JP2000338340A - Method for expanding core diameter of optical fiber - Google Patents

Method for expanding core diameter of optical fiber

Info

Publication number
JP2000338340A
JP2000338340A JP11150606A JP15060699A JP2000338340A JP 2000338340 A JP2000338340 A JP 2000338340A JP 11150606 A JP11150606 A JP 11150606A JP 15060699 A JP15060699 A JP 15060699A JP 2000338340 A JP2000338340 A JP 2000338340A
Authority
JP
Japan
Prior art keywords
optical fiber
core diameter
heat source
core
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11150606A
Other languages
Japanese (ja)
Inventor
Takashi Izawa
隆 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP11150606A priority Critical patent/JP2000338340A/en
Publication of JP2000338340A publication Critical patent/JP2000338340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible expand the core diameter of an optical fiber without the occurrence of bending and flexing at an optical fiber at the time of a heat treatment of the optical fiber in a method for expanding the core diameter described above by a heat treatment method. SOLUTION: This method for expanding the core diameter consists in arranging a bed 2 of an optical fiber heater 1 in a direction perpendicular to a horizontal floor surface 10, disposing an optical fiber holding part 3A and an optical fiber holding part 3B respectively in the upper part and lower part of the bed 2, stretching and fixing the optical fiber F rectilinearly between a groove 7A disposed in the optical fiber holding part 3A and a groove 7B disposed in the optical fiber holding part 3B in a direction approximately perpendicular to the horizontal floor surface 10 and bringing a heat source 4 to the middle point A of the optical fiber F in this state while controlling the heat source with a heat source movement control part 6 and a heat source control part 5 to heat the point, thereby expanding the core outside diameter of the heat treated point of the optical fiber F.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、モードフィールドの大
きさの異なる光ファイバ同士或いは光ファイバと光半導
体等の光部品とを接続する際に有用な光ファイバのコア
径拡大方法に関するもので、特に光ファイバ素線に曲り
や折れ曲りを生ぜさすことなく精度良くコア外径を拡大
させることのできる光ファイバのコア径拡大方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for enlarging a core diameter of an optical fiber which is useful for connecting optical fibers having different mode fields or optical fibers and optical components such as optical semiconductors. In particular, the present invention relates to a method for enlarging the core diameter of an optical fiber that can accurately increase the core outer diameter without causing bending or bending of the optical fiber.

【0002】[0002]

【従来の技術】コア径の異なる2本の光ファイバ同士或
いは光ファイバと光半導体素子というようなモードフィ
ールドの大きさの異なるもの同士を接続する場合、接続
面における光のスポットサイズが不連続となるため伝送
損失が増大する。かかる伝送損失を低減させるために
は、光ファイバ同士或いは光ファイバと光半導体素子等
との接続面におけるモードフィールドの大きさを一致さ
せることが望ましい。この方策として、接続する相手方
の光ファイバ或いは光半導体素子等のモードフィールド
の大きさに合わせて光ファイバの接続端部のコア径を拡
大し、伝送損失を低減させる技術が広く実用に供されて
いる。
2. Description of the Related Art When two optical fibers having different core diameters or two optical fibers having different mode fields such as optical semiconductor elements are connected to each other, the spot size of the light on the connection surface may be discontinuous. Therefore, transmission loss increases. In order to reduce such transmission loss, it is desirable that the mode fields at the connection surfaces between the optical fibers or between the optical fibers and the optical semiconductor element or the like have the same size. As this measure, a technology for reducing the transmission loss by enlarging the core diameter of the connection end of the optical fiber according to the mode field size of the optical fiber or the optical semiconductor element to be connected has been widely put to practical use. I have.

