current actual equivalent damage degree its relax level mechanics equivalence of expressing, particularly can be in the hope of the relax level of these ropes (being the long adjustment amount of rope) according to formula (6).So just realize the lax identification of support cable.So far damaged cable and slack line have just all been identified.
Δl h i = d h ci 1 - d h ci F h i [ E h i 1 + ( ω h i l xh i ) 2 A h i E h i 12 ( F h i ) 3 ] A h i + F h i l oh i - - - ( 6 )
E in formula (6) i hthe current initial Cable Structure steady temperature data vector T for steady temperature data in Cable Structure i owhen expression, the elastic modulus of h root support cable, A i hthe current initial Cable Structure steady temperature data vector T for steady temperature data in Cable Structure i owhen expression, the cross-sectional area of h root support cable, F i hthe current initial Cable Structure steady temperature data vector T for steady temperature data in Cable Structure i owhen expression, the current cable power of h root support cable, dc i hthe current actual damage degree of h root support cable, ω i hthe current initial Cable Structure steady temperature data vector T for steady temperature data in Cable Structure i owhen expression, the weight of the unit length of h root support cable, l i xhthe current initial Cable Structure steady temperature data vector T for steady temperature data in Cable Structure i owhen expression, the horizontal range of two supporting end points of h root support cable, l i xhthat current support cable two supports end points horizontal range vector l i xan element, current support cable two supports end points horizontal range vector l i xthe coding rule and initial drift vector l of element othe coding rule of element identical, E i hcan obtain according to the characteristic material data of looking into or survey h root support cable A i hand ω i hcan be according to the thermal expansivity of h root support cable, A oh, ω oh, F i h, T oand T i oobtain by conventional physics and Mechanics Calculation.
The 13 step: the computing machine in health monitoring systems regularly generates cable system health condition form automatically or by personnel's operational health monitoring system.
The 14 step: under specified requirements, the computing machine automatic operation communication panalarm in health monitoring systems is reported to the police to the personnel of monitor staff, owner and (or) appointment.
The 15 step: set up mark vector B iif, mark vector B ielement be 0 entirely, get back to the 6th step and proceed health monitoring and the calculating to cable system; If mark vector B ielement be not 0 entirely, complete after subsequent step, enter next time circulation.
The 16 step: calculate next time (the i+1 time, i=1,2,3,4 ...) circulate initial damage vector d required i+1 oeach element d i+1 ok(k=1,2,3 ..., N); At initial mechanical calculating benchmark model A obasis on, to A oin Cable Structure apply temperature variation, the numerical value of the temperature variation applying is just taken from steady temperature change vector S, then to make the health status of rope be d i+1 oafter obtain be exactly next time, the i+1 time (i=1,2,3,4 ...) circulate Mechanics Calculation benchmark model A required i+1; Next time (the i+1 time, i=1,2,3,4 ...) required current initial Cable Structure steady temperature data vector T circulates i+1 oequal T i o.Obtain A i+1, d i+1 oand T i+1 oafter, obtain A by Mechanics Calculation i+1in concrete numerical value all monitored amounts, current, these concrete numerical value compositions next time, i.e. the required vectorial C of the current initial value of monitored amount of the i+1 time circulation i+1 o.
The 17 step: get back to the 6th step, start the circulation by the 6th step to the 17 steps.

Claims (1)

1. the laddering recognition methods of space coordinate monitoring problem rope loaded line displacement, is characterized in that described method comprises:
A. for sake of convenience, it is evaluation object that this method unitedly calls evaluated support wire displacement component, support cable and load, if the quantity sum of the quantity of evaluated support wire displacement component, the quantity of support cable and load is N, the quantity of evaluation object is N; Determine the coding rule of evaluation object, by this rule, by evaluation object numberings all in Cable Structure, this numbering will be used for generating vector sum matrix in subsequent step; This method represents this numbering with variable k, k=1, and 2,3 ..., N; Determine specify by the measured point of monitored volume coordinate, give all specified points numbering; Determined each measurement point by monitored volume coordinate component, give all measured volume coordinate components numberings; Above-mentioned numbering will be used for generating vector sum matrix in subsequent step; " the whole monitored spatial data of Cable Structure " is made up of above-mentioned all measured volume coordinate components; For simplicity, in the method by " the monitored spatial data of Cable Structure " referred to as " monitored amount "; The quantity sum of all monitored amounts is designated as M, and M must not be less than N; In this method, must not be greater than 30 minutes to the time interval between any twice measurement of same amount Real-Time Monitoring, the moment of survey record data is called the physical record data moment; The external force that object, structure are born can be described as load, and load comprises face load and volume load; Face load claims again surface load, is the load that acts on body surface, comprises two kinds of centre-point load and distributed loads; Volume load is that continuous distribution is in the load of interior of articles each point, including the deadweight and inertial force of object; Centre-point load is divided into two kinds of concentrated force and concentrated couples, comprising in the coordinate system of Descartes's rectangular coordinate in tying up to, a concentrated force can resolve into three components, same, a concentrated couple also can resolve into three components, if load is actually centre-point load, in the method a concentrated force component or a concentrated couple component being counted or added up is a load, and the now variation of load is embodied as the variation of a concentrated force component or a concentrated couple component; Distributed load is divided into line distributed load and face distributed load, and the description of distributed load at least comprises the zone of action of distributed load and the size of distributed load, and the size of distributed load is expressed by distribution intensity, and distribution intensity is expressed by distribution characteristics and amplitude; If load is actually distributed load, when this method is talked about the variation of load, in fact refer to the change of the amplitude of distributed load distribution intensity, and the distribution characteristics of the zone of action of all distributed loads and distribution intensity is constant; Comprising in the coordinate system of Descartes's rectangular coordinate in tying up to, a distributed load can be resolved into three components, if the amplitude of the distribution intensity separately of three components of this distributed load changes, and the ratio changing is all not identical, so in the method three components of this distributed load being counted or added up is three distributed loads, and now load just represents the one-component of distributed load; Volume load be continuous distribution in the load of interior of articles each point, the description of volume load at least comprises the zone of action of volume load and the size of volume load, the size of volume load is expressed by distribution intensity, distribution intensity is expressed by distribution characteristics and amplitude; If load is actually volume load, actual treatment is the change of the amplitude of volume load distribution intensity in the method, and the distribution characteristics of the zone of action of all volume load and distribution intensity is constant, while now mentioning in the method the change of load, in fact refer to the change of the amplitude of the distribution intensity of volume load, now, the load changing refers to the volume load that the amplitude of those distribution intensities changes; Comprising in the coordinate system of Descartes's rectangular coordinate in tying up to, one individual stow lotus can be resolved into three components, if the amplitude of the distribution intensity separately of three components of this volume load changes, and the ratio changing is all not identical, and so in the method three components of this volume load being counted or added up is three distributed loads;
