JP2000341916A - Magnet motor - Google Patents

Magnet motor

Info

Publication number
JP2000341916A
JP2000341916A JP11302161A JP30216199A JP2000341916A JP 2000341916 A JP2000341916 A JP 2000341916A JP 11302161 A JP11302161 A JP 11302161A JP 30216199 A JP30216199 A JP 30216199A JP 2000341916 A JP2000341916 A JP 2000341916A
Authority
JP
Japan
Prior art keywords
magnet
powder
flexible
rare earth
magnet motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11302161A
Other languages
Japanese (ja)
Inventor
Fumitoshi Yamashita
文敏 山下
Yoshikazu Yamagata
芳和 山縣
Sunao Hashimoto
直 橋本
Yuichiro Sasaki
雄一朗 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11302161A priority Critical patent/JP2000341916A/en
Priority to MYPI20004804 priority patent/MY127815A/en
Publication of JP2000341916A publication Critical patent/JP2000341916A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a strong static magnetic field, attain high output and low power consumption, and improve performance, by mounting a flexible magnet having a thermoplastic elastomer and rare earth magnet powder as an inevitable component in the final shape in a molding die while performing suitable axial magnetic field orientation as necessary, in a rotor frame. SOLUTION: An annular magnet motor has a drive winding 3 by fixing an armature core 2 to a base board 1, and a multi-pole magnetized annular magnet 7 is secured to a rotor frame 6 mounted to a rotary shaft 5. Here, rare earth magnet powder, thermoplastic polyurethane elastomer powder, calcium stearate powder, and hydrazine antioxidant are uniformly mixed by using a Henschel mixer(R), kneaded by an extruder and extrusion molded into plate shape, to obtain a thermoplastic polyurethane elastomer sheet containing the rare earth magnet powder. This plate-shaped sheet is heated, cooled, solidified in a compression molding form in an axial magnetic field, formed in a flexible magnet, and mounted as the annular magnet 7 in the stator frame 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高出力化や低消費
電流化の要求に応えられる小径磁石モータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small-diameter magnet motor capable of satisfying demands for higher output and lower current consumption.

【0002】[0002]

【従来の技術】図1は本発明にかかる出力数W以下の環
状磁石モータの断面構成図である。図において、基板1
には複数の突極と中心孔を備えた電機子鉄心2が固定さ
れており、前記突極には駆動巻線3が巻回され、中心孔
には軸受4が挿入されている。この軸受4によって軸5
が回転自在に支持されている。電機子鉄心2から突出し
た回転軸5の上端部は回転子枠6の中心孔が固着されて
いる。回転子枠6は電機子鉄心2を囲み、その周壁内面
に多極着磁された環状磁石7が固着されている。
2. Description of the Related Art FIG. 1 is a sectional view showing the configuration of an annular magnet motor having an output of less than W according to the present invention. In the figure, a substrate 1
An armature core 2 having a plurality of salient poles and a center hole is fixed to the armature. A driving coil 3 is wound around the salient poles, and a bearing 4 is inserted into the center hole. This bearing 4 allows the shaft 5
Are rotatably supported. The center hole of the rotor frame 6 is fixed to the upper end of the rotating shaft 5 protruding from the armature core 2. The rotor frame 6 surrounds the armature core 2, and a multipolar magnetized annular magnet 7 is fixed to the inner surface of the peripheral wall.

【0003】従来、上記環状磁石モータは、一般にフェ
ライト磁石粉体とバインダで構成した可撓性シート状磁
石を帯状に切断し、環状形状にカーリングして回転子枠
の周壁内面に固着し、電機子鉄心の突極面と対向させた
構成である。前記フェライト磁石粉体は粒子径が3μm
以下と微細な金属酸化物であるため帯状に切断しても切
断面の磁石粉体が環状磁石モータの性能や信頼性に重大
な影響を及ぼすことはなかった。しかし、フェライト磁
石粉体とバインダで構成した可撓性シート状磁石は最大
エネルギー積[BH]maxが高々1.4MGOe程度
であり、環状磁石モータの高出力化、低消費電力化の要
求に応えるには磁石が電機子鉄心と対向した空間に強力
な静磁界をつくることが重要となる。
Conventionally, the above-mentioned annular magnet motor generally cuts a flexible sheet-like magnet composed of ferrite magnet powder and a binder into a band shape, curls it into an annular shape, and fixes it to the inner surface of the peripheral wall of the rotor frame. This is a configuration facing the salient pole surface of the child core. The ferrite magnet powder has a particle diameter of 3 μm.
Because of the following fine metal oxides, even when cut into strips, the magnet powder on the cut surface did not significantly affect the performance and reliability of the annular magnet motor. However, a flexible sheet magnet composed of ferrite magnet powder and a binder has a maximum energy product [BH] max of at most about 1.4 MGOe, which meets the demand for higher output and lower power consumption of a ring magnet motor. Therefore, it is important for the magnet to create a strong static magnetic field in the space facing the armature core.

【0004】ところで、希土類磁石粉体とバインダで構
成した可撓性シート状磁石を帯状に切断し、環状形状に
カーリングして回転子枠の周壁内面に固着し、電機子鉄
心の突極面と対向させた構成の磁石モータの先行技術と
して、特許第2766746号公報に、Nd−Fe−
B系、(Ce、La)−Fe−B系磁石粉体、天然ゴ
ム、イソプレンゴム、ブタジエンゴム、スチレンブタジ
エンゴム、ブチルゴム、エチレンプロピレンゴム、エチ
レン酢ビゴム、ニトリルゴム、アクリルゴム、ウレタン
ゴム、クロロプレンゴム、クロロスルホン化ポリエチ
レン、塩化ポリエチレンの各〜の群の1種または2
種以上を選択し、が92〜96wt%、密度4.9〜
5.8g/cm3とした可撓性シート状磁石。また、特
許第2528574号公報に、(a)R−Fe−B(R
はNd/Pr)系磁石粉体とバインダを混練する工程、
(b)前記混練物を粉砕した後、シート状に圧延する工
程、(c)シート状に圧延した磁石素材を125〜18
0℃で60〜180mun熱処理する工程、とからなる
可撓性シート状磁石の製造方法。さらに、実用新案第2
528670号公報に、突極を有しコイルが巻回された
電機子鉄心と、可撓性シート状磁石を帯状に切断し、環
状形状にカーリングして電機子鉄心の突極面と対向させ
た環状磁石を備えたモータであって、磁石はR−Fe−
B(RはNd/Pr)系磁石粉体を配合したものであ
り、上記磁石の圧延面を電機子鉄心の突極面と対向さ
せ、磁石切断面の剪断面を電機子側に位置させてなるモ
ータが開示されている。
By the way, a flexible sheet magnet composed of a rare earth magnet powder and a binder is cut into a band shape, curled into an annular shape, and fixed to the inner surface of the peripheral wall of the rotor frame. As a prior art of a magnet motor having an opposed configuration, Japanese Patent No. 2766746 discloses an Nd-Fe-
B-based, (Ce, La) -Fe-B-based magnet powder, natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, butyl rubber, ethylene propylene rubber, ethylene vinyl acetate rubber, nitrile rubber, acrylic rubber, urethane rubber, chloroprene One or two of the following groups: rubber, chlorosulfonated polyethylene, and polyethylene chloride
Select at least species, but 92-96 wt%, density 4.9-
A flexible sheet magnet with 5.8 g / cm 3 . Japanese Patent No. 2528574 discloses (a) R-Fe-B (R
Is a step of kneading an Nd / Pr) -based magnet powder and a binder,
(B) a step of rolling the kneaded material into a sheet shape after pulverizing the kneaded material;
A heat treatment at 0 ° C. for 60 to 180 mun. Furthermore, Utility Model No. 2
In Japanese Patent No. 528670, an armature core having salient poles and a coil wound thereon, and a flexible sheet-like magnet cut into a band shape, curled into an annular shape, and opposed to the salient pole surface of the armature core. A motor having an annular magnet, wherein the magnet is R-Fe-
B (R is Nd / Pr) based magnet powder, and the rolled surface of the magnet is opposed to the salient pole surface of the armature core, and the shear surface of the magnet cut surface is positioned on the armature side. Motor is disclosed.

