JP2000344530A - Production of porous glass preform - Google Patents

Production of porous glass preform

Info

Publication number
JP2000344530A
JP2000344530A JP11156274A JP15627499A JP2000344530A JP 2000344530 A JP2000344530 A JP 2000344530A JP 11156274 A JP11156274 A JP 11156274A JP 15627499 A JP15627499 A JP 15627499A JP 2000344530 A JP2000344530 A JP 2000344530A
Authority
JP
Japan
Prior art keywords
cooling
reaction vessel
base material
cooling medium
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11156274A
Other languages
Japanese (ja)
Inventor
Yuuji Tobisaka
優二 飛坂
Hiroshi Tsumura
寛 津村
Tadakatsu Shimada
忠克 島田
Hideo Hirasawa
秀夫 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP11156274A priority Critical patent/JP2000344530A/en
Priority to DE60021955T priority patent/DE60021955T2/en
Priority to TW089110793A priority patent/TW584611B/en
Priority to EP00250172A priority patent/EP1057792B1/en
Priority to US09/585,573 priority patent/US6698240B1/en
Priority to KR1020000030281A priority patent/KR100632879B1/en
Publication of JP2000344530A publication Critical patent/JP2000344530A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of and deposition of rust on the inside walls of piping of a cooling system and to prevent the degradation in heat exchange efficiency by passing cooling water containing a rust preventive into a cooling medium flow passage provided in a reaction vessel where glass particulates are deposited on a starting base material. SOLUTION: The glass particulates formed by vapor phase hydrolysis of gaseous glass raw material in an oxyhydrogen flame are deposited on a base material glass rod 2 to form a soot body 5 in the reactor 1 having the cooling medium flow passage. A cooling pipe 11 made of stainless steel is installed along the vessel wall 12 of the reactor vessel 1 in parallel with the axis of the base material glass rod 2. Thermally insulating materials 16 are mounted at the vessel wall 12 and the outside wall 15 is provided so as to enclose both. The water containing the rust preventive is passed as a cooling medium into the cooling pipe 11 to cool the reaction vessel 1. The rust preventive containing polycarboxylic acid nitrate or the rust preventive containing polycarboxylic acid nitrite and inorg. nitrogen compd. are used as the rust preventive. The amounts of these rust preventives to the cooling water are preferably specified to about 1 to 10 ppm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバーの原
材料として使用されるガラス母材を製造するための多孔
質ガラス母材の製造方法に関する。
The present invention relates to a method for producing a porous glass preform for producing a glass preform used as a raw material of an optical fiber.

【0002】[0002]

【従来の技術】光ファイバーは、太径のガラス母材を縮
径したガラスロッド、いわゆる光ファイバプリフォーム
を線引きして製造される。この太径のガラス母材は、軸
付け法(VAD法)や外付け法(OVD法)で製造され
た多孔質母材を熱処理により、焼結し、透明ガラス化し
て得ている。
2. Description of the Related Art An optical fiber is manufactured by drawing a glass rod, a so-called optical fiber preform, having a large diameter glass base material reduced in diameter. This large-diameter glass base material is obtained by sintering a porous base material manufactured by an axis attachment method (VAD method) or an external attachment method (OVD method) by heat treatment to form a transparent glass.

