JP2000340628A - Method and device for detecting isolated pattern based on surface potential - Google Patents

Method and device for detecting isolated pattern based on surface potential

Info

Publication number
JP2000340628A
JP2000340628A JP11153932A JP15393299A JP2000340628A JP 2000340628 A JP2000340628 A JP 2000340628A JP 11153932 A JP11153932 A JP 11153932A JP 15393299 A JP15393299 A JP 15393299A JP 2000340628 A JP2000340628 A JP 2000340628A
Authority
JP
Japan
Prior art keywords
electron beam
electron
sample
irradiation
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11153932A
Other languages
Japanese (ja)
Other versions
JP2000340628A5 (en
JP4450889B2 (en
Inventor
Koji Iwasaki
浩二 岩崎
Masamichi Oi
將道 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP15393299A priority Critical patent/JP4450889B2/en
Publication of JP2000340628A publication Critical patent/JP2000340628A/en
Publication of JP2000340628A5 publication Critical patent/JP2000340628A5/en
Application granted granted Critical
Publication of JP4450889B2 publication Critical patent/JP4450889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively provide a high-resolution scanning electron microscope, which can project a large-current electron beam with a low accelerating voltage and can be used for a method by which an isolated area caused by imperfect contacts that occurs in a semiconductor element and cannot be detected through visual inspections which are carried out by obtaining surface images is discovered from a potential contacted image. SOLUTION: In a method for detecting isolated pattern, a large-current electron beam projecting barrel, which is used for injecting charges into a sample at a shallow angle from the surface of the sample and an observatory electron beam projecting barrel for obtaining second electron images, are provided separately. An isolated pattern, which is not discriminated from the appearance of the sample, is detected by executing work for detecting secondary electron information by projecting a large- current electron beam 12 upon the surface of the sample for a fixed period of time and then projecting an electron beam 2 for observation upon the portion irradiated with the beam 12 and obtaining the microscopic image B of a potential difference contrast by performing scanning, in such a way that the portions which are irradiated with the beam 12 and 2 and from which the information is detected are shifted successively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料上の孤立パタ
ーンを検出する方法並びにその装置に関し、特に半導体
素子の孤立パターン検出技術に関する。
The present invention relates to a method and an apparatus for detecting an isolated pattern on a sample, and more particularly to a technique for detecting an isolated pattern of a semiconductor device.

【0002】[0002]

【従来の技術】表面画像を得る外観検査からでは発見す
ることができない半導体素子のコンタクト不良などによ
る孤立領域を電位コントラスト像で発見する方法が知ら
れている。これは原理的には検査領域に低加速大電流の
電子ビームを走査して照射し、検査領域を観察するので
あるが、低加速大電流の電子ビームを走査することで被
検査体表面に照射負電荷を注入する。この表面に注入さ
れた電子は半導体素子の配線パターンを介してアースに
流れるが、この電流値は経路の抵抗値に応じて異なる。
そのため試料表面には各部位毎の対アース抵抗値に応じ
た電位差が生じることになる。試料表面に電位差が生じ
ると、電子ビーム照射に基づく二次電子の発生効率の差
となってあらわれるため、該電位差が輝度情報となった
画像が得られ、この画像を観察することで外面からでは
判らない半導体素子のコンタクト不良などによる孤立領
域を見出すことが出来るというものである。
2. Description of the Related Art There is known a method of finding an isolated area due to a contact failure of a semiconductor element or the like, which cannot be found from an appearance inspection for obtaining a surface image, by a potential contrast image. In principle, the inspection area is scanned and irradiated with a low-acceleration, high-current electron beam, and the inspection area is observed. Inject negative charges. The electrons injected into the surface flow to the ground via the wiring pattern of the semiconductor element, and the current value varies depending on the resistance value of the path.
Therefore, a potential difference is generated on the surface of the sample in accordance with the resistance to ground for each part. When a potential difference occurs on the sample surface, it appears as a difference in the generation efficiency of secondary electrons based on the electron beam irradiation.Therefore, an image in which the potential difference has become luminance information is obtained. It is possible to find an isolated area due to an unknown contact failure of a semiconductor element.

