JP2000337741A - Refrigerant leakage detecting device - Google Patents

Refrigerant leakage detecting device

Info

Publication number
JP2000337741A
JP2000337741A JP14301699A JP14301699A JP2000337741A JP 2000337741 A JP2000337741 A JP 2000337741A JP 14301699 A JP14301699 A JP 14301699A JP 14301699 A JP14301699 A JP 14301699A JP 2000337741 A JP2000337741 A JP 2000337741A
Authority
JP
Japan
Prior art keywords
refrigerant
bubble
ultrasonic sensor
reference value
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14301699A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yoshimura
弘幸 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP14301699A priority Critical patent/JP2000337741A/en
Publication of JP2000337741A publication Critical patent/JP2000337741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an automated refrigerant leakage detecting device wherein a need to mount a sight glass on a refrigerant pipe is eliminated and the occurrence of an erroneous detecting during full operation of a refrigerator is prevented. SOLUTION: In a refrigrator to perform cooling by filling a cooling device with refrigerants 31 and 32, an ultrasonic sensor 23 is provided to obliquely radiate ultrasonic continuous wave beams 2a to the flow of a refrigerant in a refrigerant pipe 17, a scattering wave 2c produced by scattering the ultrasonic continuous wave beams 2a are scattered by air bubbles 33 of the refrigerant is received by the ultrasonic sensor 23 and a signal processing circuit 5A is provided to process the receipt signal 22c. The signal processing circuit 5A determines a velocity of pass flow of the refrigerant 32 from a deviation frequency Δf2 between a transmission frequency f1 and a receipt frequency f1±Δ f2 of the ultrasonic sensor 23, determines an air bubble generating amount in the refrigerant from the amplitude of a deviation frequency signal, and computes a reference value from a bubble amount (presence and absence) characteristic curve on the basis of a velocity of flow. When the air bubble generating amount exceeds a reference value, it is decided that leakage of the refrigerant occurs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スーパーやコンビ
ニエンスストアなどにおいて用いられるオープンショー
ケースの冷媒を備える冷却装置(以下、冷凍機と略称す
る)に関して、特に、その冷媒漏れを検知する冷媒漏れ
検知装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device (hereinafter, abbreviated as a refrigerator) provided with an open showcase refrigerant used in a supermarket, a convenience store, and the like, and particularly to a refrigerant leak detection for detecting the refrigerant leak. Related to the device.

【0002】[0002]

【従来の技術】従来技術による冷媒漏れ検知は、膨張弁
の下流側に設けられる冷媒管の様子を直視できるサイト
グラスに現れる気泡を目視して行っていた。通常、冷媒
は高圧で冷媒管に封入されているため、蒸発温度は高
く、室温では液状になっているが、冷媒が漏れてくると
冷媒管での圧力が低下し、蒸発温度が下がり、室温でも
気体状になる。この原理を利用してサイトグラスに現れ
る気泡の量を目で監視し、冷媒漏れ量を推測していた。
2. Description of the Related Art Refrigerant leak detection according to the prior art has been carried out by visually observing air bubbles appearing on a sight glass in which a state of a refrigerant pipe provided downstream of an expansion valve can be directly viewed. Normally, the refrigerant is sealed in the refrigerant pipe at high pressure, so that the evaporation temperature is high and the liquid is liquid at room temperature, but when the refrigerant leaks, the pressure in the refrigerant pipe decreases, the evaporation temperature decreases, and the room temperature decreases. But it becomes gaseous. Using this principle, the amount of air bubbles appearing on the sight glass was visually monitored to estimate the amount of refrigerant leakage.

【0003】また、図11は、栗原将,他「エアコン冷媒
センサ」平成4年度日本冷凍協会学術講演会講演論文集
(4-11-30,12-1 東京) に発表された冷媒漏れ検知センサ
の概念図である。図11において、開示されているコンセ
プトBの方法によれば、冷媒管17に設けられたサイトグ
ラス43を介して、冷媒流路中に発光素子41と受光素子42
とを対向配置し、冷媒32中に現れる気泡33の状態によっ
て変化する光の透過量を検知するセンサである。即ち、
冷媒量が適正状態では、レシーバドライヤとエキスパン
ションバルブ間には気泡33が発生しないため、光の透過
量は高く、冷媒不足状態では、気泡33が発生するため、
光の透過量は低くなる。この光の透過量を信号処理回路
45で電圧に変換し、2個の発光素子である緑LED46,赤LE
D47 に表示させている。この論文によれば、エアコンシ
ステムでの適正充填量に対して、漏れが 7〜13%程度の
範囲で検出できることが報告されている。
[0003] Fig. 11 shows a summary of the lecture papers of the "Air Conditioning Refrigerant Sensor", Academic Lecture Meeting of the Japan Refrigeration Association in 1992.
(4-11-30,12-1 Tokyo) It is a conceptual diagram of the refrigerant leak detection sensor announced. In FIG. 11, according to the method of the disclosed concept B, the light-emitting element 41 and the light-receiving element 42 are provided in the refrigerant flow path via the sight glass 43 provided in the refrigerant pipe 17.
Are arranged opposite to each other, and detect the amount of transmitted light that changes depending on the state of the bubbles 33 appearing in the refrigerant 32. That is,
When the amount of the refrigerant is appropriate, no bubbles 33 are generated between the receiver dryer and the expansion valve, so that the amount of transmitted light is high, and when the refrigerant is insufficient, the bubbles 33 are generated.
The light transmission is reduced. The amount of transmitted light is determined by the signal processing circuit.
The voltage is converted by 45 and the two light emitting elements, green LED46 and red LE
Displayed on D47. According to this paper, it is reported that leaks can be detected in the range of about 7 to 13% of the appropriate filling amount in an air conditioning system.

【0004】また、図示省略したが、コンセプトAとし
て冷媒流路中に発熱素子を設置し、冷媒のもつ気体熱伝
導率と液体熱伝導率の差を利用して、冷媒状態によって
変化する発熱素子への冷却度を検知する冷媒漏れ検知方
法が報告されている。
Although not shown, as a concept A, a heating element is provided in the refrigerant flow path, and the heating element changes depending on the state of the refrigerant by utilizing the difference between the gas thermal conductivity and the liquid thermal conductivity of the refrigerant. There has been reported a refrigerant leak detection method for detecting the degree of cooling of the refrigerant.

