JP2000338318A - Color filter and production of this color filter - Google Patents

Color filter and production of this color filter

Info

Publication number
JP2000338318A
JP2000338318A JP11145630A JP14563099A JP2000338318A JP 2000338318 A JP2000338318 A JP 2000338318A JP 11145630 A JP11145630 A JP 11145630A JP 14563099 A JP14563099 A JP 14563099A JP 2000338318 A JP2000338318 A JP 2000338318A
Authority
JP
Japan
Prior art keywords
weight
parts
dispersion
pigment
color filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11145630A
Other languages
Japanese (ja)
Inventor
Tomohiro Inoue
智博 井上
Hiroshi Kondo
浩 近藤
Akihiko Kanemoto
明彦 金本
Motoharu Ishikawa
元治 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Ricoh Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Ricoh Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP11145630A priority Critical patent/JP2000338318A/en
Publication of JP2000338318A publication Critical patent/JP2000338318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin film color filter which is improved in the adhesive strength with an electrode substrate and is excellent in process-proofness and durability. SOLUTION: This color filer is produced by immersing the substrate having a transparent electrically conductive film into dispersion liquid in which the micelle formation of pigments having the spectroscopic characteristics of three primary colors proceeds in an aqueous medium by using a surfactant which has electrochemically oxidizable and/or reducible parts, and subjecting the substrate to the energizing treatment in such a manner that the equilibrium concentration of the surfactant in the micelle dispersion liquid is set to be 0.05-0.15 mmol/l, where the average transmissivity of 380-780 nm visible light is >=60%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はカラー液晶ディスプ
レイ等のカラー表示装置に用いるカラーフィルターとそ
の製造方法に関する。
The present invention relates to a color filter used in a color display device such as a color liquid crystal display and a method for manufacturing the same.

【0002】CRTをはじめとしたさまざまな情報表示
装置があるが、液晶表示装置は様々な分野で使用される
ようになり、特に、携帯性が要求される機器においては小
型、軽量、小消費電力であることから多くの機器に採用さ
れている。さらにカラー化技術も進み、液晶用カラーフィ
ルターの製造方法として、染色法、顔料分散法、電着法、印
刷法、ミセル電解法等さまざまなものが提案され、中には
実用化されたものもある。これらの中で、染色法、顔料分
散法、印刷法などでは、赤(R)、緑(G)、青(B)及
び、光漏れを防き、コントラストを高めるために設ける遮
光層、黒(BK)のパターン形成において、それぞれ位置
を他のパターンに対して正確に位置合わせを行う必要が
ある。たとえば、始めに黒パターンを形成し、この黒パタ
ーンに対して赤、緑、青の各パターンを精密に位置合わ
せしながら形成していく。また、カラーフィルターパター
ンと液晶駆動用電極との位置あわせも必要である。
2. Description of the Related Art There are various information display devices such as CRTs, but liquid crystal display devices are used in various fields. In particular, devices that require portability are small, light, and have low power consumption. Therefore, it is used in many devices. In addition, color technology has advanced, and various methods for producing color filters for liquid crystals, such as a dyeing method, a pigment dispersion method, an electrodeposition method, a printing method, and a micellar electrolytic method, have been proposed. is there. Among these, in the dyeing method, the pigment dispersion method, the printing method, and the like, red (R), green (G), blue (B), and a light-shielding layer provided to prevent light leakage and enhance contrast, In the pattern formation of BK), it is necessary to accurately position each position with respect to another pattern. For example, a black pattern is formed first, and the red, green, and blue patterns are formed while being precisely aligned with the black pattern. In addition, it is necessary to align the color filter pattern with the electrode for driving the liquid crystal.

【0003】この点、電着法、ミセル電解法などの電気
化学的手法では、透明電極をパターン化する際にフォト
リソグラフイー法を用いるが、このような精密な位置合
わせの必要はない。さらにミセル電解法は導電性のカラ
ーフィルター層の形成が可能であり、カラーフィルター
層上に再度液晶駆動電極を積層することなしにそのまま
カラーフィルター層を液晶駆動電極として用いる事がで
きる。このため、ミセル電解法は基本的技術の確立(J.
Am.Chem.Soc1991、113、450〜4
56、特許公報1812057、2027520、特開
平2−146001)以来、実用化に向けて種々の検討が
なされている。特に精密な位置合わせが必要ないという
事で、通常のガラス基板以外にも、プラスチックフィル
ム基板への適応性が高い。
In this respect, in electrochemical methods such as electrodeposition and micellar electrolysis, photolithography is used when patterning a transparent electrode, but such precise alignment is not required. Furthermore, the micellar electrolysis method can form a conductive color filter layer, and the color filter layer can be used as a liquid crystal drive electrode without laminating a liquid crystal drive electrode on the color filter layer again. For this reason, the micelle electrolysis method has established a basic technology (J.
Am. Chem. Soc 1991, 113, 450-4
56, Patent Publications 1812057 and 2027520, and JP-A-2-146001), various studies have been made toward practical use. In particular, since there is no need for precise alignment, it is highly applicable to plastic film substrates in addition to ordinary glass substrates.

【0004】最近では、携帯電話や電子手帳等の携帯用
機器にはプラスチックフィルムを使用した液晶表示装置
が用いられるようなった。プラスチックフィルムはその
厚さが0.1〜0.3mm程度であり、重量も軽いため
携帯用機器に最適である。さらに、バックライトを必要と
せず、小型軽量で低消費電力が達成できる反射型液晶デ
ィスプレイをプラスチックフィルムを用いてカラー化を
達成すれば大きく携帯性が向上する。
Recently, a liquid crystal display device using a plastic film has been used for portable equipment such as a mobile phone and an electronic organizer. The plastic film has a thickness of about 0.1 to 0.3 mm and is light in weight, so that it is most suitable for portable equipment. Further, if a reflection-type liquid crystal display which does not require a backlight, is small and lightweight, and can achieve low power consumption and is colorized using a plastic film, portability is greatly improved.

【0005】しかし、ミセル電解法で作製したフィルタ
ーは、他の方法に比へて、電極基板との密着性が良好では
なく、赤、緑、青の三色の薄膜を形成するのに電解を3回
繰り返すわけであるが、この場合、一度電極上に付着した
カラーフィルター色素が、他の色の電解液中に混入した
り、逆に他の色の電解液中の色素が、すでに成膜されて
いるカラーフィルター中に混入して色純度が低下するな
どの問題を引き起こしてきた。
[0005] However, the filter produced by the micellar electrolysis method does not have good adhesion to the electrode substrate as compared with other methods, and the electrolysis is required to form red, green, and blue thin films. This is repeated three times. In this case, the color filter dye that has once adhered to the electrode is mixed into the electrolyte of another color, or the dye in the electrolyte of another color is already deposited. This has caused problems such as a decrease in color purity by being mixed into the color filters used.

【0006】さらに、フレキシブルなフィルム基板や反
射型液晶ディスプレイに用いられるような膜厚で1μm
以下、可視光(380〜780nm)における平均透過
率が60%以上の薄膜カラーフィルターの場合に実用に
耐えうる密着性を有しておらず、均一カラーフィルター
を得るのが難しいのが現状である。このような問題を改
善するために、従来、分散粒子径を規定したり、電極表面
を疎水化処理するなどの対策が提案されているが、これ
らはカラーフィルターが従来の透過型液晶ディスプレイ
用として数μm以上の膜厚のものに対して効果が認めら
れ、1μm以下の薄膜の場合には十分な効果が得られて
いないのが現状である。
Further, a film having a thickness of 1 μm, such as that used for a flexible film substrate or a reflection type liquid crystal display.
Hereinafter, in the case of a thin film color filter having an average transmittance of 60% or more in visible light (380 to 780 nm), the thin film color filter does not have practically sufficient adhesion, and it is presently difficult to obtain a uniform color filter. . In order to solve this problem, measures such as defining the particle size of the dispersed particles and hydrophobizing the electrode surface have been proposed.However, these filters use color filters for conventional transmission-type liquid crystal displays. The effect is recognized for a film having a thickness of several μm or more, and a sufficient effect is not obtained in the case of a thin film having a thickness of 1 μm or less.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明は、カ
ラーフィルターと電極基板との密着性が改善され、かつ
耐プロセス牲、耐久牲の優れた薄膜カラーフィルター、
および該カラーフィルターの製造方法を提供することを
目的とする。
Accordingly, the present invention provides a thin film color filter which has improved adhesion between the color filter and the electrode substrate, and has excellent process resistance and durability.
And a method for producing the color filter.

