JP2000346800A - Method and apparatus for measuring coating ratio of thermoplastic resin coating film - Google Patents

Method and apparatus for measuring coating ratio of thermoplastic resin coating film

Info

Publication number
JP2000346800A
JP2000346800A JP11159880A JP15988099A JP2000346800A JP 2000346800 A JP2000346800 A JP 2000346800A JP 11159880 A JP11159880 A JP 11159880A JP 15988099 A JP15988099 A JP 15988099A JP 2000346800 A JP2000346800 A JP 2000346800A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
detector
light
glass product
coverage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11159880A
Other languages
Japanese (ja)
Inventor
Shigeru Takamori
滋 高森
Shoichi Inaba
正一 稲葉
Hideo Kurashima
秀夫 倉島
Takeshi Takenouchi
健 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11159880A priority Critical patent/JP2000346800A/en
Publication of JP2000346800A publication Critical patent/JP2000346800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the coating ratio of the thermoplastic resin coating film formed on the surface of the side wall part of a glass product in an inspection chamber on the spot in a relatively simple manner. SOLUTION: Ultraviolet rays 3 with a predetermined wavelength are allowed to be incident on the surface of a glass product 4 coated with a thermoplastic resin and the coating ratio of the thermoplastic resin coating film P on the glass product is measured on the basis of the quantity of the reflected light 6 from the surface of the coated glass product after passing through a P- polarizer 7. A coating ratio measuring apparatus is equipped with a light source part 1 having a beam splitter 2 allowing the ultraviolet rays 3 with the predetermined wavelength to be incident on the surface of the glass product 4, a first detector 5 for detecting the reflected light from the beam splitter 2, a light detection part having a second detector 9 detecting the scattered reflected light 6 reflected from the surface of the glass product and the P-polarizer 7 and an operator 11 for dividing the output value B from the second detector 9 by the output value A from the first detector 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱可塑性樹脂被膜
の被覆率測定方法およびその装置に関し、更に詳しくは
ガラス製品に紫外線を照射して、ガラス製品表面に塗布
された熱可塑性樹脂被膜の被覆率を測定する方法および
その装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the coverage of a thermoplastic resin film, and more particularly to a method of irradiating a glass product with ultraviolet rays to coat the thermoplastic resin film applied to the surface of the glass product. The present invention relates to a method and an apparatus for measuring a rate.

【0002】[0002]

【従来の技術】ガラス製品、例えばガラス瓶のようなガ
ラス容器は、ISマシン等の成形セクションにおいて金型
で成形された後、徐冷炉の入口側でホットエンド・コー
ティング処理によって表面に酸化錫や酸化チタン等の硬
い無機物薄膜を形成された後、徐冷炉の出口側でコール
ドエンド・コーティング処理によって、界面活性剤、ワ
ックス、あるいはポリエチレン等の熱可塑性樹脂等の有
機物被膜を形成される。コールドエンド・コーティング
処理を行うのは、表面に潤滑性を与えて、コンベア等で
搬送中にガラス容器が互いに当たった時の擦り傷発生を
防止し、また擦り傷に基づく破壊(破瓶)を防ぐためで
ある。
2. Description of the Related Art A glass product, for example, a glass container such as a glass bottle is formed in a molding section of an IS machine or the like by a metal mold, and then tin oxide or titanium oxide is formed on the surface by a hot end coating process at an inlet side of an annealing furnace. After forming a hard inorganic thin film such as a thermoplastic resin such as a surfactant, a wax, or a thermoplastic resin such as polyethylene, a cold end coating process is performed at the outlet side of the annealing furnace. The cold end coating process is used to provide lubricity to the surface to prevent abrasion when glass containers hit each other while being conveyed by a conveyor or the like, and to prevent breakage (breaking) due to abrasion. It is.

【0003】上記の有機物被膜としては、熱可塑性樹脂
特にポリエチレン(ポリエチレンを主体とするコポリマ
ーを含む)が、低コストや、良好な擦り傷防止性の点か
ら好ましく用いられる。しかし擦り傷防止性を高めるた
め、噴霧回数や噴霧量(1回当たりの)を多くして、ポ
リエチレン膜で被覆される面積率が大きくなると、ラベ
ルが糊(通常澱粉糊)で貼着しなくなる。ポリエチレン
は無極性で、ラベルの糊との接着性が無いからである。
そのためポリエチレン膜をフレーム処理する(特開昭4
9−57991号公報参照)等の特殊処理が提案されて
いるが、こらはコスト高を招き、かつ非効率である。ま
た安価な糊の代わりに特殊の接着剤を使用すればラベル
の貼着性は向上するが、コスト高を招く。なおポリエチ
レン等の有機物被膜は、酸化錫膜層等との付着性は良好
である。
As the organic film, a thermoplastic resin, particularly polyethylene (including a copolymer mainly composed of polyethylene), is preferably used from the viewpoint of low cost and good scratch resistance. However, if the number of sprays and the spray amount (per spray) are increased to increase the abrasion resistance and the area ratio covered with the polyethylene film is increased, the label will not be stuck with glue (usually starch glue). This is because polyethylene is non-polar and has no adhesiveness to the label paste.
Therefore, the polyethylene film is frame-treated (Japanese Unexamined Patent Publication No.
Special processing such as that described in Japanese Patent Application Laid-Open No. 9-57991) has been proposed, but such processing is costly and inefficient. Also, if a special adhesive is used instead of inexpensive glue, the sticking property of the label is improved, but the cost is increased. An organic film such as polyethylene has good adhesion to a tin oxide film layer or the like.