【0005】しかし、1.シート状磁石の密度が4.9
〜5.8g/cm3であることからの磁気性能の限界、
2.可撓性バインダは希土類磁石粉体とは本質的な接着
状態になく、励磁された電機子鉄心の磁気吸引力で希土
類磁石粉体が脱落、飛散して回転雑音や回転障害を引き
起こすなど信頼性の課題、3.エポキシ樹脂皮膜処理、
可撓性バインダの加硫と切断面の再加熱、回転子枠に固
着する際の切断面の制約など工程が瀕雑で信頼性にも課
題がある。
However, 1. The density of the sheet magnet is 4.9
Limits of magnetic performance from 55.8 g / cm 3 ,
2. The flexible binder is not in an essential state of adhesion with the rare earth magnet powder, and the magnetic attraction of the excited armature core causes the rare earth magnet powder to fall off and scatter, causing rotational noise and rotation failure. 2. Epoxy resin film treatment,
Processes are complicated, such as vulcanization of the flexible binder, reheating of the cut surface, and restriction of the cut surface when fixing to the rotor frame, and there is also a problem in reliability.

【0006】一方、特公平6−87634号公報に、電
機子鉄心と対向した空間に強力な静磁界をつくるために
磁気的に等方性のR−Fe−B(RはNd/Pr)磁石
粉体と結合剤で構成した外径25mm以下、密度5g/
cm3以上の環状樹脂磁石とした構成の環状磁石モータ
が開示されている。磁気的に異方性の磁石粉体は環状磁
石の小径化に伴っての配向度が低下することから環状磁
石モータの小型化と高出力化の両立が困難であったが、
磁気的に等方性の磁石粉体であれば環状磁石の径に依存
することなく、例えば密度6.2〜6.3g/cm3
あれば最大エネルギー積[BH]max11〜12MG
Oeに達し、この種の環状磁石モータの高出力化、低消
費電流化に効果的であった。例えば、Srフェライト磁
石粉体とバインダで構成した厚さ1.55mm、幅7.
2mmの可撓性シート状磁石を帯状に切断し、カーリン
グして内径22.5mmの回転子枠の周壁内面に固着し
た環状磁石モータの起動トルク1.5mN−mに対し、
R−Fe−B(RはNd/Pr)系磁石粉体と結合剤で
構成した外径22.5mm、厚さ1.10mm、高さ
9.4mm、密度5.8g/cm3の圧縮成形環状磁石
を回転子枠に固着した環状磁石モータの起動トルクは2
0mN−mに達する。さらに特公平6−42409号公
報に記載されているような、磁気的に等方性のFe−B
−R系磁石粉体の結合剤として、例えば室温で固体のビ
スフェノール型エポキシの如き分子鎖内にアルコール性
水酸基を有するオリゴマーとイソシアネート再生体を用
いればR−Fe−B(RはNd/Pr)系磁石粉体をよ
り一層強固に接着固定することができる。
On the other hand, Japanese Patent Publication No. 6-87634 discloses a magnetically isotropic R-Fe-B (R is Nd / Pr) magnet for creating a strong static magnetic field in a space facing an armature core. Outer diameter of 25 mm or less composed of powder and binder, density 5 g /
An annular magnet motor having an annular resin magnet of cm 3 or more is disclosed. Magnetically anisotropic magnet powders have difficulty in achieving both small size and high output of the ring magnet motor because the degree of orientation decreases as the diameter of the ring magnet decreases.
If the magnetic powder is magnetically isotropic, it does not depend on the diameter of the annular magnet. For example, if the density is 6.2 to 6.3 g / cm 3 , the maximum energy product [BH] max11 to 12MG
Oe was reached, which was effective in increasing the output and reducing the current consumption of this type of annular magnet motor. For example, a thickness of 1.55 mm and a width of 7.5 composed of Sr ferrite magnet powder and a binder.
For a starting torque of 1.5 mN-m of an annular magnet motor, a 2 mm flexible sheet magnet is cut into a belt shape, curled, and fixed to the inner surface of the peripheral wall of a rotor frame having an inner diameter of 22.5 mm.
Compression molding of 22.5 mm in outer diameter, 1.10 mm in thickness, 9.4 mm in height, and 5.8 g / cm 3 in density composed of R-Fe-B (R is Nd / Pr) magnet powder and a binder The starting torque of the ring magnet motor having the ring magnet fixed to the rotor frame is 2
Reaches 0 mN-m. Further, as described in JP-B-6-42409, magnetically isotropic Fe-B
When an oligomer having an alcoholic hydroxyl group in the molecular chain such as a bisphenol-type epoxy which is solid at room temperature and a regenerated isocyanate are used as a binder for the R-based magnetic powder, R-Fe-B (R is Nd / Pr) The system magnet powder can be more firmly adhered and fixed.

【0007】その理由は、イソシアネート再生体とはイ
ソシアネート化合物に活性水素化合物を予め付加したも
ので、熱解離によってイソシアネート基を遊離し、遊離
したイソシアネート基がアルコール性水酸基と反応、ウ
レタン結合などにより架橋する。その際、遊離したイソ
シアネート基の一部がR−Fe−B(RはNd/Pr)
系磁石粉体のような金属表面の吸着水と反応して置換尿
素体を生成し、これが金属酸化物表層とキレート結合を
生成することなどによる。そのため、磁石粉体が脱落、
飛散して環状磁石モータの性能や信頼性に重大な影響を
及ぼすことなく、磁場配向が困難な小径の環状磁石モー
タの高出力化や低消費電流化には最も効果的な従来技術
と考えられる。しかし、磁気的に等方性のR−Fe−B
系樹脂磁石は、その密度から磁気性能が制約され、熱硬
化性結合剤で強固に接着固定されているためリサイクル
性に難点がある。
The reason is that an isocyanate regenerated product is a product in which an active hydrogen compound is previously added to an isocyanate compound, and the isocyanate group is released by thermal dissociation, and the liberated isocyanate group reacts with an alcoholic hydroxyl group, and is crosslinked by urethane bond or the like. I do. At that time, a part of the released isocyanate group is R-Fe-B (R is Nd / Pr).
It reacts with the water adsorbed on the metal surface such as the system magnet powder to generate a substituted urea body, which forms a chelate bond with the metal oxide surface layer. Therefore, the magnet powder falls off,
It is considered to be the most effective conventional technology for increasing the output and lowering the current consumption of small-diameter annular magnet motors that are difficult to orient with a magnetic field without splattering and significantly affecting the performance and reliability of the annular magnet motor. . However, magnetically isotropic R-Fe-B
Since the magnetic performance of the resin magnet is restricted by its density and is strongly adhered and fixed with a thermosetting binder, there is a problem in recyclability.

【0008】なお、特開平5−299221号公報に、
希土類−鉄−窒素系磁石粉体と酸変性したスチレン系エ
ラストマーを混練/圧延し、さらに切断した短冊をカー
リングすることにより小型モータに使用するような密度
5.6g/cm3、最大エネルギー積[BH]max
4.4MGOeの環状磁石が開示されている。しかし、
磁気的に等方性のR−Fe−B(RはNd/Pr)系磁
石粉体と結合剤との密度6.2〜6.3g/cm3、最
大エネルギー積[BH]max11〜12MGOeの環
状樹脂磁石に比べると磁気性能で及ばず、電機子鉄心と
の空隙に強力な静磁界が得られない。また、ピニング型
の希土類−鉄−窒素系磁石粉体は数μmのSm2Fe17
3磁石相単相から成る微粉体のため化学的に活性で、
切断面で希土類−鉄−窒素系磁石粉体が大気中に暴露さ
れ、酸化腐食による永久減磁やスチレン系エラストマー
との密着力低下による磁石粉体の脱落、飛散などの課題
があった。
[0008] Japanese Patent Application Laid-Open No. 5-299221 discloses that
The rare earth-iron-nitrogen magnet powder and the acid-modified styrene elastomer are kneaded / rolled, and the cut strip is curled to obtain a density of 5.6 g / cm 3 and a maximum energy product [such as used for a small motor]. BH] max
An annular magnet of 4.4 MGOe is disclosed. But,
The density of the magnetically isotropic R-Fe-B (R is Nd / Pr) -based magnet powder and the binder is 6.2 to 6.3 g / cm 3 , and the maximum energy product [BH] max is 11 to 12 MGOe. Compared with the ring-shaped resin magnet, the magnetic performance is inferior, and a strong static magnetic field cannot be obtained in the gap between the armature core. Further, the pinning type rare earth-iron-nitrogen based magnet powder is Sm 2 Fe 17 of several μm.
Chemically active due to fine powder consisting of N 3 magnetic phase single phase,
Rare earth-iron-nitrogen magnet powder was exposed to the atmosphere on the cut surface, and there were problems such as permanent demagnetization due to oxidative corrosion and dropping and scattering of the magnet powder due to reduced adhesion to the styrene elastomer.