【0008】[0008]

【課題を解決するための手段】本発明者らは、三原色の
分光特性を有する色素を水性媒体中で、電気化学的に酸
化および/または還元可能な部位を有した界面活性剤を
用いてミセル化した分散液に、透明導電薄膜を有する基
板を浸漬してカラーフィルターを製造する方法におい
て、前記ミセル分散液中の界面活性剤の平衡濃度を0.
05〜0.15mmmolとして通電処理することによ
り、密着性が良好で、耐プロセス、耐久性の優れた均一
なカラーフィルターを作製できることを見出し、本発明
に到達することができた。
Means for Solving the Problems The inventors of the present invention have proposed a method of preparing a dye having spectral characteristics of three primary colors in an aqueous medium by using a surfactant having a site capable of electrochemically oxidizing and / or reducing. In a method for producing a color filter by immersing a substrate having a transparent conductive thin film in a dispersion dispersion, the equilibrium concentration of the surfactant in the micelle dispersion is set to 0.1.
It has been found that a uniform color filter having good adhesion, excellent process resistance and excellent durability can be produced by conducting an electric current with a concentration of 0.5 to 0.15 mmol, and the present invention has been achieved.

【0009】すなわち、本発明のカラーフィルターは、
該カラーフィルターの可視光領域(380nm〜780
nm)での平均透過率を60%以上にするために薄膜
化、例えば1μmとした場合にも十分な密着力を確保で
き、特にこの効果は、透明導電薄膜を有する基板がプラ
スチックフィルム基板である場合に特に効果的である。
That is, the color filter of the present invention comprises:
The visible light region (380 nm to 780) of the color filter
nm), a sufficient adhesion can be ensured even when the thickness is reduced to, for example, 1 μm, so that the substrate having the transparent conductive thin film is a plastic film substrate. It is especially effective in cases.

【0010】本発明のカラーフィルターの製造法におい
て、前記分散液の平衡濃度を0.05mmol/l未満
では分散粒子の分散性が低下し、また、0.15mmo
l/lを越えると、1μm以下の薄膜カラーフィルター
では、電極基板との密着性が低下して均一なものが得ら
れなくなってしまう。
In the method for producing a color filter of the present invention, if the equilibrium concentration of the dispersion is less than 0.05 mmol / l, the dispersibility of the dispersed particles is reduced, and the dispersion is 0.15 mmol / l.
When the ratio exceeds 1 / l, in a thin film color filter of 1 μm or less, the adhesion to the electrode substrate is reduced, and a uniform filter cannot be obtained.

【0011】ここで、平衡濃度とは、ミセル分散液中の
分散粒子に吸着していない界面活性剤の濃度を表す。こ
の測定は、ミセル分散液調製後、十分な時間経過後に界
面活性剤の分散粒子への吸着が平衡に達してから、遠心
分離(1000rpm以上)により、分散粒子を完全に分
離し、残液中に存在する界面活性剤の濃度をFeの含有
量としてIPCなどの分析法により検出することにより
決定するものである。
Here, the equilibrium concentration indicates the concentration of the surfactant not adsorbed on the dispersed particles in the micelle dispersion. This measurement is carried out after the preparation of the micelle dispersion, after a sufficient time has elapsed, after the adsorption of the surfactant to the dispersion particles has reached equilibrium, the dispersion particles are completely separated by centrifugation (1000 rpm or more), and Is determined by detecting the concentration of the surfactant present in the sample as the Fe content by an analytical method such as IPC.

【0012】ミセル分散液の平衡濃度については、特開
平5−10397で規定されているが、その規定では、
平衡濃度が高い範囲で、特に本発明のような1μm以下
のような薄いカラーフィルターの場合に十分な効果が認
められなかった。本発明は、さらにカラーフィルターが色
素粒子と導電性粒子からなる導電性カラーフィルターで
ある場合、さらに透明導電薄膜を有する基板がプラスチ
ックフィルム基坂である場合に非常に効果的である。
The equilibrium concentration of the micelle dispersion is specified in JP-A-5-10397.
In the range where the equilibrium concentration is high, a sufficient effect was not recognized particularly in the case of a thin color filter having a thickness of 1 μm or less as in the present invention. The present invention is very effective when the color filter is a conductive color filter comprising dye particles and conductive particles, and when the substrate having the transparent conductive thin film is a plastic film base.

【0013】本発明のカラーフィルターを構成するRG
B色素膜を形成するミセル電解法について説明する。本
ミセル電解法では、三原色の分光特性を有する色素を水
性媒体中で、電気化学的に酸化および/または還元可能
な部位を有した界面活性剤を用いてミセル化した分散液
(ミセル電解液)に、透明導電薄膜を有する基板を浸漬し、
通電処理する事により色素膜からなるカラーフィルター
層を形成するものである。特に本発明は,膜厚で1μm
以下、可視光(380〜780mm)における平均透過率
が60%以上の薄膜カラーフィルターについて効果的な
ものである。
RG constituting color filter of the present invention
The micellar electrolysis method for forming the B dye film will be described. In the present micelle electrolysis method, a dispersion in which a dye having spectral characteristics of three primary colors is formed into micelles in an aqueous medium using a surfactant having a site which can be electrochemically oxidized and / or reduced.
(Micelle electrolyte), immersed the substrate having a transparent conductive thin film,
A color filter layer composed of a dye film is formed by applying a current. In particular, the present invention has a thickness of 1 μm
Hereinafter, it is effective for a thin film color filter having an average transmittance of 60% or more in visible light (380 to 780 mm).

【0014】まず、導電性基板としては、用いる界面活
性剤の酸化還元電位よりも貴な金属,導電体であること
が必要で、特に液晶セルに用いる場合、ITOのような透
明な酸化物半導体薄膜層をガラスやフィルム上に形成し
た形態が好ましく、さらに本発明では密着性の効果が大
きく効くプラスチックフィルム基板上にITO薄膜を形
成したものが特に効果的である。
First, the conductive substrate must be a metal or a conductor that is nobler than the oxidation-reduction potential of the surfactant used. In particular, when used for a liquid crystal cell, a transparent oxide semiconductor such as ITO is used. A form in which the thin film layer is formed on glass or a film is preferable, and in the present invention, a film in which an ITO thin film is formed on a plastic film substrate having a large adhesion effect is particularly effective.

【0015】前記透明導電薄膜としては、In
SnO、ZnO,CdO,TiO 、In、I
−Sn、SnO−Sbなどの酸化物半導体薄
膜、Au、Ag,Ptなどの金属薄膜、TiN、ZrNな
どの導電性窒化物薄膜等公知のものが用いられ、LCD
への応用に際しては、2×10−4Ω・cm以下の比抵
抗と80%以上の可視光透過率が必要であり、特に酸化
物半導体薄膜でITO、酸化亜鉛、酸化スズ等が好まし
い。その製法については、たとえば、スパッタリング法、
イオンプレーティング法、真空蒸着法、CVD法等の物理
的方法、印刷法、塗布法、化学蒸着法などの化学的方法が
挙げられるが、特にこれら方法に限定されるものではな
い。透明導電薄膜の膜厚としては、抵抗値や透明性の観点
から100〜2000Åが好ましい。
As the transparent conductive thin film, In2O3,
SnO2, ZnO, CdO, TiO 2, In2O3, I
n2O3-Sn, SnO2-Thin oxide semiconductor such as Sb
Film, metal thin film such as Au, Ag, Pt, TiN, ZrN
Any known conductive nitride thin film such as a thin film is used.
2 × 10-4Ω · cm or less
Anti-visible and visible light transmittance of 80% or more are required, especially oxidation
ITO, zinc oxide, tin oxide, etc. are preferred
No. For its production method, for example, sputtering method,
Physics such as ion plating, vacuum deposition, and CVD
Chemical methods such as chemical method, printing method, coating method, chemical vapor deposition method
But not particularly limited to these methods.
No. As the thickness of the transparent conductive thin film, the viewpoint of resistance value and transparency
From 100 to 2000 ° is preferred.

