JP2001053122A - Method and apparatus for detecting isolation pattern based on surface potential - Google Patents

Method and apparatus for detecting isolation pattern based on surface potential

Info

Publication number
JP2001053122A
JP2001053122A JP2000152942A JP2000152942A JP2001053122A JP 2001053122 A JP2001053122 A JP 2001053122A JP 2000152942 A JP2000152942 A JP 2000152942A JP 2000152942 A JP2000152942 A JP 2000152942A JP 2001053122 A JP2001053122 A JP 2001053122A
Authority
JP
Japan
Prior art keywords
scanning
irradiation
sample
electron beam
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000152942A
Other languages
Japanese (ja)
Other versions
JP2001053122A5 (en
Inventor
Koji Iwasaki
浩二 岩崎
Masamichi Oi
將道 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2000152942A priority Critical patent/JP2001053122A/en
Publication of JP2001053122A publication Critical patent/JP2001053122A/en
Publication of JP2001053122A5 publication Critical patent/JP2001053122A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measuring Leads Or Probes (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect defective contact in a semiconductor element by irradiating an adjacent part with a focused ion beam, scanning the positions to be detected while shifting sequentially and obtaining a microscopic image of potential difference contrast on the surface of a sample, thereby detecting an isolation pattern based on an internal defect which cannot be detected by visual inspection. SOLUTION: The surface of a sample stage 6 for mounting a sample 7 is irradiated at a deep incident angle, with a focused ion beam for making observation from an irradiation lens-barrel comprising an ion gun 1, a blanking means 4 and an ion optical system 3 and is irradiated at a shallow incident angle, with an beam 12 for charge injection from an irradiation lens-barrel comprising an electron gun 11, a blanking means 14 and an electrooptic system 13. Detection positions of the sample 7 are then scanned while being shifted sequentially, and a microscopic image of potential difference contrast on the surface of the sample 7 is obtained thus detecting a floating region, i.e., an isolation pattern, based on an internal defect which cannot be detected by visual inspection.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、走査イオン顕微鏡
を用いて試料上の孤立パターンを検出する方法並びにそ
の装置に関し、特に半導体素子の孤立パターン検出技術
に関する。
The present invention relates to a method and an apparatus for detecting an isolated pattern on a sample by using a scanning ion microscope, and more particularly to a technique for detecting an isolated pattern of a semiconductor device.

【0002】[0002]

【従来の技術】表面画像を得る外観検査からでは発見す
ることができない半導体素子の内部コンタクト不良など
による孤立領域を素子表面の電位コントラスト像で発見
する方法が知られている。これは原理的には検査領域に
低加速大電流の電子ビームを走査して照射して被検査体
表面に照射負電荷を注入し、その際の検査領域の電位分
布を観察するものである。すなわちこの表面に注入され
た電子は半導体素子の配線パターンを介してアースに流
れるが、この電流値は経路の抵抗値に応じて異なる。そ
のため試料表面には各部位毎の対アース抵抗値に応じた
電位差が生じることになる。試料表面に電位差分布が生
じると、電子ビーム照射に基づく二次電子の発生効率の
差となってあらわれるため、該電位差が輝度情報となっ
た画像が得られ、この画像を観察することで外面からで
は判らない半導体素子のコンタクト不良などによる孤立
領域を見出すことが出来るというものである。
2. Description of the Related Art There is known a method of finding an isolated area due to a bad internal contact of a semiconductor element or the like by a potential contrast image on the element surface, which cannot be found from an appearance inspection for obtaining a surface image. In principle, the inspection area is scanned and irradiated with a low-acceleration, high-current electron beam to inject the irradiation negative charges onto the surface of the inspection object, and the potential distribution in the inspection area at that time is observed. That is, the electrons injected into this surface flow to the ground via the wiring pattern of the semiconductor element, but the current value differs depending on the resistance value of the path. Therefore, a potential difference is generated on the surface of the sample in accordance with the resistance to ground for each part. When a potential difference distribution occurs on the sample surface, it appears as a difference in the generation efficiency of secondary electrons based on the electron beam irradiation.Therefore, an image in which the potential difference has become luminance information is obtained. This makes it possible to find an isolated area due to a contact failure of a semiconductor element which cannot be understood.