【0009】[0009]

【発明が解決しようとする課題】従来、一般にフェライ
ト磁石粉体とバインダで構成した可撓性のシート状磁石
を帯状に切断し、環状形状にカーリングして回転子枠の
周壁内面に固着し、電機子鉄心の突極面と対向させた構
成の磁石モータが知られている。前記フェライト磁石粉
体は粒子径が3μm以下と微細な金属酸化物であるため
帯状に切断しても切断面の磁石粉体が磁石モータの性能
や信頼性に重大な影響を及ぼすことはなかった。しか
し、フェライト磁石粉体とバインダで構成した可撓性磁
石は最大エネルギー積[BH]maxが高々1.4MG
Oe程度であり、磁石モータの高出力化、低消費電力化
の要求に応えるためには磁石が電機子鉄心と対向した空
間に強力な静磁界をつくる必要がある。
Conventionally, a flexible sheet-like magnet generally composed of ferrite magnet powder and a binder is cut into a band, curled into an annular shape, and fixed to the inner surface of the peripheral wall of the rotor frame. 2. Description of the Related Art There is known a magnet motor configured to face a salient pole surface of an armature core. Since the ferrite magnet powder is a fine metal oxide having a particle diameter of 3 μm or less, even when cut into a strip, the magnet powder on the cut surface does not have a significant effect on the performance and reliability of the magnet motor. . However, a flexible magnet composed of ferrite magnet powder and a binder has a maximum energy product [BH] max of at most 1.4 MG.
It is about Oe, and in order to meet the demands for higher output and lower power consumption of the magnet motor, it is necessary for the magnet to create a strong static magnetic field in the space facing the armature core.

【0010】ところで、磁気的に等方性のR−Fe−B
(RはNd/Pr)系磁石粉体と可撓性バインダで構成
したシート状磁石を帯状に切断し、環状にカーリングし
て回転子枠の周壁内面に固着し、電機子鉄心の突極面と
対向させた構成の磁石モータは、1.可撓性磁石の密度
が4.9〜5.8g/cm3であることからの磁気性能
の限界、2.可撓性バインダは希土類磁石粉体とは本質
的な接着状態になく、切断面では一部の磁石粉体が大気
中に暴露され、励磁された電機子鉄心の磁気吸引力で希
土類磁石粉体が脱落、飛散して回転雑音や回転障害を引
き起こすなど信頼性の課題、3.エポキシ樹脂皮膜処
理、可撓性バインダの加硫と切断面の再加熱、回転子枠
に固着する際の切断面の制約など工程が瀕雑な欠点があ
る。
By the way, magnetically isotropic R-Fe-B
(R is Nd / Pr) A sheet-like magnet composed of a magnet powder and a flexible binder is cut into a band shape, curled in an annular shape, and fixed to the inner surface of the peripheral wall of the rotor frame. The magnet motor having the configuration facing 1. 1. Limitation of magnetic performance due to the density of the flexible magnet being 4.9 to 5.8 g / cm 3 ; The flexible binder is not in an essential bonded state with the rare earth magnet powder, and a part of the magnet powder is exposed to the atmosphere on the cut surface, and the rare earth magnet powder is excited by the magnetic attractive force of the excited armature core. 2. Problems of reliability such as falling off and scattering, causing rotation noise and rotation failure. There are drawbacks such as epoxy resin coating treatment, vulcanization of the flexible binder and reheating of the cut surface, and restriction of the cut surface when fixing to the rotor frame.

【0011】一方、電機子鉄心と対向した空間に強力な
静磁界をつくるために磁気的に等方性のR−Fe−B
(RはNd/Pr)系磁石粉体と結合剤で構成した外径
25mm以下、密度5g/cm3以上の環状樹脂磁石と
した構成の磁石モータは磁石粉体を結合剤で強固に接着
固定できるので磁石粉体が脱落、飛散して磁石モータの
性能や信頼性に重大な影響を及ぼすことはなく、小径磁
石モータの高出力化や低消費電流化に最も効果的である
が、密度6.2〜6.3g/cm3、最大エネルギー積
[BH]max10〜11MGOeが限界であり、さら
なる磁石モータの小型高出力化、低消費電流化の要求に
応えるには限界にきている。しかも、磁石粉体が熱硬化
性結合剤で強固に接着固定されているので難リサイクル
性の欠点を有している。
On the other hand, in order to create a strong static magnetic field in a space facing the armature core, a magnetically isotropic R-Fe-B
(R is Nd / Pr) A magnet motor composed of an annular resin magnet having an outer diameter of 25 mm or less and a density of 5 g / cm 3 or more composed of a magnet powder and a binder is strongly bonded and fixed to the magnet powder with a binder. Since the magnet powder can be formed, the magnet powder does not fall off and scatter, thereby not significantly affecting the performance and reliability of the magnet motor, and is most effective for increasing the output and reducing the current consumption of the small-diameter magnet motor. .2~6.3g / cm 3, the maximum energy product [BH] max10~11MGOe is a limit, reduction in size and increase in output power further magnet motor, to meet the demand for low current consumption is come to the limit. Moreover, since the magnet powder is firmly adhered and fixed with a thermosetting binder, it has a drawback of difficulty in recycling.

【0012】さらに、異方性希土類磁石粉体と可撓性磁
石の例では、希土類−鉄−窒素系磁石粉体と酸変性した
スチレン系エラストマーを混練/圧延し、さらに切断し
た短冊をカーリングすることにより小型モータに使用す
るような密度5.6g/cm 3、最大エネルギー積[B
H]max4.4MGOeの環状磁石が開示されてい
る。しかし、磁気的に等方性のR−Fe−B(RはNd
/Pr)系磁石粉体と結合剤との密度6.2〜6.3g
/cm3、最大エネルギー積[BH]max11〜12
MGOeの環状樹脂磁石に比べると磁気性能で及ばず、
電機子鉄心との空隙に強力な静磁界が得られない。ま
た、ピニング型の希土類−鉄−窒素系磁石粉体は数μm
のSm2Fe173磁石相単相から成る微粉体のため化学
的に活性で、切断面で希土類−鉄−窒素系磁石粉体が大
気中に暴露され、酸化腐食による永久減磁やスチレン系
エラストマーとの密着力低下による磁石粉体の脱落、飛
散などの課題があった。
Further, an anisotropic rare earth magnet powder and a flexible magnet
In the case of the stone, the rare earth-iron-nitrogen based magnet powder and acid-modified
Kneading / rolling the styrene elastomer, cutting it further
Curling of strips used for small motors
Density 5.6g / cm Three, Maximum energy product [B
H] max4.4MGOe annular magnet is disclosed.
You. However, magnetically isotropic R-Fe-B (R is Nd
/ Pr) Density of magnetic powder and binder 6.2 to 6.3 g
/ CmThree, Maximum energy product [BH] max11-12
Compared to MGOe's annular resin magnet, its magnetic performance is inferior.
A strong static magnetic field cannot be obtained in the gap with the armature core. Ma
In addition, the pinning type rare earth-iron-nitrogen magnet powder is several μm.
SmTwoFe17NThreeChemistry for fine powder consisting of a single magnetic phase
Active, and rare-earth-iron-nitrogen-based magnet powder
Exposure to air, permanent demagnetization due to oxidative corrosion and styrene
Dropping and flying of magnet powder due to reduced adhesion to elastomer
There were issues such as scattering.