【0004】一方噴霧回数や噴霧量を少なくして、ポリ
エチレン膜で被覆される面積率が小さくなると、耐擦り
傷性が悪くなって、容器の破壊を招き易い。そこで部分
的に適当の厚さのポリエチレン薄膜を形成されたガラス
容器を製造することが望ましい。ポリエチレン薄膜の無
い部分がラベルと良く貼着し、ポリエチレン薄膜がある
部分が耐擦り傷性を有するからである。そのためにはガ
ラス容器の表面、特に側壁部表面のポリエチレン薄膜の
被覆率を測定し、その結果を生産現場にフィードバック
して、ポリエチレン薄膜の管理を行うのが望ましい。し
かしながら今まで、ガラス容器に形成されたポリエチレ
ン等の熱可塑性樹脂薄膜の被覆率を、現場の検査室等で
比較的簡単に、精度よく測定する方法および装置は知ら
れていなかった。
[0004] On the other hand, when the number of sprays and the spray amount are reduced and the area ratio covered with the polyethylene film is reduced, the scratch resistance is deteriorated and the container is easily broken. Therefore, it is desirable to manufacture a glass container partially formed with a polyethylene thin film having an appropriate thickness. This is because the portion without the polyethylene thin film adheres well to the label, and the portion with the polyethylene thin film has scratch resistance. For this purpose, it is desirable to measure the coverage of the polyethylene thin film on the surface of the glass container, particularly on the side wall surface, and feed back the result to the production site to manage the polyethylene thin film. However, up to now, there has been no known method and apparatus for measuring the coverage of a thin film of a thermoplastic resin such as polyethylene formed on a glass container relatively easily and accurately in an on-site inspection room or the like.

【0005】[0005]

【発明が解決しようとする課題】本発明は、ガラス製
品、特にガラス容器の側壁部表面に形成された熱可塑性
樹脂被膜の被覆率を、現場の検査室等で比較的簡単に、
かつ比較的高精度で測定できる方法を提供することを目
的とする。本発明はさらに、ガラス製品、特にガラス容
器の表面に形成された熱可塑性樹脂被膜の被覆率を、現
場の検査室等で比較的簡単に、かつ比較的高精度で測定
できる装置を提供することを目的とする。
SUMMARY OF THE INVENTION According to the present invention, it is possible to relatively easily measure the coverage of a glass product, particularly a thermoplastic resin film formed on the surface of a side wall portion of a glass container, in a field inspection room or the like.
It is another object of the present invention to provide a method capable of measuring with relatively high accuracy. The present invention further provides a device which can measure the coverage of a thermoplastic resin film formed on the surface of a glass product, especially a glass container, relatively easily and with relatively high accuracy in an on-site inspection room or the like. With the goal.

【0006】[0006]

【課題を解決するための手段】本発明の熱可塑性樹脂被
膜の被覆率測定方法は、熱可塑性樹脂を塗布された表面
を有するガラス製品の上記表面における熱可塑性樹脂被
膜の被覆率を測定する方法であって、所定波長の紫外線
を上記表面に入射させ、上記表面よりの反射光の光量に
基いて熱可塑性樹脂被膜の被覆率を測定することを特徴
とする(請求項1)。
According to the present invention, there is provided a method for measuring the coverage of a thermoplastic resin film on a glass article having a surface coated with a thermoplastic resin. Wherein ultraviolet light having a predetermined wavelength is incident on the surface, and the coverage of the thermoplastic resin film is measured based on the amount of reflected light from the surface (claim 1).

【0007】コールドエンド・コーティングは通常、熱
可塑性樹脂の水分散液を約70〜150℃のガラス容器
にスプレーすることによって行われる。その際、水分散
液の噴霧によってガラス容器の表面は濡れるが、高温の
ガラス表面の撥水性によって凝縮して、面積が極く微少
な多数の楕円形状島状部(図2のs参照)およびその集
合体(図2のs’参照)が形成され、島状部等は水分が
蒸発した後、冷却固化して熱可塑性樹脂被膜(図2のP
参照)となるものと思われる。凝縮のためと思われる
が、固化した後の島状部等は凹凸のある表面、すなわち
粗面になっていることが、本発明者等によって原子間力
顕微鏡観察等によって確認されている。
[0007] Cold end coating is usually performed by spraying an aqueous dispersion of a thermoplastic resin into a glass container at about 70 to 150 ° C. At this time, the surface of the glass container is wetted by the spray of the aqueous dispersion, but is condensed by the water repellency of the high-temperature glass surface, and a large number of elliptical islands having an extremely small area (see s in FIG. 2) and An aggregate (see s ′ in FIG. 2) is formed, and the island-shaped portions and the like are evaporated and then solidified by cooling to form a thermoplastic resin film (P in FIG. 2).
See). It has been confirmed by the present inventors by atomic force microscopy or the like that the islands and the like after solidification have a rough surface, that is, a rough surface, which is considered to be due to condensation.