【0003】従来から知られていたこの方式の装置は、
電位差を短時間で発生させるために大電流電子ビームを
用いるのであるが、周辺の絶縁物をチャージアップさせ
ないために低加速電圧を用いることと、不良個所特定の
ために高分解能顕微鏡であることを同時に要求される
が、これらの要求は通常相反する要求項目であるため、
その仕様を満足する走査型電子顕微鏡は極めて高価なも
のとなっていた。また電子ビームではなく、集束イオン
ビームを試料面に照射して、電位差コントラスト像を得
る方法も考えられていた。これは試料である半導体チッ
プの端子間に一定のもしくは信号電圧を印加して半導体
表面に電位差分布を発生させた状態のところに、集束イ
オンビームを照射して二次電子若しくは二次イオンとい
った二次電荷粒子の発生率の差による画像を得るもので
ある。この方法は端子への給電や正常チップの画像との
比較または印加信号に対応する経時的変化の観測といっ
た厄介な手間を要するものであった。
A device of this type, which has been conventionally known,
A high-current electron beam is used to generate a potential difference in a short time.However, it is necessary to use a low accelerating voltage to avoid charging up the surrounding insulators, and to use a high-resolution microscope to identify defective parts. Are required at the same time, but these are usually conflicting requirements,
Scanning electron microscopes that satisfy the specifications have been extremely expensive. In addition, a method of irradiating a focused ion beam to the sample surface instead of the electron beam to obtain a potential difference contrast image has been considered. This is a method in which a constant or signal voltage is applied between the terminals of a semiconductor chip as a sample to generate a potential difference distribution on the semiconductor surface, and then a focused ion beam is applied to the semiconductor chip to irradiate secondary electrons or secondary ions. An image is obtained based on the difference in the generation rate of the secondary charge particles. This method requires troublesome operations such as power supply to terminals, comparison with an image of a normal chip, or observation of a temporal change corresponding to an applied signal.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の従来
技術の問題点を解決するものであって、表面画像を得る
外観検査からでは発見することができない半導体素子の
内部コンタクト不良などによる孤立領域を電位コントラ
スト像で発見する方法において、低加速電圧で大電流電
子ビームを照射できると共に高分解能の走査型顕微鏡を
比較的安価に提供すること、更に検査に厄介な手間をか
けずに簡便に実施できる手段を提供することを目的とす
るものである。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems of the prior art, and it is not possible to find out from a visual inspection for obtaining a surface image and to isolate the semiconductor device due to internal contact failure or the like. In the method of finding a region with a potential contrast image, it is possible to irradiate a large current electron beam at a low accelerating voltage and provide a high-resolution scanning microscope at relatively low cost. It is intended to provide means that can be implemented.

【0005】[0005]

【課題を解決するための手段】本発明は、斜めの角度か
ら試料表面に電荷を注入するため専用の大電流電子ビー
ム照射鏡筒と、走査顕微鏡画像を得るための集束イオン
照射鏡筒とを設け、一定時間大電流電子ビームを照射し
た後その部分に集束イオンビームを照射して二次荷電粒
子情報を検出する作業を実行し、続いて隣の部位に照射
並びに検出の位置を順次シフトして行く走査によって試
料表面の電位差コントラストの顕微鏡画像を得て外観か
らでは判らない内部欠陥に基づく孤立パターンを検出す
る。又、特に斜めの角度として、45度以下の浅い角度
で試料表面に注入すると、二次電子の発生効率が高まる
ので都合が良い。
According to the present invention, there is provided a dedicated high-current electron beam irradiation column for injecting charges into a sample surface from an oblique angle, and a focused ion irradiation column for obtaining a scanning microscope image. After irradiating a high-current electron beam for a certain period of time, irradiate the focused ion beam to that part and perform the work of detecting secondary charged particle information, and then sequentially shift the position of irradiation and detection to the next part A microscopic image of the potential difference contrast on the surface of the sample is obtained through the scanning, and an isolated pattern based on an internal defect that cannot be seen from the appearance is detected. Injecting into the sample surface at a shallow angle of 45 degrees or less, particularly as an oblique angle, is convenient because the generation efficiency of secondary electrons increases.

【0006】[0006]

【発明の実施の形態】本発明は、図1Aに断面で示すよ
うな外観からでは把握できない半導体素子等の内部欠陥
に基づく孤立浮遊領域を検出しようとするもので、該試
料には中央の導電部ときちんと接続した部分、左側に示
したような例えば異物が介在し導電部と導通関係が不完
全なものそして右側に示したような例えばエッチングが
浅く導電部と未接触状態の部分が存在していたとして、
該試料表面に大電流(数nA〜数μA)電子ビームを照
射して電荷を注入すると、中央の導電部ときちんと接続
した部分に注入された電荷は導電部を介してすぐにアー
スに流出するが、左側の導通関係が不完全なものはその
間の抵抗分を介して該電荷をアースに流出し、右側に示
したような導電部と未接触状態の部分に注入された電荷
は導電体に直接流れることは出来ず、両者間の絶縁状態
に阻まれなかなか流出できない。さて照射電子ビームに
よる二次電子の発生効率についてであるが、縦軸に二次
電子発生効率を表すものとして(二次電子量/一次電子
量)の値を、横軸に加速電圧値(Acc)をとってグラ
フで表すと、一般に図2に示されるような1kV以下の
低加速電圧領域にピークがくる山型の二次曲線特性を示
す。勿論この特性は試料によって差異があるが、ビーム
電流は一定にしてビームの入射角を変えたときの定性的
な特性として示す。aが深い角度、bが浅い角度の入射
である。そして電子ビームが入射する角度が浅い方bが
特性の山が高く発生効率1のクロス点が高圧側に寄って
いる。これは試料表面に入射する角度が浅い方が電子が
試料内に深く入り込まないで表面から多くの二次電子を
放出するためと解される。試料表面の電位差コントラス
ト像を得るに適度の帯電効率を考えると1kV以下の低
加速電圧で浅い入射角で照射した二次電子発生効率が高
い電子ビームが有利であるので、本発明では電荷注入用
の電子ビームは低加速電圧・大電流で浅い入射角で試料
に照射させるようにしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is to detect an isolated floating region based on an internal defect of a semiconductor element or the like which cannot be grasped from the external appearance as shown in the cross section in FIG. 1A. There is a part that is properly connected to the part, such as the one shown on the left, for example, a foreign substance intervening and incompletely connected to the conductive part, and a part shown on the right, for example, a shallowly etched part that is not in contact with the conductive part. As
When a charge is injected by irradiating a large current (several nA to several μA) electron beam on the sample surface, the charge injected into the central conductive part and the part which is properly connected immediately flows to the ground via the conductive part. However, if the conduction relationship on the left is incomplete, the electric charge flows out to ground via the resistance between them, and the electric charge injected into the part not in contact with the conductive part as shown on the right is applied to the conductor. It cannot flow directly and cannot easily flow out due to the insulation between them. Regarding the generation efficiency of secondary electrons by the irradiated electron beam, the value of (secondary electron amount / primary electron amount) is shown on the vertical axis as the secondary electron generation efficiency, and the acceleration voltage value (Acc) is shown on the horizontal axis. ), A peak-shaped quadratic curve characteristic that generally has a peak in a low acceleration voltage region of 1 kV or less as shown in FIG. Of course, this characteristic varies depending on the sample, but is shown as a qualitative characteristic when the beam angle is changed while the beam current is kept constant. a is a deep angle incidence, and b is a shallow angle incidence. The smaller the angle b at which the electron beam is incident is, the higher the peak of the characteristic is, and the cross point of the generation efficiency 1 is closer to the high voltage side. It is understood that this is because when the angle of incidence on the sample surface is small, electrons do not penetrate deeply into the sample and emit many secondary electrons from the surface. Considering appropriate charging efficiency for obtaining a potential difference contrast image on the sample surface, an electron beam irradiated with a low acceleration voltage of 1 kV or less at a small incident angle and having a high secondary electron generation efficiency is advantageous. The sample is irradiated with a low acceleration voltage, a large current and a shallow angle of incidence on the sample.