【0013】[0013]

【課題を解決するための手段】本発明は、上記磁石モー
タの従来技術に鑑みてなされたもので、磁石と電機子鉄
心とが対向した空間に強力な静磁界を与え、高出力化や
低消費電力化を促進し、信頼性を維持しつつ、磁石のリ
サイクル性を改善する高性能モータの提供を目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the prior art of the above-described magnet motor, and provides a strong static magnetic field to a space where a magnet and an armature core oppose each other to increase output and reduce power. It is an object of the present invention to provide a high-performance motor that promotes power consumption and maintains magnet reliability while improving recyclability of magnets.

【0014】つまり、本発明の磁石モータは、熱可塑性
エラストマーと希土類磁石粉体とを必須成分とし、射出
または押出成形またはカレンダー加工して裁断した中間
体を、必要に応じてアキシャル磁場配向しながら成形型
中で最終形状の可撓性磁石とし、前記可撓性磁石を、例
えば回転子枠にカーリングして環状形状磁石として実装
した磁石モータである。このような最終的に切断面をも
たない可撓性磁石は内部の空隙率を2vol%以下とす
ることができるので、希土類磁石粉体が大気中に直接暴
露される危険性が極めて少なく、酸化腐食による永久減
磁や磁石粉体の脱落飛散を防ぐことができる。なお、本
発明にかかる可撓性磁石の好ましい熱可塑性エラストマ
ーとしては、例えば、2官能性活性水素化合物(例えば
ポリエステル)を用い、全反応系のイソシアネート基と
活性水素基が当量で線状高分子化したポリウレタンエラ
ストマーを挙げることができる。この種の熱可塑性エラ
ストマーは通常ペレット状態であることが多いが、予
め、例えば40mesh以下に粗粉砕した粉体とするこ
とが望ましい。
In other words, the magnet motor of the present invention comprises a thermoplastic elastomer and a rare earth magnet powder as essential components, and performs injection or extrusion molding or calendering to cut the intermediate while axially orienting it as necessary. A magnet motor in which a flexible magnet having a final shape is formed in a molding die, and the flexible magnet is curled on a rotor frame and mounted as an annular magnet. Such a flexible magnet that does not finally have a cut surface can have an internal porosity of 2 vol% or less, so that the risk of the rare earth magnet powder being directly exposed to the atmosphere is extremely low, Permanent demagnetization due to oxidative corrosion and falling off of magnet powder can be prevented. As a preferable thermoplastic elastomer of the flexible magnet according to the present invention, for example, a bifunctional active hydrogen compound (for example, polyester) is used, and the isocyanate group and the active hydrogen group of the whole reaction system are equivalent to the linear polymer. Polyurethane elastomers. This kind of thermoplastic elastomer is usually in the form of pellets in many cases, but it is desirable to use a coarsely pulverized powder of, for example, 40 mesh or less in advance.

【0015】また、ポリウレタンエラストマーには完全
熱可塑性型エラストマーと不完全熱可塑型エラストマー
とがあるが、前者は後者に比べて吸湿性が少なく、成形
後反応を完結させるための後硬化が不要で、リサイクル
性にも優れている。上記、熱可塑性エラストマーと混練
する希土類磁石粉体は溶湯合金の急冷凝固、熱間据込み
(Die−Up−Setting)、或いはまた水素分
解/再結晶(HDDR)したR−Fe−B(RはNd/
Pr)系磁石粉体の1種または2種以上を挙げることが
できる。とくに水素分解/再結晶(HDDR)処理した
Dyを含むNd,Fe,Co,B,Ga,Zr系磁石粉
体で、20℃における残留磁化Jrが11.5kG以
上、固有保磁力HCJが14kOe以上のR−Fe−B
(RはNd/Pr)系磁石粉体を使用すると、最大エネ
ルギー積[BH]maxが18MGOe以上の可撓性磁
石を射出、押出、カレンダー加工後の圧縮成形など常法
により容易に得ることができる。
[0015] Polyurethane elastomers are classified into complete thermoplastic type elastomers and incomplete thermoplastic type elastomers. The former has less hygroscopicity than the latter and does not require post-curing to complete the reaction after molding. Also has excellent recyclability. The above-mentioned rare earth magnet powder to be kneaded with the thermoplastic elastomer is R-Fe-B (R is obtained by rapid solidification of a molten alloy, hot upsetting (Die-Up-Setting), or hydrogen decomposition / recrystallization (HDDR). Nd /
One or more types of Pr) -based magnet powder can be used. In particular, Nd, Fe, Co, B, Ga, and Zr-based magnet powder containing Dy subjected to hydrogen decomposition / recrystallization (HDDR), has a residual magnetization Jr at 20 ° C. of 11.5 kG or more and an intrinsic coercive force H CJ of 14 kOe. The above R-Fe-B
When (R is Nd / Pr) -based magnet powder, a flexible magnet having a maximum energy product [BH] max of 18 MGOe or more can be easily obtained by an ordinary method such as injection molding, extrusion, and compression molding after calendering. it can.

【0016】したがって、磁石モータとしての高出力化
や低消費電流化に好ましい。なお、希土類磁石粉体の粉
体粒子径を100μm以下とすると多極着磁した際の磁
極間の磁束量を均質化できるため磁石モータのトルクリ
ップルの低減に効果的である。また、少なくとも片面を
異形化した可撓性磁石は磁石モータのコギングトルク低
減に効果的である。
Therefore, it is preferable for high output and low current consumption as a magnet motor. When the particle diameter of the rare earth magnet powder is set to 100 μm or less, the amount of magnetic flux between the magnetic poles at the time of multipolar magnetization can be homogenized, which is effective in reducing the torque ripple of the magnet motor. A flexible magnet having at least one side deformed is effective for reducing the cogging torque of the magnet motor.

【0017】[0017]

【発明の実施の形態】以下、本発明をさらに詳しく説明
する。本発明の環状磁石モータは、熱可塑性エラストマ
ーと希土類磁石粉体とを必須成分とし、必要に応じて磁
場中射出または押出成形、またはカレンダー加工したシ
ートを必要に応じて磁場中圧縮成形して最終形状に成形
した内部空隙率2vol%以下で、切断面のない可撓性
磁石を、例えば回転子枠にカーリング実装した磁石モー
タである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The annular magnet motor of the present invention comprises a thermoplastic elastomer and a rare earth magnet powder as essential components, and is injected or extruded in a magnetic field as necessary, or is subjected to compression molding in a magnetic field as needed to obtain a final sheet. This is a magnet motor in which a flexible magnet having an internal porosity of 2 vol% or less and having no cut surface is curled and mounted on a rotor frame, for example.