【0005】[0005]

【発明が解決しようとする課題】この様に、従来技術に
よる冷媒漏れ検知方法は、サイトグラスを介した(1) 目
視方法、(2) 冷媒中の光透過量の差による検出方法、あ
るいは、(3) 冷媒の熱伝導率の差による検出方法があ
る。(1) 冷媒漏れ検知を人的に行う目視方法では自動化
できずまた点検費用がかさむ問題がある。また、(1),
(2),(3) の何れの方法でも冷媒管にサイトグラスを設け
る、あるいは、冷媒中に発熱素子を設置する必要があ
り、配管にそのための処置が必要となる。
As described above, the refrigerant leakage detecting method according to the prior art is based on (1) a visual method through a sight glass, (2) a detecting method based on a difference in light transmission amount in the refrigerant, or (3) There is a detection method based on the difference in the thermal conductivity of the refrigerant. (1) There is a problem that the visual method of manually detecting the refrigerant leak cannot be automated and the inspection cost increases. Also, (1),
In either of the methods (2) and (3), it is necessary to provide a sight glass in the refrigerant pipe, or to install a heating element in the refrigerant, and the pipe needs to be treated accordingly.

【0006】また、(2),(3) による冷媒の気泡の発生だ
けで冷媒漏れを検知する方法では、例えば、ショーケー
ス内に一度に大量の商品補充がなされたときには、庫内
の温度が上がり、冷凍機がフル稼働することにより、高
圧冷媒管の圧力が一時的に下がる現象が発生し、従来技
術による方法では、冷媒が漏れていないのに漏れている
と誤検知する問題がある。
In the method of detecting a refrigerant leak only by the generation of refrigerant bubbles according to (2) and (3), for example, when a large amount of commodities are refilled in a showcase at one time, the temperature in the refrigerator is reduced. When the refrigerator rises and the refrigerator runs at full capacity, a phenomenon occurs in which the pressure in the high-pressure refrigerant pipe temporarily drops, and the method according to the related art has a problem that the refrigerant is erroneously detected as leaking even though it does not leak.

【0007】本発明は上記の点にかんがみてなされたも
のであり、その目的は前記した課題を解決して、サイト
グラスを設けるなどの冷媒管への加工を不要と、また、
冷凍機がフル稼働時の誤検知を防止することができる自
動化された冷媒漏れ検知装置を提供することにある。
[0007] The present invention has been made in view of the above points, and an object of the present invention is to solve the above-mentioned problems and eliminate the need for processing a refrigerant pipe such as providing a sight glass.
An object of the present invention is to provide an automated refrigerant leak detection device that can prevent erroneous detection when a refrigerator is in full operation.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明による冷凍機の冷媒漏れ検知装置は、圧縮機
と凝縮器と膨張弁と蒸発器とこれらの機器を接続し循環
系を構成する配管とを備えてなる冷却装置と、この冷却
装置に充填されこれらの機器内を循環し蒸発器で蒸発し
て冷却を行う冷媒と、蒸発器に接続される高圧側冷媒管
の片側面に傾斜して配設され冷媒の流れ方向に対して超
音波連続波ビームを斜めに放射する第1超音波センサ
と、この第1超音波センサを連続的に励振しこの第1超
音波センサの超音波連続波ビームが冷媒中の気泡で散乱
する散乱波を当該超音波センサで受信しこの受信信号を
処理する第1信号処理回路と、を備え、また、第1信号
処理回路は、第1超音波センサが送信する送信周波数と
受信する受信周波数との偏移周波数信号から冷媒の通過
流速を求める第1気泡流速演算手段と、この偏移周波数
信号の振幅より冷媒中の気泡発生量を求める第1気泡発
生量演算手段と、第1気泡流速演算手段のデータを基に
泡量(有無)特性曲線より基準値を演算する演算処理部
と、第1気泡発生量演算手段のデータと基準値とを比較
する比較手段と、を備えて構成するものとする。かかる
構成により、第1気泡発生量演算手段のデータが泡量
(有無)特性曲線の基準値より大きいとき冷媒漏れあり
と判定することができる。
In order to achieve the above object, a refrigerant leak detecting device for a refrigerator according to the present invention connects a compressor, a condenser, an expansion valve, an evaporator, and these devices to form a circulation system. A cooling device comprising a piping that constitutes the cooling device; a refrigerant filled in the cooling device, circulated through these devices, and evaporated and cooled by an evaporator, and one side of a high-pressure side refrigerant pipe connected to the evaporator. A first ultrasonic sensor, which is disposed obliquely and emits an ultrasonic continuous wave beam obliquely with respect to the flow direction of the refrigerant; and a first ultrasonic sensor that continuously excites the first ultrasonic sensor. A first signal processing circuit configured to receive a scattered wave in which the ultrasonic continuous wave beam is scattered by a bubble in the refrigerant by the ultrasonic sensor and process the received signal; and the first signal processing circuit includes a first signal processing circuit. Transmission frequency transmitted by ultrasonic sensor and reception frequency received A first bubble flow rate calculating means for calculating a flow velocity of the refrigerant from the shift frequency signal, a first bubble generation amount calculating means for calculating the amount of bubbles generated in the refrigerant from the amplitude of the shift frequency signal, and a first bubble flow rate calculating means An arithmetic processing unit for calculating a reference value from a bubble amount (presence / absence) characteristic curve based on data of the means, and a comparing means for comparing data of the first bubble generation amount calculating means with the reference value. And With this configuration, when the data of the first bubble generation amount calculation means is larger than the reference value of the bubble amount (presence / absence) characteristic curve, it can be determined that there is refrigerant leakage.