【0016】透明導電薄膜を形成する基板(支持体)は、
ガラス、プラスチックフィルムが挙げられ、光学特性が
問題になるLCD分野では、ガラス基坂では表面平面性
が、またフィルム基板では透明導電膜の成膜工程やデハ
イス作製工程での高温雰囲気に対する耐久性すなわち耐
熱性が求められている。前記のような特性を有するフィ
ルム基板としては、耐熱性と光学的平面性を兼ね備えた
ポリエチレンテレフタレート、ポリエチレンナフタレー
ト、ポリカーボネート、ポリエーテルスルホン、ポリイミ
ド、ポリアリレート等が挙げられる。
The substrate (support) on which the transparent conductive thin film is formed is
In the LCD field, where optical properties are problematic, such as glass and plastic films, the glass substrate has surface flatness, and the film substrate has durability against a high-temperature atmosphere in the process of forming a transparent conductive film and the process of producing de-height. Heat resistance is required. Examples of the film substrate having the above-mentioned characteristics include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyether sulfone, polyimide, and polyarylate which have both heat resistance and optical flatness.

【0017】次に、RGBの分光持性を有する色素とし
ては、ペリレン顔料、レーキ顔料、アゾ系顔料、キナクリド
ン系顔料、アントラキノン系顔料、金属置換フタロンアニ
ン系顔料、ハロゲン多置換フタロシアニン系顔料なとの
有機顔料、酸化チタン、酸化鉄、コバルト紫、コバルトブル
ーなとの無機顔料が挙げられ、これらは単独、または混合
して用いられる。さらに、色度調整用のイソインドリノン
顔料、ジスアゾ顔料などの黄色顔料、ジオキサン顔料なと
の紫色顔料などを必要に応じて用いる。これらの顔料の
粒径10μm以下、特に1μm以下が好ましい。
Next, examples of the pigments having the RGB spectral holding properties include perylene pigments, lake pigments, azo pigments, quinacridone pigments, anthraquinone pigments, metal-substituted phthalone anine pigments, and halogen polysubstituted phthalocyanine pigments. Examples thereof include inorganic pigments such as organic pigments, titanium oxide, iron oxide, cobalt violet, and cobalt blue, and these are used alone or in combination. Further, yellow pigments such as isoindolinone pigments and disazo pigments for adjusting chromaticity, and purple pigments such as dioxane pigments are used as necessary. The particle size of these pigments is preferably 10 μm or less, particularly preferably 1 μm or less.

【0018】作製した色素層に必要に応じて導電性を付
与するために、これらの色素以外に、ITOなど透明導電
性粒子を添加する。しかし、導電性粒子の添加量を増や
すと、前記透明導電性薄膜電極と色素層の密着性か低下
しやすいが、本発明においてはその影響が改善されてい
る。
In order to impart conductivity to the prepared dye layer, if necessary, transparent conductive particles such as ITO are added in addition to these dyes. However, when the amount of the conductive particles added is increased, the adhesion between the transparent conductive thin-film electrode and the dye layer is apt to decrease, but the effect is improved in the present invention.

【0019】これら疎水性の物質をミセル化する際に用
いるフェロセン誘導体界面活性剤は、電解反応に必要な
フェロセン部位と非イオン性、カチオン性、アニオン性の
界面活性部位を合わせ持ち、特開昭63−24329
8、特開平1−216894、特開平1−45370、特
開平2−88387、特開平2−96585、特開平2−
250892に開示されているが、特にこれらに限定さ
れない。
Ferrocene derivative surfactants used for converting these hydrophobic substances into micelles have both a ferrocene site necessary for an electrolytic reaction and a nonionic, cationic, or anionic surface active site. 63-24329
8, JP-A-1-216894, JP-A-1-45370, JP-A-2-88387, JP-A-2-96585, JP-A-2-
250892, but is not limited thereto.

【0020】ミセル電解液の水性媒体としては、水を初
めこれにアルコール、アセトンなどの有機溶媒を必要に
応じて混合して用いる。また、ミセル電解液中には、水性
媒体の電気伝導度を調節するために、必要に応じて支持
電解質を添加する。この支持電解質としては、アルカリ金
属、アルカリ土類金属、などの硫酸塩、ハロゲン化物、酢酸
塩、水溶性酸化物など、一般に広く用いられているものが
用いられる。
As the aqueous medium of the micelle electrolyte, water is mixed with an organic solvent such as alcohol or acetone, if necessary, and then used. In addition, a supporting electrolyte is added to the micelle electrolyte as needed in order to adjust the electric conductivity of the aqueous medium. As the supporting electrolyte, generally used ones such as sulfates, halides, acetates, and water-soluble oxides of alkali metals and alkaline earth metals are used.

【0021】上記材料を用いて、ミセル電解液を調製す
るには上記水性媒体中に色素、酸化還元可能な界面活性
剤、必要に応じて導電性粒子、支持電解質などを入れて、
ホモジナイザー、三本ロールミル、サンドミル、パールミ
ル、スターラーなどの分散方法で、均一に分散、あるいは
可溶化する。ここで、分散液中の色素濃度は1〜500
g/lが好ましく、界面活性剤の全濃度は0.1mmo
l/lとし、平衡濃度は前述のように、0.05〜0.1
5mol/lとすることが必要となる。
In order to prepare a micelle electrolyte using the above-mentioned materials, a dye, a redox-reducible surfactant, and, if necessary, conductive particles and a supporting electrolyte are added to the aqueous medium.
The dispersion is uniformly dispersed or solubilized by a dispersion method such as a homogenizer, a three-roll mill, a sand mill, a pearl mill, or a stirrer. Here, the pigment concentration in the dispersion is 1 to 500.
g / l is preferred and the total surfactant concentration is 0.1 mmol
1 / l, and the equilibrium concentration is 0.05 to 0.1 as described above.
It is necessary to be 5 mol / l.

【0022】前記のようにして調製したミセル電解液を
用いて色素薄膜を作製するには、導電性基板を電解液中
に浸漬し通電処理するが、電解条件としては用いる界面
活性剤の酸化還元電位以上で、水素発生電位以下の電圧
で行なう。具体的には、0.1〜1.5V、電流密度は1
mA/cm以下が好ましく、定電位、定電流などの電解
方法にて行なう。このような条件で電解するとミセル電
解法の原理に従って、所望の色素薄膜が形成する。
In order to prepare a dye thin film using the micelle electrolyte solution prepared as described above, a conductive substrate is immersed in the electrolyte solution and an electric current is applied. It is performed at a voltage higher than the potential and lower than the hydrogen generation potential. Specifically, 0.1 to 1.5 V, current density is 1
mA / cm 2 or less is preferable, and it is performed by an electrolysis method such as constant potential and constant current. When electrolysis is performed under such conditions, a desired dye thin film is formed according to the principle of the micelle electrolysis method.

【0023】色素層の膜厚は、カラーフィルターとして
の所望の色特性によって左右されるが、上記電解条件に
よって0.1〜10μm程度の制御は可能である。ただ
し、これまでは膜厚が1μm以下の場合、透明導電薄膜
と色素層の密着性が特に悪く、薄膜化して透過率を重視
した反射型液晶ティスプレイ用カラーフィルターへの応
用が困難であった。これらの問題が、本発明によって改
善され、反射型液晶ディスプレイ用カラーフィルターへ
の応用も可能となった。
The thickness of the dye layer depends on the desired color characteristics of the color filter, but can be controlled to about 0.1 to 10 μm depending on the above-mentioned electrolysis conditions. However, in the past, when the film thickness was 1 μm or less, the adhesion between the transparent conductive thin film and the dye layer was particularly poor, and it was difficult to apply the film to a color filter for a reflective liquid crystal display, which was made thinner and focused on transmittance. . These problems have been improved by the present invention, and application to a color filter for a reflection type liquid crystal display has become possible.

【0024】薄膜形成後は、必要に応じて洗浄、乾燥を行
ない保護層を設けてもよい。保護層は、液晶駆動に影響せ
すに、色素層の機械的強度を向上、色素層と液晶層とのブ
ロッキング層としての効果が求められ、透明で溶剤剤性
に優れたものが好ましく、アクリル系、エステル系、ポリ
イミト系、環化ゴム系、シロキサン系、エポキン系なとの
透明光硬化性レジスト硬化物、透明熱硬化性樹脂硬化物
なとが用いられる。
After the formation of the thin film, if necessary, washing and drying may be performed to provide a protective layer. The protective layer is required to improve the mechanical strength of the dye layer and to act as a blocking layer between the dye layer and the liquid crystal layer. A transparent light-curable resist cured product such as a resin, an ester, a polyimito, a cyclized rubber, a siloxane, and an epoxy resin, and a cured transparent thermosetting resin are used.