【0008】紫外線は波長が短いので、粗面である熱可
塑性樹脂被膜の凸部によって散乱反射され易い。一方熱
可塑性樹脂被膜で被覆されていないガラス(無機物薄
膜)が露出した部分に入射した紫外線は正反射する。従
って散乱反射光量は熱可塑性樹脂被膜の面積に比例す
る。すなわちガラス製品表面よりの散乱反射光の光量と
入射光量の比は、熱可塑性樹脂被膜の被覆率にほぼ比例
する。よってガラス製品表面よりの反射光の光量に基い
て、熱可塑性樹脂被膜の被覆率を比較的簡単に、かつ比
較的高精度で測定することが可能である。
[0008] Since ultraviolet light has a short wavelength, it is liable to be scattered and reflected by the convex portion of the thermoplastic resin film which is a rough surface. On the other hand, ultraviolet rays incident on a portion where the glass (inorganic thin film) not covered with the thermoplastic resin film is exposed are regularly reflected. Therefore, the amount of scattered reflected light is proportional to the area of the thermoplastic resin film. That is, the ratio between the amount of scattered reflected light from the glass product surface and the amount of incident light is substantially proportional to the coverage of the thermoplastic resin film. Therefore, the coverage of the thermoplastic resin film can be measured relatively easily and with relatively high accuracy based on the amount of light reflected from the glass product surface.

【0009】請求項1記載の発明の場合、反射光の光量
を、P偏光子を通過した後に測定するのが好ましい(請
求項2)。散乱反射光量は、入射角が小さい程多くな
り、また偏光方向によって強度が異なり、入射面に平行
な線偏光の強度が最も大きい。従ってP偏光子を通過し
たP偏光を測定することによって、効率よく熱可塑性樹
脂被膜の被覆率を測定することが可能である。
In the case of the first aspect of the present invention, it is preferable to measure the amount of reflected light after passing through the P polarizer (claim 2). The amount of scattered reflected light increases as the incident angle decreases, and the intensity varies depending on the polarization direction. The intensity of linearly polarized light parallel to the incident surface is the highest. Therefore, by measuring the P-polarized light that has passed through the P-polarizer, it is possible to efficiently measure the coverage of the thermoplastic resin film.

【0010】本発明の熱可塑性樹脂被膜の被覆率測定装
置は、熱可塑性樹脂を塗布された表面を有するガラス製
品の上記表面における熱可塑性樹脂被膜の被覆率を測定
する装置であって、該装置は、所定波長の紫外線を上記
表面に入射させるビームスプリッタを備える光源部;ビ
ームスプリッタよりの正反射光を検出する第1の検出
器;上記表面より反射された散乱反射光を検出する第2
の検出器とP偏光子を備える受光部、および第2の検出
器よりの出力値を第1の検出器よりの出力値で割る演算
器を備えることを特徴とする。
The apparatus for measuring the coverage of a thermoplastic resin film according to the present invention is an apparatus for measuring the coverage of a thermoplastic resin film on the surface of a glass product having a surface coated with a thermoplastic resin, the apparatus comprising: Is a light source unit having a beam splitter that causes ultraviolet light having a predetermined wavelength to enter the surface; a first detector that detects specularly reflected light from the beam splitter; and a second detector that detects scattered reflected light reflected from the surface.
And a light receiving unit having a P polarizer and a calculator for dividing an output value from the second detector by an output value from the first detector.

【0011】所定波長の紫外線を上記表面に入射させる
ので、散乱反射光量を大きくすることができる。光源部
のビームスプリッタよりの正反射光を検出する第1の検
出器は、光源部の光量、すなわち入射光量に比例した光
量を検出できる。上記表面より反射された散乱反射光を
検出する第2の検出器とP偏光子を備える受光部を備え
ているので、第2の検出器は、熱可塑性樹脂被膜よりの
散乱反射光を効率よく検出できる。第2の検出器よりの
出力値を第1の検出器よりの出力値で割る演算器を備え
ているので、第2の検出器よりの出力値、すなわち熱可
塑性樹脂被膜よりの散乱反射光量を、第1の検出器より
の出力値で割って、第2の検出器よりの出力値と第1の
検出器よりの出力値の比、すなわち反射率を求めること
ができる。この反射率に基いて熱可塑性樹脂被膜の被覆
率を、比較的簡単に、かつ比較的高精度で求めることが
できる。
Since ultraviolet light having a predetermined wavelength is incident on the surface, the amount of scattered and reflected light can be increased. The first detector that detects the regular reflection light from the beam splitter of the light source unit can detect the light amount of the light source unit, that is, the light amount proportional to the incident light amount. Since the second detector for detecting the scattered reflected light reflected from the surface and the light receiving section including the P polarizer are provided, the second detector efficiently reflects the scattered reflected light from the thermoplastic resin film. Can be detected. Since an arithmetic unit for dividing the output value from the second detector by the output value from the first detector is provided, the output value from the second detector, that is, the amount of scattered and reflected light from the thermoplastic resin film is calculated. , By the output value from the first detector, the ratio of the output value from the second detector to the output value from the first detector, that is, the reflectance can be obtained. Based on the reflectance, the coverage of the thermoplastic resin film can be determined relatively easily and with relatively high accuracy.