【0009】また、本発明による冷凍機の冷媒漏れ検知
装置は、圧縮機と凝縮器と膨張弁と蒸発器とこれらの機
器を接続し循環系を構成する配管とを備えてなる冷却装
置と、この冷却装置に充填されこれらの機器内を循環し
蒸発器で蒸発して冷却を行う冷媒と、蒸発器に接続され
る高圧側冷媒管の片側面に傾斜して配設され冷媒の流れ
方向に対して超音波連続波ビームを斜めに放射する第1
超音波センサと、第1超音波センサの超音波連続波ビー
ムが冷媒中の気泡で散乱する散乱波を受信する第2超音
波センサと、第1超音波センサを連続的に励振し第2超
音波センサが受信する受信信号を処理する第2信号処理
回路と、を備え、また、第2信号処理回路は、第1超音
波センサが送信する送信周波数と第2超音波センサが受
信する受信周波数との偏移周波数信号から冷媒の通過流
速を求める第2気泡流速演算手段と、この偏移周波数信
号の振幅より冷媒中の気泡発生量を求める第2気泡発生
量演算手段と、第2気泡流速演算手段のデータを基に泡
量(有無)特性曲線より基準値を演算する演算処理部
と、第2気泡発生量演算手段のデータと基準値とを比較
する比較手段と、を備えて構成するものとする。かかる
構成により、第2気泡発生量演算手段のデータが泡量
(有無)特性曲線の基準値より大きいとき冷媒漏れあり
と判定することができる。
A refrigerant leak detecting device for a refrigerator according to the present invention includes a cooling device including a compressor, a condenser, an expansion valve, an evaporator, and a pipe connecting these devices to form a circulation system. A refrigerant filled in the cooling device, circulated through these devices and evaporated and cooled by an evaporator, and cooled, and a refrigerant which is inclined and disposed on one side of a high-pressure side refrigerant pipe connected to the evaporator in a flow direction of the refrigerant. The first to radiate the ultrasonic continuous wave beam obliquely
An ultrasonic sensor, a second ultrasonic sensor for receiving a scattered wave in which the ultrasonic continuous wave beam of the first ultrasonic sensor is scattered by bubbles in the refrigerant, and a second ultrasonic sensor for continuously exciting the first ultrasonic sensor. A second signal processing circuit for processing a reception signal received by the ultrasonic sensor, wherein the second signal processing circuit comprises a transmission frequency transmitted by the first ultrasonic sensor and a reception frequency received by the second ultrasonic sensor. A second bubble flow rate calculating means for obtaining a flow velocity of the refrigerant from the shift frequency signal of the second and third air bubbles; a second bubble generation amount calculating means for calculating the amount of bubbles generated in the refrigerant from the amplitude of the shift frequency signal; An arithmetic processing unit for calculating a reference value from the bubble amount (presence / absence) characteristic curve based on the data of the calculation means, and a comparison means for comparing the data of the second bubble generation amount calculation means with the reference value. Shall be. With this configuration, when the data of the second bubble generation amount calculation means is larger than the reference value of the bubble amount (presence / absence) characteristic curve, it can be determined that there is refrigerant leakage.

【0010】また、本発明による冷凍機の冷媒漏れ検知
装置は、蒸発器に接続される高圧側冷媒管の別の場所の
片側面に垂直に配設される第3超音波センサと、第1ま
たは第2信号処理回路に代わって第1超音波センサを連
続的に励振しこの超音波信号が冷媒中の気泡で散乱する
散乱波を第1超音波センサあるいは第2超音波センサで
受信する受信信号を処理する第3信号処理回路と、を備
え、第3信号処理回路は、送信周波数と受信周波数との
偏移周波数信号から冷媒の通過流速を求める第3気泡流
速演算手段と、第3超音波センサをパルス状に励振し当
該超音波センサに戻る反射波を受信しこの第3受信信号
の振幅を検出する受信レベル検出手段と、第3気泡流速
演算手段のデータを基に泡量判定基準値を演算する第3
演算処理部と、受信レベル検出手段のデータと第3演算
処理部の基準値とを比較する比較手段と、を備えて構成
するものとする。
The refrigerant leak detecting device for a refrigerator according to the present invention includes a third ultrasonic sensor vertically arranged on one side surface of another high pressure side refrigerant pipe connected to the evaporator, and a first ultrasonic sensor. Alternatively, the first ultrasonic sensor is continuously excited in place of the second signal processing circuit, and the ultrasonic signal is received by the first ultrasonic sensor or the second ultrasonic sensor to receive a scattered wave scattered by bubbles in the refrigerant. A third signal processing circuit for processing a signal, the third signal processing circuit comprising: a third bubble flow velocity calculating means for determining a passage velocity of the refrigerant from a shift frequency signal between the transmission frequency and the reception frequency; A receiving level detecting means for exciting the acoustic wave sensor in a pulse form and receiving a reflected wave returning to the ultrasonic sensor and detecting the amplitude of the third received signal, and a bubble amount determination reference based on data from the third bubble flow velocity calculating means The third to calculate the value
It is assumed that it comprises an arithmetic processing unit and comparison means for comparing data of the reception level detecting means with a reference value of the third arithmetic processing unit.

【0011】かかる構成により、受信レベル検出手段の
データが泡量判定基準値より低いとき、冷媒漏れありと
判定することができる。また、冷媒漏れ検知装置は、圧
縮機の消費電流または消費電力を検出する電気量センサ
を備えて構成するものとする。
With this configuration, when the data of the reception level detecting means is lower than the bubble amount determination reference value, it can be determined that there is a refrigerant leak. Further, the refrigerant leak detection device is configured to include an electric quantity sensor that detects current consumption or power consumption of the compressor.

【0012】かかる構成により、第1または第2信号処
理回路の演算処理部は、第1または第2気泡流速演算手
段が求めるデータの代わりに、消費電流または消費電力
のデータを基に泡量(有無)特性曲線より基準値を演算
し、第1または第2気泡発生量演算手段のデータが泡量
(有無)特性曲線の基準値より大きいとき冷媒漏れあり
と判定することができる。
With such a configuration, the arithmetic processing unit of the first or second signal processing circuit allows the bubble amount (based on the current consumption or power consumption data) to be used instead of the data obtained by the first or second bubble flow rate calculation means. A reference value is calculated from the characteristic curve, and if the data of the first or second bubble generation amount calculating means is larger than the reference value of the bubble amount (presence / absence) characteristic curve, it can be determined that there is refrigerant leakage.