【0025】以下、本発明の実施例を示す。Hereinafter, embodiments of the present invention will be described.

【0026】[0026]

【実施例】製造例1 (1)赤色顔料分散液の調整 下記式(1)で表されたフェロセン誘導体界面活性剤I
DFE8.20重量部、赤色顔料(C.Iピグメントレ
ッド177)50.0重量部、臭化リチウム1水和物
1.05重量部を純水1000重量部に加え混合し、超
音波ホモジナイザーを用いて分散した後、1000rp
mで遠心分離し粗大粒子を除去した。この分散分級した
顔料分散液を0.15重量%の臭化リチウム1水和物を
含有するIDFE水溶液で希釈し、固形分濃度2.0重
量%、IDFEの平衡濃度100μg/mlの赤色顔料
(C.Iピグメントレッド177分散液)となるように
調整した。
EXAMPLES Production Example 1 (1) Preparation of red pigment dispersion liquid Ferrocene derivative surfactant I represented by the following formula (1)
8.20 parts by weight of DFE, 50.0 parts by weight of a red pigment (CI Pigment Red 177), and 1.05 parts by weight of lithium bromide monohydrate are added to 1000 parts by weight of pure water, mixed, and then used with an ultrasonic homogenizer. 1000 rp after dispersion
m to remove coarse particles. This dispersed and classified pigment dispersion is diluted with an IDFE aqueous solution containing 0.15% by weight of lithium bromide monohydrate, and a red pigment having a solid content of 2.0% by weight and an equilibrium concentration of IDFE of 100 μg / ml ( C. I Pigment Red 177 dispersion).

【0027】フェロセン誘導体界面活性剤IDFE9.
45重量部、黄色顔料(C.Iピグメントイエロー8
3)50.0重量部、臭化リチウム1水和物11.05
重量部を純水1000重量部に加え混合し、超音波ホモ
ジナイザーを用いて分散後、1000rpmで遠心分離
し粗大粒子を除去した。この分散分級した顔料分散液を
0.105重量%の臭化リチウム1水和物を含有するI
DFE水溶液で希釈し、固形分濃度2.0重量%、IDF
Eの平衡濃度100μg/mlの黄色顔料(C.Iピグ
メントイエロー83)分散液となるように調整した。上
記、赤色顔料(C.Iピグメントレッド177)分散液
75重量部と黄色顔料(C.Iピグメントイエロー8
3)分散液25重量部を混合し赤色顔料分散液を調整し
た。
Ferrocene derivative surfactant IDFE9.
45 parts by weight of a yellow pigment (CI Pigment Yellow 8)
3) 50.0 parts by weight, lithium bromide monohydrate 11.05
The weight part was added to 1000 parts by weight of pure water, mixed and dispersed using an ultrasonic homogenizer, and then centrifuged at 1000 rpm to remove coarse particles. The dispersion-classified pigment dispersion was treated with I containing 0.105% by weight of lithium bromide monohydrate.
Diluted with DFE aqueous solution, solid content concentration 2.0% by weight, IDF
E was adjusted to be a dispersion of a yellow pigment (CI Pigment Yellow 83) having an equilibrium concentration of 100 µg / ml. 75 parts by weight of the above red pigment (CI Pigment Red 177) dispersion and the yellow pigment (CI Pigment Yellow 8)
3) A red pigment dispersion was prepared by mixing 25 parts by weight of the dispersion.

【化1】 Embedded image

【0028】(2)緑色顔料分散液の調整 フェロセン誘導体界面活性剤IDFE8.00重量部、
緑色顔料(C.Iピグメントグリーン36)50.0重
量部、臭化リチウム1水和物1.05重量部を純水10
00重量部に加え混合し、超音波ホモジナイザーを用い
て分散した後、8000rpmで遠心分離し粗大粒子を
除去した。この分散分級した顔料分散液を0.105重
量%の臭化リチウム1水和物を含有するIDFE水溶液
で希釈し固形分濃度2.0重量%、IDFEの平衡濃度
100μg/mlの緑色顔料(C.Iピグメントグリー
ン36)分散液となるように調整した。
(2) Preparation of Green Pigment Dispersion 8.00 parts by weight of a ferrocene derivative surfactant IDFE
50.0 parts by weight of a green pigment (CI Pigment Green 36) and 1.05 parts by weight of lithium bromide monohydrate were added to 10 parts of pure water.
The mixture was added to 00 parts by weight, mixed and dispersed using an ultrasonic homogenizer, and then centrifuged at 8000 rpm to remove coarse particles. This dispersed and classified pigment dispersion was diluted with an IDFE aqueous solution containing 0.105% by weight of lithium bromide monohydrate to obtain a green pigment (C) having a solid content of 2.0% by weight and an equilibrium concentration of IDFE of 100 μg / ml (C .I Pigment Green 36) It was adjusted to be a dispersion.

【0029】フェロセン誘導体界面活性剤IDFE9.
45重量部、黄色顔料(C.Iピグメントイエロー8
3)50.0重量部、臭化リチウム1水和物11.05
重量部を純水1000重量部に加え混合し,超音波ホモ
ジナイザーを用いて分散後10000rpmで遠心分離
し粗大粒子を除去した。この分散分級した顔料分散液を
0.105重量%の臭化リチウム1水和物を含有するI
DFE水溶液で希釈し、固形分濃度2.0重量%、IDF
Eの平衡濃度100μg/mlの黄色顔料(C.Iピグ
メントイエロー83)分散液となるように調整した。上
記、緑色顔料(C.Iピグメントグリーン36)分散液
82.5重量部と黄色顔料(C.Iピグメントイエロー
83)分散液17.5重量部を混合し緑色顔料分散液を
調整した。この緑色顔料分散液の平衡濃度は100μg
/mlであった。
Ferrocene derivative surfactant IDFE9.
45 parts by weight of a yellow pigment (CI Pigment Yellow 8)
3) 50.0 parts by weight, lithium bromide monohydrate 11.05
The weight part was added to 1000 parts by weight of pure water, mixed and dispersed using an ultrasonic homogenizer, followed by centrifugation at 10,000 rpm to remove coarse particles. The dispersion-classified pigment dispersion was treated with I containing 0.105% by weight of lithium bromide monohydrate.
Diluted with DFE aqueous solution, solid content concentration 2.0% by weight, IDF
E was adjusted to be a dispersion of a yellow pigment (CI Pigment Yellow 83) having an equilibrium concentration of 100 µg / ml. 82.5 parts by weight of the dispersion of the green pigment (CI Pigment Green 36) and 17.5 parts by weight of the dispersion of the yellow pigment (CI Pigment Yellow 83) were mixed to prepare a green pigment dispersion. The equilibrium concentration of this green pigment dispersion is 100 μg
/ Ml.

【0030】(3)青色顔料分散液の調整 フェロセン誘導体界面活性剤IDFE10.80重量
部、青色顔料(C.Iピグメントブルー15:6)5
0.0重量部、臭化リチウム1水和物1.05重量部を
純水1000重量部に加え混合し、超音波ホモジナイザ
ーを用いて分散した後、1000rpmで遠心分離し粗
大粒子を除去した。この分散分散した顔料分散液を0.
105重量%の臭化リチウム1水和物を含有するIDF
E水溶液で希釈し、固形分濃度2.0重量%、IDFEの
平衡濃度100μg/mlの青色顔料(C.Iピグメン
トブルー15:6)分散液となるように調整した。
(3) Preparation of blue pigment dispersion liquid Ferrocene derivative surfactant IDFE 10.80 parts by weight, blue pigment (CI pigment blue 15: 6) 5
0.0 parts by weight and 1.05 parts by weight of lithium bromide monohydrate were added to 1000 parts by weight of pure water, mixed, dispersed by using an ultrasonic homogenizer, and then centrifuged at 1000 rpm to remove coarse particles. The pigment dispersion obtained by dispersing and dispersing the pigment is used in 0.1.
IDF containing 105% by weight lithium bromide monohydrate
The mixture was diluted with an aqueous solution E to prepare a dispersion of a blue pigment (CI Pigment Blue 15: 6) having a solid content of 2.0% by weight and an equilibrium concentration of IDFE of 100 μg / ml.