B. this method definition " the temperature survey calculating method of the Cable Structure of this method " is undertaken by step b1 to b3;
B1: inquiry or actual measurement obtain the temperature variant thermal conduction study parameter of Cable Structure composition material and Cable Structure environment of living in, utilize the geometry measured data of design drawing, as-constructed drawing and the Cable Structure of Cable Structure, utilize these data and parameter to set up the thermal conduction study computation model of Cable Structure, inquiry Cable Structure location is no less than the meteorological data in recent years of 2 years, statistics obtains interior during this period of time cloudy quantity and is designated as T cloudy day, in the method can not be seen to one of the sun daytime and be called all day the cloudy day, statistics obtain each cloudy day in T cloudy day 0 after the sunrise moment next day highest temperature and the lowest temperature between 30 minutes, the sunrise moment on the meteorology that the sunrise moment refers to base area revolutions and the rule that revolves round the sun is definite, do not represent necessarily can see the same day sun, can inquire about data or calculate sunrise moment of each required day by conventional meteorology, each cloudy day 0 after the sunrise moment next day highest temperature between 30 minutes deduct the maximum temperature difference that the lowest temperature is called this cloudy daily temperature, there is T cloudy day, just there is the maximum temperature difference of the daily temperature at T cloudy day, get maximal value in the maximum temperature difference of daily temperature at T cloudy day for reference to temperature difference per day, be designated as Δ T with reference to temperature difference per day r, between inquiry Cable Structure location and Altitude Region, place, be no less than temperature that the meteorological data in recent years of 2 years or actual measurement obtain Cable Structure environment of living in time with delta data and the Changing Pattern of sea level elevation, calculate the temperature of the Cable Structure environment of living in recent years that is no less than 2 years between Cable Structure location and Altitude Region, place about the maximum rate of change Δ T of sea level elevation h, get Δ T for convenience of narration hunit be DEG C/m, on the surface of Cable Structure, get " R Cable Structure surface point ", get the Specific Principles of " R Cable Structure surface point " narrates in step b3, the temperature of this R Cable Structure surface point will be obtained by actual measurement below, claim that the temperature data that actual measurement obtains is " R Cable Structure surface temperature measured data ", if utilize the thermal conduction study computation model of Cable Structure, obtain the temperature of this R Cable Structure surface point by Calculation of Heat Transfer, just claim that the temperature data calculating is " R Cable Structure surface temperature computational data ", from the residing minimum height above sea level of Cable Structure to the highest height above sea level, in Cable Structure, uniform choosing is no less than three different sea level elevations, the sea level elevation place choosing at each, at least choose two points at the intersection place on surface level and Cable Structure surface, from the outer normal of selected point straw line body structure surface, all outer normal directions of choosing are called " measuring the direction of Cable Structure along the Temperature Distribution of wall thickness ", measure Cable Structure crossing with " intersection on surface level and Cable Structure surface " along the direction of the Temperature Distribution of wall thickness, in the measurement Cable Structure of choosing along comprising the sunny slope outer normal direction of Cable Structure and in the shade outer normal direction of Cable Structure in the direction of the Temperature Distribution of wall thickness, measure Cable Structure along each and be no less than three points along direction uniform choosing in Cable Structure of the Temperature Distribution of wall thickness, measure all temperature that are selected a little, the temperature recording is called " Cable Structure is along the temperature profile data of thickness ", wherein along crossing with same " intersection on surface level and Cable Structure surface ", " measure the direction of Cable Structure along the Temperature Distribution of wall thickness " and measure " Cable Structure is along the temperature profile data of thickness " that obtain, be called in the method " identical sea level elevation Cable Structure is along the temperature profile data of thickness ", if chosen H different sea level elevation, at each sea level elevation place, choose B and measured the direction of Cable Structure along the Temperature Distribution of wall thickness, direction along each measurement Cable Structure along the Temperature Distribution of wall thickness has been chosen E point in Cable Structure, wherein H and E are not less than 3, B is not less than 2, if HBE is the product of H and B and E, corresponding total HBE " measuring the point of Cable Structure along the temperature profile data of thickness ", to obtain by actual measurement the temperature of this HBE " measuring the point of Cable Structure along the temperature profile data of thickness " below, claim that the temperature data that actual measurement obtains is " HBE Cable Structure is along thickness temperature measured data ", if utilize the thermal conduction study computation model of Cable Structure, obtain this HBE by Calculation of Heat Transfer and measure the temperature of Cable Structure along the point of the temperature profile data of thickness, just claim that the temperature data calculating is " HBE Cable Structure is along thickness temperature computation data ", if BE is the product of B and E, total BE " identical sea level elevation Cable Structure is along the temperature profile data of thickness " in sea level elevation place of choosing at each in this method, measure temperature in Cable Structure location according to meteorology and require to choose a position, will obtain the temperature of the Cable Structure place environment that meets the requirement of meteorology measurement temperature in this position actual measurement, in the on-site spaciousness of Cable Structure, unobstructed place chooses a position, this position should each of the whole year day can obtain this ground the most sufficient sunshine of getable this day, at the flat board of a carbon steel material of this position of sound production, be called reference plate, reference plate can not contact with ground, reference plate overhead distance is not less than 1.5 meters, the one side of this reference plate on the sunny side, be called sunny slope, the sunny slope of reference plate is coarse and dark color, the sunny slope of reference plate should each of the whole year day can obtain one flat plate on this ground the most sufficient sunshine of getable this day, the non-sunny slope of reference plate is covered with insulation material, Real-Time Monitoring is obtained to the temperature of the sunny slope of reference plate,