【0003】上記の光ファイバのコア径拡大方法とし
て、光ファイバ素線のコア中に光の屈折率を高めるドー
パントを添加するか、または光ファイバ素線のクラッド
中に光の屈折率を下げるドーパントを添加し、このドー
パントを添加した光ファイバ素線の外周箇所を例えばマ
イクロバーナー等の熱源により加熱処理し、上記コア或
いはクラッド中のドーパントを熱拡散させることにより
コア径を拡大する方法がある。このような加熱処理方法
による場合、加熱処理する部分の光ファイバ素線は真っ
直ぐに張設保持しておく必要がある。図4は、従来のか
かる光ファイバのコア径拡大方法に用いられる光ファイ
バ素線加熱装置の側面説明図を示す。加熱装置21の基
台26は、装置の配置が容易なよう、床面27に対し平
行に置かれており、光ファイバ素線Fは基台26に設け
られた光ファイバ素線固定部22Aと固定部22B間に
床面27と平行に真っ直ぐな状態で張設保持される。光
ファイバ素線Fの張設は、光ファイバ素線固定部22A
および固定部22Bにそれぞれ設けられたV字状の溝2
3Aおよび23B内に光ファイバ素線Fを真っ直ぐに張
った状態で沿わせ、この上から押え板24Aおよび24
Bを被せて固定し行われる。このように張設した状態
で、光ファイバ素線Fの外周箇所Aにマイクロバーナー
等の熱源25を近づけ加熱処理が施される。加熱処理の
施された箇所Aのコア径は山形状に拡大形成される。こ
の後、光ファイバ素線Fは、コア径の最大拡大箇所で切
断され、この最大拡大コア径箇所を端面にして光ファイ
バフェルールに挿入され、端面研磨が施され、光ファイ
バコネクタとして使用に供せられる。
As a method for enlarging the core diameter of the optical fiber, a dopant for increasing the refractive index of light is added to the core of the optical fiber, or a dopant for lowering the refractive index of light is added to the cladding of the optical fiber. Is added, and the outer peripheral portion of the optical fiber to which the dopant is added is heated by a heat source such as a micro burner, and the dopant in the core or the clad is thermally diffused to enlarge the core diameter. In the case of such a heat treatment method, the portion of the optical fiber to be subjected to the heat treatment needs to be stretched and held straight. FIG. 4 is a side view of an optical fiber heating apparatus used in the conventional method for expanding the core diameter of an optical fiber. The base 26 of the heating device 21 is placed parallel to the floor surface 27 so that the device can be easily arranged, and the optical fiber F is connected to the optical fiber fixing portion 22A provided on the base 26. It is stretched and held between the fixing portions 22B in a straight state parallel to the floor surface 27. The extension of the optical fiber strand F is performed by the optical fiber strand fixing portion 22A.
And V-shaped grooves 2 respectively provided in the fixing portion 22B
3A and 23B, the optical fiber F is stretched in a straightened state, and the pressing plates 24A and 24
B is put on and fixed. In the state where the optical fiber F is stretched in this way, a heat source 25 such as a micro burner is brought close to the outer peripheral portion A of the optical fiber F to perform a heat treatment. The core diameter of the portion A where the heat treatment is performed is enlarged and formed in a mountain shape. Thereafter, the optical fiber F is cut at the position where the core diameter is enlarged at the maximum, the optical fiber ferrule is inserted into the optical fiber ferrule with the position at the maximum enlarged core diameter as the end face, and the end face is polished to be used as an optical fiber connector. Can be done.

【0004】[0004]