【0003】図1は、外付け法により多孔質ガラス母材
を製造する装置を示している。反応容器1内には、出発
基材である基材ガラス棒2がその両端を基材把持具3で
支持された状態で配置されている。基材ガラス棒2への
ガラス微粒子の堆積は、ガラス微粒子合成用バーナー
(以下、単にバーナーという)4を用いてガラス原料ガ
スを酸水素火炎中で気相加水分解反応させ、ガラス微粒
子(スート)を生成させながら、基材ガラス棒2の周面
にガラス微粒子を噴きつけて径方向に堆積させることに
より行われ、スート体5が形成される。これを所定の外
径が得られるまで、基材ガラス棒2を回転機構6で回転
させながら、基材ガラス棒2の長手方向に沿って、バー
ナー4をその移動機構7で往復運動させ堆積を続ける。
燃焼排ガスは、排気フード8により反応容器1外へ排気
される。
FIG. 1 shows an apparatus for manufacturing a porous glass preform by an external method. In a reaction vessel 1, a base glass rod 2 serving as a starting base material is arranged with both ends thereof supported by a base material holding tool 3. The deposition of the glass particles on the base glass rod 2 is performed by subjecting a glass raw material gas to a gas phase hydrolysis reaction in an oxyhydrogen flame using a glass particle synthesis burner (hereinafter, simply referred to as a burner) 4 to obtain glass particles (soot). ) Is generated by spraying glass fine particles on the peripheral surface of the base glass rod 2 and depositing them in the radial direction, so that the soot body 5 is formed. Until a predetermined outer diameter is obtained, the burner 4 is reciprocated by the moving mechanism 7 along the longitudinal direction of the base glass rod 2 while rotating the base glass rod 2 by the rotating mechanism 6 to perform deposition. to continue.
The combustion exhaust gas is exhausted to the outside of the reaction vessel 1 by the exhaust hood 8.

【0004】この過程で、堆積効率を維持するととも
に、スート体5とバーナー4との接触を防止するため、
スート体5の成長に合わせ、スート体5とバーナー4と
の間の距離はバーナー位置調整機構9により調整され
る。また、スート体5の成長とともに外径が大きくな
り、外周面積は増大するが、これに合わせてスート体5
への単位面積当たりの供給熱量を維持する必要があり、
バーナー4への水素や酸素などの燃焼用ガスを増してい
くこととなる。近年、多孔質ガラス母材の大型化にとも
ない、燃焼されるガス量が増大し、反応容器1の受ける
熱量が増している。
In this process, in order to maintain the deposition efficiency and prevent contact between the soot body 5 and the burner 4,
According to the growth of the soot body 5, the distance between the soot body 5 and the burner 4 is adjusted by the burner position adjusting mechanism 9. The outer diameter increases with the growth of the soot body 5 and the outer peripheral area increases.
Need to maintain the heat supply per unit area to the
Combustion gas such as hydrogen and oxygen to the burner 4 will be increased. In recent years, as the size of the porous glass base material increases, the amount of gas to be burned increases, and the amount of heat received by the reaction vessel 1 increases.

【0005】反応容器は、輻射熱を各部が均等に受ける
わけではなく、熱量が増大すると、反応容器の熱的スト
レスが増大して、反応容器を破損したり、ライフに大き
く影響を与える。反応容器が破損すると、これを構成し
ている板材や断熱材の微細断片がスート体に混入するこ
とがあり、最終製品である光ファイバの伝送損失の増大
や断線の原因となる。反応容器のライフを延ばすには、
反応容器の受ける熱量を減らす必要があるが、燃焼用ガ
スを減らすことはスート体の密度を低下させ、スート体
の製造途中あるいは搬送途次での破損を招く。また、密
度が低下するとスート体の径が太径となり、装置の大型
化が必要となる等の問題がある。この対策として、水を
冷却媒体として反応容器そのものの温度を下げ、反応容
器を保護している。
[0005] The reaction vessel does not receive the radiant heat evenly. When the amount of heat increases, the thermal stress of the reaction vessel increases, which damages the reaction vessel or greatly affects the life. If the reaction vessel is damaged, fine pieces of the plate material or the heat insulating material constituting the reaction vessel may be mixed into the soot body, causing an increase in transmission loss and disconnection of an optical fiber as a final product. To extend the life of the reaction vessel,
Although it is necessary to reduce the amount of heat received by the reaction vessel, reducing the amount of combustion gas lowers the density of the soot body and causes breakage during the manufacturing or transportation of the soot body. Further, when the density decreases, the diameter of the soot body becomes large, and there is a problem that the apparatus needs to be enlarged. As a countermeasure, the temperature of the reaction vessel itself is lowered by using water as a cooling medium to protect the reaction vessel.