【0003】従来から知られていたこの方式の装置は、
電位差を短時間で発生させるために大電流電子ビームを
用い、周辺の絶縁物をチャージアップさせないために低
加速電圧を用い、不良個所特定のために高分解能顕微鏡
であることを同時に要求されるが、これらの要求は通常
相反する要求項目であるため、その仕様を満足する走査
型電子顕微鏡は極めて高価なものとなっていた。
A device of this type, which has been conventionally known,
It is also required to use a high-current electron beam to generate a potential difference in a short time, use a low accelerating voltage to prevent the surrounding insulator from being charged up, and use a high-resolution microscope to identify defective parts. Since these requirements are usually contradictory requirements, a scanning electron microscope satisfying the specifications has been extremely expensive.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の従来
技術の問題点を解決するものであって、表面画像を得る
外観検査からでは発見することができない半導体素子の
コンタクト不良などによる孤立領域を電位コントラスト
像で発見する方法において、低加速電圧で大電流電子ビ
ームを照射できると共に高分解能の走査型電子顕微鏡を
比較的安価に提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and it is an object of the present invention to provide an isolated area due to a contact failure of a semiconductor element which cannot be found by an appearance inspection for obtaining a surface image. Is to provide a high-resolution scanning electron microscope which can be irradiated with a large current electron beam at a low acceleration voltage at a relatively low cost.

【0005】[0005]

【課題を解決するための手段】本発明は、浅い角度から
試料表面に電荷を注入するための大電流電子ビーム照射
鏡筒と二次電子画像を得るための観察用電子ビーム照射
鏡筒とを分離して設け、一定時間大電流電子ビームを照
射した後その部分に観察用電子ビームを照射して二次電
子情報を検出する作業を実行し、続いて隣の部位に照射
並びに検出の位置を順次シフトして行く走査によって電
位差コントラストの顕微鏡画像を得て外観からでは判ら
ない孤立パターンを検出する。
SUMMARY OF THE INVENTION The present invention provides a high-current electron beam irradiation column for injecting electric charge into a sample surface from a shallow angle and an observation electron beam irradiation column for obtaining a secondary electron image. Separately provided, irradiate a large current electron beam for a certain period of time, irradiate the part with an observation electron beam to detect secondary electron information, and then irradiate the adjacent part with the position of irradiation and detection A microscope image of a potential difference contrast is obtained by sequentially shifting scanning, and an isolated pattern that cannot be seen from the appearance is detected.

【0006】[0006]

【発明の実施の形態】本発明は、図1Aに断面で示すよ
うな外観からでは把握できない半導体素子等の孤立浮遊
領域を検出しようとするもので、該試料には右側の導電
部ときちんと接続した部分と左側に示したような導電部
と未接触状態の部分が存在していたとして、該試料表面
に大電流電子ビームを照射して電荷を注入すると、左側
の導電部ときちんと接続した部分に注入された電荷は導
電部を介してすぐにアースに流出するが、右側に示した
ような導電部と未接触状態の部分に注入された電荷は導
電体に直接流れることは出来ず、両者間の抵抗値に対応
した電流値で少しずつ流出することになる。さて照射電
子ビームによる二次電子の発生効率についてであるが、
縦軸に二次電子発生効率を表すものとして(二次電子量
/一次電子量)の値を、横軸に加速電圧値(Acc)を
とってグラフで表すと、一般に図1Cに示されるような
1kV以下の低加速電圧領域にピークがくる山型の二次
曲線特性を示す。勿論この特性は試料によって差異があ
るが、ビーム電流は一定にしてビームの入射角を変えた
ときの定性的な特性として示す。aが深い角度、bが浅
い角度の入射である。そしてCに図示されているように
電子ビームが入射する角度が浅い方bが特性の山が高く
発生効率1の点が高圧側に寄っている。これは試料表面
に入射する角度が浅い方が電子が試料内に深く入り込ま
ないで表面から多くの二次電子を放出するためと解され
る。試料表面の帯電効率を考えると1kV以下の低加速
電圧で浅い入射角で照射した電子ビームが二次電子発生
効率が高く有利であるので、本発明では電荷注入用の電
子ビームは低加速電圧・大電流で浅い入射角で試料に照
射させるようにしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is to detect an isolated floating region of a semiconductor element or the like which cannot be grasped from the external appearance as shown in a cross section in FIG. 1A. Assuming that there is a portion in contact with the conductive portion as shown on the left side and a conductive portion as shown on the left side, when a charge is injected by irradiating the surface of the sample with a large current electron beam, the portion connected to the conductive portion on the left side and properly Although the electric charge injected into the part immediately flows out to the ground via the conductive part, the electric charge injected into the part not in contact with the conductive part as shown on the right cannot flow directly into the electric conductor, and It flows out little by little at the current value corresponding to the resistance value between the two. Now, regarding the generation efficiency of secondary electrons by the irradiated electron beam,
When the value of (secondary electron amount / primary electron amount) is shown on the vertical axis as the secondary electron generation efficiency and the acceleration voltage value (Acc) on the horizontal axis, it is generally shown in FIG. 1C. A peak-shaped quadratic curve characteristic having a peak in a low acceleration voltage region of 1 kV or less is shown. Of course, this characteristic varies depending on the sample, but is shown as a qualitative characteristic when the beam angle is changed while the beam current is kept constant. a is a deep angle incidence, and b is a shallow angle incidence. As shown in C, the point b at which the incident angle of the electron beam is shallower has a higher characteristic peak, and the point of generation efficiency 1 is closer to the high voltage side. It is understood that this is because when the angle of incidence on the sample surface is small, electrons do not penetrate deeply into the sample and emit many secondary electrons from the surface. Considering the charging efficiency of the sample surface, an electron beam irradiated at a low acceleration voltage of 1 kV or less and at a shallow angle of incidence has a high secondary electron generation efficiency, which is advantageous. The sample is irradiated with a large current at a shallow angle of incidence.