【0031】(4)導電性酸化錫分散液の調整 フェロセン誘導体界面活性剤IDFE16.6重量部、
イソブチルトリメトキシシシランで疎水化処理した導電
性酸化錫200重量部、臭化リチウム1水和物1.05
重量部を純水1000重量部に加え混合し、超音波ホモ
ジナイザーを用いて分散した後、3000rpmで遠心
分離し粗大粒子を除去した。この分散分級した顔料分散
液を0.105重量%の臭化リチウム1水和物を含有す
るIDFE水溶液で希釈し、固形分濃度8.0重量%、I
DFEの平衡濃度100μg/mlの導電性酸化錫分散
液となるように調整した。
(4) Preparation of Conductive Tin Oxide Dispersion Ferrocene Derivative Surfactant IDFE 16.6 parts by weight,
200 parts by weight of conductive tin oxide hydrophobized with isobutyltrimethoxysilane, lithium bromide monohydrate 1.05
The weight part was added to 1000 parts by weight of pure water, mixed, dispersed using an ultrasonic homogenizer, and then centrifuged at 3000 rpm to remove coarse particles. This dispersion-classified pigment dispersion was diluted with an IDFE aqueous solution containing 0.105% by weight of lithium bromide monohydrate, and the solid content concentration was 8.0% by weight.
It was adjusted to be a conductive tin oxide dispersion having an equilibrium concentration of DFE of 100 μg / ml.

【0032】製造例2 (1)赤色顔料分散液の調整 前式(1)で表されたフェロセン誘導体界面活性剤ID
FE8.20重量部、赤色顔料(C.Iピグメントレッ
ド177)50.0重量部、臭化リチウム1水和物1.
05重量部を純水1000重量部に加え混合し、超音波
ホモジナイザーを用いて分散した後、1000rpmで
遠心分離し粗大粒子を除去した。この分散分級した顔料
分散液を0.15重量%の臭化リチウム1水和物を含有
するIDFE水溶液で希釈し、固形分濃度2.0重量%、
IDFEEの平均濃度70μg/mlの赤色顔料(C.
Iピグメントレッド177分散液)となるように調整し
た。
Production Example 2 (1) Preparation of Red Pigment Dispersion Ferrocene Derivative Surfactant ID Represented by Formula (1)
8.20 parts by weight of FE, 50.0 parts by weight of red pigment (CI Pigment Red 177), lithium bromide monohydrate
05 parts by weight were added to 1000 parts by weight of pure water, mixed, dispersed using an ultrasonic homogenizer, and then centrifuged at 1000 rpm to remove coarse particles. This dispersed and classified pigment dispersion was diluted with an IDFE aqueous solution containing 0.15% by weight of lithium bromide monohydrate, and the solid content concentration was 2.0% by weight.
Red pigment having an average concentration of IDFEE of 70 μg / ml (C.I.
I Pigment Red 177 dispersion).

【0033】フェロセン誘導体界面活性剤IDFE9.
45重量部、黄色顔料(C.Iピグメントイエロー8
3)50.0重量部、臭化リチウム1水和物11.05
重量部を純水1000重量部に加え混合し、超音波ホモ
ジナイザーを用いて分散後、1000rpmで遠心分離
し粗大粒子を除去した。この分散分級した顔料分散液を
0.105重量%の臭化リチウム1水和物を含有するI
DFE水溶液で希釈し、固形分濃度2.0重量%、IDF
Eの平衡濃度70μg/mlの黄色顔料(C.Iピグメ
ントイエロー83)分散液となるように調整した。上
記、赤色顔料(C.Iピグメントレッド177)分散液
75重量部と黄色顔料(C.Iピグメントイエロー8
3)分散液25重量部を混合し赤色顔料分散液を調整し
た。この赤色顔料分散液の平衡濃度は70μg/mlで
あった。
Ferrocene derivative surfactant IDFE9.
45 parts by weight of a yellow pigment (CI Pigment Yellow 8)
3) 50.0 parts by weight, lithium bromide monohydrate 11.05
The weight part was added to 1000 parts by weight of pure water, mixed and dispersed using an ultrasonic homogenizer, and then centrifuged at 1000 rpm to remove coarse particles. The dispersion-classified pigment dispersion was treated with I containing 0.105% by weight of lithium bromide monohydrate.
Diluted with DFE aqueous solution, solid content concentration 2.0% by weight, IDF
E was adjusted to be a dispersion of a yellow pigment (CI Pigment Yellow 83) having an equilibrium concentration of 70 μg / ml. 75 parts by weight of the above red pigment (CI Pigment Red 177) dispersion and the yellow pigment (CI Pigment Yellow 8)
3) A red pigment dispersion was prepared by mixing 25 parts by weight of the dispersion. The equilibrium concentration of this red pigment dispersion was 70 μg / ml.

【0034】(2)緑色顔料分散液の調整 フェロセン誘導体界面活性剤IDFE8.00重量部、
緑色顔料(C.Iピグメントグリーン36)50.0重
量部、臭化リチウム1水和物1.05重量部を純水10
00重量部に加え混合し、超音波ホモジナイザーを用い
て分散した後、8000rpmで遠心分離し粗大粒子を
除去した。この分散分級した顔料分散液を0.105重
量%の臭化リチウム1水和物を含有するIDFE水溶液
で希釈し固形分濃度2.0重量%、IDFEの平衡濃度
100μg/mlの緑色顔料(C.Iピグメントグリー
ン36)分散液となるように調整した。
(2) Preparation of Green Pigment Dispersion 8.00 parts by weight of a ferrocene derivative surfactant IDFE
50.0 parts by weight of a green pigment (CI Pigment Green 36) and 1.05 parts by weight of lithium bromide monohydrate were added to 10 parts of pure water.
The mixture was added to 00 parts by weight, mixed and dispersed using an ultrasonic homogenizer, and then centrifuged at 8000 rpm to remove coarse particles. This dispersed and classified pigment dispersion was diluted with an IDFE aqueous solution containing 0.105% by weight of lithium bromide monohydrate to obtain a green pigment (C) having a solid content of 2.0% by weight and an equilibrium concentration of IDFE of 100 μg / ml (C .I Pigment Green 36) It was adjusted to be a dispersion.

【0035】フェロセン誘導体界面活性剤IDFE9.
45重量部、黄色顔料(C.Iピグメントイエロー8
3)50.0重量部、臭化リチウム1水和物11.05
重量部を純水1000重量部に加え混合し、超音波ホモ
ジナイザーを用いて分散した後1000rpmで遠心分
離し粗大粒子を除去した。この分散分級した顔料分散液
を0.105重量%の臭化リチウム1水和物を含有する
IDFE水溶液で希釈し、固形分濃度2.0重量%、ID
FEの平衡濃度60μg/mlの黄色顔料(C.Iピグ
メントイエロー83)分散液となるように調整した。上
記、緑色顔料(C.Iピグメントグリーン36)分散液
82.5重量部と黄色顔料(C.Iピグメントイエロー
83)分散液17.5重量部を混合し緑色顔料分散液を
調整した。この緑色顔料分散液の平衡濃度は60μg/
mlであった。
Ferrocene derivative surfactant IDFE9.
45 parts by weight of a yellow pigment (CI Pigment Yellow 8)
3) 50.0 parts by weight, lithium bromide monohydrate 11.05
The weight part was added to 1000 parts by weight of pure water, mixed, dispersed using an ultrasonic homogenizer, and then centrifuged at 1000 rpm to remove coarse particles. This dispersed and classified pigment dispersion was diluted with an IDFE aqueous solution containing 0.105% by weight of lithium bromide monohydrate, and the solid content concentration was 2.0% by weight.
The dispersion was adjusted to be a dispersion of a yellow pigment (CI Pigment Yellow 83) having an FE equilibrium concentration of 60 μg / ml. 82.5 parts by weight of the dispersion of the green pigment (CI Pigment Green 36) and 17.5 parts by weight of the dispersion of the yellow pigment (CI Pigment Yellow 83) were mixed to prepare a green pigment dispersion. The equilibrium concentration of this green pigment dispersion is 60 μg /
ml.