【0007】さて、この際の電荷注入であるが、1kV
以下の低加速電圧領域の電子ビームが使われると図2の
グラフから判るようにその領域では照射される一次電子
の数よりも飛び出す二次電子の数の方が多くなる。その
ため照射する電子の電荷は負であるけれど試料表面は結
果的に正の電荷が帯電することになる。右側未接続部分
の表面は注入された電荷が直に導電体に流出できず滞留
し正電荷を帯びて正電位になる。設計上は同様の構造と
されたものであるが、中央の正常部分の表面の電荷はア
ースに流出して零電位に、左側の欠陥部分の電荷は抵抗
を介して徐々に流出し右側の異常部分の表面は電荷が残
留して正電位になる。試料面に電位差が生じるとその部
分からの二次電子の発生効率に差が生じ、その二次電子
画像上には図1Bに示したように中央正常部分は明るく
左側欠陥部分はグレーに右異常部分は暗く映ることにな
り、他の半導体表面は絶縁状態であるので異常部分以上
に暗くなる。二次荷電粒子として二次イオンを検出した
場合は、電荷の関係が正負逆となるので、図1Cに示し
たように顕微鏡画像上の明るさの関係は逆になる。
[0007] In the charge injection at this time, 1 kV
When an electron beam in the following low acceleration voltage region is used, as can be seen from the graph of FIG. 2, in that region, the number of emitted secondary electrons becomes larger than the number of irradiated primary electrons. Therefore, although the charge of the irradiated electron is negative, the sample surface is eventually charged with a positive charge. On the surface of the unconnected portion on the right side, the injected electric charge cannot flow out to the conductor directly, stays there, takes on a positive electric charge, and becomes a positive potential. Although the structure is similar in design, the charge on the surface of the normal part in the center flows out to ground and reaches zero potential, and the charge on the defect part on the left gradually flows out through a resistor and abnormalities on the right side. The charge remains on the surface of the portion and becomes positive potential. When a potential difference occurs on the sample surface, a difference occurs in the generation efficiency of secondary electrons from that part. On the secondary electron image, as shown in FIG. 1B, the center normal part is bright and the left defect part is gray and right abnormal. The portion appears dark, and the other semiconductor surface is insulated and darker than the abnormal portion. When a secondary ion is detected as a secondary charged particle, the relationship between the charges is reversed, and the relationship between the brightness on the microscope image is reversed as shown in FIG. 1C.

【0008】さて、電荷注入用の電子ビームは1kV以
下の低加速電圧で加速された数nA〜数μAの大電流で
あって、観察用の走査集束イオンビームは高分解能の
0.1pA〜数nAの電流が用いられる。本発明はこの
異なる荷電粒子ビームの発生源を2系統にわけてそれぞ
れの条件に合わせて準備するようにしたことによって、
双方の条件を満たす電子ビーム発生源を準備しなければ
ならないという困難な課題から開放され、コストを大幅
に削減できるのである。この両荷電粒子ビームは観察領
域を例えばラスター状に主走査・副走査するようにされ
るが、別々に走査されるのではなく、同じ位置を照射す
るように同期がとられている。この主走査は図3のAに
示されるように一方向にコンスタントに掃引されるので
あるが、ミクロ的に見ると図3Bに示すように階段状に
走査される。すなわち一照射点に対し一定時間t1の電
荷注入用の大電流電子ビームが照射されると、Δt時間
のブランクをおいてt2時間観察用の電子ビームが照射
され、その間にその部分の電位に応じた二次電子が検出
される。このt1+Δt+t2がこの部分の作業時間で
あり、この1単位作業時間毎に両電子ビームの照射位置
は隣にシフトするように走査される。電荷注入用の大電
流電子ビームが照射されるt1とΔtの時間の間観察用
の電子ビームはブランキング手段によりビームが開口部
を通らないように偏向され遮蔽される。またブランク時
間Δtと観察期間t2の間は電荷注入用の大電流電子ビ
ームが開口部を通らないように偏向される。
The electron beam for charge injection has a large current of several nA to several μA accelerated by a low acceleration voltage of 1 kV or less, and the scanning focused ion beam for observation has a high resolution of 0.1 pA to several μA. A current of nA is used. The present invention divides the different charged particle beam sources into two systems and prepares them according to the respective conditions.
This relieves the difficult task of preparing an electron beam source that satisfies both conditions, and significantly reduces costs. The two charged particle beams scan the observation region in a main scanning direction and a sub scanning direction, for example, in a raster shape, but are not scanned separately but are synchronized so as to irradiate the same position. This main scanning is constantly swept in one direction as shown in FIG. 3A, but is scanned stepwise as shown in FIG. 3B when viewed microscopically. That is, when one irradiation point is irradiated with a large current electron beam for charge injection for a fixed time t1, an electron beam for observation for a time t2 with a blank for a time Δt is irradiated, and during that time, the potential is changed according to the potential of that portion. Secondary electrons are detected. This t1 + Δt + t2 is the working time of this part, and the scanning position is shifted so that the irradiation positions of both electron beams are shifted to the next every one unit working time. The electron beam for observation is deflected and blocked by the blanking means so that the beam does not pass through the opening during the time between t1 and Δt when the large current electron beam for charge injection is irradiated. Between the blank time Δt and the observation period t2, the large current electron beam for charge injection is deflected so as not to pass through the opening.