【0007】さて、この際の電荷注入であるが、1kV
以下の低加速電圧領域の電子ビームが使われるとCのグ
ラフから判るようにその領域では照射される一次電子の
数よりも飛び出す二次電子の数の方が多くなる。そのた
め照射する電子の電荷は負であるけれど試料表面は結果
的に正の電荷が帯電することになる。右側未接続部分の
表面は注入された電荷が直に導電体に流出できず滞留し
正電荷を帯びて正電位になる。設計上は同様の構造とさ
れたものであるが、左側の正常部分の表面の電荷はアー
スに流出して零電位に、右側の異常部分の表面は電荷が
残留して正電位になる。試料面に電位差が生じるとその
部分からの二次電子の発生効率に差が生じ、その二次電
子画像上には図1Bに示したように左正常部分は明るく
右異常部分は暗く映ることになる。なお、他の半導体表
面は絶縁状態であるので異常部分以上に暗くなる。
[0007] In the charge injection at this time, 1 kV
When an electron beam in the following low acceleration voltage region is used, as can be seen from the graph of C, in that region, the number of secondary electrons that jump out is larger than the number of primary electrons that are irradiated. Therefore, although the charge of the irradiated electron is negative, the sample surface is eventually charged with a positive charge. On the surface of the unconnected portion on the right side, the injected electric charge cannot flow out to the conductor directly, stays there, takes on a positive electric charge, and becomes a positive potential. Although the design is similar, the charge on the surface of the normal part on the left flows out to the ground and reaches zero potential, and the charge on the surface of the abnormal part on the right becomes positive with residual charges. When a potential difference occurs on the sample surface, a difference occurs in the generation efficiency of secondary electrons from that portion, and on the secondary electron image, as shown in FIG. 1B, the left normal portion appears bright and the right abnormal portion appears dark. Become. The other semiconductor surfaces are insulated and darker than the abnormal part.

【0008】さて、電荷注入用として最適な電子ビーム
は1kV以下の低加速電圧で加速された数nA〜数μA
の大電流であって、観察用として最適な走査電子ビーム
は高〜低加速電圧で加速された数pA〜数nAの電流が
用いられる。本発明はこの異なる電子ビームの発生源を
2系統にわけてそれぞれの条件に合わせて準備するよう
にしたことによって、双方の条件を満たす発生源を準備
しなければならないという困難な課題から開放され、コ
ストを大幅に削減できるのである。この両電子ビームは
観察領域を例えばラスター状に主走査・副走査するよう
にされるが、別々に走査されるのではなく、同じ位置を
照射するように同期がとられている。この主走査は図2
のAに示されるように一方向にコンスタントに掃引され
るのであるが、ミクロ的に見ると図2Bに示すように階
段状に走査される。すなわち一照射点に対し一定時間t
1の電荷注入用の大電流電子ビームが照射されると、Δ
t時間のブランクをおいてt2時間観察用の電子ビーム
が照射され、その間にその部分の電位に応じた二次電子
が検出される。このt1+Δt+t2がこの部分の作業
時間であり、この1単位作業時間毎に両電子ビームの照
射位置は隣にシフトするように走査される。電荷注入用
の大電流電子ビームが照射されるt1とΔtの時間の間
観察用の電子ビームはブランキング手段によりビームが
開口部を通らないように偏向され遮蔽される。またブラ
ンク時間Δtと観察期間t2の間は電荷注入用の大電流
電子ビームが開口部を通らないように偏向される。
An electron beam most suitable for charge injection is several nA to several μA accelerated at a low acceleration voltage of 1 kV or less.
The scanning electron beam most suitable for observation uses a current of several pA to several nA accelerated by a high to low acceleration voltage. The present invention relieves the difficult problem of having to prepare a source that satisfies both conditions by dividing the different electron beam sources into two systems and preparing them according to the respective conditions. The cost can be greatly reduced. The two electron beams scan the observation area in a main scan and a sub-scan, for example, in a raster shape, but are not scanned separately but are synchronized so as to irradiate the same position. This main scan is shown in FIG.
As shown in FIG. 2A, the scanning is constantly performed in one direction, but when viewed microscopically, scanning is performed stepwise as shown in FIG. 2B. That is, a fixed time t for one irradiation point
When a large current electron beam for charge injection is irradiated, Δ
An electron beam for observation at time t2 is irradiated with a blank at time t, and during that time, secondary electrons corresponding to the potential of that portion are detected. This t1 + Δt + t2 is the working time of this part, and the scanning position is shifted so that the irradiation positions of both electron beams are shifted to the next every one unit working time. The observation electron beam is deflected and blocked by the blanking means so that the beam does not pass through the opening during the time between t1 and Δt when the large current electron beam for charge injection is irradiated. Between the blank time Δt and the observation period t2, the large current electron beam for charge injection is deflected so as not to pass through the opening.