【0012】[0012]

【発明の実施の形態】本発明の原理を示す図1におい
て、1は紫外線(好ましくは波長340nm)の光源で
あり、2はビームスプリッタであって、光源1よりの紫
外線3の一部は、ビームスプリッタ2を透過してガラス
瓶の側壁部4の表面に入射角θで入射する。ビームスプ
リッタ2で正反射した紫外線3は入射紫外線検出器5で
検出される。ガラス容器の側壁部4の表面にスプレー法
によってポリエチレン薄膜Pが形成されている。この薄
膜Pは、図2に示すように、不連続で、楕円形状の島状
部sおよび島状部sの集合体s’よりなっている。図6
に示すように、島状部sおよび集合体s’は、高さは通
常、約0.01〜0.5μmで、連峰状または山脈状の
凹凸面、すなわち粗面になっている。図6は、原子間力
顕微鏡による島状部sの一部分の、トポグラフィック
(topographic)写真の例を示し、右側の縦軸は濃淡度
による高さスケールである。この場合、島状部sは、高
さが約150〜250nm(0.15〜0.25μm)
の範囲で山脈状に凹凸していることが分かる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1 showing the principle of the present invention, reference numeral 1 denotes a light source of ultraviolet light (preferably at a wavelength of 340 nm), 2 denotes a beam splitter, and a part of the ultraviolet light 3 from the light source 1 is: The light passes through the beam splitter 2 and is incident on the surface of the side wall 4 of the glass bottle at an incident angle θ. Ultraviolet light 3 specularly reflected by the beam splitter 2 is detected by an incident ultraviolet detector 5. A polyethylene thin film P is formed on the surface of the side wall 4 of the glass container by a spray method. As shown in FIG. 2, the thin film P is made up of discontinuous, elliptical islands s and an aggregate s ′ of islands s. FIG.
As shown in the figure, the height of the island-shaped portion s and the aggregate s' is usually about 0.01 to 0.5 [mu] m, and it is an uneven surface in the form of a continuous peak or a mountain range, that is, a rough surface. FIG. 6 shows an example of a topographic photograph of a part of the island s by an atomic force microscope, and the vertical axis on the right side is a height scale based on shading. In this case, the height of the island portion s is about 150 to 250 nm (0.15 to 0.25 μm).
It can be seen that the area is uneven in a mountain range.

【0013】従って側壁部4上のポリエチレン薄膜P
に、比較的小さい入射角θで入射した紫外線3は散乱し
て、散乱反射光6を発生する。入射する紫外線3の側壁
部4におけるスポット部3aの直径は通常1〜5mm程
度である。散乱反射光6の中心線が法線10となす反射
角δは小さく、一般に30度以下である。散乱反射光6
は、P偏光板7を透過して集光器8に入る。集光器8
は、アルミニウム板よりなる円錐台形体であって、内面
は鏡面仕上げされて反射鏡8aとなっている。集光器8
は、入口の直径が大きく、出口の直径が小さい構造にな
っていて、集光器8に入った散乱反射光6は図1に示す
ように集光されて散乱反射光検出器9で検出される。入
射角θと散乱反射角δの和は、約30〜45度が好まし
い。
Therefore, the polyethylene thin film P on the side wall 4
The ultraviolet light 3 incident at a relatively small incident angle θ is scattered to generate scattered reflected light 6. The diameter of the spot portion 3a on the side wall portion 4 of the incident ultraviolet light 3 is usually about 1 to 5 mm. The reflection angle δ formed by the center line of the scattered reflected light 6 and the normal line 10 is small, and is generally 30 degrees or less. Scattered reflected light 6
Pass through the P-polarizing plate 7 and enter the condenser 8. Concentrator 8
Is a truncated cone made of an aluminum plate, and the inner surface is mirror-finished to form a reflecting mirror 8a. Concentrator 8
Has a structure in which the diameter of the entrance is large and the diameter of the exit is small, and the scattered reflected light 6 entering the condenser 8 is condensed and detected by the scattered reflected light detector 9 as shown in FIG. You. The sum of the incident angle θ and the scattering reflection angle δ is preferably about 30 to 45 degrees.

【0014】入射紫外線検出器5の出力信号Aおよび散
乱反射光検出器9の出力信号Bは、除算器11に入力し
て、除算器11でB/Aの割り算が行われる。本明細書
においては、B/Aを散乱反射光の反射率Hと呼ぶ。側
壁部4の表面は、ポリエチレン薄膜Pで被覆されて乱反
射する部分と、被覆されず平滑な無機物薄膜が露出して
いる部分rに分かれる(図2参照)。従って反射率H
は、ポリエチレン薄膜Pの被覆率Cに比例する。
The output signal A of the incident ultraviolet detector 5 and the output signal B of the scattered / reflected light detector 9 are input to a divider 11 where the division of B / A is performed. In this specification, B / A is referred to as the reflectance H of the scattered reflected light. The surface of the side wall portion 4 is divided into a portion covered with the polyethylene thin film P and irregularly reflected and a portion r where the uncoated smooth inorganic thin film is exposed (see FIG. 2). Therefore, the reflectance H
Is proportional to the coverage C of the polyethylene thin film P.