B2: Real-Time Monitoring obtains R Cable Structure surface temperature measured data of above-mentioned R Cable Structure surface point, Real-Time Monitoring obtains the temperature profile data of previously defined Cable Structure along thickness simultaneously, and Real-Time Monitoring obtains the temperature record of the Cable Structure place environment that meets the requirement of meteorology measurement temperature simultaneously, obtain being carved at sunrise the same day temperature measured data sequence of the Cable Structure place environment between 30 minutes after sunrise moment next day by Real-Time Monitoring, the temperature measured data sequence of Cable Structure place environment is arranged according to time order and function order by the temperature measured data that was carved at sunrise the Cable Structure place environment between 30 minutes after the sunrise moment next day same day, find maximum temperature and minimum temperature in the temperature measured data sequence of Cable Structure place environment, deduct and be carved at sunrise the maximum temperature difference between 30 minutes after sunrise moment next day on same day that minimum temperature obtains Cable Structure place environment by the maximum temperature in the temperature measured data sequence of Cable Structure place environment, be called environment maximum temperature difference, be designated as Δ T emax, temperature measured data sequence by Cable Structure place environment obtains the temperature of Cable Structure place environment about the rate of change of time by conventional mathematical computations, and this rate of change is also along with the time changes, obtain being carved at sunrise the same day measured data sequence of the temperature of the sunny slope of the reference plate between 30 minutes after sunrise moment next day by Real-Time Monitoring, the measured data sequence of the temperature of the sunny slope of reference plate is arranged according to time order and function order by the measured data that was carved at sunrise the temperature of the sunny slope of the reference plate between 30 minutes after the sunrise moment next day same day, find maximum temperature and minimum temperature in the measured data sequence of temperature of the sunny slope of reference plate, deduct and be carved at sunrise the maximum temperature difference between 30 minutes after sunrise moment next day on same day that minimum temperature obtains the temperature of the sunny slope of reference plate by the maximum temperature in the measured data sequence of the temperature of the sunny slope of reference plate, be called reference plate maximum temperature difference, be designated as Δ T pmax, obtain being carved at sunrise the same day Cable Structure surface temperature measured data sequence of all R Cable Structure surface points between 30 minutes after sunrise moment next day by Real-Time Monitoring, there is R Cable Structure surface point just to have R Cable Structure surface temperature measured data sequence, each Cable Structure surface temperature measured data sequence is arranged according to time order and function order by being carved at sunrise the Cable Structure surface temperature measured data between 30 minutes after the sunrise moment next day same day of a Cable Structure surface point, find maximum temperature and minimum temperature in each Cable Structure surface temperature measured data sequence, deduct and be carved at sunrise the maximum temperature difference between 30 minutes after sunrise moment next day on same day that minimum temperature obtains the temperature of each Cable Structure surface point by the maximum temperature in each Cable Structure surface temperature measured data sequence, there is R Cable Structure surface point just to have to be carved at sunrise R the same day maximum temperature difference numerical value between 30 minutes after sunrise moment next day, maximal value is wherein called Cable Structure surface maximum temperature difference, be designated as Δ T smax, obtain the temperature of each Cable Structure surface point about the rate of change of time by each Cable Structure surface temperature measured data sequence by conventional mathematical computations, the temperature of each Cable Structure surface point about the rate of change of time also along with the time changes, obtain being carved at sunrise the same day after sunrise moment next day between 30 minutes by Real-Time Monitoring, at synchronization, after HBE " Cable Structure is along the temperature profile data of thickness ", calculate the sea level elevation place that chooses at each and amount to maximum temperature in BE " identical sea level elevation Cable Structure is along the temperature profile data of thickness " and the difference of minimum temperature, the absolute value of this difference is called " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", choose H different sea level elevation and just had H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", claim that the maximal value in this H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference " is " Cable Structure thickness direction maximum temperature difference ", be designated as Δ T tmax,
B3: measure and calculate acquisition Cable Structure steady temperature data, first, determine the moment that obtains Cable Structure steady temperature data, the condition relevant to the moment that determines acquisition Cable Structure steady temperature data has six, Section 1 condition be obtain Cable Structure steady temperature data moment after being carved at sunset sunrise moment next day between 30 minutes on same day, the sunset moment refers to the sunset moment on base area revolutions and the definite meteorology of revolution rule, can inquire about data or calculate sunset moment of each required day by conventional meteorology, the a condition of Section 2 condition be after being carved at sunrise sunrise moment next day on same day between 30 minutes during this period of time in, reference plate maximum temperature difference Δ T pmaxwith Cable Structure surface maximum temperature difference Δ T smaxall be not more than 5 degrees Celsius, the b condition of Section 2 condition be after being carved at sunrise sunrise moment next day on same day between 30 minutes during this period of time in, measure the environment maximum error Δ T that calculates above emaxbe not more than with reference to temperature difference per day Δ T r, and reference plate maximum temperature difference Δ T pmaxafter deducting 2 degrees Celsius, be not more than Δ T emax, and Cable Structure surface maximum temperature difference Δ T smaxbe not more than Δ T pmax, only need meet in a condition of Section 2 and b condition one is just called and meets Section 2 condition, Section 3 condition is that the temperature of Cable Structure place environment is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time in the moment that obtains Cable Structure steady temperature data, Section 4 condition is that the temperature of each the Cable Structure surface point in R Cable Structure surface point is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time in the moment that obtains Cable Structure steady temperature data, Section 5 condition is in the moment that obtains Cable Structure steady temperature data, and the Cable Structure surface temperature measured data of each the Cable Structure surface point in R Cable Structure surface point is to be carved at sunrise the minimal value between 30 minutes after the sunrise moment next day same day, Section 6 condition is at the moment that obtains Cable Structure steady temperature data, " Cable Structure thickness direction maximum temperature difference " Δ T tmaxbe not more than 1 degree Celsius, this method is utilized above-mentioned six conditions, any one in following three kinds of moment is called to " the mathematics moment that obtain Cable Structure steady temperature data ", the first moment is to meet Section 1 in above-mentioned " condition relevant to the moment that determines the to obtain Cable Structure steady temperature data " moment to Section 5 condition, the second moment is the moment that only meets the Section 6 condition in above-mentioned " condition relevant to the moment that determines acquisition Cable Structure steady temperature data ", the third moment is to meet Section 1 in above-mentioned " condition relevant to the moment that determines the to obtain Cable Structure steady temperature data " moment to Section 6 condition simultaneously, be exactly in this method when one in the physical record data moment when obtaining the mathematics moment of Cable Structure steady temperature data, the moment that obtains Cable Structure steady temperature data is exactly the mathematics moment that obtains Cable Structure steady temperature data, be not any moment in the physical record data moment in this method if obtain the mathematics moment of Cable Structure steady temperature data, getting this method is the moment that obtains Cable Structure steady temperature data close to moment of those physical record data in the mathematics moment that obtains Cable Structure steady temperature data, this method will be used the amount at the moment survey record that obtains Cable Structure steady temperature data to carry out the relevant health monitoring analysis of Cable Structure, this method is approximate thinks that the Cable Structure temperature field in moment of obtaining Cable Structure steady temperature data is in stable state, i.e. the not temporal evolution of Cable Structure temperature in this moment, and this moment is exactly " obtaining the moment of Cable Structure steady temperature data " of this method, then, according to Cable Structure heat transfer characteristic, utilize " R the Cable Structure surface temperature measured data " and " HBE Cable Structure is along thickness temperature measured data " in the moment that obtains Cable Structure steady temperature data, utilize the thermal conduction study computation model of Cable Structure, obtain obtaining the Temperature Distribution of Cable Structure in moment of Cable Structure steady temperature data by conventional Calculation of Heat Transfer, now calculate by stable state in the temperature field of Cable Structure, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculating comprises the accounting temperature of R Cable Structure surface point in Cable Structure, the accounting temperature of R Cable Structure surface point is called R Cable Structure stable state surface temperature computational data, also comprise the accounting temperature of Cable Structure selected HBE " measuring the point of Cable Structure along the temperature profile data of thickness " above, the accounting temperature of HBE " measuring the point of Cable Structure along the temperature profile data of thickness " is called " HBE Cable Structure is along thickness temperature computation data ", in the time of R Cable Structure surface temperature measured data and R Cable Structure stable state surface temperature computational data correspondent equal, and when " HBE Cable Structure is along thickness temperature measured data " and " HBE Cable Structure is along thickness temperature computation data " correspondent equal, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculating is called " Cable Structure steady temperature data " in the method, " R Cable Structure surface temperature measured data " is now called " R Cable Structure stable state surface temperature measured data ", " HBE Cable Structure is along thickness temperature measured data " is called " HBE Cable Structure is along thickness steady temperature measured data ", get " R Cable Structure surface point " on the surface of Cable Structure time, the quantity of " R Cable Structure surface point " and necessary three conditions that meet that distribute, first condition is when Cable Structure temperature field is during in stable state, when the temperature of any point on Cable Structure surface be by " R Cable Structure surface point " in Cable Structure surface on the observed temperature linear interpolation of the adjacent point in this arbitrfary point while obtaining, on the Cable Structure surface that linear interpolation obtains, on the temperature of this arbitrfary point and Cable Structure surface, the error of the actual temperature of this arbitrfary point is not more than 5%, Cable Structure surface comprises support cable surface, second condition is that in " R Cable Structure surface point ", the quantity at the point of same sea level elevation is not less than 4, and uniform along Cable Structure surface at the point of same sea level elevation in " R Cable Structure surface point ", " R Cable Structure surface point " is not more than 0.2 DEG C divided by Δ T along the maximal value Δ h in the absolute value of all differences of the sea level elevation of adjacent Cable Structure surface point between two of sea level elevation hthe numerical value obtaining, gets Δ T for convenience of narration hunit be DEG C/m that the unit of getting Δ h for convenience of narration is m, " R Cable Structure surface point " refers to while only considering sea level elevation along the definition of adjacent Cable Structure surface point between two of sea level elevation, in " R Cable Structure surface point ", do not have a Cable Structure surface point, the sea level elevation numerical value of this Cable Structure surface point is between the sea level elevation numerical value of adjacent Cable Structure surface point between two, the 3rd condition is inquiry or obtains the rule at sunshine between Cable Structure location and Altitude Region, place by meteorology conventionally calculation, again according to the geometric properties of Cable Structure and bearing data, in Cable Structure, find and be subject to the sunshine-duration position of those surface points the most fully the whole year, in " R Cable Structure surface point ", having a Cable Structure surface point at least is the annual point being subject in the most sufficient those surface points of sunshine-duration in Cable Structure,
C. directly measure according to " the temperature survey calculating method of the Cable Structure of this method " the Cable Structure steady temperature data that calculate under original state, Cable Structure steady temperature data under original state are called initial Cable Structure steady temperature data, are designated as " initial Cable Structure steady temperature data vector T o", actual measurement or consult reference materials and obtain the temperature variant physical and mechanical properties parameter of the various materials that Cable Structure uses, obtain initial Cable Structure steady temperature data vector T in actual measurement osynchronization, directly measure the initial Suo Li that calculates all support cables, form initial rope force vector F o, according to data including Cable Structure design data, completion data obtain that all support cables are in free state that Suo Li is the length of 0 o'clock, the weight of cross-sectional area during in free state and the unit length during in free state, and the temperature of all support cables while obtaining these three kinds of data, utilize on this basis temperature variant physical function parameter and the mechanical property parameters of all support cables, obtain all support cables at initial Cable Structure steady temperature data vector T according to conventional physical computing osuo Li under condition is that the length of 0 o'clock all support cable, cross-sectional area and the Suo Li that Suo Li is 0 o'clock all support cable are the weight of the unit length of 0 o'clock all support cable, form successively the weight vector of the initial drift vector of support cable, the initial free unit length of initial free cross-sectional area vector sum, the coding rule of the element of the weight vector of the initial drift vector of support cable, the initial free unit length of initial free cross-sectional area vector sum and initial rope force vector F othe coding rule of element identical, obtain T in actual measurement otime, namely obtaining initial Cable Structure steady temperature data vector T othe synchronization in moment, directly measure the measured data that calculates initial Cable Structure, the measured data of initial Cable Structure is to comprise Cable Structure centre-point load measurement data, Cable Structure distributed load measurement data, Cable Structure volume load measurement