【発明が解決しようとする課題】加熱処理方法による光
ファイバのコア径の拡大方法の場合、光ファイバ素線F
の加熱箇所Aは、概ね1500°C〜2000°Cのガ
ラス転移温度近傍の温度で約1〜2分間加熱処理される
ことになる。ところが、上叙の従来の光ファイバのコア
径拡大方法では、光ファイバ素線Fは床面と平行に張設
した状態で加熱処理が施されるため、光ファイバ素線F
の加熱箇所Aにはガラス転移温度近傍の高温に曝された
状態で光ファイバ素線Fの自重が応力として加わる結
果、この加熱処理箇所Aで微小ながら下方へ垂れて湾曲
するか或いは折れ曲がる現象を生じていた。このような
光ファイバ素線Fの曲りや折れ曲がりの箇所では光ファ
イバ光軸も曲がっているため、曲りや折れ曲がりの有る
箇所を接続端面として用いた場合、接続面において接続
する相手方の光ファイバ或いは光半導体素子等との間で
光軸ずれを生じて、光の接続ロスが発生し光ファイバの
伝送損失が増大する原因となっていた。また、光ファイ
バ素線Fをフェルールへ挿入固定する場合、フェルール
の挿入孔孔径と光ファイバ素線Fの外径とのクリアラン
スは、フェルールにおける光ファイバ素線の光軸の偏心
を防ぐため、高々1〜2μm程度である。このため、光
ファイバ素線Fに曲りや折れ曲がり箇所があると、フェ
ルール挿入孔への光ファイバ素線Fの挿入作業が困難と
なり、勢いフェルールの挿入孔径を大きくせざるを得な
かった。この結果、拡径されたフェルール挿入孔内に
て、光ファイバ素線Fの光軸がフェルールの中心軸から
ずれてフェルール光軸に偏心を生じ、これがまた光ファ
イバを接続した際の接続面における相手方の光ファイバ
或いは光半導体素子等との光軸ずれを生じ、伝送損失を
生む原因となっていた。
In the case of a method for enlarging the core diameter of an optical fiber by a heat treatment method, an optical fiber strand F
Is heated at a temperature near the glass transition temperature of about 1500 ° C. to 2000 ° C. for about 1 to 2 minutes. However, in the above-described conventional method for enlarging the core diameter of an optical fiber, the optical fiber F is subjected to a heating treatment in a state of being stretched in parallel with the floor surface.
As a result of the self-weight of the optical fiber F being applied as a stress to the heated portion A in a state where the optical fiber F is exposed to a high temperature near the glass transition temperature, a phenomenon in which the optical fiber F is slightly bent downward or bent or bent at the heated portion A. Had occurred. Since the optical axis of the optical fiber is also bent at such a bent or bent portion of the optical fiber F, when a bent or bent portion is used as the connection end face, the other end of the optical fiber or the optical fiber to be connected at the connection surface is connected. An optical axis shift occurs with a semiconductor element or the like, which causes a connection loss of light and increases transmission loss of an optical fiber. In addition, when the optical fiber F is inserted into and fixed to the ferrule, the clearance between the insertion hole hole diameter of the ferrule and the outer diameter of the optical fiber F is set at most to prevent eccentricity of the optical axis of the optical fiber in the ferrule. It is about 1-2 μm. Therefore, if there is a bent or bent portion in the optical fiber F, it becomes difficult to insert the optical fiber F into the ferrule insertion hole, and the diameter of the insertion hole of the force ferrule has to be increased. As a result, in the ferrule insertion hole whose diameter has been increased, the optical axis of the optical fiber F is shifted from the central axis of the ferrule, causing eccentricity of the ferrule optical axis, and this also causes an eccentricity in the connection surface when the optical fiber is connected. An optical axis deviation from the optical fiber or the optical semiconductor element of the other party occurs, which causes transmission loss.

【0005】そこで、本発明の目的は、加熱処理方法に
よる光ファイバのコア径拡大方法において、光ファイバ
素線を加熱処理する際に光ファイバ素線に曲りや折れ曲
がりを生ぜさすことなくコア径を拡大することのできる
光ファイバのコア径拡大方法を提供することにある。
Therefore, an object of the present invention is to provide a method for enlarging the core diameter of an optical fiber by a heat treatment method, wherein the core diameter is increased without causing bending or bending of the optical fiber when the optical fiber is heated. An object of the present invention is to provide a method for enlarging an optical fiber core diameter which can be enlarged.

【0006】[0006]

【課題を解決するための手段】第1の観点では、この発
明は、光ファイバ素線を加熱処理してコア外径を拡大さ
せる光ファイバのコア径拡大方法において、光ファイバ
素線を水平面に対し略垂直方向に張設し、この略垂直方
向に張設された光ファイバ素線の外周箇所に熱源を当て
加熱処理し、該加熱処理箇所のコア外径を拡大させるこ
とを特徴とする光ファイバのコア径拡大方法を提供する
ことにある。
According to a first aspect of the present invention, there is provided a method for enlarging an outer diameter of a core of an optical fiber in which the outer diameter of the core is increased by heating the optical fiber. On the other hand, the optical fiber is stretched in a substantially vertical direction, and a heat source is applied to an outer peripheral portion of the optical fiber strand stretched in the substantially vertical direction to perform a heat treatment, thereby increasing a core outer diameter of the heat-treated portion. An object of the present invention is to provide a method for enlarging the core diameter of a fiber.