【0013】また、冷媒漏れ検知装置は、圧縮機あるい
はこの圧縮機の出口冷媒管に冷媒圧力を測定する圧力セ
ンサを備えて構成するものとする。かかる構成により、
第1または第2信号処理回路の演算処理部は、第1また
は第2気泡流速演算手段が求めるデータの代わりに、こ
の圧力センサのデータを基に泡量(有無)特性曲線より
基準値を演算し、第1または第2気泡発生量演算手段の
データが泡量(有無)特性曲線の基準値より大きいとき
冷媒漏れありと判定することができる。
Further, the refrigerant leak detecting device is provided with a compressor or a pressure sensor for measuring a refrigerant pressure in an outlet refrigerant pipe of the compressor. With such a configuration,
The arithmetic processing unit of the first or second signal processing circuit calculates a reference value from the bubble amount (presence / absence) characteristic curve based on the data of the pressure sensor, instead of the data obtained by the first or second bubble flow rate calculating means. When the data of the first or second bubble generation amount calculation means is larger than the reference value of the bubble amount (presence / absence) characteristic curve, it can be determined that there is refrigerant leakage.

【0014】[0014]

【発明の実施の形態】図1は本発明の一実施例としての
冷凍機の冷媒漏れ検知装置の要部構成図、図2は他の実
施例としての冷凍機の冷媒漏れ検知装置の要部構成図、
図3は一実施例の信号処理回路の要部構成図、図4は他
の実施例の信号処理回路の要部構成図、図5は他の実施
例の信号処理回路の要部構成図、図6は一実施例の原理
説明図、図7は泡量(有無)特性曲線および泡量判定基
準値を説明する説明図、図8は他の冷媒漏れの検出原理
を説明する説明図、図9は図8の検出原理を説明するタ
イミング図、図10は一実施例の冷媒漏れの判定フローチ
ャート、図12は他の実施例としての冷凍機の冷媒漏れ検
知装置の要部構成図であり、図11に対応する同一部材に
は同じ符号が付してある。 (実施形態1)図1において、本発明による冷凍機は、
圧縮機11と, 凝縮器12と, ドライヤ13と、キャピラリチ
ューブまたは膨張弁14と, 蒸発器15と, これらの機器11
〜15を接続し循環系を構成する配管16と, を備えてなる
冷却装置と、この冷却装置に充填されこれらの機器11〜
15,16 内を循環し蒸発器15で蒸発して冷却を行う冷媒
(気体31、液体32)と、を備えて構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a main part of a refrigerant leak detecting device of a refrigerator as one embodiment of the present invention, and FIG. 2 is a main portion of a refrigerant leak detecting device of a refrigerator as another embodiment. Diagram,
3 is a main part configuration diagram of a signal processing circuit of one embodiment, FIG. 4 is a main part configuration diagram of a signal processing circuit of another embodiment, FIG. 5 is a main part configuration diagram of a signal processing circuit of another embodiment, 6 is an explanatory diagram illustrating the principle of one embodiment, FIG. 7 is an explanatory diagram illustrating a foam amount (presence / absence) characteristic curve and a foam amount determination reference value, and FIG. 8 is an explanatory diagram illustrating another principle of detecting a refrigerant leak. 9 is a timing chart for explaining the detection principle of FIG. 8, FIG. 10 is a flowchart for judging a refrigerant leak of one embodiment, and FIG. 12 is a main part configuration diagram of a refrigerant leak detecting device of a refrigerator as another embodiment. The same members corresponding to FIG. 11 are denoted by the same reference numerals. (Embodiment 1) In FIG. 1, a refrigerator according to the present invention
Compressor 11, condenser 12, dryer 13, capillary tube or expansion valve 14, evaporator 15, these devices 11
, And a piping 16 forming a circulation system, and a cooling device comprising:
Refrigerant (gas 31, liquid 32) that circulates through the inside of the evaporator 15 and evaporates in the evaporator 15 to cool.

【0015】この冷凍機の冷媒31,32 の漏れ検知装置
は、蒸発器15に接続される高圧側冷媒管17の片側面に楔
24を介して傾斜して配設され,冷媒32,33 の流れ方向に
対して超音波連続波ビームを斜めに放射する第1超音波
センサ23と、この第1超音波センサ23を励振信号22a で
連続的に励振し,この第1超音波センサ23の超音波連続
波ビーム2aが冷媒(32,33(気泡))中の気泡33で散乱する
散乱波2cを当該超音波センサ23で受信し,この受信信号
22c を処理する第1信号処理回路5Aと、を備えて構成さ
れる。
A device for detecting leakage of the refrigerants 31 and 32 of the refrigerator has a wedge on one side of a high-pressure side refrigerant pipe 17 connected to the evaporator 15.
A first ultrasonic sensor 23 that is disposed obliquely through the first and second 24 and emits an ultrasonic continuous wave beam obliquely with respect to the flow direction of the refrigerants 32 and 33, and transmits the first ultrasonic sensor 23 to an excitation signal 22a. And the continuous ultrasonic wave 2a of the first ultrasonic sensor 23 receives the scattered wave 2c scattered by the bubbles 33 in the refrigerant (32, 33 (bubbles)). , This received signal
And a first signal processing circuit 5A for processing 22c.