【0006】[0006]

【発明が解決しようとする課題】反応容器を冷却する場
合、冷却用パイプの反応容器に対する伝熱面積と使用す
る冷却媒体の選定が重要である。伝熱面積は、反応容器
を2重構造いわゆるジャケット構造とし、全体に冷却媒
体を流す方法があるが、除熱バランスの調整が困難であ
る。また、反応容器が破損すると、冷却媒体が反応容器
内に漏れるという問題がある。このため実際には、反応
容器の外側に冷却用のパイプを取付けて冷却している
が、このような限られた伝熱面積で反応容器の除熱を行
うには、熱交換効率の良い媒体が必要となる。この冷却
用媒体として、反応容器が100℃以上になるところも
あるため、沸点の関係で鉱物油等が挙げられるが、水に
比べて1/5の伝熱能力しかないため効率的ではない。
When cooling a reaction vessel, it is important to select a heat transfer area of the cooling pipe to the reaction vessel and a cooling medium to be used. As for the heat transfer area, there is a method in which the reaction vessel has a double structure, that is, a jacket structure, and a cooling medium flows through the reaction vessel. However, it is difficult to adjust the heat removal balance. Further, when the reaction vessel is damaged, there is a problem that the cooling medium leaks into the reaction vessel. For this reason, in practice, cooling is performed by attaching a cooling pipe to the outside of the reaction vessel.However, in order to remove heat from the reaction vessel with such a limited heat transfer area, a medium having high heat exchange efficiency is used. Is required. As the cooling medium, there are some places where the temperature of the reaction vessel becomes 100 ° C. or higher, so that mineral oil or the like can be cited in terms of boiling point. However, it is not efficient because it has only one fifth heat transfer capacity as compared with water.

【0007】また、冷却媒体に水を使用する場合、あら
たに腐食の問題が発生する。水を使用する冷却装置で
は、空気との接触により常に酸素が冷却水中に供給さ
れ、この酸素と高い温度が原因で腐食作用が強く、錆の
発生を助長させる。発生した錆は、装置や冷却系の寿命
を縮めるだけでなく、冷却系の配管内壁に堆積し、熱伝
達率を低下させたり、管路を狭めて流量を減少させ、熱
交換効率の低下を引き起こす。本発明は、反応容器に取
り付けられた冷却系の配管内壁への錆の発生、堆積を防
止して、熱交換効率の低下を防止することのできる多孔
質ガラス母材の製造方法を提供することを課題としてい
る。
Further, when water is used as the cooling medium, a new corrosion problem occurs. In a cooling device using water, oxygen is always supplied to the cooling water by contact with air, and the oxygen and high temperature cause a strong corrosive action, which promotes the generation of rust. The generated rust not only shortens the life of the equipment and cooling system, but also accumulates on the inner wall of the cooling system piping, lowering the heat transfer coefficient and reducing the flow rate by narrowing the pipeline to reduce the heat exchange efficiency. cause. The present invention provides a method for producing a porous glass base material capable of preventing generation and accumulation of rust on a pipe inner wall of a cooling system attached to a reaction vessel and preventing a decrease in heat exchange efficiency. Is an issue.

【0008】[0008]

【課題を解決するための手段】通常、冷却媒体に水を使
用する場合、腐食作用を受けにくくするため、冷却媒体
流路となる配管などには腐食に強い材質のものが使用さ
れるが、この場合、装置が非常に高価になる。ちなみ
に、通常腐食されにくいとされるステンレス鋼であって
も錆は生ずる。そこで、本発明者等は水に防錆剤とし
て、ポリカルボン酸亜硝酸塩を含むもの、より好ましく
はポリカルボン酸亜硝酸塩と無機窒素化合物とを含むも
のを使用することにより、高温の水でも腐食が進まない
ことを発見して本発明を完成した。
Means for Solving the Problems Usually, when water is used as a cooling medium, a corrosion-resistant material such as a pipe serving as a cooling medium flow path is used in order to make the cooling medium less susceptible to corrosion. In this case, the device becomes very expensive. Incidentally, even stainless steel, which is generally considered to be hardly corroded, rusts. Therefore, the present inventors use water containing a polycarboxylic acid nitrite as a rust preventive agent in water, more preferably, water containing a polycarboxylic acid nitrite and an inorganic nitrogen compound, so that even water at high temperature can be corroded. Did not progress, and completed the present invention.