【0009】[0009]

【実施例1】図4は本発明の第1実施例の全体構成を示
す概念図である。図3はそのブランキング動作を説明す
る図である。観察用電子ビーム2の照射鏡筒は電子銃
1,電子ビームの加速、集束、走査手段の他にブランキ
ング手段4とブランキングアパーチャー5とを含む電子
光学系3とからなり、電荷注入用電子ビーム12の照射鏡
筒は電子銃11,電子ビームの加速、集束、走査手段の他
にブランキング手段14とブランキングアパーチャー15と
を含む電子光学系13とからなっている。試料7が載置さ
れる試料ステージ6の面に対し、観察用電子ビーム2は
深い入射角で照射されるように、電荷注入用電子ビーム
12は浅い入射角で照射されるように両鏡筒が配設され
る。8は二次電子検出器であり、9は二次電子のエネル
ギーフィルターである。20は検出した二次電子の情報を
信号処理する信号処理部であり、22は観察画像等を表示
するディスプレイそして21はシステムを制御するコント
ローラである。
Embodiment 1 FIG. 4 is a conceptual diagram showing an entire configuration of a first embodiment of the present invention. FIG. 3 is a diagram for explaining the blanking operation. The irradiation column of the observation electron beam 2 includes an electron gun 1, an electron optical system 3 including a blanking means 4 and a blanking aperture 5 in addition to an electron beam acceleration, focusing, and scanning means. The irradiation column of the beam 12 comprises an electron gun 11, an electron optical system 13 including a blanking means 14 and a blanking aperture 15 in addition to an electron beam acceleration, focusing and scanning means. The charge injection electron beam is applied so that the surface of the sample stage 6 on which the sample 7 is placed is irradiated with the observation electron beam 2 at a deep incident angle.
Numeral 12 is provided with both lens barrels so as to be irradiated at a shallow incident angle. Reference numeral 8 denotes a secondary electron detector, and reference numeral 9 denotes a secondary electron energy filter. Reference numeral 20 denotes a signal processing unit that performs signal processing on the information of the detected secondary electrons, reference numeral 22 denotes a display that displays an observation image or the like, and reference numeral 21 denotes a controller that controls the system.

【0010】試料ステージ6に図1Aに示したような半
導体素子を載置し、該半導体素子の表面の1点に低加速
大電流の電荷注入用電子ビーム12を照射鏡筒より照射す
る。この照射は半導体表面に帯電を起こさせその状態で
の二次電子顕微鏡像を得るためであるので、図1Cに図
示されるように二次電子発生効率のよい1kV以下の低
加速電圧領域の電子ビームが用いられ、浅い入射角度か
ら該半導体表面に当てられる。この照射を受けた点では
当てられた一次電子よりもはじき出される二次電子の数
が多いため、電気的には正の電荷が注入されたことにな
る。この点が左側に図示したような正常部分の表面であ
れば、該電荷は直ちに下層の導電体を介してアースに流
出してしまうものの、右側の異常部分の表面であったな
らば、該電荷は下層の導電体を介して直ちにアースに流
出することができず半導体領域と導電体との間に介在す
る絶縁部分の抵抗値に応じて徐々に流出する。また、こ
の照射点が絶縁部分であったならばその電荷は流出経路
がなくそこに帯電したままとなる。以上のように電子ビ
ームが照射された試料表面には該照射部分とアース間の
抵抗値に応じた電荷が帯電することになる。
A semiconductor element as shown in FIG. 1A is placed on the sample stage 6, and one point on the surface of the semiconductor element is irradiated with a low-acceleration, high-current electron beam 12 for charge injection from an irradiation lens barrel. This irradiation is to cause a charge on the semiconductor surface and to obtain a secondary electron microscope image in that state. Therefore, as shown in FIG. 1C, electrons in a low acceleration voltage region of 1 kV or less having a high secondary electron generation efficiency are obtained. A beam is used and directed at the semiconductor surface from a shallow angle of incidence. At the point of this irradiation, the number of secondary electrons repelled is larger than the number of applied primary electrons, so that electrically positive charges are injected. If this point is the surface of the normal part as shown on the left, the charge immediately flows out to the ground through the lower conductor, but if it is the surface of the abnormal part on the right, the charge Cannot immediately flow out to ground via the lower conductor, but gradually flows out according to the resistance value of the insulating portion interposed between the semiconductor region and the conductor. If the irradiation point is an insulating part, the charge has no outflow path and remains charged there. As described above, the surface of the sample irradiated with the electron beam is charged with a charge corresponding to the resistance value between the irradiated portion and the ground.