【0016】この第1信号処理回路5Aは、図3におい
て、第1超音波センサ23が送信する送信周波数f1と, 受
信する受信周波数 (f1±Δf2) と, の偏移周波数Δf2の
信号から冷媒32,33 の通過流速を求める第1気泡流速演
算手段(53A,53B,53D, 以下53Dで表示する) と、この偏
移周波数Δf2の信号の振幅より冷媒中の気泡発生量を求
める第1気泡発生量演算手段(53A,53B,53C, 以下53C で
表示する) と、第1気泡流速演算手段53D のデータを基
に泡量(有無)特性曲線(5E)より基準値5eを演算する演
算処理部58と、第1気泡発生量演算手段53C のデータ5c
と基準値5eとを比較する比較手段55と、を備えて構成さ
れる。
In FIG. 3, the first signal processing circuit 5A detects the refrigerant from the signal of the shift frequency Δf2 between the transmission frequency f1 transmitted by the first ultrasonic sensor 23 and the reception frequency (f1 ± Δf2) received. A first bubble flow velocity calculating means (53A, 53B, 53D, hereinafter referred to as 53D) for calculating the passing flow velocity of 32, 33, and a first bubble for calculating the amount of bubbles generated in the refrigerant from the amplitude of the signal of the shift frequency Δf2. Calculation processing for calculating the reference value 5e from the characteristic curve (5E) of the bubble amount (presence / absence) based on the data of the generation amount calculation means (53A, 53B, 53C, hereinafter referred to as 53C) and the data of the first bubble flow velocity calculation means 53D. Data 5c of the section 58 and the first bubble generation amount calculating means 53C.
And a comparing means 55 for comparing the value with the reference value 5e.

【0017】かかる構成により、信号処理回路5Aは、第
1気泡発生量演算手段53C のデータ5cが泡量(有無)特
性曲線(5E)の基準値5eより大きいとき冷媒漏れありと判
定し、冷媒漏れを検出することができる。 (実施形態2)図2において、実施形態2による冷凍機
の冷媒漏れ検知装置が上述の実施形態1で説明した冷媒
漏れ検知装置との相違点は、蒸発器15に接続される高圧
側冷媒管17の別の場所の片側面に垂直に配設される第3
超音波センサ25と、第1または第2信号処理回路5A,5B
に代わって、第1超音波センサ23を励振信号22a で連続
的に励振し, この超音波信号2aが冷媒(32,33(気泡))中
の気泡33で散乱する散乱波2c,2b を第1超音波センサ23
あるいは点線で図示される第2超音波センサ23Aで受信
する受信信号22c,22b を処理し, また, 第3超音波セン
サ25をパルス状に励振しその反射波2fを受信処理する第
3信号処理回路6A,6B と、を備えて構成される。
With this configuration, the signal processing circuit 5A determines that there is a refrigerant leak when the data 5c of the first bubble generation amount calculating means 53C is larger than the reference value 5e of the bubble amount (presence / absence) characteristic curve (5E). Leaks can be detected. (Embodiment 2) In FIG. 2, a refrigerant leak detecting device of a refrigerator according to Embodiment 2 is different from the refrigerant leak detecting device described in Embodiment 1 above in that a high pressure side refrigerant pipe connected to the evaporator 15 is provided. 17th third vertically arranged on one side of another place
Ultrasonic sensor 25 and first or second signal processing circuit 5A, 5B
Instead of this, the first ultrasonic sensor 23 is continuously excited by the excitation signal 22a, and the ultrasonic signal 2a generates the scattered waves 2c and 2b scattered by the bubbles 33 in the refrigerant (32, 33 (bubbles)). 1 ultrasonic sensor 23
Alternatively, a third signal processing for processing the reception signals 22c and 22b received by the second ultrasonic sensor 23A shown by a dotted line, and for exciting the third ultrasonic sensor 25 in a pulse shape and receiving and processing the reflected wave 2f. And circuits 6A and 6B.

【0018】この第3信号処理回路6A,6B は、図5にお
いて、第1超音波センサ23が送信する送信周波数f1と,
第1超音波センサ23あるいは第2超音波センサ23A で受
信する受信信号22c,22b の受信周波数 (f1±Δf2) との
偏移周波数Δf2の信号から冷媒32,33 の通過流速を求め
る第3気泡流速演算手段(52〜53D,以下53D で表示す
る) と、第3超音波センサ25をパルス状に励振し当該超
音波センサ25に戻る反射波を受信しこの第3受信信号25
c の振幅を検出する受信レベル検出手段(61〜63C 以下
63C で表示する)と、第3気泡流速演算手段53D のデー
タ5fを基に泡量判定基準特性(6G)から泡量判定基準値(6
g)を演算する第3演算処理部68と、受信レベル検出手段
63C のデータ6cと第3演算処理部68の基準値6gとを比較
する比較手段55と、を備えて構成される。
In FIG. 5, the third signal processing circuits 6A and 6B correspond to the transmission frequency f1 transmitted by the first ultrasonic sensor 23,
Third bubble for obtaining the flow velocity of the refrigerant 32, 33 from the signal of the shift frequency Δf2 with the reception frequency (f1 ± Δf2) of the reception signal 22c, 22b received by the first ultrasonic sensor 23 or the second ultrasonic sensor 23A. A flow rate calculating means (52 to 53D, hereinafter denoted by 53D); a third ultrasonic sensor 25 which is excited in a pulse form and receives a reflected wave returning to the ultrasonic sensor 25;
reception level detection means for detecting the amplitude of c (61 to 63C or less
63C) and the bubble amount determination reference value (6G) from the bubble amount determination reference characteristic (6G) based on the data 5f of the third bubble flow velocity calculating means 53D.
g) third operation processing unit 68, and reception level detection means
And a comparing means 55 for comparing the data 6c of 63C with the reference value 6g of the third arithmetic processing unit 68.

【0019】かかる構成により、第3信号処理回路6A,6
B は、受信レベル検出手段63C のデータ6cが泡量判定基
準値6gより低いとき、冷媒漏れありと判定し、冷媒漏れ
を検出することができる。
With this configuration, the third signal processing circuits 6A and 6A
B, when the data 6c of the reception level detecting means 63C is lower than the bubble amount determination reference value 6g, it is determined that there is refrigerant leakage, and refrigerant leakage can be detected.