【0009】すなわち、本発明の多孔質ガラス母材の製
造方法は、冷却媒体流路を備えた反応容器内にて、酸水
素火炎中でガラス原料ガスを気相加水分解して生成させ
たガラス微粒子を出発基材へ堆積させる際、冷却媒体流
路中に防錆剤を含む水を流して反応容器を冷却しながら
ガラス微粒子堆積体を形成することを特徴としている。
防錆剤としては、ポリカルボン酸亜硝酸塩を含むもの、
またはポリカルボン酸亜硝酸塩と無機窒素化合物を含む
ものを使用し、これらの冷却用水への添加量は、それぞ
れ1〜10ppm程度が好ましい。添加量が1ppm未
満では所望の効果が得られず、10ppmを超えると効
果は一定となり、また多量に加え過ぎると媒体管路や熱
交換器内で析出するという問題を生じ、好ましくない。
That is, in the method for producing a porous glass base material of the present invention, a glass raw material gas is produced by gas phase hydrolysis in an oxyhydrogen flame in a reaction vessel provided with a cooling medium flow path. When depositing the glass fine particles on the starting base material, the method is characterized in that water containing a rust inhibitor is flowed into the cooling medium flow path to cool the reaction vessel to form a glass fine particle deposit.
As rust preventives, those containing polycarboxylic nitrite,
Alternatively, a mixture containing a polycarboxylic acid nitrite and an inorganic nitrogen compound is used, and the amount of these added to the cooling water is preferably about 1 to 10 ppm. If the added amount is less than 1 ppm, the desired effect cannot be obtained, and if it exceeds 10 ppm, the effect will be constant, and if it is added in too much amount, it will cause a problem of precipitation in the medium pipeline and the heat exchanger, which is not preferable.

【0010】[0010]

【発明の実施の形態】本発明の実施形態を実施例にもと
づき図面を用いてさらに詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in more detail with reference to the drawings based on examples.

【0011】[0011]

【実施例】図2は、本発明の多孔質ガラス母材製造装置
の一例を示す概略横断面図であり、反応容器の器壁に冷
却媒体流路としての冷却用パイプ及び断熱材が取り付け
られている。本実施例では、基材ガラス棒2の軸と並行
に25mm角のステンレス製の冷却用パイプ11を10
0mm間隔で反応容器1の器壁12に沿って設置し、図
3に示すように、冷却用パイプ11を300mmピッチ
でバンド13を用いて固定(点溶接)し、冷却用パイプ
11の両サイドにサーモセメント14を盛り、熱伝導面
積を稼ぐ構造とした。さらに、反応容器1の器壁12及
び冷却用パイプ11の背面にAl とSiO
を主原料とする断熱材16を取り付け、これらを包むよ
うに外壁15を設けて、器壁12と外壁15の間を完全
に密封した。
FIG. 2 is a schematic cross-sectional view showing an example of a porous glass preform manufacturing apparatus according to the present invention, in which a cooling pipe and a heat insulating material as a cooling medium passage are attached to the vessel wall of a reaction vessel. ing. In this embodiment, a 25 mm square stainless steel cooling pipe 11 is connected in parallel with the axis of the base glass rod 2 by 10 mm.
3, the cooling pipes 11 were fixed (point-welded) using bands 13 at a pitch of 300 mm, and the cooling pipes 11 were fixed at both sides of the cooling pipe 11 at intervals of 0 mm, as shown in FIG. Thermo-cement 14 was added to the structure to increase the heat conduction area. Further, Al 2 O 3 and SiO 2 are placed on the wall 12 of the reaction
Was attached, and an outer wall 15 was provided so as to wrap them, and the space between the vessel wall 12 and the outer wall 15 was completely sealed.