【0007】第2の観点では、この発明は、上記第1の
観点の光ファイバのコア径拡大方法において、前記光フ
ァイバ素線と前記熱源とを近づけながら前記光ファイバ
素線の光軸方向に沿って相対移動させた後、前記光ファ
イバ素線から前記熱源を遠ざけながら前記光ファイバ素
線の光軸方向に沿って相対移動させることにより、前記
光ファイバ素線の外周箇所を加熱処理することを特徴と
する光ファイバのコア径拡大方法を提供することにあ
る。
According to a second aspect, the present invention provides the method for expanding the core diameter of an optical fiber according to the first aspect, wherein the optical fiber and the heat source are brought closer to each other in the optical axis direction of the optical fiber. After the relative movement along the optical fiber, by moving the heat source away from the optical fiber and relatively along the optical axis direction of the optical fiber, the outer peripheral portion of the optical fiber is heated. An object of the present invention is to provide a method for enlarging the core diameter of an optical fiber, characterized by the following.

【0008】[0008]

【作用】本発明の光ファイバのコア径拡大方法では、光
ファイバ素線は水平面に対し略垂直方向に張設保持され
る。従って、張設された光ファイバ素線の途中箇所を加
熱処理しても、光ファイバ素線の加熱処理箇所に光ファ
イバ素線の自重が応力として加わることがないので、加
熱処理箇所に曲りや折れ曲がりの現象を生ずることがな
くなる。この結果、光ファイバ素線の曲りや折れ曲がり
に起因する接続面における相手方光ファイバや光半導体
素子等との光軸ずれがなくなり、接続損失が低減し光フ
ァイバの伝送特性が向上する。また、光ファイバ素線の
曲りや折れ曲がりがなくなるので、フェルール挿入孔へ
の光ファイバ素線Fの挿入作業が容易となり、またフェ
ルール挿入孔の拡径の必要もなくなり、フェルール挿入
孔の拡径に起因するフェルール内の光ファイバ素線Fの
光軸ずれも防止される。
In the method for enlarging the core diameter of an optical fiber according to the present invention, the optical fiber is stretched and held substantially perpendicular to the horizontal plane. Therefore, even if the middle portion of the stretched optical fiber is heated, the own weight of the optical fiber is not applied as a stress to the heated portion of the optical fiber. The phenomenon of bending does not occur. As a result, the optical axis of the mating optical fiber, the optical semiconductor element, or the like at the connection surface due to the bending or bending of the optical fiber is not shifted, and the connection loss is reduced and the transmission characteristics of the optical fiber are improved. In addition, since the optical fiber strand is not bent or bent, the work of inserting the optical fiber strand F into the ferrule insertion hole becomes easy, and it is not necessary to increase the diameter of the ferrule insertion hole. The resulting optical axis deviation of the optical fiber F in the ferrule is also prevented.

【0009】また、本発明の光ファイバのコア径拡大方
法において、光ファイバ素線と熱源とを近づけながら光
ファイバ素線の光軸方向に沿って相対移動させた後、光
ファイバ素線から熱源を遠ざけながら光ファイバ素線の
光軸方向に沿って相対移動させることにより、光ファイ
バ素線の広い範囲にわたって温度傾斜をもたせて加熱処
理を施すこができるので、コア径の拡大部分は図3に図
示するような裾の広い山形に形成させることができる。
このようなコア径拡大方法によれば、拡大コアの最大コ
ア拡大量(H)と山形に拡大されたコア部分の裾から裾
までの長さ(L)との拡大比率(H/L)を1%以下に
形成でき、かかるコア径拡大箇所を接続端面として用い
ることにより接続損失は大幅に低減される。
In the method for enlarging the core diameter of an optical fiber according to the present invention, the optical fiber and the heat source are relatively moved along the optical axis direction of the optical fiber while approaching each other. By moving relatively along the optical axis direction of the optical fiber while keeping the distance, the heating process can be performed with a temperature gradient over a wide range of the optical fiber. As shown in FIG.
According to such a core diameter enlarging method, the enlarging ratio (H / L) between the maximum core enlarging amount (H) of the enlarging core and the length (L) from the hem to the hem of the core portion enlarged in a mountain shape is determined. It can be formed to 1% or less, and the connection loss is greatly reduced by using such an enlarged core diameter portion as a connection end face.

【0010】[0010]

【実施例】以下、図に示す実施例により本発明の光ファ
イバのコア径拡大方法について詳細に説明する。なお、
これによりこの発明が限定されるものではない。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a method for enlarging the core diameter of an optical fiber according to the present invention. In addition,
This does not limit the present invention.