【0020】[0020]

【実施例】まず先に、冷凍機の構成と冷却原理を説明す
る。図1において、冷凍機は、上述した様に、圧縮機11
と, 凝縮器12と, ドライヤ13と、キャピラリチューブま
たは膨張弁14と, 蒸発器15と, これらの機器11〜15を接
続する配管16と, を備える冷却装置と、この冷却装置に
充填されこれらの機器11〜15,16 内を循環し蒸発器15で
蒸発して冷却を行う冷媒31,32 と、を備えて構成され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the structure of a refrigerator and the principle of cooling will be described. In FIG. 1, the refrigerator is a compressor 11 as described above.
, A condenser 12, a dryer 13, a capillary tube or expansion valve 14, an evaporator 15, and a pipe 16 for connecting these devices 11 to 15. And refrigerants 31 and 32 that circulate in the devices 11 to 15 and 16 and evaporate and cool in the evaporator 15.

【0021】かかる構成により、冷凍機は、冷媒31,32
の蒸発(31)と、凝縮液化(32)と、のサイクルを利用して
冷却が行われる。冷媒液32は蒸発器15中でその圧力に対
応した温度で蒸発する。この際、その蒸発器15の温度が
周囲温度より低ければ、周囲より熱を吸収して蒸発が続
き、蒸発器15の圧力を一定に保ならば、この圧力に対応
する定温度に保つことができる。冷媒液32を膨張弁14で
減圧して低圧の蒸発器15に送り、ここで周囲の熱を吸収
して蒸発させ、発生する蒸気31を圧縮機11に吸入し、圧
縮機11に加えられる動力によって圧縮し、高圧・高温の
ガス31となし、このガス31を凝縮器12に導き、水・大気
などに放熱することにより液化させ、液溜めに受け、こ
れを上述の膨張弁14に導き、冷却サイクルが形成され
る。
With such a configuration, the refrigerator is provided with the refrigerants 31, 32
Cooling is performed using a cycle of evaporation (31) and condensation and liquefaction (32). The refrigerant liquid 32 evaporates in the evaporator 15 at a temperature corresponding to the pressure. At this time, if the temperature of the evaporator 15 is lower than the ambient temperature, heat is absorbed from the surroundings and evaporation continues, and if the pressure of the evaporator 15 is kept constant, it can be kept at a constant temperature corresponding to this pressure. it can. The refrigerant liquid 32 is decompressed by the expansion valve 14 and sent to the low-pressure evaporator 15, where it absorbs the surrounding heat and evaporates, sucks the generated steam 31 into the compressor 11, and adds power to the compressor 11 Compressed by the high pressure and high temperature gas 31, this gas 31 is led to the condenser 12, liquefied by radiating heat to water, air, etc., received in the liquid reservoir, and guided to the expansion valve 14, A cooling cycle is formed.

【0022】冷媒31,32 は、熱を移動させるための媒質
であり、この場合冷媒31,32 の状態をガス状(31)、液状
(32)に変化するのみである。このサイクルを繰り返すこ
とにより蒸発器15の周辺の限られた部分内の物体の温度
を降下させ、冷凍(冷却)を生成することができる。即
ち、冷凍サイクルは、仕事を費やして、(1) 低温度の箇
所(蒸発器15)にて熱を吸収して、(2) これを高温度の
箇所(凝縮器12)にて費やされた仕事に相当する熱と共
に放熱を行う。圧縮機11は加えられた動力により熱を汲
み上げる熱のポンプの働きを行う。
The refrigerants 31, 32 are mediums for transferring heat. In this case, the state of the refrigerants 31, 32 is changed to a gaseous state (31) or a liquid state.
It only changes to (32). By repeating this cycle, the temperature of the object in a limited portion around the evaporator 15 is reduced, and freezing (cooling) can be generated. That is, the refrigeration cycle spends work, (1) absorbs heat at a low temperature location (evaporator 15), and (2) spends it at a high temperature location (condenser 12). Dissipates heat with heat equivalent to the work done. The compressor 11 functions as a heat pump that draws heat by the applied power.

【0023】この様に、蒸発器15では、液状の冷媒32は
その圧力を低く保つと、低い温度で蒸発し、このとき液
冷媒32が蒸発するために多量の熱が必要であり、液体は
その周辺からこの熱を奪って蒸発するため、周辺のもの
を冷却することができる。液冷媒32が蒸発し気化してい
る間はその圧力に対する蒸発温度は一定であり、奪った
熱は状態変化(液体から気体)のために費やされる。
As described above, in the evaporator 15, the liquid refrigerant 32 evaporates at a low temperature when its pressure is kept low. At this time, a large amount of heat is required for the liquid refrigerant 32 to evaporate. Since the heat is removed from the surroundings and evaporates, the surroundings can be cooled. While the liquid refrigerant 32 evaporates and evaporates, the evaporating temperature with respect to the pressure is constant, and the heat taken is consumed for a state change (from liquid to gas).

【0024】また、圧縮機11は、蒸発器15でどんどん蒸
発する冷媒31の蒸気をシリンダに吸い込み、常に蒸発器
15を低圧に維持し、冷媒31の蒸発温度を低く保つことが
できる。熱の運搬役である気体冷媒31から多量の熱を吐
き出させるためには、圧力を高くして凝縮温度を上げ、
外気より高くすることにより放熱を容易にすることがで
きる。
The compressor 11 sucks into the cylinder the vapor of the refrigerant 31 which evaporates rapidly in the evaporator 15 and constantly evaporates the refrigerant.
15 can be maintained at a low pressure, and the evaporation temperature of the refrigerant 31 can be kept low. In order to discharge a large amount of heat from the gas refrigerant 31 which is a heat carrier, the pressure is increased to increase the condensation temperature,
Heat radiation can be facilitated by setting it higher than the outside air.

【0025】凝縮器12は、圧縮機11で高温高圧になった
気体冷媒31を常温の外気あるいは水で冷却して液化させ
ることができる。気体冷媒31は凝縮して液体冷媒32に戻
る際、凝縮の潜熱を外気あるいは水に放出する。従っ
て、凝縮器12での液体冷媒32そのものの温度はあまり変
化しない。
The condenser 12 is capable of cooling and liquefying the gaseous refrigerant 31 which has been heated to a high temperature and a high pressure by the compressor 11 with ambient air or water at normal temperature. When the gas refrigerant 31 condenses and returns to the liquid refrigerant 32, the latent heat of the condensation is released to the outside air or water. Therefore, the temperature of the liquid refrigerant 32 itself in the condenser 12 does not change much.