【0011】電荷注入用電子ビーム12は最初のt1時間
照射点を照射し、Δt時間のブランクをおいて観察用の
電子ビーム2がt2時間照射されて二次電子検出器8で
二次電子が検出されるのであるが、これらのビームの照
射と中断はブランキング手段4,14の制御によって実行
される。具体的には図3に示したように観察用電子ビー
ム照射鏡筒と電荷注入用電子ビーム照射鏡筒にはそれぞ
れブランキング手段4,14とブランキングアパーチャー
5,15があって、電子銃1,11からは連続して放出され
ている電子ビームをブランキング手段4,14によって偏
向させることでブランキングアパーチャー5,15の開口
を通過させないで遮断させるようにする。すなわち、最
初のt1+Δt時間の間観察用電子ビーム照射鏡筒のブ
ランキング手段4に偏向信号を印加して電子ビームを偏
向させ、ブランキングアパーチャー5の開口部を該ビー
ムが通過できないで遮断された状態においておき、電荷
注入用電子ビーム照射鏡筒のブランキング手段14にはΔ
t+t2の時間偏向信号を印加して電子ビームを偏向さ
せ、ブランキングアパーチャー15の開口部を該ビームが
通過できないで遮断された状態にすることで、図2Bに
示したような一照射点に対し一定時間t1の電荷注入用
の大電流電子ビームの照射、Δt時間のブランクをおい
たt2時間観察用の電子ビームの照射が実現される。ビ
ーム照射にともない試料面からは二次電子が放出される
が観察画像を得るため二次電子検出器8での検出を必要
とするのは、t2の時間だけであるから、該二次電子検
出器8の前にグリッドのようなエネルギーフィルター9
を設置し、電荷注入用のビームが照射されている時間t
1は二次電子をブロックして検出器を飽和させないよう
にする。この二種類の電子ビームは別個の鏡筒の電子銃
から連続して放出されているものをブランキング手段に
よるビームの通過/遮蔽制御によって試料面への照射/
中断を行わせるようにしているため、従来の一つの鏡筒
で電荷注入用と観察用を両立させた条件で電子ビームを
制御してビーム照射を行わせるものに比べ、各々の照射
ビームの最適条件で電子ビームを制御できるため操作性
の面からも優れたものとなっている。
The electron beam 12 for charge injection irradiates the irradiation point for the first t1 time, the electron beam 2 for observation is irradiated for t2 time with a blank of the time Δt, and the secondary electrons are detected by the secondary electron detector 8. Although detected, the irradiation and interruption of these beams are executed under the control of the blanking means 4 and 14. Specifically, as shown in FIG. 3, the electron beam irradiation column for observation and the electron beam irradiation column for charge injection have blanking means 4, 14 and blanking apertures 5, 15, respectively. , 11 are deflected by the blanking means 4, 14 so that the electron beams are not blocked through the openings of the blanking apertures 5, 15. That is, during the first time t1 + Δt, the electron beam is deflected by applying a deflection signal to the blanking means 4 of the electron beam irradiation column for observation, and the beam is cut off because the beam cannot pass through the opening of the blanking aperture 5. In the state, the blanking means 14 of the electron beam irradiation column for charge injection has a Δ
By applying a time deflection signal of t + t2 to deflect the electron beam and to make the opening of the blanking aperture 15 blocked so that the beam cannot pass, one irradiation point as shown in FIG. In this case, irradiation of a large current electron beam for charge injection for a fixed time t1 and irradiation of an electron beam for observation for a time t2 with a blank at time t are realized. Secondary electrons are emitted from the sample surface due to the beam irradiation, but detection by the secondary electron detector 8 is required only for the time t2 to obtain an observation image. Energy filter 9 like grid in front of vessel 8
And the time t during which the beam for charge injection is irradiated
1 blocks secondary electrons and does not saturate the detector. These two types of electron beams are continuously emitted from electron guns of separate lens barrels, and irradiation / irradiation of the sample surface is controlled by beam passing / shielding control by blanking means.
Since the interruption is performed, the optimal irradiation beam for each irradiation beam is compared with the conventional one in which the electron beam is controlled by controlling the electron beam under the condition that both charge injection and observation are compatible. Since the electron beam can be controlled under the conditions, the operability is excellent.