【0015】[0015]

【実施例】図3は、実施例で使用した装置を示す。図1
と同じ符号の部分は同様な部分を示す。12は光源ラン
プ(例えばキセノン・ランプ)である。光源ランプ12
より発せられる光は、コリメータ・レンズ13によって
平行な光束となった後、紫外線干渉フィルター14によ
って所定波長の紫外線3となる。紫外線3の一部は、ビ
ームスプリッタ2によって反射して入射紫外線検出器5
によって検出される。入射紫外線検出器5よりの出力信
号Aは除算器11に入力する。
FIG. 3 shows the apparatus used in the embodiment. FIG.
The same reference numerals denote the same parts. Reference numeral 12 denotes a light source lamp (for example, a xenon lamp). Light source lamp 12
The emitted light is converted into a parallel light flux by the collimator lens 13, and then becomes ultraviolet light 3 having a predetermined wavelength by the ultraviolet interference filter 14. Part of the ultraviolet light 3 is reflected by the beam splitter 2 and is incident on the incident ultraviolet detector 5.
Is detected by An output signal A from the incident ultraviolet detector 5 is input to a divider 11.

【0016】ビームスプリッタ2を透過した紫外線3
は、集光レンズ15によってガラス容器の側壁部4の部
分4aにスポット部3a(図2参照:好ましくは直径1〜
2mmの)を結ぶ。入射角θは45度以内の範囲でなる
べく小さく定められる。できるだけ大きい散乱反射光6
の強度を得るためである。図3の装置の場合、散乱反射
角δは0度になっている。できるだけ大きい散乱反射光
6の強度を得るためである。
The ultraviolet light 3 transmitted through the beam splitter 2
A spot portion 3a (see FIG. 2; preferably having a diameter of 1 to
2mm). The incident angle θ is set as small as possible within a range of 45 degrees. Largest scattered reflected light 6
This is for obtaining the strength. In the case of the apparatus shown in FIG. 3, the scattering reflection angle δ is 0 degree. This is for obtaining the intensity of the scattered reflected light 6 as large as possible.

【0017】散乱反射光6は、コリメータ・レンズ16
によって平行な光束となった後、P偏光板7を通過して
入投射面に平行な偏光となり、集光レンズ17で散乱反
射光検出器9に集光して、散乱反射光検出器9で検出さ
れる。散乱反射光検出器9よりの出力信号Bは除算器1
1に入力し、除算器11でB/Aの割り算が行われ、反
射率H(%)が求められる。
The scattered reflected light 6 is transmitted to a collimator lens 16
After being converted into a parallel light beam, the light passes through the P-polarizing plate 7 and becomes a polarized light parallel to the incident and projected surface. Is detected. The output signal B from the scattered and reflected light detector 9 is divided by the divider 1
1, the divider 11 divides B / A, and the reflectance H (%) is obtained.

【0018】側壁部4には、各ガラス容器毎の直径の僅
かなばらつきや、1個の容器でも、長さ方向同じ位置で
の周方向の半径の僅かなばらつき又は僅かな局部的な凹
凸がある。また長さ方向にも同様なばらつきがある。従
って測定精度を上げるためには、一定面積のスポット部
3aが常に側壁部4の表面上に位置するようにする機
構、すなわち集光レンズ15とスポット部3aが結ばれ
る部分4a間の距離が一定になる機構を設けることが望
ましい。次にこの機構について述べる。
The side wall 4 has a slight variation in the diameter of each glass container, a slight variation in the radius in the circumferential direction at the same position in the longitudinal direction, or a slight local unevenness even in a single container. is there. There is a similar variation in the length direction. Therefore, in order to increase the measurement accuracy, a mechanism that ensures that the spot 3a having a constant area is always positioned on the surface of the side wall 4, that is, the distance between the condenser lens 15 and the portion 4a where the spot 3a is connected is constant. It is desirable to provide a mechanism that becomes Next, this mechanism will be described.

【0019】図3、図4に示すように、側壁部4はその
下方部を、それぞれ僅かに突出したゴム・リング33お
よび35を外挿された駆動ローラ32およびバックアッ
プ・ローラ34によって支持されている。駆動ローラ3
2は、ステッピング・モータ31によって同一方向へ間
歇回転される。同時に側壁部4も同一方向へ間歇回転さ
れる。停止中に、上記の測定は行われ、回転が再開して
次の停止時に再び測定を行うという、繰り返し測定が行
われる。
As shown in FIGS. 3 and 4, the lower portion of the side wall portion 4 is supported by a driving roller 32 and a backup roller 34 having rubber rings 33 and 35 protruding slightly, respectively. I have. Drive roller 3
2 is intermittently rotated in the same direction by a stepping motor 31. At the same time, the side wall 4 is also intermittently rotated in the same direction. During the stop, the above measurement is performed, and the rotation is restarted, and the measurement is performed again at the next stop, so that the measurement is repeated.