【0036】(3)青色顔料分散液の調整 フェロセン誘導体界面活性剤IDFE10.80重量
部、青色顔料(C.Iピグメントブルー15:6)5
0.0重量部、臭化リチウム1水和物1.05重量部を
純水1000重量部に加え混合し、超音波ホモジナイザ
ーを用いて分散した後、1000rpmで遠心分離し粗
大粒子を除去した。この分散分散した顔料分散液を0.
105重量%の臭化リチウム1水和物を含有するIDF
E水溶液で希釈し、固形分濃度2.0重量%、IDFEの
平衡濃度50μg/mlの青色顔料(C.Iピグメント
ブルー15:6)分散液となるように調整した。
(3) Preparation of Blue Pigment Dispersion Ferrocene derivative surfactant IDFE 10.80 parts by weight, blue pigment (CI Pigment Blue 15: 6) 5
0.0 parts by weight and 1.05 parts by weight of lithium bromide monohydrate were added to 1000 parts by weight of pure water, mixed, dispersed by using an ultrasonic homogenizer, and then centrifuged at 1000 rpm to remove coarse particles. The pigment dispersion obtained by dispersing and dispersing the pigment is used in 0.1.
IDF containing 105% by weight lithium bromide monohydrate
The mixture was diluted with an aqueous solution E to prepare a dispersion of a blue pigment (CI Pigment Blue 15: 6) having a solid content of 2.0% by weight and an equilibrium concentration of IDFE of 50 μg / ml.

【0037】(4)導電性酸化錫分散液の調整 フェロセン誘導体界面活性剤IDFE16.6重量部、
イソブチルトリメトキシシシランで疎水化処理した導電
性酸化錫200重量部、臭化リチウム1水和物1.05
重量部を純水1000重量部に加え混合し、超音波ホモ
ジナイザーを用いて分散した後、3000rpmで遠心
分離し粗大粒子を除去した。この分散分級した顔料分散
液を0.105重量%の臭化リチウム1水和物を含有す
るIDFE水溶液で希釈し、固形分濃度8.0重量%、I
DFEの平衡濃度50μg/mlの導電性酸化錫分散液
となるように調整した。
(4) Preparation of Conductive Tin Oxide Dispersion Ferrocene Derivative Surfactant IDFE 16.6 parts by weight,
200 parts by weight of conductive tin oxide hydrophobized with isobutyltrimethoxysilane, lithium bromide monohydrate 1.05
The weight part was added to 1000 parts by weight of pure water, mixed, dispersed using an ultrasonic homogenizer, and then centrifuged at 3000 rpm to remove coarse particles. This dispersion-classified pigment dispersion was diluted with an IDFE aqueous solution containing 0.105% by weight of lithium bromide monohydrate, and the solid content concentration was 8.0% by weight.
It was adjusted to be a conductive tin oxide dispersion having an equilibrium concentration of DFE of 50 μg / ml.

【0038】実施例1 透明導電膜を成膜したガラス基板(ジオマテック社製
面抵抗20Ω/□、厚さ1200Å ガラス;ガラスコ
ーニンク社製#7059)を、110μmピッチ、巾90
μm、960本のストライプ状に通常のフォトリソ法で
加工した。次に、上記パタニーング電極上にRGBカラー
フィルター層を形成するために、ミセル電解液を以下の
ようにして作製した。
Example 1 A glass substrate on which a transparent conductive film was formed (manufactured by Geomatic Corporation)
Surface resistance: 20Ω / □, thickness: 1200 mm. Glass: # 7059 manufactured by Glass Konink Co., Ltd., pitch: 110 μm, width: 90
960 μm stripes were processed by the usual photolithography method. Next, in order to form an RGB color filter layer on the patterning electrode, a micelle electrolyte was prepared as follows.

【0039】(1)赤のミセル電解液 製造例1で調整した赤色顔料分散液30重量部と導電性
酸化錫分散液20重量部を混合し、0.105重量%の
臭化リチウム1水和物水溶液50重量部で希釈し、赤色
ミセル電解液を調整した。なお、得られたミセル電解液
の平衡濃度は、50μg/ml、すなわち0.054m
mol/mlであった。 (2)緑のミセル電解液 製造例1で調整した緑色顔料分散液30重量部と導電性
酸化錫分散液27.75重量部を混合し、0.105重
量%の臭化リチウム1水和物を含有するIDFE75μ
g/ml水溶液液42.25重量部で希釈し、緑色ミセ
ル電解液を調整した。なお、得られたミセル電解液の平
衡濃度は、89μg/ml、すなわち0.096mmo
l/mlであった。 (3)青のミセル電解液 製造例1で調整した青色顔料分散液18.75重量部と
導電性酸化錫分散液33.75重量部を混合し、0.1
05重量%の臭化リチウム1水和物を含有するIDFE
100μg/ml水溶液液47.50重量部で希釈し、
青色ミセル電解液を調整した。なお、得られたミセル電
解液の平衡濃度は、100μg/ml、すなわち0.1
08mmol/mlであった。
(1) Red Micelle Electrolyte 30 parts by weight of the red pigment dispersion prepared in Production Example 1 and 20 parts by weight of the conductive tin oxide dispersion were mixed, and 0.105% by weight of lithium bromide monohydrate was mixed. The resulting solution was diluted with 50 parts by weight of an aqueous solution to prepare a red micelle electrolyte. The equilibrium concentration of the obtained micellar electrolyte was 50 μg / ml, that is, 0.054 m
mol / ml. (2) Green Micelle Electrolyte 30 parts by weight of the green pigment dispersion prepared in Production Example 1 and 27.75 parts by weight of the conductive tin oxide dispersion were mixed together to form 0.105% by weight of lithium bromide monohydrate. Containing IDFE 75μ
The solution was diluted with 42.25 parts by weight of a g / ml aqueous solution to prepare a green micelle electrolyte. The equilibrium concentration of the obtained micellar electrolyte was 89 μg / ml, that is, 0.096 mmol.
1 / ml. (3) Blue micelle electrolyte 18.75 parts by weight of the blue pigment dispersion prepared in Production Example 1 and 33.75 parts by weight of the conductive tin oxide dispersion were mixed, and the mixture was added in an amount of 0.1%.
IDFE containing 05% by weight of lithium bromide monohydrate
Diluted with 47.50 parts by weight of a 100 μg / ml aqueous solution,
A blue micelle electrolyte was prepared. The equilibrium concentration of the obtained micellar electrolyte was 100 μg / ml, that is, 0.1 g / ml.
08 mmol / ml.

【0040】このようにして調製した赤の電解液に前記
透明電極を浸漬したのち、2本おきの透明電極に0.5
V(vsAg/Agcl)の定電位電解を1mC/cm
の積算電荷量だけ行ない、選択した電極上に赤の導電
性カラーフィルター層を形成した。これを電解液から取
り出して、純水で洗浄前後における可視光(380〜7
80nm)平均透過率(Ref:透明導電膜を含まない
基板)を測定した。以下同様にして、緑の電解液、青の電解
液で電解を行ない、純水で洗浄前後における可視光(3
80〜780nm)平均透過率を測定し、表1に示した。
After the transparent electrode was immersed in the red electrolyte solution thus prepared, 0.5%
V (vsAg / Agcl) at 1 mC / cm
2 , and a red conductive color filter layer was formed on the selected electrode. This was taken out of the electrolytic solution, and visible light (380 to 7) before and after washing with pure water.
80 nm) average transmittance (Ref: substrate not containing a transparent conductive film) was measured. In the same manner, electrolysis is performed with a green electrolyte solution and a blue electrolyte solution, and visible light (3
(80-780 nm) The average transmittance was measured and is shown in Table 1.

【0041】実施例2 透明導電性フィルムFST−5340(住友ベ−クライ
ト社製面抵抗40Ω/□、厚さ1500Å)の透明導電
薄膜を、通常のフォトリソ法で110μmピッチ、巾9
0μm、960本のストライプ状のパターンに加工し
た。次に前記パターニング電極上にRGBカラーフィル
ター層を形成するために、ミセル電解液を以下のように
して作成した。
Example 2 A transparent conductive thin film of transparent conductive film FST-5340 (Surface resistance 40 Ω / □, 1500 mm thick, manufactured by Sumitomo Bakelite Co., Ltd.) was prepared by a usual photolithography method at a pitch of 110 μm and a width of 9 mm.
It was processed into a 960 stripe pattern of 0 μm. Next, in order to form an RGB color filter layer on the patterning electrode, a micelle electrolyte was prepared as follows.