【0011】図1は、この発明の光ファイバのコア径拡
大方法の1実施例に用いる光ファイバ素線加熱装置の側
面説明図を示す。光ファイバ素線加熱装置1は、水平面
10に対し縦方向に配置された基台2と、基台2の上方
部と下方部にそれぞれ設けられた光ファイバ素線Fを張
設保持する光ファイバ素線保持部3Aおよび3Bと、光
ファイバ素線Fの所要箇所を加熱する熱源4と、熱源4
の熱量を制御する熱源制御部5と、熱源4を上下方向お
よび前後方向に移動させる熱源移動制御部6とから構成
される。光ファイバ素線保持部3Aおよび3Bは、加工
歪や使用時の経時歪を生じ難いジルコニア(ZrO2
などの磁性セラミック材で形成される。光ファイバ素線
保持部3Aおよび3Bにおける光ファイバ素線Fの保持
手段としては、光ファイバ素線保持部3Aおよび3Bに
それぞれV字状或いは半円状の溝7Aおよび7Bを設
け、このV字状或いは半円状溝7A、7B内に光ファイ
バ素線Fを沿わせ、この上からそれぞれに押え板8Aお
よび8Bを被せマグネットにより固定するか、或いは図
2に図示するように(図では光ファイバ素線保持部の1
方のみを示した)、光ファイバ素線保持部3Aおよび3
BのV字状或いは半円状溝7Aおよび7Bの背後にそれ
ぞれ微細な吸引孔9Aおよび9Bを設け、溝7Aおよび
7B内に沿わせた光ファイバ素線Fをこの吸引孔9Aお
よび9Bからエア吸引することにより固定する構造など
があり、いずれの構造であっても光ファイバ素線Fに損
傷を与えることなく光ファイバ素線Fを確実に固定し、
光ファイバ素線Fに伝送特性劣化の原因となる応力が加
わらないようにする。また、光ファイバ素線Fは、光フ
ァイバ素線保持部3Aと3B間に高精度な真直度で張設
保持されていることが重要である。光ファイバ素線保持
部3Aの溝7Aの中心軸と光ファイバ素線保持部3Bの
溝7Bの中心軸との同軸度に数μm程度の僅かなずれが
あっても、加熱処理の工程で光ファイバ素線Fの加熱処
理箇所Aに曲りや折れ曲りを生ずる恐れがあるからであ
る。このため、光ファイバ素線保持部3Aと3Bとは連
結部3Cを介して一体成形されていることが望ましい。
一体成形加工によれば、成形加工段階で光ファイバ素線
保持部3Aの溝7Aの中心軸と光ファイバ素線保持部3
Bの溝7Bの中心軸間の真直度を極めて高精度に形成さ
せることができるので、光ファイバ素線Fは高精度な真
直度で張設保持され、また加熱処理工程毎の光ファイバ
素線Fの張設真直度のばらつきもなくなり、加熱処理の
再現性、加熱処理作業の容易性も向上する。また、熱源
4としては、酸素とプロパンガスの混合ガスやアセチレ
ンガス等を用いたマイクロバーナーによるガス熱方式、
或いはセラミックヒータを用いた電熱方式等が挙げられ
る。
FIG. 1 is an explanatory side view of an optical fiber heating apparatus used in one embodiment of the method for enlarging the core diameter of an optical fiber according to the present invention. The optical fiber heating apparatus 1 includes an optical fiber that stretches and holds a base 2 disposed in a vertical direction with respect to a horizontal plane 10 and optical fiber wires F provided at an upper portion and a lower portion of the base 2. Wire holding units 3A and 3B, a heat source 4 for heating required portions of the optical fiber F, and a heat source 4
And a heat source movement control unit 6 for moving the heat source 4 up and down and back and forth. The optical fiber holding portions 3A and 3B are made of zirconia (ZrO 2 ), which is unlikely to cause processing distortion or temporal distortion during use.
And the like. As means for holding the optical fiber strand F in the optical fiber strand holding parts 3A and 3B, V-shaped or semicircular grooves 7A and 7B are provided in the optical fiber strand holding parts 3A and 3B, respectively. The optical fiber F is placed along the grooves 7A, 7B, 7A, 7B, and pressing plates 8A, 8B are respectively placed on the optical fibers F, and fixed by magnets, or as shown in FIG. Fiber holding part 1
The optical fiber strand holding portions 3A and 3A
The fine suction holes 9A and 9B are provided behind the V-shaped or semicircular grooves 7A and 7B of B, respectively, and the optical fiber F laid along the grooves 7A and 7B is supplied with air from the suction holes 9A and 9B. There is a structure to fix by suction, etc., and in any structure, the optical fiber F is securely fixed without damaging the optical fiber F,
The optical fiber F is prevented from being subjected to stress that causes deterioration of transmission characteristics. It is important that the optical fiber F is stretched and held between the optical fiber holders 3A and 3B with high accuracy straightness. Even if the center axis of the groove 7A of the optical fiber strand holding section 3A and the central axis of the groove 7B of the optical fiber strand holding section 3B have a slight deviation of about several μm in the coaxiality, the light is not This is because there is a possibility that the heat-treated portion A of the fiber strand F may be bent or bent. For this reason, it is desirable that the optical fiber holding portions 3A and 3B are integrally formed via the connecting portion 3C.
According to the integral molding process, the central axis of the groove 7A of the optical fiber strand holder 3A and the optical fiber strand holder 3 are formed in the molding stage.
Since the straightness between the central axes of the grooves 7B of B can be formed with extremely high precision, the optical fiber strand F is stretched and held with high precision straightness. There is no variation in the straightness of the stretched F, and the reproducibility of the heat treatment and the ease of the heat treatment work are improved. As the heat source 4, a gas heat system using a micro burner using a mixed gas of oxygen and propane gas or acetylene gas,
Alternatively, an electric heating method using a ceramic heater or the like may be used.