【0009】[0009]

【実施例1】図4は本発明の第1実施例の全体構成を示
す概念図である。図5はそのブランキング動作を説明す
る図である。観察用集束イオンビーム2の照射鏡筒はイ
オン銃1,集束イオンビームの加速、集束、走査手段の
他にブランキング手段4とブランキングアパーチャー5
とを含むイオン光学系3とからなり、電荷注入用電子ビ
ーム12の照射鏡筒は電子銃11,電子ビームの加速、集
束、走査手段の他にブランキング手段14とブランキング
アパーチャー15とを含む電子光学系13とからなってい
る。試料7が載置される試料ステージ6の面に対し、観
察用集束イオンビーム2は深い入射角で照射されるよう
に、電荷注入用電子ビーム12は浅い入射角で照射される
ように両鏡筒が配設される。8は二次荷電粒子検出器と
して二次電子検出器を採用し、9は二次電子のエネルギ
ーフィルターである。20は検出した二次電子の情報を信
号処理する信号処理部であり、22は観察画像等を表示す
るディスプレイそして21はシステムを制御するコントロ
ーラである。
Embodiment 1 FIG. 4 is a conceptual diagram showing an entire configuration of a first embodiment of the present invention. FIG. 5 is a diagram for explaining the blanking operation. The irradiation column of the focused ion beam 2 for observation includes an ion gun 1, a blanking means 4 and a blanking aperture 5 in addition to acceleration, focusing, and scanning means of the focused ion beam.
The irradiation column of the electron beam 12 for charge injection includes a blanking means 14 and a blanking aperture 15 in addition to the electron gun 11, acceleration, focusing, and scanning means of the electron beam. It comprises an electron optical system 13. Both surfaces of the sample stage 6 on which the sample 7 is placed are irradiated with the focused ion beam 2 for observation at a deep incident angle and the electron beam 12 for charge injection is irradiated at a shallow incident angle. A tube is provided. Reference numeral 8 denotes a secondary electron detector as a secondary charged particle detector, and reference numeral 9 denotes a secondary electron energy filter. Reference numeral 20 denotes a signal processing unit that performs signal processing on the information of the detected secondary electrons, reference numeral 22 denotes a display that displays an observation image or the like, and reference numeral 21 denotes a controller that controls the system.

【0010】試料ステージ6に図1Aに示したような半
導体素子を載置し、該半導体素子の表面の1点に低加速
大電流の電荷注入用電子ビーム12を照射鏡筒より照射す
る。この照射は半導体表面に帯電を起こさせその状態で
の二次電子顕微鏡像を得るためであるので、図2に図示
されるように二次電子発生効率のよい1kV以下の低加
速電圧領域の電子ビームが用いられ、浅い入射角度から
該半導体表面に当てられる。この照射を受けた点では当
てられた一次電子よりもはじき出される二次電子の数が
多いため、電気的には正の電荷が注入されたことにな
る。この点が左側に図示したような正常部分の表面であ
れば、該電荷は直ちに下層の導電体を介してアースに流
出してしまうものの、右側の異常部分の表面であったな
らば、該電荷は下層の導電体を介して直ちにアースに流
出することができず半導体領域と導電体との間に介在す
る絶縁部分の抵抗値に応じて徐々に流出する。また、こ
の照射点が絶縁部分であったならばその電荷は流出経路
がなくそこに帯電したままとなる。以上のように電子ビ
ームが照射された試料表面には該照射部分とアース間の
抵抗値に応じた電荷が帯電することになる。
A semiconductor device as shown in FIG. 1A is mounted on a sample stage 6, and a point on the surface of the semiconductor device is irradiated with a low-acceleration, large-current electron injection electron beam 12 from an irradiation lens barrel. This irradiation is for charging the semiconductor surface to obtain a secondary electron microscope image in that state, and as shown in FIG. 2, electrons in a low acceleration voltage region of 1 kV or less where secondary electron generation efficiency is high. A beam is used and directed at the semiconductor surface from a shallow angle of incidence. At the point of this irradiation, the number of secondary electrons repelled is larger than the number of applied primary electrons, so that electrically positive charges are injected. If this point is the surface of the normal part as shown on the left, the charge immediately flows out to the ground through the lower conductor, but if it is the surface of the abnormal part on the right, the charge Cannot immediately flow out to ground via the lower conductor, but gradually flows out according to the resistance value of the insulating portion interposed between the semiconductor region and the conductor. If the irradiation point is an insulating part, the charge has no outflow path and remains charged there. As described above, the surface of the sample irradiated with the electron beam is charged with a charge corresponding to the resistance value between the irradiated portion and the ground.