【0012】次にビーム走査であるが、両鏡筒からの電
子ビームは試料面上の同一点に照射される必要があり、
かつ図2に示されたように走査される。この両電子ビー
ムは観察領域をラスター状に主走査・副走査するように
されるが、この主走査はテレビの水平走査と同様に図2
のAに示されるように一方向に一定速度で掃引されるの
であるが、ミクロ的に見ると図2Bに示すように階段状
に走査されることは前述のとおりである。すなわち、個
々の照射点にはt1+Δt+t2の一単位作業時間が割
り当てられ、この時間が経過する毎に隣接する照射点に
シフトするような走査がなされる。順次作業が進み主走
査方向一ラインの作業が終了したならば、副走査方向に
一つシフトした主走査方向の始点に偏向走査されること
で観察領域全体の走査を実行する。このビーム走査と各
単位作業時間における一定時間t1の電荷注入用の大電
流電子ビームの照射、Δt時間のブランクをおいたt2
時間観察用の電子ビームの照射、そしてエネルギーフィ
ルターは互いにシンクロナイズされて制御される必要が
あるが、この実施例ではコントローラ21からの指令に基
づいて両鏡筒の偏向走査手段とブランキング手段4,14
そしてエネルギーフィルター9がタイミング制御され適
正に動作するように構成されている。
Next, in the beam scanning, the electron beams from both lens barrels need to be irradiated to the same point on the sample surface.
And it is scanned as shown in FIG. These two electron beams scan the observation area in a main scanning direction and a sub-scanning manner in the form of a raster.
As shown in FIG. 2A, scanning is performed in one direction at a constant speed, but when viewed microscopically, scanning is performed stepwise as shown in FIG. 2B as described above. That is, each irradiation point is assigned one unit work time of t1 + Δt + t2, and scanning is performed such that the irradiation point shifts to an adjacent irradiation point every time this time elapses. When the operation is sequentially performed and the operation of one line in the main scanning direction is completed, the scanning of the entire observation region is performed by deflecting and scanning the starting point in the main scanning direction shifted by one in the sub-scanning direction. This beam scanning and irradiation of a large current electron beam for charge injection for a certain time t1 in each unit working time, and a blank t2 for a time Δt
The irradiation of the electron beam for time observation and the energy filter need to be controlled in synchronization with each other. In this embodiment, the deflection scanning means and the blanking means 4, 14
The timing of the energy filter 9 is controlled so as to operate properly.

【0013】[0013]

【発明の効果】本発明は、表面画像を得た外観検査から
では発見することができない半導体素子のコンタクト不
良などによる孤立領域を電位コントラスト像で発見する
方法に関するものであり、観察用の高分解能の低加速電
子ビームと電荷注入用の低加速大電流の電子ビームとを
要するものであるが、この二種類の電子ビームを異なる
鏡筒から得るようにしたことにより、通常相反する双方
の条件を満たす高価な電子顕微鏡を必要とせず、比較的
安価な装置によってその検査を実施できるものである。
また、電荷注入用の低加速大電流の電子ビームを浅い入
射角から照射するようにしたので、試料表面の帯電効率
がよく鮮明な二次電子画像が得られる。更に、二種類の
電子ビームは別個の鏡筒の電子銃から連続して放出され
ているものをブランキング手段によるビームの通過/遮
蔽制御によって試料面への照射/中断を行わせるように
したため、従来の一つの鏡筒で電荷注入用と観察用を両
立させた条件で電子ビームを制御してビーム照射を行わ
せるものに比べ、各々の照射ビームの最適条件で電子ビ
ームを制御できるため操作性の面からも優れたものとな
っている。
The present invention relates to a method for discovering an isolated area due to a contact failure of a semiconductor element, which cannot be found from a visual inspection for obtaining a surface image, by a potential contrast image, and has a high resolution for observation. And a low-acceleration, high-current electron beam for charge injection are required.However, by obtaining these two types of electron beams from different lens barrels, both contradictory conditions are usually satisfied. The inspection can be carried out by a relatively inexpensive device without requiring an expensive electron microscope to satisfy.
In addition, since the electron beam with a low acceleration and a large current for charge injection is applied from a shallow angle of incidence, a clear secondary electron image with good charging efficiency on the sample surface can be obtained. Furthermore, since the two types of electron beams are continuously emitted from the electron guns of separate lens barrels, irradiation / interruption to the sample surface is performed by beam passing / shielding control by blanking means. Compared to the conventional one that controls electron beam under the condition that both charge injection and observation are compatible, beam irradiation can be performed under the optimum condition of each irradiation beam. It is also excellent from the point of view.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の動作原理を示す図で、Aは試料に電子
ビームが照射され場合の帯電状態を模式的に示した図、
Bはその観察画像を示す図、Cは二次電子発生効率を示
すグラフである。
FIG. 1 is a diagram showing an operation principle of the present invention, in which A is a diagram schematically showing a charged state when a sample is irradiated with an electron beam;
B is a diagram showing the observed image, and C is a graph showing the secondary electron generation efficiency.