【0012】光ファイバ素線Fのコア径拡大加工工程
は、水平面10に対し略垂直方向に配置した光ファイバ
素線加熱装置1の一方の光ファイバ素線保持部(3Aま
たは3B)の溝(7Aまたは7B)に光ファイバ素線F
の一端を沿わせて固定した後、光ファイバ素線Fが真っ
直ぐに伸ばされる程度の張力を加えた状態で他方の光フ
ァイバ素線保持部(3Bまたは3A)の溝(7Bまたは
7A)に光ファイバ素線Fの他端を沿わせ固定する。こ
のようにして光ファイバ素線保持部3Aと3B間に光フ
ァイバ素線Fを中心軸ずれのないよう略垂直方向に真直
に張設固定する。次に、熱源4を熱源移動制御部6と熱
源制御部5により制御しながら光ファイバ素線Fの加熱
処理箇所Aに近づけ加熱する。例えば、コア外径10μ
m、クラッド外径125μmの光ファイバ素線Fのコア
径拡大処理では、加熱温度1800°C、加熱時間3
分、熱源4の光軸方向の移動幅約4mmの加熱処理条件
により、最大コア拡大量(H)が20μm、拡大コア部
分の長さ(L)が2.5mmのコア径拡大光ファイバ素
線が得られた。得られたコア径拡大光ファイバ素線には
曲りや折れ曲り等の不具合は見られず、フェルール孔へ
の挿入加工も何らの障害なく行えた。
In the process of expanding the core diameter of the optical fiber F, the groove (3A or 3B) of one optical fiber holding portion (3A or 3B) of the optical fiber heating device 1 arranged substantially perpendicular to the horizontal plane 10 is used. 7A or 7B) to the optical fiber F
Is fixed along one end of the optical fiber F, and the optical fiber F is applied to the groove (7B or 7A) of the other optical fiber wire holding portion (3B or 3A) in a state where tension is applied so that the optical fiber F is straightened. The other end of the fiber strand F is fixed along. In this manner, the optical fiber F is stretched and fixed substantially vertically in the substantially vertical direction between the optical fiber holders 3A and 3B so that there is no deviation of the central axis. Next, while controlling the heat source 4 by the heat source movement control unit 6 and the heat source control unit 5, the optical fiber F is brought close to the heat treatment location A of the optical fiber F and heated. For example, core outer diameter 10μ
m, the core diameter of the optical fiber F having a cladding outer diameter of 125 μm is increased by a heating temperature of 1800 ° C. and a heating time of 3
In accordance with a heating condition in which the width of movement of the heat source 4 in the optical axis direction is approximately 4 mm, the core diameter-enlarged optical fiber having a maximum core expansion amount (H) of 20 μm and an expanded core portion length (L) of 2.5 mm was gotten. No problems such as bending or bending were observed in the obtained core diameter enlarged optical fiber, and the insertion into the ferrule hole could be performed without any obstacle.