【0018】したがって、本発明の熱可塑性エラストマ
ーに希土類磁石粉体を高充填分散、配向、固定化した可
撓性磁石は従来の可撓性シート状磁石のような切断面が
なく、その表面は熱可塑性エラストマーリッチ層で覆わ
れ、磁石内部も空隙率2vol%以下とボイドレス状態
に近い。したがって、特許第2766746号公報に開
示されているようなNd−Fe−B系、(Ce、La)
−Fe−B系磁石粉体を、天然ゴム、イソプレンゴム、
ブタジエンゴム、スチレンブタジエンゴム、ブチルゴ
ム、エチレンプロピレンゴム、エチレン酢ビゴム、ニト
リルゴム、アクリルゴム、ウレタンゴムの群とクロロプ
レンゴム、クロロスルホン化ポリエチレン、塩化ポリエ
チレン群の1種または2種以上で分散、配向、固定化す
るのに比べて励磁された電機子鉄心の磁気吸引力で希土
類磁石粉体が脱落、飛散して環状磁石モータの回転雑音
や回転障害を引き起こすなど信頼性の課題、或いはエポ
キシ樹脂皮膜処理、可撓性バインダの加硫と切断面の再
加熱、回転子枠に固着する際の切断面の制約など全ての
課題を解決するとともに、非加硫であるから磁石のリサ
イクル性も兼備えている。
Therefore, the flexible magnet in which the rare-earth magnet powder is highly filled, dispersed, oriented, and fixed in the thermoplastic elastomer of the present invention does not have a cut surface like a conventional flexible sheet magnet, and the surface thereof is It is covered with a thermoplastic elastomer rich layer, and the inside of the magnet is close to a voidless state with a porosity of 2 vol% or less. Therefore, an Nd-Fe-B system disclosed in Japanese Patent No. 2766746, (Ce, La)
-Fe-B based magnet powder, natural rubber, isoprene rubber,
Dispersion and orientation in one or more of butadiene rubber, styrene butadiene rubber, butyl rubber, ethylene propylene rubber, ethylene vinegar rubber, nitrile rubber, acrylic rubber, urethane rubber and chloroprene rubber, chlorosulfonated polyethylene, and polyethylene chloride Relative-earth magnet powder falls off and scatters due to the magnetic attraction of the armature core excited compared to fixing, causing rotational noise or rotational disturbance of the ring magnet motor, or reliability issues, or epoxy resin film Solves all issues such as processing, vulcanization of flexible binder and reheating of cut surface, restriction of cut surface when fixing to rotor frame, and also has recyclability of magnet because it is non-vulcanized ing.

【0019】次に、本発明で言う熱可塑性エラストマー
中に分散させる希土類磁石粉体とは、1−5SmCo、
2−17SmCo系などの希土類−コバルト磁石粉体
や、2−17−3SmFeNなどの希土類−鉄窒化物磁
石粉体も対象となる。しかし、希土類元素、遷移金属元
素などの合金組成からみた資源バランス、磁石粉体固有
の磁気ポテンシャル、磁石モータとしての適合性などか
ら、好ましい希土類磁石粉体は希土類−鉄系溶湯合金の
急冷凝固、或いはまた水素分解/再結晶(HDDR)処
理したR−Fe−B(RはNd/Pr)系磁石粉体の1
種または2種以上を挙げることができる。
Next, the rare earth magnet powder to be dispersed in the thermoplastic elastomer referred to in the present invention is 1-5SmCo,
Rare earth-cobalt magnet powders such as 2-17SmCo-based and rare earth-iron nitride magnet powders such as 2-17-3SmFeN are also applicable. However, from the viewpoint of the balance of resources from the viewpoint of the alloy composition of rare earth elements and transition metal elements, the magnetic potential specific to the magnet powder, suitability as a magnet motor, etc., preferred rare earth magnet powder is a rare earth-iron-based molten alloy rapidly solidified, Alternatively, one of R-Fe-B (R is Nd / Pr) -based magnet powder treated with hydrogen decomposition / recrystallization (HDDR)
Species or two or more species can be mentioned.

【0020】例えばJ.F.Herbest,“Rar
e Earth−Iron−Boron Materi
als;A New Era in Permanen
tMagnets”Ann.Rev.Sci.Vol−
16.(1986)に記載されているようなNd:F
e:Bを2:14:1に近い割合で含む溶湯合金を急冷
凝固し、適宜熱処理により結晶粒径20〜50nmのN
2Fe14B相を析出させた残留磁化Jr≒8kG、固
有保磁力HCJ≧8kOe程度の磁気的に等方性の希土類
磁石粉体。或いはR.Nakayama,T.Take
shita et al;Magnetic prop
erties and microstructure
s of Nd−Fe−B magnet powde
r produced by hydrogen tr
eatment.,J.Appl.Phys.70
(7)(1991)に記載されている水素分解/再結晶
(HDDR)処理した、例えば合金組成Nd12.3Dy
0.3Fe64.7Co12.36.0Ga0. 6Zr0.1のように、概
ねDy0.25原子%以上で、残留磁化Jr≧11.5
kG、固有保磁力HCJ≧14kOeの磁気的に異方性の
磁石粉体となる。
For example, in J.I. F. Herbest, "Rar
e Earth-Iron-Boron Materi
als; A New Era in Permanen
tMagnets "Ann. Rev. Sci. Vol-
16. Nd: F as described in (1986)
The molten alloy containing e: B in a ratio close to 2: 14: 1 is rapidly solidified and appropriately heat-treated to obtain N 2 having a crystal grain size of 20 to 50 nm.
A magnetically isotropic rare earth magnet powder having a residual magnetization Jr of about 8 kG and a specific coercive force H CJ ≧ 8 kOe, in which a d 2 Fe 14 B phase is precipitated. Or R. Nakayama, T .; Take
shita et al; Magnetic prop
arties and microstructure
s of Nd-Fe-B magnetic powder
r-produced-by-hydrogen-tr
element. , J. et al. Appl. Phys. 70
(7) Hydrogen cracking / recrystallization (HDDR) treatment described in (1991), for example, alloy composition Nd 12.3 Dy
0.3 Fe 64.7 Co 12.3 as B 6.0 Ga 0. 6 Zr 0.1, generally at Dy0.25 atomic% or more, the residual magnetization Jr ≧ 11.5
It becomes a magnetically anisotropic magnet powder of kG and intrinsic coercive force H CJ ≧ 14 kOe.

【0021】これらの磁石粉体の1種または2種以上を
熱可塑性エラストマーに高充填分散、配向、固定化した
磁気的に異方性の可撓性磁石の最大エネルギー積[B
H]maxは18MGOe以上となる。したがって、例
えば、この可撓性磁石を回転子枠に環状形状にカーリン
グ実装した本発明の磁石モータは、特公平6−8763
4号公報に開示された磁気的に等方性のR−Fe−B
(RはNd/Pr)系磁石粉体と結合剤で構成した外径
25mm以下、密度5g/cm3以上の環状樹脂磁石と
した構成の環状磁石モータよりも空隙に140〜150
%の強い静磁界を発生させることが可能となり、磁石モ
ータの高出力化や低消費電流化が図れる。
The maximum energy product [B] of a magnetically anisotropic flexible magnet in which one or more of these magnet powders are highly filled, dispersed, oriented and fixed in a thermoplastic elastomer.
H] max is 18 MGOe or more. Therefore, for example, a magnet motor of the present invention in which this flexible magnet is curled in a rotor frame in an annular shape is disclosed in Japanese Patent Publication No. 6-8763.
Patent Document 4 discloses a magnetically isotropic R-Fe-B
(R is Nd / Pr) or less outer diameter 25mm configured with a binding agent and magnet powder, the gap of the annular magnet motor of the configurations and density of 5 g / cm 3 or more annular resin magnet 140-150
% Of the static magnetic field can be generated, and the output of the magnet motor can be increased and the current consumption can be reduced.

【0022】なお、上記R−Fe−B(RはNd/P
r)系磁石粉体はカーボンファンクショナルシランなど
の表面処理粉体であっても差し支えない。カーボンファ
ンクショナルシランは下式で示される。
The above R-Fe-B (R is Nd / P
The r) -based magnet powder may be a surface-treated powder such as carbon functional silane. The carbon functional silane is represented by the following formula.

【0023】YRSiX3 ただし、上式中Yは加水分解基、Xは有機官能基、Rは
脂肪族残基であり、γ−グリシドキシプロピルトリエト
キシシラン、γ−アミノプロピルトリエトキシシラン、
N−β−(アミノエチル)−γ−アミノプロピルトリエ
トキシシランなどが好ましく用いられる。このような表
面処理を行う理由は、含弗素熱可塑性エラストマー中に
R−Fe−B(RはNd/Pr)系磁石粉体をより確実
に高充填分散、配向、接着固定化した可撓性シート状磁
石とするためである。カーボンファンクショナルシラン
処理は加水分解基の分解を促進させるべく水を併用し、
低級アルコール類を溶媒として磁石粉体表面に単分子膜
以上のカーボンファンクショナルシランを成膜すること
が好ましい。
YRSix 3 wherein Y is a hydrolyzing group, X is an organic functional group, R is an aliphatic residue, γ-glycidoxypropyltriethoxysilane, γ-aminopropyltriethoxysilane,
N-β- (aminoethyl) -γ-aminopropyltriethoxysilane and the like are preferably used. The reason for performing such surface treatment is that the R-Fe-B (R is Nd / Pr) magnet powder is more reliably filled, dispersed, oriented, and adhered and fixed in a fluorine-containing thermoplastic elastomer. This is because a sheet magnet is used. Carbon functional silane treatment uses water in combination to promote the decomposition of hydrolyzable groups,
It is preferable to form a monomolecular film or more of carbon functional silane on the surface of the magnet powder using a lower alcohol as a solvent.