【0026】ドライヤ13は、液体冷媒32にに含まれる水
分やゴミなどを除去し、冷媒31,32の質的低下を防止
し、冷媒31,32 のリサイクルを可能とさせる。キャピラ
リチューブまたは膨張弁14は、凝縮器12で液化した冷媒
32のままでは圧力が高すぎるので、蒸発器15での蒸発が
し易い圧力まで減圧させるものである。キャピラリチュ
ーブまたは膨張弁14のいずれの手段も、狭い通路を通し
て抵抗をつけ、絞り変化のため、冷媒32の圧力は急に下
がる。絞り効果によって、冷媒32の一部が蒸発し気泡33
を発生するが、このときの蒸発は外部からの熱ではなく
冷媒液32自身の熱を奪って行われる。 (実施例1)実施形態1の構成による受信信号22c を処
理する第1信号処理回路5Aを図6の原理説明図を用いて
説明する。図6において、励振部52から周波数f1の正弦
波で第1超音波センサ23を連続的に励振する。この第1
超音波センサ23は、周波数f1の正弦波の超音波連続波ビ
ーム2aを斜めに放射し、この超音波連続波ビーム2aが冷
媒32,33 中の気泡33で散乱する散乱波2cを当該超音波セ
ンサ23で受信する。このときの受信する散乱波2cの周波
数は, 冷媒32,33 の流速に比例し冷媒32,33 の流れ方向
により符号が定まるドプラー偏移周波数 (±Δf2) だけ
周波数偏移が発生し受信周波数は(f1±Δf2)となる。
また、このとき、第1超音波センサ23で検出される検出
信号22c は, 両周波数(f1)と(f1±Δf2)の正弦波信号
の積の信号波形として検出される。
The dryer 13 removes moisture, dust and the like contained in the liquid refrigerant 32, prevents the refrigerants 31 and 32 from being deteriorated in quality, and allows the refrigerants 31 and 32 to be recycled. Capillary tube or expansion valve 14 is a refrigerant liquefied in condenser 12
Since the pressure is too high if the pressure is kept at 32, the pressure is reduced to a pressure at which evaporation in the evaporator 15 is easy. Both means of the capillary tube or expansion valve 14 provide resistance through the narrow passage and the pressure of the refrigerant 32 drops abruptly due to throttle changes. Due to the throttling effect, part of the refrigerant 32 evaporates and bubbles 33
However, evaporation at this time is performed not by external heat but by removing heat of the refrigerant liquid 32 itself. (Embodiment 1) A first signal processing circuit 5A for processing a received signal 22c according to the configuration of Embodiment 1 will be described with reference to the principle explanatory diagram of FIG. In FIG. 6, the first ultrasonic sensor 23 is continuously excited by a sine wave having a frequency f1 from the excitation unit 52. This first
The ultrasonic sensor 23 obliquely emits a sinusoidal ultrasonic continuous wave beam 2a having a frequency f1. The ultrasonic continuous wave beam 2a scatters a scattered wave 2c scattered by bubbles 33 in the refrigerants 32 and 33. Received by the sensor 23. The frequency of the scattered wave 2c received at this time is proportional to the flow velocity of the refrigerants 32 and 33, and a frequency shift occurs by the Doppler shift frequency (± Δf2) whose sign is determined by the flow direction of the refrigerants 32 and 33. (F1 ± Δf2).
At this time, the detection signal 22c detected by the first ultrasonic sensor 23 is detected as a signal waveform of a product of the sine wave signals of both frequencies (f1) and (f1 ± Δf2).

【0027】この2つの周波数(f1, (f1±Δf2))の正弦
波信号の積は、2つの周波数の和(2f1±Δf2) および差
(±Δf2) の正弦波信号の和の形で表すことができ、周
波数(2f1±Δf2) は高周波信号であり、周波数 (±Δf
2) は低周波信号であるので、ローパスフィルタ53B を
介して高周波成分を除去することによりドプラー偏移周
波数成分(±Δf2)を検出し、冷媒32,33 の流速を演算
することができる。
The product of the sine wave signals of the two frequencies (f1, (f1 ± Δf2)) is the sum (2f1 ± Δf2) of the two frequencies and the difference
(± Δf2) can be expressed in the form of a sum of sinusoidal signals, and the frequency (2f1 ± Δf2) is a high-frequency signal and the frequency (± Δf2
Since 2) is a low-frequency signal, the Doppler shift frequency component (± Δf2) is detected by removing the high-frequency component through the low-pass filter 53B, and the flow rates of the refrigerants 32 and 33 can be calculated.

【0028】次に、図3において、第1信号処理回路5A
を説明する。第1信号処理回路5Aは、第1超音波センサ
23を励振する励振部52と、検出信号22c を増幅する増幅
器53A とローパスフィルタ53B と振幅検出部53C と周波
数検出部53D とからなる受信部53と、比較器55と記憶回
路56と中央処理装置(CPU)57 と演算処理部58とからなる
演算装置54と、を備えて構成される。
Next, in FIG. 3, the first signal processing circuit 5A
Will be described. The first signal processing circuit 5A is a first ultrasonic sensor
An exciting unit 52 for exciting the 23, a receiving unit 53 including an amplifier 53A for amplifying the detection signal 22c, a low-pass filter 53B, an amplitude detecting unit 53C, and a frequency detecting unit 53D, a comparator 55, a storage circuit 56, and a central processing unit. (CPU) 57 and an arithmetic unit 54 including an arithmetic processing unit 58.