【0013】[0013]

【発明の効果】本発明の光ファイバのコア径拡大方法に
よれば、光ファイバ素線を水平面に対し略垂直に張設す
るという極めて簡便な手段により、光ファイバ素線に曲
りや折れ曲りを生ぜさすことなく、加熱処理により光フ
ァイバ素線のコア径を拡大することができる。この結
果、コア径拡大光ファイバ素線の曲りや折れ曲りに起因
するフェルールへの挿入不具合が解消され、光コネクタ
組立て加工の能率が大幅に向上する。また、曲りや折れ
曲りのないコア径拡大光ファイバは他の光ファイバ或い
は光半導体素子等と接続したときに、接続端面における
光軸ずれがないので、接続損失が大きく低減され伝送特
性に優れる光ファイバを提供することができる。
According to the method for enlarging the core diameter of an optical fiber of the present invention, the optical fiber is bent or bent by a very simple means of extending the optical fiber substantially perpendicularly to the horizontal plane. The heat treatment allows the core diameter of the optical fiber to be increased without causing it. As a result, the insertion failure into the ferrule due to the bending or bending of the core diameter enlarged optical fiber is eliminated, and the efficiency of the optical connector assembling process is greatly improved. In addition, when the optical fiber having an enlarged core diameter without bending or bending is connected to another optical fiber or an optical semiconductor element, there is no optical axis shift at the connection end face, so that connection loss is greatly reduced and light having excellent transmission characteristics is obtained. Fiber can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光ファイバのコア径拡大方法に用いら
れる光ファイバ素線加熱装置の1実施例を示す側面説明
図である。
FIG. 1 is an explanatory side view showing one embodiment of an optical fiber wire heating apparatus used in a method for expanding a core diameter of an optical fiber of the present invention.

【図2】本発明の光ファイバのコア径拡大方法に用いら
れる光ファイバ素線保持部の他の実施例を示す側面断面
図である。
FIG. 2 is a side sectional view showing another embodiment of the optical fiber strand holding portion used in the optical fiber core diameter enlarging method of the present invention.

【図3】本発明による光ファイバのコア径拡大部を示す
側面説明図である。
FIG. 3 is an explanatory side view showing an enlarged core diameter portion of the optical fiber according to the present invention.

【図4】従来の光ファイバのコア径拡大方法に用いられ
る光ファイバ素線加熱装置の例を示す側面説明図であ
る。
FIG. 4 is an explanatory side view showing an example of an optical fiber heating device used in a conventional method for expanding the core diameter of an optical fiber.

【符号の説明】[Explanation of symbols]

1 光ファイバ素線加熱装置 2 基台 3A,3B 光ファイバ素線保持部 3C 連結部 4 熱源 5 熱源制御部 6 熱源移動制御部 7A,7B 溝 8A,8B 押え板 9A,9B 吸引孔 10 水平面 F 光ファイバ素線 A 加熱処理箇所 H,L コア拡大部寸法 DESCRIPTION OF SYMBOLS 1 Optical fiber heating device 2 Base 3A, 3B Optical fiber wire holding part 3C Connecting part 4 Heat source 5 Heat source control part 6 Heat source movement control part 7A, 7B Groove 8A, 8B Holding plate 9A, 9B Suction hole 10 Horizontal plane F Optical fiber strand A Heat treatment location H, L Enlarged core dimensions