【0024】[0024]

【実施例】以下、本発明を実施例により、さらに詳しく
説明する。ただし、本発明は実施例に限定されるもので
はない。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to the examples.

【0025】[希土類磁石粉体]合金組成Nd12Fe77
Co56の溶湯合金を急冷凝固し、結晶化した。この磁
気的に等方性のR−Fe−B(RはNd/Pr)系磁石
粉体Aの20℃における残留磁化Jrは各々8.2k
G、固有保磁力HCJは9.4kOeであった。一方、合
金組成Nd−Dy−Fe−Co−B−Ga−Zr系、N
d−Fe−Co−B−Ga−Zr系合金を水素分解/再
結晶処理した磁気的に異方性のR−Fe−B(RはNd
/Pr)系磁石粉体B15の20℃における残留磁化J
rは11.5〜12.4kGであった。
[Rare earth magnet powder] Alloy composition Nd 12 Fe 77
The molten alloy of Co 5 B 6 was rapidly solidified and crystallized. The residual magnetization Jr at 20 ° C. of the magnetically isotropic R—Fe—B (R is Nd / Pr) magnet powder A is 8.2 k each.
G, the intrinsic coercive force H CJ was 9.4 kOe. On the other hand, Nd-Dy-Fe-Co-B-Ga-Zr alloy composition, N
A magnetically anisotropic R-Fe-B (R is Nd) obtained by subjecting a d-Fe-Co-B-Ga-Zr-based alloy to hydrogen decomposition / recrystallization treatment
/ Pr) Residual magnetization J at 20 ° C. of magnetic powders B 1 to B 5
r was 11.5 to 12.4 kG.

【0026】図2は合金組成Nd12.3Dy0.3Fe64.6
Co12.36.0Ga0.6Zr0.1と、Nd13.3Fe62.5
17.06.8Ga0.3Zr0.1の粉体粒子径と固有保磁力
CJの関係を示す。Dyを含まないB1、B2は固有保磁
力HCJが低く、とくに100μm以下での粒子径に対す
る固有保磁力HCJの低下が大きい。
FIG. 2 shows the alloy composition Nd 12.3 Dy 0.3 Fe 64.6
Co 12.3 B 6.0 Ga 0.6 Zr 0.1 and Nd 13.3 Fe 62.5 C
The relationship between the particle diameter of o 17.0 B 6.8 Ga 0.3 Zr 0.1 and the intrinsic coercive force H CJ is shown. B 1 and B 2 that do not contain Dy have a low specific coercive force H CJ , and particularly a large decrease in the specific coercive force H CJ with respect to a particle diameter of 100 μm or less.

【0027】[可撓性磁石]上記、R−Fe−B(Rは
Nd/Pr)系磁石粉体AおよびB15を窒素雰囲気中
で105μm以下に粗粉砕したところ、Aの比表面積は
0.05〜0.07g/m2、B15は0.08〜0.
09g/m2であった。この比表面積に基づき単分子膜
を形成する量のγ−アミノプロピルトリメトキシシラン
2HN−C3 6−Si[OCH33、比重d25℃0.
94、分子量221.3、単分子膜被覆面積332m2
/g)を使用した。すなわち、磁石粉体100gに対
し、γ−アミノプロピルトリメトキシシラン0.002
2gの−OCH3基を加水分解し、−SiOH基とする
ために必要なイオン交換水0.005gをエタノール
0.243gで希釈し、混合した後、130℃に加熱し
た。すると赤外分光分析(IR)で−OCH3基の吸収
スペクトル(νCH2845cm-1)が消滅し、−SiO
H基(νCH3350cm-1)を確認した。すなわち、本
発明で言うカーボンファンクショナルシラン処理した希
土類磁石粉体とした。
[Flexible magnet] The above R-Fe-B (R is
Nd / Pr) magnet powders A and B1~FiveIn a nitrogen atmosphere
When coarsely pulverized to 105 μm or less, the specific surface area of A is
0.05-0.07 g / mTwo, B1~FiveIs 0.08-0.
09 g / mTwoMet. Monolayer based on this specific surface area
In an amount to form γ-aminopropyltrimethoxysilane
(TwoHN-CThreeH 6-Si [OCHThree]Three, Specific gravity dtwenty five0 ° C.
94, molecular weight 221.3, monolayer coverage 332mTwo
/ G) was used. That is, for 100 g of magnet powder,
And γ-aminopropyltrimethoxysilane 0.002
2 g of -OCHThreeHydrolyze the group to form a -SiOH group
0.005 g of ion-exchanged water necessary for
Dilute with 0.243g, mix and heat to 130 ° C
Was. Then, by infrared spectroscopy (IR), -OCHThreeGroup absorption
Spectrum (νCH2845cm-1) Disappears and -SiO
H group (νCH3350cm-1)It was confirmed. That is, the book
The carbon functional silane treated rare
Earth magnet powder was used.

【0028】次いで、上記希土類磁石粉体AまたはB1
5と、40mesh以下に粉砕した熱可塑性ポリウレ
タンエラストマー粉体、ステアリン酸カルシウム粉体、
ヒドラジン系酸化防止剤を、各々92:8.9:0.0
5:0.05(重量比)に計量し、ヘンシェルミキサー
を用いて均質になるまで混合し、エクストルーダで溶融
混練(210〜230℃)し、2mmtの板状に押出成
形して、希土類磁石粉体を含む熱可塑性ポリウレタンエ
ラストマーシートを得た。さらに、板状シートを220
℃に再加熱し、(異方性磁石粉体の場合は15kOeの
アキシャル磁場中で)圧縮成形型内で冷却固化し、長さ
72mm、幅4.9mm、厚さ0.5mmの最終形状の
可撓性磁石とした。この可撓性磁石の空隙率は何れも2
vol%以下であった。
Next, the rare earth magnet powder A or B 1
To 5, and a thermoplastic polyurethane elastomer powder pulverized to 40 mesh or less, a calcium stearate powder,
Hydrazine-based antioxidants were added at 92: 8.9: 0.0, respectively.
5: 0.05 (weight ratio), mixed until homogeneous using a Henschel mixer, melt-kneaded (210-230 ° C.) with an extruder, extruded into a 2 mmt plate, and mixed with rare earth magnet powder. A thermoplastic polyurethane elastomer sheet containing the body was obtained. Further, the plate-like sheet is
° C, and solidified by cooling in a compression mold (in an axial magnetic field of 15 kOe for anisotropic magnet powder), to give a final shape of 72 mm long, 4.9 mm wide and 0.5 mm thick. It was a flexible magnet. The porosity of each of these flexible magnets is 2
vol% or less.

【0029】図3は、外径5mm、Pc−2.2の可撓
性磁石の固有保磁力HCJと、80℃または100℃×1
hr後の非可逆減磁率の関係を示す。磁気的に異方性の
R−Fe−B(RはNd/Pr)系磁石粉体B15が磁
気的に等方性のR−Fe−B(RはNd/Pr)系磁石
粉体Aと同等の非可逆減磁率を得るには、少なくともD
yを含む合金組成で20℃における固有保磁力HCJ14
kOe以上必要である。
FIG. 3 shows the specific coercive force H CJ of a flexible magnet having an outer diameter of 5 mm and Pc-2.2, and 80 ° C. or 100 ° C. × 1.
The relationship of the irreversible demagnetization rate after hr is shown. Magnetically anisotropic R—Fe—B (R is Nd / Pr) magnet powder B 1 to 5 are magnetically isotropic R—Fe—B (R is Nd / Pr) magnet powder To obtain an irreversible demagnetization rate equivalent to that of body A, at least D
Intrinsic coercivity H CJ 14 at 20 ° C. with alloy composition containing y
kOe or more is required.