【0042】(1)赤のミセル電解液 製造例1で調整した赤色顔料分散液30重量部と導電性
酸化錫分散液20重量部を混合し、0.105重量%の
臭化リチウム1水和物を含有するIDFE140μg/
ml水溶液液50重量部で希釈し、赤色ミセル電解液を
調整した。なお、得られたミセル電解液の平衡濃度は、
120μg/ml、すなわち0.129mmol/ml
であった。 (2)緑のミセル電解液 製造例1で調整した緑色顔料分散液30重量部と導電性
酸化錫分散液27.75重量部を混合し、0.105重
量%の臭化リチウム1水和物を含有するIDFE170
μg/ml水溶液液42.25重量部で希釈し、緑色ミ
セル電解液を調整した。なお、得られたミセル電解液の
平衡濃度は、130μg/ml、すなわち0.140m
mol/mlであった。 (3)青のミセル電解液 製造例1で調整した青色顔料分散液18.75重量部と
導電性酸化錫分散液33.75重量部を混合し、0.1
05重量%の臭化リチウム1水和物を含有するIDFE
180μg/ml水溶液液47.50重量部で希釈し、
青色ミセル電解液を調整した。なお、得られたミセル電
解液の平衡濃度は、138μg/ml、すなわち0.1
49mmol/mlであった。以下、同様な電解条件
で、カラーフィルター層を形成し評価した。
(1) Red Micelle Electrolyte 30 parts by weight of the red pigment dispersion prepared in Production Example 1 and 20 parts by weight of a conductive tin oxide dispersion were mixed, and 0.105% by weight of lithium bromide monohydrate was mixed. IDFE containing 140 μg /
The resulting solution was diluted with 50 parts by weight of a 50 ml aqueous solution to prepare a red micelle electrolyte. Incidentally, the equilibrium concentration of the obtained micellar electrolyte is
120 μg / ml, ie 0.129 mmol / ml
Met. (2) Green Micelle Electrolyte 30 parts by weight of the green pigment dispersion prepared in Production Example 1 and 27.75 parts by weight of the conductive tin oxide dispersion were mixed together to form 0.105% by weight of lithium bromide monohydrate. Containing IDFE170
The solution was diluted with 42.25 parts by weight of an aqueous solution of μg / ml to prepare a green micelle electrolyte. The equilibrium concentration of the obtained micellar electrolyte was 130 μg / ml, that is, 0.140 m / ml.
mol / ml. (3) Blue micelle electrolyte 18.75 parts by weight of the blue pigment dispersion prepared in Production Example 1 and 33.75 parts by weight of the conductive tin oxide dispersion were mixed, and the mixture was added in an amount of 0.1%.
IDFE containing 05% by weight of lithium bromide monohydrate
Diluted with 47.50 parts by weight of a 180 μg / ml aqueous solution,
A blue micelle electrolyte was prepared. The equilibrium concentration of the obtained micellar electrolyte was 138 μg / ml, ie, 0.1
It was 49 mmol / ml. Hereinafter, a color filter layer was formed and evaluated under the same electrolytic conditions.

【0043】比較例1 実施例1において、ミセル電解液として以下のものを用
いた以外は同様である。 (1)赤のミセル電解液 製造例1で調整した赤色顔料分散液30重量部と導電性
酸化錫分散液20重量部を混合し、0.105重量%の
臭化リチウム1水和物を含有するIDFE220μg/
ml水溶液液50重量部で希釈し、赤色ミセル電解液を
調整した。なお、得られたミセル電解液の平衡濃度は、
160μg/ml、すなわち0.172mmol/ml
であった。 (2)緑のミセル電解液 製造例1で調整した緑色顔料分散液30重量部と導電性
酸化錫分散液27.75重量部を混合し、0.105重
量%の臭化リチウム1水和物を含有するIDFE350
μg/ml水溶液液42.25重量部で希釈し、緑色ミ
セル電解液を調整した。なお、得られたミセル電解液の
平衡濃度は、206μg/ml、すなわち0.222m
mol/mlであった。 (3)青のミセル電解液 製造例1で調整した青色顔料分散液18.75重量部と
導電性酸化錫分散液33.75重量部を混合し、0.1
05重量%の臭化リチウム1水和物を含有するIDFE
300μg/ml水溶液液47.50重量部で希釈し、
青色ミセル電解液を調整した。なお、得られたミセル電
解液の平衡濃度は、195μg/ml、すなわち0.0
32mmol/mlであった。
Comparative Example 1 Example 1 was the same as Example 1 except that the following micelle electrolyte was used. (1) Red micellar electrolyte 30 parts by weight of the red pigment dispersion prepared in Production Example 1 and 20 parts by weight of the conductive tin oxide dispersion were mixed, and contained 0.105% by weight of lithium bromide monohydrate. IDFE 220 μg /
The resulting solution was diluted with 50 parts by weight of a 50 ml aqueous solution to prepare a red micelle electrolyte. Incidentally, the equilibrium concentration of the obtained micellar electrolyte is
160 μg / ml, ie 0.172 mmol / ml
Met. (2) Green Micelle Electrolyte 30 parts by weight of the green pigment dispersion prepared in Production Example 1 and 27.75 parts by weight of the conductive tin oxide dispersion were mixed together to form 0.105% by weight of lithium bromide monohydrate. Containing IDFE350
The solution was diluted with 42.25 parts by weight of an aqueous solution of μg / ml to prepare a green micelle electrolyte. The equilibrium concentration of the obtained micellar electrolyte was 206 μg / ml, that is, 0.222 m
mol / ml. (3) Blue micelle electrolyte 18.75 parts by weight of the blue pigment dispersion prepared in Production Example 1 and 33.75 parts by weight of the conductive tin oxide dispersion were mixed, and the mixture was added in an amount of 0.1%.
IDFE containing 05% by weight of lithium bromide monohydrate
Diluted with 47.50 parts by weight of a 300 μg / ml aqueous solution,
A blue micelle electrolyte was prepared. The equilibrium concentration of the obtained micellar electrolyte was 195 μg / ml, that is, 0.0
It was 32 mmol / ml.

【0044】比較例2 実施例2において、ミセル電解液として以下のものを用
いた以外は同様である。 (1)赤のミセル電解液 製造例2で調整した赤色顔料分散液30重量部と導電性
酸化錫分散液20重量部を混合し、0.105重量%の
臭化リチウム1水和物水溶液50重量部で希釈し、赤色
ミセル電解液を調整した。なお、得られたミセル電解液
の平衡濃度は、31μg/ml、すなわち0.03mm
ol/mlであった。 (2)緑のミセル電解液 製造例2で調整した緑色顔料分散液30重量部と導電性
酸化錫分散液27.75重量部を混合し、0.105重
量%の臭化リチウム1水和物水溶液42.25重量部で
希釈し、緑色ミセル電解液を調整した。なお、得られた
ミセル電解液の平衡濃度は、32μg/ml、すなわち
0.034mmol/mlであった。 (3)青のミセル電解液 製造例2で調整した青色顔料分散液18.75重量部と
導電性酸化錫分散液33.75重量部を混合し、0.1
05重量%の臭化リチウム1水和物水溶液液47.50
重量部で希釈し、青色ミセル電解液を調整した。なお、
得られたミセル電解液の平衡濃度は、30μg/ml、
すなわち0.032mmol/mlであった。
Comparative Example 2 Example 2 was the same as Example 2, except that the following micelle electrolyte was used. (1) Red micelle electrolyte 30 parts by weight of the red pigment dispersion prepared in Production Example 2 and 20 parts by weight of a conductive tin oxide dispersion were mixed, and a 0.105% by weight aqueous solution of lithium bromide monohydrate 50 was mixed. The mixture was diluted with parts by weight to prepare a red micelle electrolyte. The equilibrium concentration of the obtained micellar electrolyte was 31 μg / ml, that is, 0.03 mm.
ol / ml. (2) Green micellar electrolyte 30 parts by weight of the green pigment dispersion prepared in Production Example 2 and 27.75 parts by weight of the conductive tin oxide dispersion were mixed together to form 0.105% by weight of lithium bromide monohydrate. The solution was diluted with 42.25 parts by weight of an aqueous solution to prepare a green micelle electrolyte. The equilibrium concentration of the obtained micellar electrolyte was 32 μg / ml, that is, 0.034 mmol / ml. (3) Blue micelle electrolyte 18.75 parts by weight of the blue pigment dispersion prepared in Production Example 2 and 33.75 parts by weight of the conductive tin oxide dispersion were mixed, and the mixture was mixed with 0.1 part by weight.
47.50% aqueous solution of lithium bromide monohydrate of 05% by weight
The mixture was diluted with parts by weight to prepare a blue micelle electrolyte. In addition,
The resulting micelle electrolyte had an equilibrium concentration of 30 μg / ml,
That is, it was 0.032 mmol / ml.