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバ素線を加熱処理してコア外径
を拡大させる光ファイバのコア径拡大方法において、光
ファイバ素線を水平面に対し略垂直方向に張設し、この
略垂直方向に張設された光ファイバ素線の外周箇所に熱
源を当て加熱処理し、該加熱処理箇所のコア外径を拡大
させることを特徴とする光ファイバのコア径拡大方法。
1. A method for expanding a core diameter of an optical fiber, wherein the optical fiber is expanded by heating the optical fiber to increase the outer diameter of the core, wherein the optical fiber is stretched in a direction substantially perpendicular to a horizontal plane. A method for enlarging a core diameter of an optical fiber, wherein a heat source is applied to an outer peripheral portion of the stretched optical fiber to perform heat treatment, and an outer diameter of the core at the heat-treated portion is enlarged.
【請求項2】 請求項1記載の光ファイバのコア径拡大
方法において、前記光ファイバ素線と前記熱源とを近づ
けながら前記光ファイバ素線の光軸方向に沿って相対移
動させた後、前記光ファイバ素線から前記熱源を遠ざけ
ながら前記光ファイバ素線の光軸方向に沿って相対移動
させることにより、前記光ファイバ素線の外周箇所を加
熱処理することを特徴とする光ファイバのコア径拡大方
法。
2. The optical fiber core diameter enlarging method according to claim 1, wherein the optical fiber and the heat source are relatively moved along the optical axis direction of the optical fiber while approaching the heat source. A core diameter of the optical fiber, wherein an outer peripheral portion of the optical fiber is heated by relatively moving the heat source away from the optical fiber along the optical axis direction of the optical fiber. Expansion method.
JP11150606A 1999-05-28 1999-05-28 Method for expanding core diameter of optical fiber Pending JP2000338340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11150606A JP2000338340A (en) 1999-05-28 1999-05-28 Method for expanding core diameter of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11150606A JP2000338340A (en) 1999-05-28 1999-05-28 Method for expanding core diameter of optical fiber

Publications (1)

Publication Number Publication Date
JP2000338340A true JP2000338340A (en) 2000-12-08

Family

ID=15500571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11150606A Pending JP2000338340A (en) 1999-05-28 1999-05-28 Method for expanding core diameter of optical fiber

Country Status (1)

Country Link
JP (1) JP2000338340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107504A (en) * 2009-11-19 2011-06-02 Ntt Electornics Corp Device and method for processing optical fiber
WO2012086585A1 (en) * 2010-12-20 2012-06-28 株式会社 巴川製紙所 Optical transmission medium bend working device and optical transmission medium bend working method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107504A (en) * 2009-11-19 2011-06-02 Ntt Electornics Corp Device and method for processing optical fiber
WO2012086585A1 (en) * 2010-12-20 2012-06-28 株式会社 巴川製紙所 Optical transmission medium bend working device and optical transmission medium bend working method
JP2012132972A (en) * 2010-12-20 2012-07-12 Tomoegawa Paper Co Ltd Bending work device for optical transmission medium and method for bending optical transmission medium
US9256017B2 (en) 2010-12-20 2016-02-09 Tomoegawa Co., Ltd. Optical transmission medium bend working device and optical transmission medium bend working method

Similar Documents

Publication Publication Date Title
EP0409447B1 (en) Method of making fiber optic couplers
JP5308419B2 (en) Optical fiber end processing method and optical fiber end processing apparatus
EP1293812B1 (en) Apparatus and method for heating optical fiber using electric discharge
US20020009271A1 (en) Method and apparatus for splicing optical fibers
WO2010033498A1 (en) Automatic alignment for splicing of non-circular fiber
JP2000249864A (en) Optical fiber fusion splicing device
JP2693649B2 (en) Device for expanding mode field diameter of optical fiber
JP2004205654A (en) Spot size converting optical fiber component and its manufacturing method
JP3746619B2 (en) Fusion splicing method of optical fiber
JP2000338340A (en) Method for expanding core diameter of optical fiber
JP2013142791A (en) Optical fiber processing method, optical fiber processing device, optical fiber, and optical fiber input/output structure
JP3355575B2 (en) Single mode optical fiber and method for expanding core of single mode optical fiber
US6854293B2 (en) Method for fusion splicing of optical fibers
JP2004157355A (en) Mode field diameter expanding apparatus for optical fiber
US6779930B1 (en) Systems and methods for improving reproducibility of splice loss reduction in a pre-splice heat treatment
JPH11305065A (en) Fusion splicing method for optical fiber
JP2004309878A (en) Expanding method of mode field diameter of optical fiber and expanding device therefor
JP2771737B2 (en) Fabrication method of core expanded optical fiber
JP3395365B2 (en) Tape fiber coupler manufacturing equipment
JP3140114B2 (en) Optical fixed attenuator
JP4177152B2 (en) Optical fiber connection method
JP3132187B2 (en) An apparatus for manufacturing an optical fiber coupler or a fiber type optical waveguide having an optical fiber coupler.
JP2004191915A (en) Optical connector
JP2947301B2 (en) Method of manufacturing optical fiber fused coupler and equipment used for manufacturing the same
JP2004325863A (en) Connection method of optical fiber and optical fiber having connection part