【0011】電荷注入用電子ビーム12は最初のt1時間
照射点を照射し、Δt時間のブランクをおいて観察用の
集束イオンビーム2がt2時間照射され、二次電子検出
器8により二次電子が検出されるのであるが、これらの
ビームの照射と中断はブランキング手段4,14の制御に
よって実行される。具体的には図5に示したように観察
用集束イオンビーム照射鏡筒と電荷注入用電子ビーム照
射鏡筒にはそれぞれブランキング手段4,14とブランキ
ングアパーチャー5,15があって、電子銃1,11からは
連続して放出されている電子ビームをブランキング手段
4,14によって偏向させることでブランキングアパーチ
ャー5,15の開口を通過させないで遮断させるようにす
る。すなわち、最初のt1+Δt時間の間観察用集束イ
オンビーム照射鏡筒のブランキング手段4に偏向信号を
印加して電子ビームを偏向させ、ブランキングアパーチ
ャー5の開口部を該ビームが通過できないで遮断された
状態においておき、電荷注入用電子ビーム照射鏡筒のブ
ランキング手段14にはΔt+t2の時間偏向信号を印加
して電子ビームを偏向させ、ブランキングアパーチャー
15の開口部を該ビームが通過できないで遮断された状態
にすることで、図3Bに示したような一照射点に対し一
定時間t1の電荷注入用の大電流電子ビームの照射、Δ
t時間のブランクをおいたt2時間観察用の集束イオン
ビームの照射が実現される。ビーム照射にともない試料
面からは二次電子が放出されるが観察画像を得るため二
次電子検出器8での検出を必要とするのは、t2の時間
だけであるから、該二次電子検出器8の前にグリッドの
ようなエネルギーフィルター9を設置し、電荷注入用の
ビームが照射されている時間t1は二次電子をブロック
して検出器を飽和させないようにする。この二種類の荷
電粒子ビームは別個の鏡筒の電子銃イオン銃から連続し
て放出されているものをブランキング手段によるビーム
の通過/遮蔽制御によって試料面への照射/中断を行わ
せるようにしているため、従来の一つの鏡筒で電荷注入
用と観察用を両立させた条件で電子ビームを制御してビ
ーム照射を行わせるものに比べ、各々の照射ビームの最
適条件でビームを制御できるため、操作性の面からも優
れたものとなっている。
The electron beam 12 for charge injection irradiates the irradiation point for the first t1 time, and the focused ion beam 2 for observation is irradiated for t2 time after leaving a blank for Δt time. The irradiation and interruption of these beams are executed under the control of the blanking means 4 and 14. Specifically, as shown in FIG. 5, the focused ion beam irradiation column for observation and the electron beam irradiation column for charge injection have blanking means 4, 14 and blanking apertures 5, 15, respectively. By deflecting the electron beams continuously emitted from the electron beams 11 and 11 by the blanking means 4 and 14, the electron beams are blocked without passing through the openings of the blanking apertures 5 and 15. That is, during the first time t1 + Δt, a deflection signal is applied to the blanking means 4 of the observation focused ion beam irradiation column to deflect the electron beam, and the beam is blocked because the beam cannot pass through the opening of the blanking aperture 5. The electron beam is deflected by applying a time deflection signal of Δt + t2 to the blanking means 14 of the electron beam irradiation column for charge injection to deflect the electron beam.
By setting the opening 15 to a state in which the beam cannot pass and is blocked, the irradiation of one irradiation point as shown in FIG.
Irradiation of a focused ion beam for t2 time observation with a blank for t time is realized. Secondary electrons are emitted from the sample surface due to the beam irradiation, but detection by the secondary electron detector 8 is required only for the time t2 to obtain an observation image. An energy filter 9 such as a grid is installed in front of the detector 8 to block the secondary electrons during the time t1 during which the charge injection beam is irradiated so as not to saturate the detector. These two types of charged particle beams are continuously emitted from the electron gun ion gun in separate barrels, and irradiation / interruption to the sample surface is performed by beam passing / shielding control by blanking means. Therefore, the beam can be controlled under the optimum condition of each irradiation beam as compared with the conventional one in which the electron beam is controlled by controlling the electron beam under the condition that both the charge injection and the observation are compatible with one lens barrel. Therefore, it is excellent also in terms of operability.