【図2】本発明のビーム走査をを示す図で、Aは主走査
波形を示し、Bはその一部をミクロ的に示した図であ
る。
FIGS. 2A and 2B are diagrams showing beam scanning according to the present invention, in which A shows a main scanning waveform, and B shows a part thereof in a microscopic manner.

【図3】本発明のビームブランキング動作を説明する図
である。
FIG. 3 is a diagram illustrating a beam blanking operation of the present invention.

【図4】本発明の実施例の主要構成を示す図である。FIG. 4 is a diagram showing a main configuration of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,11 電子銃 2,12 電子ビーム 3,13 電子光学系 4,14 ブランキング手段 5,15 ブランキングアパーチャー 6 試料ステージ 7 試料 8 二次電子検出器 9 エネルギィフィルター 1,11 electron gun 2,12 electron beam 3,13 electron optical system 4,14 blanking means 5,15 blanking aperture 6 sample stage 7 sample 8 secondary electron detector 9 energy filter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01J 37/28 H01L 21/263 E H01L 21/263 G01R 31/28 L Fターム(参考) 2G011 AB00 2G032 AA00 AD08 AF08 AL00 4M106 BA02 CA39 DB04 DB05 DJ23 5C033 FF03 NN01 9A001 BB05 KK31 LL05 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01J 37/28 H01L 21/263 E H01L 21/263 G01R 31/28 L F-term (Reference) 2G011 AB00 2G032 AA00 AD08 AF08 AL00 4M106 BA02 CA39 DB04 DB05 DJ23 5C033 FF03 NN01 9A001 BB05 KK31 LL05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 試料表面に大電流電子ビームを浅い入射
角度で照射し、試料表面各部位とアース間の電気伝導度
の差に基づく電位差分布を発生させた該試料表面に、高
分解能の観察用電子ビームを異なる方向から照射して二
次電子顕微鏡画像を得、該画像に基づいて前記電気伝導
度の低い孤立パターンを検出する方法。
1. A high-resolution observation on a sample surface in which a large current electron beam is irradiated on the sample surface at a shallow incident angle to generate a potential difference distribution based on a difference in electric conductivity between each portion of the sample surface and ground. A secondary electron microscope image obtained by irradiating an electron beam for use from different directions, and detecting the isolated pattern having low electric conductivity based on the image.
【請求項2】 試料表面のある部分に一定時間大電流電
子ビームを照射した後その部分に観察用電子ビームを照
射して二次電子情報を検出する作業を実行し、続いて隣
の部分に照射並びに検出作業の位置を順次シフトして行
く走査によって観察領域の二次電子顕微鏡画像を得る請
求項1に記載の孤立パターンを検出する方法。
2. A process for irradiating a certain portion of the sample surface with a high-current electron beam for a certain period of time and then irradiating the portion with an observation electron beam to detect secondary electron information, 2. The method for detecting an isolated pattern according to claim 1, wherein a secondary electron microscope image of the observation area is obtained by scanning in which the positions of irradiation and detection work are sequentially shifted.
【請求項3】 試料ステージ上の試料に向けて電子ビー
ムを照射する観察用電子ビーム照射鏡筒と二次電子検出
器と画像表示用のディスプレイからなる電子顕微鏡にお
いて、前記試料に対し浅い角度で電子ビームを照射する
大電流電子ビーム照射鏡筒を別途配備し、両電子ビーム
の走査と両電子ビームの照射のON/OFFを互いに関
連付けて制御することができる手段とを有する孤立パタ
ーン検出用電子顕微鏡。
3. An electron microscope comprising an electron beam irradiation column for observation for irradiating an electron beam toward a sample on a sample stage, a secondary electron detector, and a display for displaying an image. An isolated pattern detection electron device having a separately provided high current electron beam irradiation column for irradiating an electron beam, and means for controlling scanning of both electron beams and ON / OFF of irradiation of both electron beams in association with each other microscope.
【請求項4】 二次電子検出器の前にエネルギーフィル
ターを配設し、該エネルギーフィルタには両ビーム走査
と照射のON/OFFに関連付けて電圧が印加される請
求項3に記載の孤立パターン検出用電子顕微鏡。
4. The isolated pattern according to claim 3, wherein an energy filter is provided in front of the secondary electron detector, and a voltage is applied to the energy filter in association with both beam scanning and ON / OFF of irradiation. Electron microscope for detection.
JP15393299A 1999-06-01 1999-06-01 Isolated pattern detection method based on surface potential and its electron microscope Expired - Lifetime JP4450889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15393299A JP4450889B2 (en) 1999-06-01 1999-06-01 Isolated pattern detection method based on surface potential and its electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15393299A JP4450889B2 (en) 1999-06-01 1999-06-01 Isolated pattern detection method based on surface potential and its electron microscope