【0020】ステッピング・モータ31は、上面が水平
で、支持板37に沿ってスライド可能なスライド36に
設置されている。39は、固定架台38に回転可能に着
設された垂直スクリュウねじであって、40は、スクリ
ュウねじ39を回転するためのハンドルである。支持板
37には、スクリュウねじ39と螺合する雌ねじが形成
されていて、ハンドル40を回転すると、1回転約1m
mの精度で上下動するようになっている。スライド36
には、スクリュウねじ39を通す、スロット45が側壁
部4の軸心方向に向かって形成されており、そのためス
ライド36は、支持板37に沿って側壁部4の軸心方向
にスライド可能になっている。スライド36は、図示さ
れない機構により、手動式または電動式に微動可能にな
っている。
The stepping motor 31 is mounted on a slide 36 having a horizontal upper surface and slidable along a support plate 37. Reference numeral 39 denotes a vertical screw screw rotatably mounted on the fixed base 38, and reference numeral 40 denotes a handle for rotating the screw screw 39. The support plate 37 is formed with a female screw to be screwed with the screw screw 39, and when the handle 40 is rotated, about 1 m per rotation.
It moves up and down with an accuracy of m. Slide 36
Has a slot 45 through which a screw screw 39 is passed, formed in the axial direction of the side wall portion 4, so that the slide 36 can slide in the axial direction of the side wall portion 4 along the support plate 37. ing. The slide 36 can be finely moved manually or electrically by a mechanism not shown.

【0021】図2に示すように、スポット部3a、すな
わち部分4aにはガラス面(無機物薄膜)が露出した部
分rが存在する。部分rへの入射光は正反射して正反射
光26が生ずる。正反射光26は、集光レンズおよび円
筒レンズ25を通過して四分割光検出器27に入光す
る。四分割光検出器27は、4個のフォト・ダイオード
素子27a、27b、27c、27dよりなり、各素子
27a、27b、27c、27dよりの出力信号は、加
算器(図示されない)や差動増幅器(図示されない)等
を備える位置検出回路28に入力する。
As shown in FIG. 2, the spot portion 3a, that is, the portion 4a has a portion r where the glass surface (inorganic thin film) is exposed. The light incident on the portion r is specularly reflected to generate specularly reflected light 26. The specularly reflected light 26 passes through the condenser lens and the cylindrical lens 25 and enters the quadrant photodetector 27. The quadrant photodetector 27 includes four photodiode elements 27a, 27b, 27c, and 27d, and the output signals from the elements 27a, 27b, 27c, and 27d are added to an adder (not shown) or a differential amplifier. (Not shown) and the like.

【0022】位置検出回路28の出力信号29は、モニ
ター(図示されない)又はメータ(図示されない)に入
力する。位置検出回路28は、その出力信号29が、側
壁部4の表面上に一定面積のスポット部3aが位置する
時に0になり、位置しない時は0から外れて+または−
の或る値になり、この値がモニター又はメータに入力、
表示されるように構成されている。
The output signal 29 of the position detecting circuit 28 is input to a monitor (not shown) or a meter (not shown). The position detection circuit 28 outputs 0 when the spot 3a having a certain area is located on the surface of the side wall 4 and deviates from 0 when it is not located.
Which is input to the monitor or meter,
It is configured to be displayed.

【0023】この表示値に基いて、ハンドル40を表示
値が0になるまで回転して、支持板37、従って側壁部
4上下動する。又は出力信号29を、支持板37を上下
動する電動機構(図示されない)に入力して、表示値が
0になるまで支持板37を自動的に上下動してもよい。
1周の測定が終わったら、スライド36、従って側壁部
4を所定距離、例えば1又は2mm軸心方向に移動して
同様な測定を繰り返す。この操作を繰り返すことによっ
て、側壁部4のほぼ全面の反射率Hを測定することがで
きる。しかし通常は代表的な部分を数箇所測定すればよ
い。除算器11よりの出力信号41はパソコン42に入
力して、各測定毎の反射率や、1周測定毎の反射率の平
均値等の必要なデータがモニターに表示されるようにな
っている。なお除算器11の代わりに、除算機能を有す
る演算器を用いてもよい。
Based on the displayed value, the handle 40 is rotated until the displayed value becomes 0, and the support plate 37 and thus the side wall portion 4 are moved up and down. Alternatively, the output signal 29 may be input to an electric mechanism (not shown) that moves the support plate 37 up and down, and the support plate 37 may be automatically moved up and down until the display value becomes zero.
After one round of measurement, the slide 36 and thus the side wall 4 are moved a predetermined distance, for example, 1 or 2 mm axially, and the same measurement is repeated. By repeating this operation, the reflectance H of almost the entire side wall 4 can be measured. However, it is usually sufficient to measure several representative portions. The output signal 41 from the divider 11 is input to a personal computer 42, and necessary data such as the reflectance for each measurement and the average value of the reflectance for each round measurement are displayed on a monitor. . Note that instead of the divider 11, an arithmetic unit having a division function may be used.