【0012】次にビーム走査であるが、両鏡筒からの荷
電粒子ビームは試料面上の同一点に照射される必要があ
り、かつ図3に示されたように走査される。この両荷電
粒子ビームは観察領域をラスター状に主走査・副走査す
るようにされるが、この主走査はテレビの水平走査と同
様に図3のAに示されるように一方向に一定速度で掃引
されるのであるが、ミクロ的に見ると図3Bに示すよう
に階段状に走査されることは前述のとおりである。すな
わち、個々の照射点にはt1+Δt+t2の一単位作業
時間が割り当てられ、この時間が経過する毎に隣接する
照射点にシフトするような走査がなされる。順次作業が
進み主走査方向一ラインの作業が終了したならば、副走
査方向に一つシフトした主走査方向の始点に偏向走査さ
れることで観察領域全体の走査を実行する。このビーム
走査と各単位作業時間における一定時間t1の電荷注入
用の大電流電子ビームの照射、Δt時間のブランクをお
いたt2時間観察用の集束イオンビームの照射、そして
エネルギーフィルターは互いにシンクロナイズされて制
御される必要があるが、この実施例ではコントローラ21
からの指令に基づいて両鏡筒の偏向走査手段とブランキ
ング手段4,14そしてエネルギーフィルター9がタイミ
ング制御され適正に動作するように構成されている。ま
た、両荷電粒子ビームの照射を時系列的にON/OFF
するように制御しているが、集束イオンビームの方は電
子ビーム照射期間t1中連続して照射されていても何ら
問題はない。電子ビームを照射している状態で集束イオ
ンビームによる二次電子像を得ることはできないので集
束イオンビームを照射するt2時間には電子ビームの照
射を中断させる必要があるが、集束イオンビームが電子
ビーム照射に悪影響を及ぼすことは無いからである。
Next, in the beam scanning, the charged particle beams from both lens barrels need to be irradiated to the same point on the sample surface, and are scanned as shown in FIG. The two charged particle beams scan the observation region in a main scanning direction and a sub scanning direction in a raster fashion. The main scanning is performed at a constant speed in one direction as shown in FIG. As described above, scanning is performed in a stepwise manner as shown in FIG. 3B when viewed microscopically. That is, each irradiation point is assigned one unit work time of t1 + Δt + t2, and scanning is performed such that the irradiation point shifts to an adjacent irradiation point every time this time elapses. When the operation is sequentially performed and the operation of one line in the main scanning direction is completed, the scanning of the entire observation region is performed by deflecting and scanning the starting point in the main scanning direction shifted by one in the sub-scanning direction. This beam scanning and irradiation of a large current electron beam for charge injection for a fixed time t1 in each unit working time, irradiation of a focused ion beam for observation for a time t2 with a blank of Δt time, and the energy filters are synchronized with each other. Although it needs to be controlled, in this embodiment, the controller 21
The deflection scanning means, the blanking means 4, 14 and the energy filter 9 of the two lens barrels are controlled in timing on the basis of the command from the camera so as to operate properly. In addition, irradiation of both charged particle beams is turned on / off in time series.
However, there is no problem even if the focused ion beam is continuously irradiated during the electron beam irradiation period t1. Since it is not possible to obtain a secondary electron image by the focused ion beam while the electron beam is being irradiated, it is necessary to interrupt the irradiation of the electron beam at the time t2 when the focused ion beam is irradiated. This is because there is no adverse effect on beam irradiation.

【0013】[0013]

【実施例2】次に二次荷電粒子検出器として二次イオン
検出器を採用した場合の実施例を示す。装置としての先
の例との違いは二次荷電粒子検出器として二次イオン検
出器8'を用いる点と電荷注入用のビームが照射されて
いる時間t1は二次電子をブロックして検出器を飽和さ
せないようにするエネルギーフィルタが不要であるこ
と。また、高速に両荷電粒子ビームの切替を実行するブ
ランキング機能を必ずしも必要としないという点であ
る。それは電子ビーム照射に基づいて二次イオンが発生
することはほとんど無いので、検出する二次荷電粒子が
二次イオンである場合にはノイズとなる二次イオンは存
在せず、二次電子の発生は何ら検出ノイズにはならない
ためである。この実施例では二次イオン検出タイミング
を電荷注入用のビームが照射された時間t1後のt2時
間中に実施するようにすればよい。集束イオンビームの
照射は時間t1の間OFFにしても連続照射でもよいこ
とには変わりない。そして、得られる二次イオンを検出
した顕微鏡画像は二次電子像とは反対に図1Cに示され
たように中央正常部分は最も暗く左側欠陥部分はグレー
に右異常部分は明るく映ることになり、他の半導体表面
は絶縁状態であるので異常部分以上に明るくなる。
Embodiment 2 Next, an embodiment in which a secondary ion detector is used as a secondary charged particle detector will be described. The difference from the previous example of the apparatus is that the secondary ion detector 8 'is used as the secondary charged particle detector and the time t1 during which the beam for charge injection is irradiated is such that the secondary electrons are blocked. Energy filter that does not saturate the laser is unnecessary. In addition, a blanking function for switching between both charged particle beams at high speed is not necessarily required. Since it is unlikely that secondary ions are generated based on electron beam irradiation, if the secondary charged particles to be detected are secondary ions, there are no secondary ions that cause noise, and the generation of secondary electrons Is not a detection noise at all. In this embodiment, the secondary ion detection timing may be performed during a time t2 after the time t1 when the charge injection beam is irradiated. Irradiation of the focused ion beam may be OFF or continuous during time t1. Then, as opposed to the secondary electron image, the obtained microscopic image in which the secondary ions are obtained is darkest in the central normal part, gray in the left defect part and bright in the right abnormal part as shown in FIG. 1C. Since the other semiconductor surface is in an insulating state, it becomes brighter than the abnormal portion.