【0045】以上の実施例および比較例の結果を下記表
1に示す。
The results of the above Examples and Comparative Examples are shown in Table 1 below.

【表1】 上記結果からわかるように、実施例では、電解後のカラー
フィルターの洗浄プロセス前後における透過率変化が少
ない事から、電極基板とカラーフィルター層の密着性が
向上し、カラーフィルター層の脱落が起こらなくなった。
一方、比較例では、電解直後の洗浄前でもカラーフィルタ
ーの密着性が悪いために、実施例に比べて同じ電解条件
で付着量が少なく若干透過率が高く、さらに洗浄後はカ
ラーフィルター層の脱落が起こり、 透過率が変化してし
まっている。
[Table 1] As can be seen from the above results, in the example, since the transmittance change before and after the washing process of the color filter after electrolysis is small, the adhesion between the electrode substrate and the color filter layer is improved, and the color filter layer does not fall off. Was.
On the other hand, in the comparative example, the adhesion of the color filter was poor even immediately after the electrolysis and before the cleaning, so that the adhesion amount was slightly lower and the transmittance was slightly higher under the same electrolysis conditions as in the example, and the color filter layer dropped off after the cleaning. Occurs, causing the transmittance to change.

【0046】[0046]

【効果】1.請求項1と3 ミセル電解法によるカラーフィルターの電極基板との密
着性が改善され、また密着性が向上したため、カラーフ
ィルター中に密着性低下の原因の1つである導電性粒子
をより多く含有することができ、カラーフィルターの導
電性が向上し、さらに安定した液晶駆動電極として期待
され、かつ1μm以下(可視光透過率60%以上)の薄膜
カラーフィルターにも効果的であり、ミセル電解カラー
フィルターの反射用LCDへの展開も可能になったカラ
ーフィルター、および該カラーフィルターの製造方法を
提供できた。 2.請求項2と4 ガラス基板よりも密着性が求められるフレキシブルなプ
ラスチック基板に向上した密着力で密着したカラーフィ
ルター、および該カラーフィルターの製造方法を提供で
きた。
(1) Claims (1) and (3) Since the adhesion of the color filter to the electrode substrate by the micellar electrolysis method has been improved and the adhesion has been improved, the conductivity which is one of the causes of the decrease in the adhesion in the color filter. It can contain more particles, improves the conductivity of the color filter, is expected as a more stable liquid crystal drive electrode, and is effective for thin film color filters of 1 μm or less (visible light transmittance of 60% or more). In addition, it was possible to provide a color filter in which a micellar electrolytic color filter can be applied to a reflection LCD, and a method of manufacturing the color filter. 2. Claims 2 and 4 A color filter adhered to a flexible plastic substrate, which requires more adhesiveness than a glass substrate, with improved adhesion, and a method for producing the color filter can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 浩 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 金本 明彦 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 石川 元治 千葉県袖ヶ浦上泉1280 出光興産株式会社 内 Fターム(参考) 2H048 BA62 BB02 BB14 BB15 BB42 2H091 FA02Y FB02 FB12 FB13 FC06 GA01 GA03 GA16 LA02 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Kondo 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd. (72) Inventor Akihiko Kanemoto 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 三原色の分光特性を有する色素を水性媒
体中で、電気化学的に酸化および/または還元可能な部
位を有した界面活性剤を用いてミセル化した分散液に、
透明導電薄膜を有する基板を浸漬し、前記ミセル分散液
中の界面活性剤の平衡濃度を0.05〜0.15mmo
l/lとして通電処理することによって得られ、可視光
(380〜780nm)における平均透過率が60%以
上であることを特徴とするカラーフィルター。
1. A dispersion obtained by micellizing a dye having spectral characteristics of three primary colors in an aqueous medium using a surfactant having a site capable of electrochemical oxidation and / or reduction,
A substrate having a transparent conductive thin film is immersed, and the equilibrium concentration of the surfactant in the micelle dispersion is set to 0.05 to 0.15 mmo.
A color filter which is obtained by conducting a current as 1 / l and has an average transmittance of 60% or more in visible light (380 to 780 nm).
【請求項2】 導電薄膜を有する基板が、プラスチック
フィルム基板である請求項1記載のカラーフィルター。
2. The color filter according to claim 1, wherein the substrate having the conductive thin film is a plastic film substrate.
【請求項3】 三原色の分光特性を有する色素を水性媒
体中で、電気化学的に酸化および/または還元可能な部
位を有した界面活性剤を用いてミセル化した分散液に、
透明導電薄膜を有する基板を浸漬し、前記ミセル分散液
中の界面活性剤の平衡濃度を0.05〜0.15mmo
l/lとして通電処理することを特徴とする可視光(3
80〜780nm)における平均透過率が60%以上で
あるカラーフィルターの製造方法。
3. A dispersion obtained by micellizing a dye having spectral characteristics of three primary colors in an aqueous medium using a surfactant having a site capable of being electrochemically oxidized and / or reduced,
A substrate having a transparent conductive thin film is immersed, and the equilibrium concentration of the surfactant in the micelle dispersion is set to 0.05 to 0.15 mmo.
The visible light (3
A method for producing a color filter, wherein the average transmittance at 80 to 780 nm) is 60% or more.
【請求項4】 導電薄膜を有する基板が、プラスチック
フィルム基板である請求項3記載のカラーフィルターの
製造方法。
4. The method according to claim 3, wherein the substrate having the conductive thin film is a plastic film substrate.
JP11145630A 1999-05-25 1999-05-25 Color filter and production of this color filter Pending JP2000338318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11145630A JP2000338318A (en) 1999-05-25 1999-05-25 Color filter and production of this color filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11145630A JP2000338318A (en) 1999-05-25 1999-05-25 Color filter and production of this color filter

Publications (1)

Publication Number Publication Date
JP2000338318A true JP2000338318A (en) 2000-12-08

Family

ID=15389459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11145630A Pending JP2000338318A (en) 1999-05-25 1999-05-25 Color filter and production of this color filter

Country Status (1)

Country Link
JP (1) JP2000338318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290646A (en) * 2002-01-29 2003-10-14 Sakata Corp Micelle dispersion production method and micelle dispersion obtained thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290646A (en) * 2002-01-29 2003-10-14 Sakata Corp Micelle dispersion production method and micelle dispersion obtained thereby

Similar Documents

Publication Publication Date Title
US5705302A (en) Color filter for liquid crystal display device and method for producing the color filter
EP0340968A2 (en) Thin film device and method of manufacturing the same
US20100233356A1 (en) Preparation of Prussian Blue Coating Film for Electrochromic Device
JPH0236622B2 (en)
WO1999049356A1 (en) Color filter for reflection liquid crystal display and reflection liquid crystal display comprising the same
JP2014052510A (en) Electrochromic display apparatus and driving method of the same
Kimura et al. An improvement in the coloration properties of Ag deposition-based plasmonic EC devices by precise control of shape and density of deposited Ag nanoparticles
WO2006033304A1 (en) Black material, black particle dispersion liquid, black light-blocking film using same, and base with black light-blocking film
EP0440095A2 (en) Process for producing thin films and color filters
US5185074A (en) Process for producing color filter
JP2904208B2 (en) Liquid crystal display device and manufacturing method thereof
JP2000338318A (en) Color filter and production of this color filter
US5242558A (en) Method for forming a thin film device
JP2000338319A (en) Color filter and production of this color filter
JP2009145458A (en) Electrochromic device and its manufacturing method
JP2007279163A (en) Display method, display medium, and display element
WO1992019694A1 (en) Electrochromic device
JP3588255B2 (en) Color filter for liquid crystal display and method of manufacturing the color filter
JPH11326627A (en) Color filter
JP2000275630A (en) Color filter and reflective color liquid crystal display device utilizing the same
JP4443203B2 (en) Electrophoretic display device and manufacturing method thereof
JP3037511B2 (en) Manufacturing method of color filter
JPH09278487A (en) Production of conductive particle, production of color filter using the particle, and color filter, display panel and electronic device using the particle
JP2001141921A (en) Thin film and electrophotographic photoreceptor and color filter using thin film
JP2008181003A (en) Electrochromic device and manufacturing method therefor