【0012】冷却用パイプ中に流す冷却媒体として、ポ
リカルボン酸亜硝酸塩6ppm、無機窒素化合物5pp
mに調製されたトラルファムウォータ:KH5000
(シンセイ冷却システム社製)を使用した。この冷却水
の流量を調節し、冷却水の温度を50℃に保持して、多
孔質ガラスの製造を行ったところ、反応容器内壁の温度
は200℃以下に抑えられ、図4に示すように、3ヶ月
間使用し続けた場合でも、従来生じていた冷却効果の低
下や茶色の汚濁は認められず、冷却装置機材の腐食を抑
えることができた。
As a cooling medium flowing through the cooling pipe, 6 ppm of polycarboxylic acid nitrite and 5 pp of inorganic nitrogen compound
tolfam water: KH5000
(Manufactured by Shinsei Cooling Systems) was used. When the flow rate of the cooling water was adjusted and the temperature of the cooling water was maintained at 50 ° C. to manufacture the porous glass, the temperature of the inner wall of the reaction vessel was suppressed to 200 ° C. or less, as shown in FIG. Even when used for three months, no deterioration of the cooling effect and brown contamination, which had occurred conventionally, were observed, and the corrosion of the cooling device could be suppressed.

【0013】なお、本実施例では、冷却水の温度を50
℃で保持するように冷却水の流量を調節したが、反応容
器内の結露と冷却効率を考えると、40〜90℃、好ま
しくは50〜80℃の冷却水を用いることが望ましい。
また、本実施例では明記しなかったが、冷却媒体は交換
されることなく、閉鎖系内を長期間循環使用されるた
め、装置内には錆の他に雑菌の繁殖という問題がある。
このため、人体に悪影響を与える細菌などの増殖を抑制
する添加物を加えることにより、装置周りの環境を良く
することも重要である。このような機能を持つ、ポリカ
ルボン酸亜硝酸塩に加えて細菌増殖抑制剤を含有する防
錆剤レジオクラッシュ(アクアス社製)を使用してもよ
い。
In this embodiment, the temperature of the cooling water is set to 50
Although the flow rate of the cooling water was adjusted so as to maintain the temperature at 0 ° C., it is desirable to use cooling water at 40 to 90 ° C., preferably 50 to 80 ° C. in consideration of dew condensation and cooling efficiency in the reaction vessel.
Although not specified in the present embodiment, since the cooling medium is used for a long period of time in the closed system without being replaced, there is a problem that bacteria grow in the device in addition to rust.
For this reason, it is also important to improve the environment around the device by adding an additive that suppresses the growth of bacteria and the like that adversely affect the human body. A rust preventive agent Regiocrash (manufactured by Aquas) having such a function and containing a bacterial growth inhibitor in addition to the polycarboxylic acid nitrite may be used.

【0014】[0014]

【発明の効果】本発明の多孔質ガラス母材の製造方法
は、上記構成としたことにより、冷却装置及びその冷却
系の配管の腐食が抑えられ、また水と同等の熱交換率を
保つことができるため、多孔質ガラス母材の大型化に伴
う熱量の増大に対応でき、生産性を向上させることがで
きた。また、反応容器の外壁から外部へ放出される熱量
が抑えられることで、作業環境が改善され、かつ空調の
負荷が軽減された。
According to the method for producing a porous glass base material of the present invention having the above-described structure, the corrosion of the cooling device and the piping of the cooling system can be suppressed, and the heat exchange rate equivalent to that of water can be maintained. Therefore, it was possible to cope with an increase in the amount of heat due to the enlargement of the porous glass base material, and it was possible to improve productivity. Further, since the amount of heat released from the outer wall of the reaction vessel to the outside is suppressed, the working environment is improved, and the load on air conditioning is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 外付け方による多孔質ガラス母材製造装置を
示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a porous glass preform manufacturing apparatus according to an external attachment method.