【0014】[0014]

【発明の効果】本発明は、表面画像を得た外観検査から
では発見することができない半導体素子の内部欠陥に基
づくコンタクト不良などによる孤立領域を電位コントラ
スト像で発見する方法に関するものであり、観察用の高
分解能の集束イオンビームと電荷注入用の低加速大電流
の電子ビームとを要するものであるが、この二種類の荷
電粒子ビームを異なる鏡筒から得るようにしたことによ
り、通常相反する双方の条件を満たす高価な電子顕微鏡
を必要とせず、比較的安価な装置によって厄介な手間を
かけることもなくその検査を実施できるものである。ま
た、電荷注入用の低加速大電流の電子ビームを浅い入射
角から照射するようにしたので、試料表面の帯電効率が
よく鮮明な二次電子画像が得られる。更に、二種類の荷
電粒子ビームは別個の鏡筒のイオン銃電子銃から連続し
て放出されているものをブランキング手段によるビーム
の通過/遮蔽制御によって試料面への照射/中断、若し
くは連続照射を行わせるようにしているため、従来の一
つの鏡筒で電子ビーム注入用と観察用を両立させた条件
で電子ビームを制御してビーム照射を行わせるものに比
べ、各々の照射ビームの最適条件でビームを制御できる
ため操作性の面からも優れたものとなっている。さら
に、本発明では集束イオンビーム発生源を備えるもので
あるため、所期の目的の孤立領域を電位コントラスト像
で発見出来るだけでなく、イオンビームを用いたエッチ
ング加工を実行することもできるものである。
The present invention relates to a method for finding an isolated area due to a contact failure or the like based on an internal defect of a semiconductor element, which cannot be found by a visual inspection for obtaining a surface image, using a potential contrast image. Requires a high-resolution focused ion beam for scanning and a low-acceleration, high-current electron beam for charge injection. However, the two types of charged particle beams are obtained from different lens barrels, which are usually contradictory. An expensive electron microscope that satisfies both conditions is not required, and the inspection can be carried out by a relatively inexpensive device without troublesome work. In addition, since the electron beam with a low acceleration and a large current for charge injection is applied from a shallow angle of incidence, a clear secondary electron image with good charging efficiency on the sample surface can be obtained. Further, the two types of charged particle beams are continuously emitted from the ion gun electron gun in separate lens barrels. Irradiation / interruption or continuous irradiation of the sample surface by beam passing / shielding control by blanking means. Optimizing each irradiation beam compared to the conventional one that controls the electron beam under the condition that both electron beam injection and observation are compatible with a single lens barrel Because the beam can be controlled under the conditions, it is excellent in terms of operability. Further, since the present invention is provided with the focused ion beam source, not only the intended isolated region can be found in the potential contrast image, but also the etching process using the ion beam can be performed. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の動作原理を示す図で、Aは試料に電子
ビームが照射され場合の帯電状態を模式的に示した図、
Bはその二次電子観察画像を示す図、Cは二次イオン観
察画像を示す図である。
FIG. 1 is a diagram showing an operation principle of the present invention, in which A is a diagram schematically showing a charged state when a sample is irradiated with an electron beam;
B is a diagram showing a secondary electron observation image, and C is a diagram showing a secondary ion observation image.

【図2】ビームの入射角に対応する二次電子発生効率を
示すグラフである。
FIG. 2 is a graph showing a secondary electron generation efficiency corresponding to a beam incident angle.

【図3】本発明のビーム走査をを示す図で、Aは主走査
波形を示し、Bはその一部をミクロ的に示した図であ
る。
3A and 3B are diagrams showing beam scanning according to the present invention, in which A shows a main scanning waveform and B shows a part of the waveform in a microscopic manner.

【図4】本発明の実施例の主要構成を示す図である。FIG. 4 is a diagram showing a main configuration of an embodiment of the present invention.

【図5】本発明のビームブランキング動作を説明する図
である。
FIG. 5 is a diagram illustrating a beam blanking operation of the present invention.

【符号の説明】[Explanation of symbols]

1 イオン銃 2 イオンビーム 3 イオン光学系 4 ブランキング手段 5 ブランキングアパーチャー 6 試料ステージ 7 試料 8 二次荷電粒子検出器 9 エネルギィフィルター 11 電子銃 12 電子ビーム 13 電子光学系 14 ブランキング手段 15 ブランキングアパーチャー REFERENCE SIGNS LIST 1 ion gun 2 ion beam 3 ion optical system 4 blanking means 5 blanking aperture 6 sample stage 7 sample 8 secondary charged particle detector 9 energy filter 11 electron gun 12 electron beam 13 electron optical system 14 blanking means 15 blanking Aperture

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01J 37/244 H01J 37/28 Z 37/28 G01R 31/28 L ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01J 37/244 H01J 37/28 Z 37/28 G01R 31/28 L