data, Cable Structure bearing initial line displacement measurement data, the initial value of all monitored amounts, the initial rope force data of all support cables, initial Cable Structure modal data, initial Cable Structure strain data, initial Cable Structure geometric data, initial Cable Structure bearing generalized coordinate data, initial Cable Structure angle-data, initial Cable Structure spatial data is in interior measured data, in obtaining the measured data of initial Cable Structure, measurement calculates the data of the health status that can express support cable including the Non-destructive Testing Data of support cable, the data of the health status that can express support cable are now called support cable initial health data, the initial value of all monitored amounts forms monitored amount initial value vector C o, monitored amount initial value vector C othe coding rule of coding rule and M monitored amount identical, utilize support cable initial health data, Cable Structure bearing initial line displacement measurement data and Cable Structure load measurement data to set up evaluation object initial damage vector d o, vectorial d orepresent with initial mechanical calculating benchmark model A othe initial health of the evaluation object of the Cable Structure representing, evaluation object initial damage vector d oelement number equal N, d oelement and evaluation object be one-to-one relationship, vectorial d othe coding rule of element identical with the coding rule of evaluation object, if d oevaluation object corresponding to some elements be support cable, so a d in cable system othe numerical value of this element represent the initial damage degree of corresponding support cable, if the numerical value of this element is 0, represent that the corresponding support cable of this element is intact, do not damage, if its numerical value is 100%, represent that the corresponding support cable of this element has completely lost load-bearing capacity, lost the load-bearing capacity of corresponding proportion if its numerical value between 0 and 100%, represents this support cable, if d oevaluation object corresponding to some elements be some translational components of some bearings, d so othe numerical value of this element represent the initial value of this translational component of this bearing, if d oevaluation object corresponding to some elements be some load, in this method, get d othis element numerical value be 0, the initial value that represents the variation of this load is 0, if there is no Cable Structure bearing initial line displacement measurement data or can think that the displacement of Cable Structure bearing initial line is at 0 o'clock, vectorial d oin the each element numerical value relevant to the displacement of Cable Structure support wire get 0, if while not having the Non-destructive Testing Data of support cable and other can express the data of health status of support cable, or can think that structure original state is not damaged during without relaxed state, vectorial d oin the each element numerical value relevant to support cable get 0, initial Cable Structure bearing spatial data refers to the bearing spatial data under Cable Structure design point, and Cable Structure bearing initial line displacement measurement data refer to setting up initial mechanical calculating benchmark model A otime, the displacement of the lines that Cable Structure bearing occurs with respect to the bearing under Cable Structure design point,
The temperature variant physical and mechanical properties parameter of the various materials that d. use according to measured data, support cable initial health data, Cable Structure bearing initial line displacement measurement data, Cable Structure centre-point load measurement data, Cable Structure distributed load measurement data, Cable Structure volume load measurement data, the Cable Structure of the design drawing of Cable Structure, as-constructed drawing and initial Cable Structure, initial Cable Structure steady temperature data vector T owith all Cable Structure data that obtain with preceding step, set up the initial mechanical calculating benchmark model A of the Cable Structure that counts " Cable Structure steady temperature data " o, based on A othe Cable Structure computational data calculating must approach its measured data very much, and difference therebetween must not be greater than 5%; Corresponding to A o" Cable Structure steady temperature data " be exactly " initial Cable Structure steady temperature data vector T o"; Corresponding to A oevaluation object initial damage vector d for evaluation object health status orepresent; Corresponding to A omonitored amount initial value vector C for the initial value of all monitored amounts orepresent; T oand d oa oparameter, by A oinitial value and the C of all monitored amounts of obtaining of Mechanics Calculation result othe initial value of all monitored amounts that represent is identical, therefore also can say C oby A omechanics Calculation result composition, A in the method o, C o, d oand T oconstant;
E. in the method, alphabetical i, except representing that significantly, the place of number of steps, alphabetical i only represents cycle index, circulates for the i time; When the i time circulation starts, the current initial mechanical calculating benchmark model of Cable Structure that need to set up or that set up is designated as current initial mechanical calculating benchmark model A i o, A oand A i ocount temperature parameter, can accounting temperature change the Effect on Mechanical Properties to Cable Structure; When the i time circulation starts, corresponding to A i o" Cable Structure steady temperature data " with current initial Cable Structure steady temperature data vector T i orepresent vector T i odefinition mode and vector T odefinition mode identical, T i oelement and T oelement corresponding one by one; The current initial damage vector of evaluation object that the i time circulation needs while beginning is designated as d i o, d i ocable Structure A while representing this circulation beginning i othe health status of evaluation object, d i odefinition mode and d odefinition mode identical, d i oelement and d oelement corresponding one by one; When the i time circulation starts, the initial value of all monitored amounts, with the current initial value vector of monitored amount C i orepresent vectorial C i odefinition mode and vectorial C odefinition mode identical, C i oelement and C oelement corresponding one by one, the current initial value vector of monitored amount C i orepresent corresponding to A i othe concrete numerical value of all monitored amounts; T i oand d i oa i ocharacterisitic parameter, C i oby A i omechanics Calculation result composition; When circulation starts for the first time, A i obe designated as A 1 o, set up A 1 omethod for making A 1 oequal A o; When circulation starts for the first time, T i obe designated as T 1 o, set up T 1 omethod for making T 1 oequal T o; When circulation starts for the first time, d i obe designated as d 1 o, set up d 1 omethod for making d 1 oequal d o; When circulation starts for the first time, C i obe designated as C 1 o, set up C 1 omethod for making C 1 oequal C o;