【0024】図5は、以上の装置で測定された反射率H
(%)と、ポリエチレン薄膜Pの被覆率C(%)との関
係を示す線図である。ただしポリエチレン薄膜Pの素地
として、20cmx40cmのフラットな3枚のガラス
板(温度100度)を用い、それぞれの板に、異なる条件
でポリエチレンの水分散液をスプレーした。そして特定
の位置の被覆率Cを、走査型レーザー顕微鏡で測定し
た。同じ位置に図3の装置の紫外線3(波長340n
m)を入射して(スポット部径1mm)反射率H(%)
を測定した。反射率Hと被覆率Cはほぼリニアーな関係
にあることが分かる。図3の装置および図5の線図を用
いて、ガラス容器の側壁部4表面のポリエチレン薄膜P
の被覆率Cを求めることができた。
FIG. 5 shows the reflectance H measured by the above apparatus.
FIG. 4 is a diagram showing a relationship between (%) and a coverage C (%) of a polyethylene thin film P. However, three flat glass plates of 20 cm × 40 cm (temperature: 100 ° C.) were used as a base material of the polyethylene thin film P, and an aqueous dispersion of polyethylene was sprayed on each plate under different conditions. Then, the coverage C at a specific position was measured with a scanning laser microscope. At the same position, the ultraviolet ray 3 (wavelength 340n) of the apparatus of FIG.
m) is incident (spot diameter 1 mm) and the reflectance H (%)
Was measured. It can be seen that the reflectance H and the coverage C have a substantially linear relationship. Using the apparatus of FIG. 3 and the diagram of FIG. 5, the polyethylene thin film P on the surface of the side wall 4 of the glass container is used.
Was able to be determined.

【0025】[0025]

【発明の効果】本発明は、ガラス製品、特にガラス容器
の側壁部表面に形成された熱可塑性樹脂薄膜の被覆率
を、現場の検査室等で比較的簡単に、かつ比較的高精度
で測定できるという効果を奏する。
According to the present invention, the coverage of a glass product, particularly a thermoplastic resin thin film formed on the surface of the side wall of a glass container, can be measured relatively easily and with relatively high accuracy in an on-site inspection room or the like. It has the effect of being able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の測定方法の原理を示すための説明用図
面である。
FIG. 1 is an explanatory drawing for illustrating the principle of the measuring method of the present invention.

【図2】ガラス製品の表面に形成された熱可塑性樹脂被
膜の状態を示す説明用模式図である。
FIG. 2 is an explanatory schematic view showing a state of a thermoplastic resin film formed on a surface of a glass product.

【図3】本発明の装置の例の説明用正面図である。FIG. 3 is an explanatory front view of an example of the device of the present invention.

【図4】図3の装置の、IVーIV線からみた側面図であ
る。
FIG. 4 is a side view of the apparatus of FIG. 3, as viewed from the line IV-IV.

【図5】図3の装置を用いて測定された反射率と、熱可
塑性樹脂被膜の被覆率との関係の例を示す線図である。
5 is a diagram showing an example of the relationship between the reflectance measured using the apparatus of FIG. 3 and the coverage of a thermoplastic resin film.

【図6】原子間力顕微鏡による、島状部のトポグラフィ
ック(topographic)図面代用写真である。
FIG. 6 is a photograph substituted for a topographic drawing of an island by an atomic force microscope.

【符号の説明】[Explanation of symbols]

1 紫外線の光源(光源部) 2 ビームスプリッタ(光源部) 3 紫外線 4 ガラス瓶の側壁部(ガラス製品) 5 入射紫外線検出器(第1の検出器) 6 散乱反射光(反射光) 7 P偏光板(P偏光子) 9 散乱反射光検出器(第2の検出器) 11 除算器(演算器) 12 光源ランプ(光源部) 14 紫外線干渉フィルター(光源部) P ポリエチレン薄膜(熱可塑性樹脂被膜) θ 入射角 DESCRIPTION OF SYMBOLS 1 Ultraviolet light source (light source part) 2 Beam splitter (light source part) 3 Ultraviolet light 4 Side wall part of glass bottle (glass product) 5 Incident ultraviolet detector (first detector) 6 Scattered reflected light (reflected light) 7 P polarizing plate (P polarizer) 9 Scattered reflected light detector (second detector) 11 Divider (arithmetic unit) 12 Light source lamp (light source) 14 Ultraviolet interference filter (light source) P Polyethylene thin film (thermoplastic resin film) θ Angle of incidence