【0030】図4は、上記代表的な可撓性磁石の50k
Oeパルス着磁後の20℃における減磁曲線をフェライ
トゴム磁石と比較して示す。図のように、従来のフェラ
イトゴム磁石の最大エネルギー積[BH]maxは1.
4MGOeに過ぎないが、磁石粉体Aを含む磁気的に等
方性の可撓性磁石で7.7MGOe、異方性の磁石粉体
4で18.5MGOeであった。
FIG. 4 shows the 50k of the above typical flexible magnet.
A demagnetization curve at 20 ° C. after Oe pulse magnetization is shown in comparison with a ferrite rubber magnet. As shown in the figure, the maximum energy product [BH] max of the conventional ferrite rubber magnet is 1.
Only 4MGOe but was 7.7MGOe magnetically isotropic flexible magnet comprising magnetic powder A, a magnet powder B 4 of anisotropic 18.5MGOe.

【0031】次に、上記切断面のない空隙率2vol%
以下の可撓性磁石を内径23mmの回転子枠の内径に環
状形状にカーリング実装して図1の磁石モータとした。
(表1)は、それらの磁石モータを12V駆動したとき
の起動トルク比(希土類磁石粉体Aの可撓性磁石をカー
リング実装した磁石モータの起動トルク21.57mN
・mを基準とした)、および100℃×100hr大気
中で加熱した後の起動トルクの低下率を示す。なお、表
中Aaは希土類磁石粉体Aを室温で固体のエポキシ樹脂
とともに圧縮成形したリング磁石を固定子枠に実装した
比較例、また、B4b1、B4b2は希土類磁石粉体B4
を室温で液体のエポキシ樹脂とともに10kOeのラジ
アル磁場中で圧縮成形したリング磁石(空隙率はそれぞ
れ3.8vol%、8.1vol%)を固定子枠に実装
した比較例である。
Next, a porosity of 2 vol% without the cut surface
The following flexible magnet was curled and mounted in an annular shape on the inner diameter of a rotor frame having an inner diameter of 23 mm to obtain the magnet motor of FIG.
(Table 1) shows the starting torque ratio when these magnet motors are driven at 12 V (starting torque 21.57 mN of the magnet motor in which the flexible magnet of the rare-earth magnet powder A is curled and mounted).
· M), and the rate of decrease in starting torque after heating in air at 100 ° C x 100 hr. In the table, Aa is a comparative example in which a ring magnet obtained by compression molding rare earth magnet powder A together with a solid epoxy resin at room temperature is mounted on a stator frame, and B 4 b1 and B 4 b2 are rare earth magnet powder B 4
This is a comparative example in which a ring magnet (porosity of 3.8 vol% and 8.1 vol%, respectively) formed by compression molding with a liquid epoxy resin at room temperature in a radial magnetic field of 10 kOe is mounted on a stator frame.

【0032】[0032]

【表1】 [Table 1]

【0033】(表1)のAaは、希土類磁石粉体Aを室
温で固体のエポキシ樹脂とともに圧縮成形した厚さ0.
5mmリング磁石で、圧縮の際の成形型壁面への圧力損
失が大きく高密度成形が困難となり、その結果磁石モー
タのトルク低下を招く。しかし、本発明にかかる磁石モ
ータAおよびB15はAaに比べて高トルク化してい
る。とくに固有保磁力HCJ14kOe以上の異方性希土
類磁石粉体B35を使い、切断面がなく、しかも空隙率
2vol%以下の可撓性磁石を実装した磁石モータは約
140%の高トルク化とともに、従来磁石モータと同様
の熱安定性を兼ね備え、励磁された電機子鉄心の磁気吸
引力で希土類磁石粉体が脱落、飛散して回転雑音や回転
障害を引き起こすこともなかった。
Aa in Table 1 is obtained by compression molding rare earth magnet powder A together with a solid epoxy resin at room temperature.
With a 5 mm ring magnet, the pressure loss on the wall surface of the mold during compression is large, making high-density molding difficult, and as a result, the torque of the magnet motor is reduced. However, magnet motor A and B 1 ~ 5 according to the present invention are high torque compared to Aa. In particular, a magnet motor using anisotropic rare earth magnet powders B 3 to B 5 having an intrinsic coercive force H CJ of 14 kOe or more, having no cut surface, and mounting a flexible magnet having a porosity of 2 vol% or less is about 140% high. It has the same thermal stability as the conventional magnet motor as well as the torque, and the rare earth magnet powder does not fall off and scatter due to the magnetic attraction of the excited armature iron core, causing no rotational noise or rotational disturbance.

【0034】しかし、B4b1、B4b2のように、希土
類磁石粉体B4を室温で液体のエポキシ樹脂とともに1
0kOeのラジアル磁場中で圧縮成形したリング磁石
(空隙率はそれぞれ3.8vol%、8.1vol%)
を固定子枠に実装した磁石モータは、ラジアル磁場強度
が低いので配向度が低く、本発明にかかる磁石モータB
4程トルクが高くなく、しかも、空隙率が高いために磁
石粉体表面のNd2Fe14B相の酸化腐食によると推定
される永久減磁によるトルクダウンが大きい。なお、本
発明はアキシャル磁場なので強い配向磁界が得られるば
かりでなく、ラジアル磁場配向の1個どり成形に比べて
多数個同時成形もできる利点がある。
However, BFourb1, BFourRare earth like b2
Magnet powder BFourWith a liquid epoxy resin at room temperature
Ring magnet compression molded in a radial magnetic field of 0 kOe
(The porosity is 3.8 vol% and 8.1 vol%, respectively)
The motor mounted on the stator frame has a radial magnetic field strength
, The degree of orientation is low, and the magnet motor B according to the present invention
FourTorque is not so high, and the porosity is high.
Nd on stone powder surfaceTwoFe14Presumed to be due to oxidation corrosion of phase B
The torque reduction due to permanent demagnetization is large. The book
Since the invention is an axial magnetic field, if a strong orientation magnetic field can be obtained,
Not only in comparison to single molding with radial magnetic field orientation
There is an advantage that multiple molding can be performed simultaneously.

【0035】また、高トルク化は、一般に磁石モータの
コギングトルクを増大させるが、本発明にかかる可撓性
磁石は、例えば固定子面を異形化することで、電機子鉄
心との空隙距離を調整することによりコギングトルクを
増さずに高トルク化することもできる。
Further, increasing the torque generally increases the cogging torque of the magnet motor, but the flexible magnet according to the present invention reduces the gap distance from the armature core by, for example, deforming the stator surface. By adjusting the torque, the torque can be increased without increasing the cogging torque.

【0036】[0036]

【発明の効果】以上のように、本発明は希土類磁石粉体
を熱可塑性エラストマーに高充填分散、配向、固定した
もので、20℃で18MGOe以上の最大エネルギー積
と実用温度域での磁気安定性、信頼性やリサイクル性を
兼ね備えた可撓性磁石を実装した磁石モータである。し
たがって、電機子鉄心との空隙に強力な静磁界を発生さ
せることができ、磁石モータの高出力化や低消費電流化
に効果的である。
As described above, the present invention comprises a rare earth magnet powder which is highly filled, dispersed, oriented and fixed in a thermoplastic elastomer, and has a maximum energy product of 18 MGOe or more at 20 ° C. and a magnetic stability in a practical temperature range. This is a magnet motor equipped with a flexible magnet having both flexibility, reliability and recyclability. Therefore, a strong static magnetic field can be generated in the gap with the armature core, which is effective for increasing the output of the magnet motor and reducing current consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁石モータの構成図FIG. 1 is a configuration diagram of a magnet motor.