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 試料表面に大電流電子ビームを斜めから
の角度で照射し、試料表面各部位とアース間の電気伝導
度の差に基づく電位差分布を発生させた該試料表面に、
高分解能の観察用集束イオンビームを異なる方向から照
射して二次荷電粒子顕微鏡画像を得、該画像に基づいて
前記電気伝導度の低い孤立パターンを検出する方法。
1. A sample surface which is irradiated with a large current electron beam at an oblique angle to a sample surface to generate a potential difference distribution based on a difference in electric conductivity between each portion of the sample surface and ground.
A method of irradiating a high-resolution focused ion beam for observation from different directions to obtain a secondary charged particle microscope image, and detecting the isolated pattern having low electric conductivity based on the image.
【請求項2】試料表面のある部分に一定時間大電流電子
ビームを照射した後その部分に観察用集束イオンビーム
を照射して二次荷電粒子情報を検出する作業を実行し、
続いて隣の部分に照射並びに検出作業の位置を順次シフ
トして行く走査によって観察領域の二次荷電粒子顕微鏡
画像を得る請求項1に記載の孤立パターンを検出する方
法。
2. A process of irradiating a certain portion of the sample surface with a high-current electron beam for a certain period of time and then irradiating the portion with a focused ion beam for observation to detect secondary charged particle information,
2. The method for detecting an isolated pattern according to claim 1, wherein a secondary charged particle microscope image of the observation area is obtained by scanning the position of the irradiation operation and the detection operation sequentially on the adjacent part.
【請求項3】試料ステージ上の試料に向けて集束イオン
ビームを照射する観察用集束イオンビーム照射鏡筒と二
次荷電粒子検出器と画像表示用のディスプレイからなる
走査イオン顕微鏡において、前記試料に対し斜めからの
角度で電子ビームを照射する大電流電子ビーム照射鏡筒
を別途配備し、集束イオンビームの走査と照射のON/
OFFを大電流電子ビームの走査と照射のON/OFF
に関連付けて制御することができる手段とを有する孤立
パターン検出用走査イオン顕微鏡。
3. A scanning ion microscope comprising a focused ion beam irradiation column for observation for irradiating a focused ion beam toward a sample on a sample stage, a secondary charged particle detector, and a display for image display. On the other hand, a large current electron beam irradiation column that irradiates the electron beam at an oblique angle is separately provided, and scanning and irradiation of the focused ion beam are turned ON / OFF.
OFF: ON / OFF of scanning and irradiation of high current electron beam
A scanning ion microscope for detecting an isolated pattern, comprising:
【請求項4】二次荷電粒子検出器として用いる二次電子
検出器の前にエネルギーフィルターを配設し、該エネル
ギーフィルターには両ビームの走査と照射のON/OF
Fに関連付けて電圧が印加される請求項3に記載の孤立
パターン検出用走査イオン顕微鏡。
4. An energy filter is provided in front of a secondary electron detector used as a secondary charged particle detector, and the energy filter has ON / OF of scanning and irradiation of both beams.
The scanning ion microscope for detecting an isolated pattern according to claim 3, wherein a voltage is applied in association with F.
【請求項5】前記斜めからの角度は、試料表面に対し4
5度以下の浅い角度であることを特徴とする請求項3又
は4記載の孤立パターン検出用走査イオン顕微鏡。
5. The oblique angle is 4 degrees with respect to the sample surface.
5. The scanning ion microscope for detecting an isolated pattern according to claim 3, wherein the angle is a shallow angle of 5 degrees or less.
JP2000152942A 1999-06-02 2000-05-24 Method and apparatus for detecting isolation pattern based on surface potential Pending JP2001053122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000152942A JP2001053122A (en) 1999-06-02 2000-05-24 Method and apparatus for detecting isolation pattern based on surface potential

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15532699 1999-06-02
JP11-155326 1999-06-02
JP2000152942A JP2001053122A (en) 1999-06-02 2000-05-24 Method and apparatus for detecting isolation pattern based on surface potential

Publications (2)

Publication Number Publication Date
JP2001053122A true JP2001053122A (en) 2001-02-23
JP2001053122A5 JP2001053122A5 (en) 2005-11-24

Family

ID=26483355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000152942A Pending JP2001053122A (en) 1999-06-02 2000-05-24 Method and apparatus for detecting isolation pattern based on surface potential

Country Status (1)

Country Link
JP (1) JP2001053122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7626164B2 (en) 2005-11-29 2009-12-01 Samsung Electronics Co., Ltd. Method of scanning a substrate, and method and apparatus for analyzing crystal characteristics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7626164B2 (en) 2005-11-29 2009-12-01 Samsung Electronics Co., Ltd. Method of scanning a substrate, and method and apparatus for analyzing crystal characteristics

Similar Documents

Publication Publication Date Title
US8350214B2 (en) Charged particle beam applied apparatus
CA1236223A (en) Focused ion beam processing
US6635873B1 (en) Scanning electron microscope with voltage applied to the sample
KR100309323B1 (en) Scanning electron microscopy and scanning electron microscopy
JP4795883B2 (en) Pattern inspection / measurement equipment
KR101038139B1 (en) Apparatus and method for enhancing voltage contrast of a wafer
JP3564958B2 (en) Inspection method and inspection apparatus using electron beam
TWI433197B (en) Method for observing sample surface
US6501077B1 (en) Scanning electron microscope
US6555819B1 (en) Scanning electron microscope
JP2000133194A (en) Scanning electron microscope
KR20020077457A (en) Scanning electron microscope
JPH0286036A (en) Ion micro-analyzer
US6617579B2 (en) Scanning electronic beam apparatus
JP2926132B1 (en) Secondary ion image observation method using focused ion beam
WO2005081305A1 (en) Semiconductor inspection method and system therefor
US6949745B2 (en) Electron beam apparatus
JP4450889B2 (en) Isolated pattern detection method based on surface potential and its electron microscope
JP2001053122A (en) Method and apparatus for detecting isolation pattern based on surface potential
US6642512B2 (en) Focused ion beam apparatus
US7183546B2 (en) System and method for voltage contrast analysis of a wafer
JP4658783B2 (en) Sample image forming method
JP2002251975A (en) Inspection device using electron beam and inspection method using electron beam
JP4178003B2 (en) Semiconductor circuit pattern inspection system
JP6920539B2 (en) Scanning electron microscope and its imaging method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080104

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080125