【図2】 本発明になる反応容器の概略横断面図であ
る。
FIG. 2 is a schematic cross-sectional view of a reaction vessel according to the present invention.

【図3】 本発明になる反応容器の器壁の詳細を示す部
分断面図である。
FIG. 3 is a partial sectional view showing details of a vessel wall of the reaction vessel according to the present invention.

【図4】 反応容器外への、本発明の実施例と比較例と
の除熱割合の変化を示す比較図である。
FIG. 4 is a comparative diagram showing a change in a heat removal ratio between an example of the present invention and a comparative example outside the reaction vessel.

【符号の説明】[Explanation of symbols]

1 反応容器 2 基材ガラス棒 3 基材把持具 4 バーナー 5 スート体 6 回転機構 7 移動機構 8 排気フード 9 バーナー位置調整機構 11 冷却用パイプ 12 器壁 13 バンド 14 サーモセメント 15 外壁 16 断熱材 17 排気口 18 バーナー用開口部(空気取入れ口) DESCRIPTION OF SYMBOLS 1 Reaction container 2 Substrate glass rod 3 Substrate grasper 4 Burner 5 Soot body 6 Rotating mechanism 7 Moving mechanism 8 Exhaust hood 9 Burner position adjusting mechanism 11 Cooling pipe 12 Container wall 13 Band 14 Thermocement 15 Outer wall 16 Insulation material 17 Exhaust port 18 Burner opening (air intake)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島田 忠克 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 (72)発明者 平沢 秀夫 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 Fターム(参考) 4G014 AH15 4G021 EA03 EB22 4G062 AA06 BB01 CC07  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tadakatsu Shimada 2-3-1-1, Isobe, Annaka-shi, Gunma Shin-Etsu Kagaku Kogyo Co., Ltd. Precision Functional Materials Laboratory (72) Inventor Hideo Hirasawa Isobe, Annaka-shi, Gunma 2-13-1 Shin-Etsu Kagaku Kogyo Co., Ltd. Precision Functional Materials Laboratory F-term (reference) 4G014 AH15 4G021 EA03 EB22 4G062 AA06 BB01 CC07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷却媒体流路を備えた反応容器内にて、
酸水素火炎中でガラス原料ガスを気相加水分解して生成
させたガラス微粒子を出発基材へ堆積させる際、該冷却
媒体流路中に防錆剤を含む水を流して反応容器を冷却し
ながらガラス微粒子堆積体を形成することを特徴とする
多孔質ガラス母材の製造方法。
In a reaction vessel provided with a cooling medium flow path,
When depositing glass fine particles generated by vapor-phase hydrolysis of a glass raw material gas in an oxyhydrogen flame on a starting substrate, water containing a rust inhibitor is flowed into the cooling medium flow path to cool the reaction vessel. A method for producing a porous glass base material, wherein a glass fine particle deposit is formed while forming.
【請求項2】 前記防錆剤が、ポリカルボン酸亜硝酸塩
を含む請求項1に記載の多孔質ガラス母材の製造方法。
2. The method for producing a porous glass base material according to claim 1, wherein the rust inhibitor contains a polycarboxylic acid nitrite.
【請求項3】 前記防錆剤が、ポリカルボン酸亜硝酸塩
と無機窒素化合物を含む請求項1に記載の多孔質ガラス
母材の製造方法。
3. The method for producing a porous glass base material according to claim 1, wherein the rust inhibitor contains a polycarboxylic acid nitrite and an inorganic nitrogen compound.
【請求項4】 冷却媒体流路中に流す水に添加するポリ
カルボン酸亜硝酸塩、無機窒素化合物の添加量をそれぞ
れ1〜10ppmとする請求項1乃至3のいずれかに記
載の多孔質ガラス母材の製造方法。
4. The porous glass mother according to claim 1, wherein the amount of the polycarboxylic acid nitrite and the amount of the inorganic nitrogen compound to be added to the water flowing in the cooling medium flow path are each 1 to 10 ppm. The method of manufacturing the material.
JP11156274A 1999-06-03 1999-06-03 Production of porous glass preform Pending JP2000344530A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11156274A JP2000344530A (en) 1999-06-03 1999-06-03 Production of porous glass preform
DE60021955T DE60021955T2 (en) 1999-06-03 2000-06-02 Method and apparatus for vaporizing a liquid glass precursor for the production of optical fiber preforms
TW089110793A TW584611B (en) 1999-06-03 2000-06-02 Apparatus for manufacturing glass base material and a method for manufacturing glass base material
EP00250172A EP1057792B1 (en) 1999-06-03 2000-06-02 A process and apparatus for vaporizing a liquid glass precursor for the manufacture of optical fibre preforms
US09/585,573 US6698240B1 (en) 1999-06-03 2000-06-02 Apparatus for manufacturing glass base material and a method for manufacturing glass base material
KR1020000030281A KR100632879B1 (en) 1999-06-03 2000-06-02 An apparatus for manufacturing glass base material and a method for manufacturing glass base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11156274A JP2000344530A (en) 1999-06-03 1999-06-03 Production of porous glass preform