Publications (3)

Publication Number Publication Date
JP2000340628A true JP2000340628A (en) 2000-12-08
JP2000340628A5 JP2000340628A5 (en) 2005-10-27
JP4450889B2 JP4450889B2 (en) 2010-04-14

Family

ID=15573241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15393299A Expired - Lifetime JP4450889B2 (en) 1999-06-01 1999-06-01 Isolated pattern detection method based on surface potential and its electron microscope

Country Status (1)

Country Link
JP (1) JP4450889B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103865A (en) * 2002-09-10 2004-04-02 Nec Kyushu Ltd Apparatus and method of inspecting semiconductor device
KR100474579B1 (en) * 2002-08-09 2005-03-10 삼성전자주식회사 Method for manufacturing a standard wafer used in surface analysis system
JP2008252085A (en) * 2008-03-06 2008-10-16 Hitachi Ltd Substrate inspection device and substrate inspection method using charged particle beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474579B1 (en) * 2002-08-09 2005-03-10 삼성전자주식회사 Method for manufacturing a standard wafer used in surface analysis system
JP2004103865A (en) * 2002-09-10 2004-04-02 Nec Kyushu Ltd Apparatus and method of inspecting semiconductor device
JP2008252085A (en) * 2008-03-06 2008-10-16 Hitachi Ltd Substrate inspection device and substrate inspection method using charged particle beam

Also Published As

Publication number Publication date
JP4450889B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
US8350214B2 (en) Charged particle beam applied apparatus
JP4093662B2 (en) Scanning electron microscope
JP3291880B2 (en) Scanning electron microscope
KR101038139B1 (en) Apparatus and method for enhancing voltage contrast of a wafer
US8604430B2 (en) Method and an apparatus of an inspection system using an electron beam
US7829853B2 (en) Sample surface observation method
US6555819B1 (en) Scanning electron microscope
JPH11326247A (en) Substrate-inspection device and substrate-inspection system provided therewith and substrate-inspection method
US6617579B2 (en) Scanning electronic beam apparatus
WO2005081305A1 (en) Semiconductor inspection method and system therefor
JP4450889B2 (en) Isolated pattern detection method based on surface potential and its electron microscope
JP2002251975A (en) Inspection device using electron beam and inspection method using electron beam
JP2001053122A (en) Method and apparatus for detecting isolation pattern based on surface potential
JP4178003B2 (en) Semiconductor circuit pattern inspection system
JP2004342470A (en) Device and method for inspecting semiconductor
JPH03138850A (en) Secondary ion mass spectrograph
JP2006140162A (en) Method of forming testpiece image
JP3784041B2 (en) Estimation method of lower layer wiring structure using charge-up phenomenon
JP6920539B2 (en) Scanning electron microscope and its imaging method
JPH1186770A (en) Scanning electron microscope
JPS6324617Y2 (en)
WO1986001335A1 (en) Method and apparatus for the micro-analysis or imaging of samples
JPH10208683A (en) Scanning electron microscope
JPH07153411A (en) Electron beam observing method and device therefor
JPH0770299B2 (en) Ion beam processing apparatus and surface processing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071207

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080118

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091104

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4450889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term