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹之内 健 神奈川県横浜市金沢区能見台4−4−21 D−407 Fターム(参考) 2G059 AA05 BB10 CC12 EE02 EE05 FF01 HH03 JJ19 JJ22 KK03 MM14 NN05 4G059 AA01 FA14  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ken Takenouchi 4-4-21 Nomidai, Kanazawa-ku, Yokohama, Kanagawa Prefecture D-407 F-term (reference) 2G059 AA05 BB10 CC12 EE02 EE05 FF01 HH03 JJ19 JJ22 KK03 MM14 NN05 4G059 AA01 FA14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂を塗布された表面を有する
ガラス製品の上記表面における熱可塑性樹脂被膜の被覆
率を測定する方法において、所定波長の紫外線を上記表
面に入射させ、上記表面よりの反射光の光量に基いて熱
可塑性樹脂被膜の被覆率を測定することを特徴とする、
熱可塑性樹脂被膜の被覆率測定方法。
1. A method for measuring a coverage of a thermoplastic resin film on a surface of a glass product having a surface coated with a thermoplastic resin, wherein ultraviolet light having a predetermined wavelength is incident on the surface and reflected from the surface. Measuring the coverage of the thermoplastic resin film based on the amount of light,
Method for measuring coverage of thermoplastic resin film.
【請求項2】 反射光の光量を、P偏光子を通過した後
に測定する、請求項1記載の熱可塑性樹脂被膜の被覆率
測定方法。
2. The method for measuring the coverage of a thermoplastic resin film according to claim 1, wherein the amount of reflected light is measured after passing through a P polarizer.
【請求項3】 熱可塑性樹脂を塗布された表面を有する
ガラス製品の上記表面における熱可塑性樹脂被膜の被覆
率を測定する装置において、該装置は、所定波長の紫外
線を上記表面に入射させるビームスプリッタを備える光
源部;ビームスプリッタよりの反射光を検出する第1の
検出器;上記表面より反射された散乱反射光を検出する
第2の検出器とP偏光子を備える受光部、および第2の
検出器よりの出力値を第1の検出器よりの出力値で割る
演算器を備えることを特徴とする、熱可塑性樹脂被膜の
被覆率測定装置。
3. An apparatus for measuring the coverage of a thermoplastic resin film on a surface of a glass product having a surface coated with a thermoplastic resin, the apparatus comprising: a beam splitter for causing ultraviolet light having a predetermined wavelength to enter the surface. A first detector for detecting light reflected from the beam splitter; a second detector for detecting scattered reflected light reflected from the surface; a light receiving unit including a P polarizer; and a second light detector. An apparatus for measuring the coverage of a thermoplastic resin film, comprising an arithmetic unit for dividing an output value from a detector by an output value from a first detector.
JP11159880A 1999-06-07 1999-06-07 Method and apparatus for measuring coating ratio of thermoplastic resin coating film Pending JP2000346800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11159880A JP2000346800A (en) 1999-06-07 1999-06-07 Method and apparatus for measuring coating ratio of thermoplastic resin coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11159880A JP2000346800A (en) 1999-06-07 1999-06-07 Method and apparatus for measuring coating ratio of thermoplastic resin coating film

Publications (1)

Publication Number Publication Date
JP2000346800A true JP2000346800A (en) 2000-12-15

Family

ID=15703223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11159880A Pending JP2000346800A (en) 1999-06-07 1999-06-07 Method and apparatus for measuring coating ratio of thermoplastic resin coating film

Country Status (1)

Country Link
JP (1) JP2000346800A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005036796A1 (en) * 2005-08-02 2007-02-08 Krones Ag Apparatus and method for detecting bottle characteristics
CN113624782A (en) * 2020-05-08 2021-11-09 柯尼卡美能达株式会社 Cladding percentage detection device and method, image forming apparatus, and computer-readable recording medium storing cladding percentage detection program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005036796A1 (en) * 2005-08-02 2007-02-08 Krones Ag Apparatus and method for detecting bottle characteristics
CN113624782A (en) * 2020-05-08 2021-11-09 柯尼卡美能达株式会社 Cladding percentage detection device and method, image forming apparatus, and computer-readable recording medium storing cladding percentage detection program
JP2021177155A (en) * 2020-05-08 2021-11-11 コニカミノルタ株式会社 Coverage detection device, image forming apparatus, coverage detection method, and coverage detection program
JP7400617B2 (en) 2020-05-08 2023-12-19 コニカミノルタ株式会社 Coverage detection device, image forming device, coverage detection method, and coverage detection program
CN113624782B (en) * 2020-05-08 2024-04-26 柯尼卡美能达株式会社 Coating rate detection device and method, image forming device, and computer-readable recording medium storing coating rate detection program

Similar Documents

Publication Publication Date Title
US20090039240A1 (en) Optical light reflection method
US5358333A (en) Method of and measuring arrangement for contactless on-line measurement
US4748329A (en) Method for on-line thickness monitoring of a transparent film
EP2667181A1 (en) Sensing device
US4053237A (en) Measuring the surface of a roller by glossmeter
TWI634226B (en) Optical inspection system, processing system for processing of a material on a flexible substrate, and methods of inspecting a flexible substrate
JP2003501649A (en) High speed flaw detection apparatus and method for reflective materials
JP2011013145A5 (en)
JP5076247B2 (en) Apparatus and method for measuring side wall thickness of non-circular transparent container
US6617079B1 (en) Process and system for determining acceptibility of a fluid dispense
JP2011510176A (en) Vacuum coating apparatus and method
JP2000346800A (en) Method and apparatus for measuring coating ratio of thermoplastic resin coating film
JP2005530152A (en) Achromatic spectroscopic ellipsometer with high spatial resolution
JP2001512816A (en) Ellipsometer measuring device
JP2001512821A (en) Micro polarimeter
US7187443B1 (en) Method of determining bulk refractive indicies of liquids from thin films thereof
Machorro et al. Optical properties of Mg, from UV to IR, using ellipsometry and reflectometry
CN107192679A (en) A kind of photometric analyzer and its detection method based on light-conducting capillaries
JPS63242375A (en) Method for measuring thickness of coated film
JP2003503685A (en) Layer thickness measurement method and equipment
JP2000199731A (en) Optical characteristics measuring device and film formation apparatus provided with the optical- characteristic measuring device
JPS608726B2 (en) Device for measuring the thickness of metal or metal oxide coatings applied to the surface of glass, etc.
JP2007507722A (en) Method and apparatus for measuring the orientation of effect particles in a film or coating
JPS63191015A (en) Method of measuring thickness of painted film for steel strip
RU2158897C1 (en) Method testing thickness of film in process of its deposition and device for its realization

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060714