Publications (1)

Publication Number Publication Date
JP2000344530A true JP2000344530A (en) 2000-12-12

Family

ID=15624236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11156274A Pending JP2000344530A (en) 1999-06-03 1999-06-03 Production of porous glass preform

Country Status (1)

Country Link
JP (1) JP2000344530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138078A (en) * 2018-11-06 2020-05-12 中天科技精密材料有限公司 Deposition apparatus and deposition system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138078A (en) * 2018-11-06 2020-05-12 中天科技精密材料有限公司 Deposition apparatus and deposition system

Similar Documents

Publication Publication Date Title
KR100813131B1 (en) Method for sustainable preparation of polycrystalline silicon using fluidized bed reactor
JP2008517744A5 (en)
US4981102A (en) Chemical vapor deposition reactor and process
US20110159214A1 (en) Gold-coated polysilicon reactor system and method
JP2009536915A5 (en)
JP4393555B2 (en) Single crystal growth method
US20040060326A1 (en) Device and method for producing stack of fine glass particles
RU2007148476A (en) DEVICE FOR THE INTRODUCTION OF REACTIVE GASES TO THE REACTION CHAMBER AND EPITAXIAL REACTOR IN WHICH THE INDICATED DEVICE IS USED
CN102432169B (en) The manufacturing installation of porous glass base material and the manufacture method of porous glass base material
US20220205734A1 (en) High-temperature fluid transporting pipeline with pipeline casing formed by heat exchange apparatus, suitable heat exchange apparatus and heat exchange method
JP2000344530A (en) Production of porous glass preform
JP2012176861A (en) Method and apparatus for producing porous glass fine particle deposit
KR940011120B1 (en) Method of producing glass soot deposit
KR100632879B1 (en) An apparatus for manufacturing glass base material and a method for manufacturing glass base material
EP4023989A1 (en) High-temperature fluid transporting pipeline with heat exchange apparatus installed therein, suitable heat exchange apparatus and heat exchange method
JPH07226384A (en) Reactor for chemical vapor deposition of semiconductor grade silicon
CN210229631U (en) System for treating nitric acid tail gas by selective catalytic reduction denitration method
CN109809374B (en) Push boat type semi-continuous boron nitride nanotube preparation furnace and use method thereof
JP3591540B2 (en) Synthetic quartz glass manufacturing equipment
JP2022032071A (en) Apparatus for manufacturing synthetic silica glass and method for manufacturing synthetic silica glass using the same
JP2001010823A (en) Apparatus and method for producing porous glass base material
KR101231479B1 (en) Process and apparatus for producing porous quartz glass base
CN219150114U (en) Efficient reactor for synthesizing graphite fluoride
US11820700B2 (en) Method of depositing a coating utilizing a coating apparatus
JP2005162573A (en) Method for manufacturing glass preform

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061002