【図2】粉体粒子径と固有保磁力の関係を示す特性図FIG. 2 is a characteristic diagram showing a relationship between a powder particle diameter and an intrinsic coercive force.

【図3】固有保磁力と非可逆減磁率の関係を示す特性図FIG. 3 is a characteristic diagram showing a relationship between an intrinsic coercive force and an irreversible demagnetization rate.

【図4】可撓性磁石の減磁曲線を示す特性図FIG. 4 is a characteristic diagram showing a demagnetization curve of a flexible magnet.

【符号の説明】[Explanation of symbols]

1 基板 2 電機子鉄心 3 巻線 4 軸受 5 回転軸 6 回転子枠 7 磁石 DESCRIPTION OF SYMBOLS 1 Board 2 Armature core 3 Winding 4 Bearing 5 Rotation shaft 6 Rotor frame 7 Magnet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 直 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 佐々木 雄一朗 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H622 AA03 CA01 CA05 CA10 DD02 DD04 DD05 PP05 PP17 PP20 QA02 QA03 QA04 QB05  ──────────────────────────────────────────────────の Continuing on the front page (72) Nao Hashimoto, Inventor 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Terms (reference) 5H622 AA03 CA01 CA05 CA10 DD02 DD04 DD05 PP05 PP17 PP20 QA02 QA03 QA04 QB05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性エラストマーと希土類磁石粉体
とを必須成分とし、必要に応じて適宜アキシャル磁場配
向しながら成形型中で冷却固化して最終形状に仕上げた
切断面のない可撓性磁石を実装した磁石モータ。
1. A flexible magnet without a cut surface, which comprises a thermoplastic elastomer and a rare earth magnet powder as essential components, and is cooled and solidified in a mold while being appropriately oriented in an axial magnetic field to obtain a final shape. Mounted magnet motor.
【請求項2】 可撓性磁石を環状形状にカーリングした
請求項1記載の磁石モータ。
2. The magnet motor according to claim 1, wherein the flexible magnet is curled in an annular shape.
【請求項3】 可撓性磁石内部の空隙率を2vol%以
下とした請求項1または2記載の磁石モータ。
3. The magnet motor according to claim 1, wherein the porosity inside the flexible magnet is 2 vol% or less.
【請求項4】 希土類磁石粉体が溶湯合金を急冷凝固、
熱間据込み(Die−Up−Setting)または水
素分解/再結晶したR−Fe−B(RはNd/Pr)系
磁石粉体の1種または2種以上である請求項1、2また
は3記載の磁石モータ。
4. A rare earth magnet powder rapidly solidifies a molten alloy,
4. One, two or more kinds of R-Fe-B (R is Nd / Pr) magnet powder which has been hot-upset (Die-Up-Setting) or hydrogen-decomposed / recrystallized. The magnet motor as described.
【請求項5】 熱間据込み(Die−Up−Setti
ng)または水素分解/再結晶(HDDR)処理したR
−Fe−B(RはNd/Pr)系磁石粉体の20℃にお
ける固有保磁力がHCJ14kOe以上である請求項4記
載の磁石モータ。
5. Hot upsetting (Die-Up-Setti)
ng) or hydrogen cracked / recrystallized (HDDR) treated R
5. The magnet motor according to claim 4, wherein the intrinsic coercive force of the -Fe-B (R is Nd / Pr) magnet powder at 20 [deg.] C. is H CJ 14 kOe or more.
【請求項6】 水素分解/再結晶処理した磁石粉体が
2.5原子%以上のDyを必須成分としたNd,Fe,
Co,B,Ga,Zr系合金である請求項5記載の磁石
モータ。
6. The magnet powder subjected to hydrogen decomposition / recrystallization treatment contains Nd, Fe, 2.5% by atom or more of Dy as an essential component.
The magnet motor according to claim 5, wherein the magnet motor is a Co, B, Ga, Zr-based alloy.
【請求項7】 20℃における最大エネルギー積[B
H]maxが18MGOe以上の可撓性磁石をカーリン
グ実装した請求項6記載の磁石モータ。
7. The maximum energy product at 20 ° C. [B
7. The magnet motor according to claim 6, wherein a flexible magnet having a height H] of 18 MGOe or more is curled.
【請求項8】 少なくとも片面を異形状に加工した可撓
性シート状磁石を環状形状にした請求項1、2または3
記載の磁石モータ。
8. A flexible sheet-like magnet having at least one surface processed into a different shape, wherein the flexible sheet-like magnet has an annular shape.
The magnet motor as described.
JP11302161A 1999-03-19 1999-10-25 Magnet motor Withdrawn JP2000341916A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11302161A JP2000341916A (en) 1999-03-19 1999-10-25 Magnet motor
MYPI20004804 MY127815A (en) 1999-10-25 2000-10-13 Magnet motor and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-75196 1999-03-19
JP7519699 1999-03-19
JP11302161A JP2000341916A (en) 1999-03-19 1999-10-25 Magnet motor

Publications (1)

Publication Number Publication Date
JP2000341916A true JP2000341916A (en) 2000-12-08

Family

ID=26416354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11302161A Withdrawn JP2000341916A (en) 1999-03-19 1999-10-25 Magnet motor

Country Status (1)

Country Link
JP (1) JP2000341916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204007A (en) * 2005-01-20 2006-08-03 Matsushita Electric Ind Co Ltd Radial magnetoanisotropic magneto motor
JP2019022435A (en) * 2017-07-12 2019-02-07 株式会社Kri Power generation device, method for manufacturing magnetic hard viscoelastic material, and method of using power generation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204007A (en) * 2005-01-20 2006-08-03 Matsushita Electric Ind Co Ltd Radial magnetoanisotropic magneto motor
JP4622536B2 (en) * 2005-01-20 2011-02-02 パナソニック株式会社 Radial magnetic anisotropic magnet motor
JP2019022435A (en) * 2017-07-12 2019-02-07 株式会社Kri Power generation device, method for manufacturing magnetic hard viscoelastic material, and method of using power generation device

Similar Documents

Publication Publication Date Title
JP4737431B2 (en) Permanent magnet rotating machine
US20110079327A1 (en) Rare-earth magnet and manufacturing method thereof and magnet motor
JP5501828B2 (en) R-T-B rare earth permanent magnet
JP2007053351A (en) Rare earth permanent magnet, its manufacturing method, and permanent magnet rotary machine
EP3291249A1 (en) Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
EP1093133B1 (en) Rare earth resin magnet, magnet rotor, magnet motor using the same, and its manufacturing method
JPH11206075A (en) Manufacture of rare-earth resin magnet embedded rotor
JP2009165349A (en) Permanent magnet rotating machine, and manufacturing method of permanent magnet segment for permanent magnet rotating machine
JP4364487B2 (en) Rare earth bonded magnet from sheet to film and permanent magnet motor using the same
JP2001230111A (en) Rotating machine
JP2000341916A (en) Magnet motor
JP2000357606A (en) Compound isotropic bonded magnet and rotary machine using the magnet
JP2004072005A (en) Manufacturing method of resin-bonded magnet, and magnet motor
JP3933040B2 (en) Rare earth bonded magnet manufacturing method and permanent magnet motor having the same
JP4033112B2 (en) Self-organized hybrid rare earth bonded magnet, method for manufacturing the same, and motor
JP4203646B2 (en) Method for manufacturing flexible hybrid rare earth bonded magnet, magnet and motor
JP3164179B2 (en) Rare earth bonded magnet
JP2000269061A (en) Method for manufacturing metal bonded magnet
JP2766746B2 (en) Rare earth bonded magnet
JP2528574B2 (en) Rare earth bonded magnet manufacturing method
JP4577026B2 (en) Method for manufacturing self-assembled annular anisotropic rare earth bonded magnet motor
JP2011019401A (en) Method of manufacturing permanent magnet segment for permanent magnet rotating machine
JP2690388B2 (en) Rare earth bonded magnet manufacturing method
JP4710424B2 (en) Manufacturing method of radial magnetic anisotropic magnet motor
JP4622536B2 (en) Radial magnetic anisotropic magnet motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050629

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061101