F. from entering the circulation that is walked q step by f here; In structure military service process, according to " the temperature survey calculating method of the Cable Structure of this method " the constantly current data of Actual measurement acquisition Cable Structure steady temperature data, the current data composition current cable structure steady temperature data vector T of all " Cable Structure steady temperature data " i, vector T idefinition mode and vector T odefinition mode identical, T ielement and T oelement corresponding one by one; Obtain vector T in actual measurement itime, actual measurement obtains obtaining current cable structure steady temperature data vector T ithe Cable Structure of synchronization in moment in the currency of all monitored amounts, all these numerical value form monitored amount current value vector C i, vectorial C idefinition mode and vectorial C odefinition mode identical, C ielement and C oelement corresponding one by one, represent that identical monitored amount is at numerical value in the same time not; Obtain current cable structure steady temperature data vector T in actual measurement isynchronization, actual measurement obtains all M in Cable Structure 1the rope force data of root support cable, all these rope force data composition current cable force vector F, the element of vectorial F and vectorial F othe coding rule of element identical; Obtain current cable structure steady temperature data vector T in actual measurement isynchronization, Actual measurement obtains all M 1the volume coordinate of two supporting end points of root support cable, the volume coordinate of two the supporting end points in the horizontal direction difference of component is exactly two supporting end points horizontal ranges, two supporting end points horizontal range data of all support cables form current support cable two and support end points horizontal range vector, and current support cable two supports the coding rule and initial rope force vector F of the element of end points horizontal range vector othe coding rule of element identical;
G. according to current cable structure steady temperature data vector T i, upgrade current initial mechanical calculating benchmark model A according to step g 1 to g3 i o, the current initial value of monitored amount vector C i owith current initial Cable Structure steady temperature data vector T i o, and the current initial damage vector of evaluation object d i oremain unchanged;
G1. compare T iwith T i oif, T iequal T i o, A i o, C i oand T i oremain unchanged; Otherwise need to follow these steps to A i oand T i oupgrade;
G2. calculate T iwith T opoor, T iwith T odifference be exactly the variations of current cable structure steady temperature data about initial Cable Structure steady temperature data, T iwith T opoor represent with steady temperature change vector S, S equals T ideduct T o, S represents the variation of Cable Structure steady temperature data;
G3. to A oin Cable Structure apply temperature variation, the numerical value of the temperature variation applying is just taken from steady temperature change vector S, to A oin the temperature variation that applies of Cable Structure after obtain the current initial mechanical calculating benchmark model A that upgrades i o, upgrade A i otime, T i oall elements numerical value is also used T icorresponding replacement of all elements numerical value, upgraded T i o, so just obtained correctly corresponding to A i ot i o; Now d i oremain unchanged; When upgrading A i oafter, A i othe current initial damage of the evaluation object vector d for health status of rope i orepresent A i ocurrent cable structure steady temperature data vector T for Cable Structure steady temperature irepresent, upgrade C i omethod be: when upgrade A i oafter, obtain A by Mechanics Calculation i oin concrete numerical value all monitored amounts, current, these concrete numerical value compositions C i o;
H. at current initial mechanical calculating benchmark model A i obasis on, carry out several times Mechanics Calculation according to step h1 to step h4, set up unit damage monitored numerical quantity transformation matrices Δ C by calculating iwith evaluation object unit change vector D i u;
H1. in the time that the i time circulation starts, directly press step h2 to the listed method acquisition of step h4 Δ C iand D i u; In other moment, when in step g to A i oafter upgrading, must regain Δ C to the listed method of step h4 by step h2 iand D i uif, in step g not to A i oupgrade, directly proceed to herein step I and carry out follow-up work;
H2. at current initial mechanical calculating benchmark model A i obasis on carry out several times Mechanics Calculation, on calculation times numerical value, equal the quantity N of all evaluation objects, have N evaluation object just to have N calculating; According to the coding rule of evaluation object, calculate successively; Calculating each time hypothesis only has an evaluation object on the basis of original damage or load, to increase unit damage or load unit variation again, concrete, if this evaluation object is a support cable in cable system, so just suppose that this support cable increases unit damage again, if this evaluation object is the translational component of a direction of a bearing, just suppose that this bearing increases unit line displacement again at this sense of displacement, if this evaluation object is a load, just suppose that this load increases load unit again and changes, use D i ukunit damage or unit line displacement or the load unit variation of recording this increase, wherein k represents the numbering of the evaluation object that increases unit damage or unit line displacement or load unit variation, D i ukevaluation object unit change vector D i uan element, evaluation object unit change vector D i ucoding rule and the vectorial d of element othe coding rule of element identical; The evaluation object that increases again unit damage or unit line displacement or load unit variation in calculating is each time different from the evaluation object that increases again unit damage or unit line displacement or load unit variation in other calculating, calculate each time the current calculated value that all utilizes mechanics method to calculate all monitored amounts of Cable Structure, a monitored amount calculation current vector of current calculated value composition of all monitored amounts that calculate each time; In the time that k evaluation object of hypothesis increases unit damage or unit line displacement or load unit variation again, use C i ckrepresent corresponding " monitored amount calculation current vector "; While giving in this step the element numbering of each vector, should use same coding rule with other vector in this method, to ensure any one element in each vector in this step, with in other vector, number identical element, expressed the relevant information of same monitored amount or same target; C i ckdefinition mode and vectorial C odefinition mode identical, C i ckelement and C oelement corresponding one by one;
H3. the vectorial C calculating each time i ckdeduct vectorial C i oobtain a vector, then obtain " vectorial δ a C of numerical value change of monitored amount after the unit damage that each element of this vector is supposed divided by this calculating or unit line displacement or load unit variation numerical value i k"; There is N evaluation object just to have N " the numerical value change vector of monitored amount ";
H4. by this N " the numerical value change vector of monitored amount " according to the coding rule of N evaluation object, composition has " the unit damage monitored numerical quantity transformation matrices Δ C that N is listed as successively i"; Unit damage monitored numerical quantity transformation matrices Δ C ieach be listed as corresponding to a monitored amount unit change vector; Unit damage monitored numerical quantity transformation matrices Δ C ievery a line corresponding to same monitored amount the different unit change amplitude in the time that different evaluation objects increase unit damage or unit line displacement or load unit and change; Unit damage monitored numerical quantity transformation matrices Δ C icoding rule and the vectorial d of row othe coding rule of element identical, unit damage monitored numerical quantity transformation matrices Δ C ithe coding rule of coding rule and M monitored amount of row identical;
I. define the vectorial d of current name damage i cwith current actual damage vector d i, d i cand d ielement number equal the quantity of evaluation object, d i cand d ielement and evaluation object between be one-to-one relationship, d i celement numerical value represent nominal degree of injury or nominal displacement of the lines or the nominal load variable quantity of corresponding evaluation object, d i cand d iwith evaluation object initial damage vector d oelement coding rule identical, d i celement, d ielement and d oelement be one-to-one relationship;
J. according to monitored amount current value vector C iwith " the current initial value vector of monitored amount C i o", " unit damage monitored numerical quantity transformation matrices Δ C i" and " the vectorial d of current name damage i c" between the linear approximate relationship that exists, this linear approximate relationship can be expressed as formula 1, in formula 1 except d i cother outer amount is known, solves formula 1 and just can calculate the vectorial d of current name damage i c;
C i = C o i + ΔC i · d c i Formula 1
K. the current actual damage vector d that utilizes formula 2 to express ik element d i kwith the current initial damage vector of evaluation object d i ok element d i okwith the vectorial d of current name damage i ck element d i ckbetween relation, calculate current actual damage vector d iall elements;
Figure FDA0000475028040000112
formula 2
K=1 in formula 2,2,3 ..., N; Vector d ithe coding rule of element and formula (1) in vectorial d othe coding rule of element identical; d i krepresent the current actual health status of k evaluation object in the i time circulation, if this evaluation object is support cable, so a d in cable system i krepresent the order of severity of its current health problem, the support cable of unsoundness problem may be slack line, also may be damaged cable, d i knumerical response the degree of lax or damage of this support cable; If this evaluation object is load, so a d i krepresent the actual change amount of this load; If this evaluation object is translational component, so a d of a bearing i krepresent its current actual line displacement numerical value; By current evaluation object actual damage vector d iin with M 1the M that root support cable is relevant 1individual element takes out, the current actual damage vector of composition support cable d ci, the current actual damage vector of support cable d cithe coding rule and initial rope force vector F of element othe coding rule of element identical; The current actual damage vector of support cable d cih element representation Cable Structure in the current actual damage amount of h root support cable, h=1,2,3 ...., M 1; The current actual damage vector of support cable d cimiddle numerical value is not 0 the element support cable corresponding to unsoundness problem, from the support cable of these unsoundness problems, identifies damaged cable, and remaining is exactly slack line; The current actual damage vector of the support cable corresponding with damaged cable d ciin element numerical expression be the current actual damage of this damaged cable, element numerical value represents while being 100% that this support cable thoroughly loses load-bearing capacity, represents to lose the load-bearing capacity of corresponding proportion between 0 and 100% time; Utilize at current cable structure steady temperature data vector T iunder condition, walk the slack line that identifies and with the current actual damage vector of support cable d at l cithese slack lines of expressing, with the current actual equivalent damage degree of its relax level mechanics equivalence, utilize obtain in f step at current cable structure steady temperature data vector T icurrent cable force vector F under condition isupport end points horizontal range vector with current support cable two, utilize obtain in c step at initial Cable Structure steady temperature data vector T othe weight vector of the initial drift vector of the support cable under condition, the initial free unit length of initial free cross-sectional area vector sum, initial rope force vector F o, utilize current cable structure steady temperature data vector T ithe current steady temperature data of support cable that represent, utilize obtain in c step at initial Cable Structure steady temperature data vector T othe support cable initial steady state temperature data representing, utilize the temperature variant physical and mechanical properties parameter of the various materials that use in the Cable Structure of c step acquisition, count the impact of temperature variation on support cable physics, mechanics and geometric parameter, by by slack line with damaged cable carry out mechanics equivalence calculate slack line, with the relax level of current actual equivalent damage degree equivalence, mechanics equivalent condition is: one, the mechanics parameters without lax initial drift, geometrical property parameter, density and material during with not damaged of the rope of two equivalences is identical; Two, after lax or damage, the Suo Li of the slack line of two equivalences and damage rope be out of shape after overall length identical; While meeting above-mentioned two mechanics equivalent conditions, the mechanics function of two such support cables in Cable Structure is exactly identical, if replaced after damaged cable with equivalent slack line, any variation can not occur Cable Structure, and vice versa; The relax level of trying to achieve those and be judged as slack line according to aforementioned mechanics equivalent condition, relax level is exactly the change amount of support cable drift, has namely determined the long adjustment amount of rope of those support cables that need adjust Suo Li; Lax identification and the damage identification of support cable are so just realized; When calculating, institute's demand power is by current cable force vector F icorresponding element provides; This method is referred to as damaged cable and slack line the support cable of unsoundness problem, referred to as problem rope, so far this method has realized and has rejected problem rope identification impact, Cable Structure that support wire displacement, load change and structure temperature change, realize simultaneously and rejected support wire displacement, structure temperature variation and identification support cable health status variable effect, load change amount, also realized and rejected load change, structure temperature variation and identification support cable health status variable effect, support wire displacement;
L. try to achieve the vectorial d of current name damage i cafter, set up mark vector B according to formula 3 i, formula 4 has provided mark vector B ithe definition of k element;
B i = B 1 i B 2 i · · · B k i · · · B N i T Formula 3
Figure FDA0000475028040000132
formula 4
Element B in formula 4 i kmark vector B ik element, D i ukevaluation object unit change vector D i uk element, d i ckthe vectorial d of the current name damage of evaluation object i ck element, they all represent the relevant information of k evaluation object, k=1 in formula 4,2,3 ..., N;
If m. mark vector B ielement be 0 entirely, get back to step f and continue this circulation; If mark vector B ielement be not 0 entirely, enter next step, i.e. step n;
N. according to formula 5 calculate next time, i.e. the i+1 time current initial damage vector of the required evaluation object of circulation d i+1 oeach element;
Figure FDA0000475028040000133
formula 5
D in formula 5 i+1 okthe current initial damage vector of the required evaluation object d that next time, circulates for the i+1 time i+1 ok element, d i okthis, i.e. the current initial damage vector of the evaluation object of the i time circulation d i ok element, D i ukthe evaluation object unit change vector D of the i time circulation i uk element, B i kthe mark vector B of the i time circulation ik element, k=1 in formula 5,2,3 ..., N;
O. take off once, i.e. the i+1 time required current initial Cable Structure steady temperature data vector T of circulation i+1 oequal the current initial Cable Structure steady temperature data vector T of the i time circulation i o;
P. at initial mechanical calculating benchmark model A obasis on, to A oin Cable Structure apply temperature variation, the numerical value of the temperature variation applying is just taken from steady temperature change vector S, then to make the health status of rope be d i+1 oafter obtain be exactly next time, i.e. the i+1 time required Mechanics Calculation benchmark model A of circulation i+1; Obtain A i+1after, obtain A by Mechanics Calculation i+1in concrete numerical value all monitored amounts, current, these concrete numerical value compositions next time, i.e. the required vectorial C of the current initial value of monitored amount of the i+1 time circulation i+1 o;
Q. get back to step f, start circulation next time.
CN201410086596.1A 2014-03-10 2014-03-10 Problem cable load linear displacement progressive recognition method based on space coordinate monitoring Pending CN103852318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410086596.1A CN103852318A (en) 2014-03-10 2014-03-10 Problem cable load linear displacement progressive recognition method based on space coordinate monitoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410086596.1A CN103852318A (en) 2014-03-10 2014-03-10 Problem cable load linear displacement progressive recognition method based on space coordinate monitoring

Publications (1)

Publication Number Publication Date
CN103852318A true CN103852318A (en) 2014-06-11

Family

ID=50860236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410086596.1A Pending CN103852318A (en) 2014-03-10 2014-03-10 Problem cable load linear displacement progressive recognition method based on space coordinate monitoring

Country Status (1)

Country Link
CN (1) CN103852318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115757A (en) * 2015-07-23 2015-12-02 东南大学 Progressive identification method for problematic cable load and linear displacement through simplified space coordinate monitoring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030159356A1 (en) * 2002-02-28 2003-08-28 Automatic Power, Inc. Vehicle crash barrier
JP4001439B2 (en) * 1999-06-03 2007-10-31 東京電力株式会社 Diagnostic method for cable connections
CN101832874A (en) * 2010-04-02 2010-09-15 东南大学 Progressive cable structure health monitoring method based on angle monitoring
CN103616113A (en) * 2013-12-09 2014-03-05 东南大学 Defective cable, concentrated load and linear displacement progressive identification method based on space coordinate monitoring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001439B2 (en) * 1999-06-03 2007-10-31 東京電力株式会社 Diagnostic method for cable connections
US20030159356A1 (en) * 2002-02-28 2003-08-28 Automatic Power, Inc. Vehicle crash barrier
CN101832874A (en) * 2010-04-02 2010-09-15 东南大学 Progressive cable structure health monitoring method based on angle monitoring
CN103616113A (en) * 2013-12-09 2014-03-05 东南大学 Defective cable, concentrated load and linear displacement progressive identification method based on space coordinate monitoring

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
侯俊明 等: "斜拉索索力的温度敏感性", 《长安大学学报》 *
张应迁 等: "《ANSYS有限元分析从入门到精通》", 31 July 2010 *
温正 等: "《ANSYS14.0有限元分析权威指南》", 30 June 2013 *
石宪章 等: "《设备结构安全分析》", 30 September 2013 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115757A (en) * 2015-07-23 2015-12-02 东南大学 Progressive identification method for problematic cable load and linear displacement through simplified space coordinate monitoring

Similar Documents

Publication Publication Date Title
CN103913342A (en) Method for progressively recognizing fault cable, load and generalized displacement based on angle monitoring
CN103852309A (en) Progressive recognition method for problem cable load linear displacement based on mixing monitoring
CN103852331A (en) Progressive recognition method for problem cable load generalized displacement based on mixing monitoring
CN103852291A (en) Progressive recognition method for problematic cable loads through generalized displacement and space coordinate monitoring
CN103852317A (en) Angular displacement mixed-monitoring load progressive identification method for problematic cable
CN103868732A (en) Linear displacement strain monitoring-based progressive load identification method for defective cable
CN103868727A (en) Linear displacement angle monitoring-based progressive load identification method for defective cable
CN103852312A (en) Angular displacement angle-monitoring load progressive identification method for problematic cable
CN103913327A (en) Progressive identification method for damaged cable and load through linear displacement monitoring and space coordinate monitoring
CN103868743A (en) Generalized displacement strain monitoring problematical cable load progressive identification method
CN103868707A (en) Strain monitoring-based progressive identification method for defective cable and load
CN103868742A (en) Angular displacement strain monitoring problem cable load progressive identification method
CN103868722A (en) Angular displacement space coordinate monitoring problem cable load progressive identification method
CN103853926A (en) Space coordinate monitoring problem cable load generalized displacement progressive identification method
CN103852337A (en) Strain monitoring error cable load angular displacement progressive identification method
CN103852292A (en) Strain monitoring error cable load generalized displacement progressive identification method
CN103913323A (en) Progressive identification method for damaged cable and load through linear displacement monitoring and cable force monitoring
CN103852321A (en) Angle-monitoring load progressive identification method for problematic cable
CN103868714A (en) Linear displacement strain monitoring-based progressive load identification method for damaged cable
CN103868728A (en) Angular displacement cable force monitoring problem cable load progressive identification method
CN103868715A (en) Progressing identification method for problem cable load angle displacement through cable force monitoring
CN103868712A (en) Angle monitoring problem cable load angular displacement progressive identification method
CN103852319A (en) Method for progressively recognizing damaged cables, loads and linear displacement based on cable force monitoring
CN103913343A (en) Hybrid monitoring damaged cable load generalized displacement progressive identification method
CN103868744A (en) Progressing identification method for problem cable load generalized displacement through cable force monitoring

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140611