【0029】かかる構成において、第1信号処理回路5A
は、周波数f1と周波数(f1 ±Δf2)が第1超音波センサ2
3自身でミキシングされた検出信号22c を増幅器53A で
増幅し、ローパスフィルタ53B で高周波成分(2f1±Δf
2) をフィルタ除去してドプラー周波数偏移±Δf2を検
出し、振幅検出部53C でドプラー周波数偏移±Δf2の振
幅値、即ち、気泡33の発生量5cを検出し(第1気泡発生
量演算手段53C)、周波数検出部53D,例えばカウンタ, で
周波数Δf2を検出し(第1気泡流速演算手段53D)、冷媒
32,33 の流速5fを検出することができる。
In such a configuration, the first signal processing circuit 5A
Means that the frequency f1 and the frequency (f1 ± Δf2) are the first ultrasonic sensor 2
3 The detection signal 22c mixed by itself is amplified by the amplifier 53A, and the high-frequency component (2f1 ± Δf
2) is filtered to detect the Doppler frequency deviation ± Δf2, and the amplitude detector 53C detects the amplitude value of the Doppler frequency deviation ± Δf2, that is, the generation amount 5c of the bubble 33 (first bubble generation amount calculation). Means 53C), the frequency Δf2 is detected by a frequency detector 53D, for example, a counter (first bubble flow rate calculating means 53D), and the refrigerant
The flow velocity 5f of 32,33 can be detected.

【0030】演算装置54は、冷媒32,33 の流速5fの検出
値を基に、記憶回路56に予め定められた後述する図7に
図示される泡量(有無)特性曲線5Eより、流速5fの検出
値の近傍データを読み出し、例えば比例演算で流速5fに
対応する基準値5eを演算処理部58で演算し、第1気泡発
生量演算手段53C のデータ(気泡33の発生量)5cと基準
値5eとを比較手段55で比較して、冷媒漏れの有無を判定
することができる。 (実施例2)実施形態1の他の実施例を説明する。図1
において、他の実施例の冷凍機の冷媒31,32 の漏れ検知
装置は、冷凍機の蒸発器15に接続される高圧側冷媒管17
の片側面に楔24を介して傾斜して配設され,冷媒32,33
の流れ方向に対して超音波連続波ビームを斜めに放射す
る第1超音波センサ23と、この第1超音波センサ23の超
音波連続波ビーム2aが冷媒(32,33(気泡))中の気泡33で
散乱する散乱波2cを受信する第2超音波センサ23A と、
第1超音波センサ23を励振信号22a で連続的に励振し,
第2超音波センサ23A が受信する受信信号22c を処理す
る第2信号処理回路5Bと、を備えて構成される。
Based on the detected value of the flow rate 5f of the refrigerants 32 and 33, the arithmetic unit 54 calculates the flow rate 5f based on the bubble amount (presence / absence) characteristic curve 5E shown in FIG. And the reference value 5e corresponding to the flow velocity 5f is calculated by the arithmetic processing unit 58 by, for example, a proportional calculation, and the data (the generation amount of the bubbles 33) 5c of the first bubble generation amount calculation means 53C and the reference value are calculated. By comparing the value 5e with the comparing means 55, the presence or absence of refrigerant leakage can be determined. (Example 2) Another example of Embodiment 1 will be described. FIG.
In the other embodiments, the leak detecting device for the refrigerants 31 and 32 of the refrigerator according to the other embodiment includes a high-pressure refrigerant pipe 17 connected to the evaporator 15 of the refrigerator.
Of the refrigerant 32, 33
A first ultrasonic sensor 23 that radiates an ultrasonic continuous wave beam obliquely to the flow direction of the first ultrasonic sensor 23, and the ultrasonic continuous wave beam 2a of the first ultrasonic sensor 23 is used in the refrigerant (32, 33 (bubbles)). A second ultrasonic sensor 23A for receiving a scattered wave 2c scattered by the bubble 33,
The first ultrasonic sensor 23 is continuously excited by the excitation signal 22a,
And a second signal processing circuit 5B for processing the reception signal 22c received by the second ultrasonic sensor 23A.

【0031】第2信号処理回路5Bは、励振部52で第1超
音波センサ23を励振し、第1超音波センサ23が送信する
送信周波数f1と, 受信する受信周波数 (f1±Δf2) と,
の周波数偏移Δf2の信号から冷媒32,33 の通過流速を求
める第2気泡流速演算手段53D と、この周波数偏移Δf2
の信号の振幅より冷媒中の気泡発生量を求める第2気泡
発生量演算手段53C と、第2気泡流速演算手段53D のデ
ータを基に泡量(有無)特性曲線5Dより基準値5dを演算
する演算処理部58と、第2気泡発生量演算手段53C のデ
ータ5bと基準値5dとを比較する比較手段55と、を備えて
構成することができる。
The second signal processing circuit 5B excites the first ultrasonic sensor 23 by the excitation unit 52, and transmits a transmission frequency f1 transmitted by the first ultrasonic sensor 23, a reception frequency (f1 ± Δf2) to receive, and
A second bubble flow velocity calculating means 53D for obtaining the flow velocity of the refrigerant 32, 33 from the signal of the frequency deviation Δf2 of the frequency deviation Δf2;
The reference value 5d is calculated from the bubble amount (presence / absence) characteristic curve 5D based on the data of the second bubble generation amount calculating means 53C for obtaining the amount of bubbles generated in the refrigerant from the amplitude of the signal and the second bubble flow rate calculating means 53D. An arithmetic processing unit 58 and a comparing means 55 for comparing the data 5b of the second bubble generation amount calculating means 53C with the reference value 5d can be provided.

【0032】この第2信号処理回路5Bは、図4におい
て、第1超音波センサ23を励振する励振部52と、第2超
音波センサ23A が受信する検出信号22b を増幅する増幅
器53Aとこの増幅器53A の出力と励振部52からの周波数f
1の信号とをミキシングするミキシング部53E とローパ
スフィルタ53B と振幅検出部53C と周波数検出部53D と
からなる受信部53M と、比較器55と記憶回路56と中央処
理装置(CPU)57 と演算処理部58とからなる演算装置54
と、を備えて構成される。
In FIG. 4, the second signal processing circuit 5B comprises an excitation section 52 for exciting the first ultrasonic sensor 23, an amplifier 53A for amplifying the detection signal 22b received by the second ultrasonic sensor 23A, and an amplifier 53A 53A output and frequency f from excitation unit 52
(1) a mixing section 53E for mixing the signal 1; a low-pass filter 53B; a reception section 53M including an amplitude detection section 53C and a frequency detection section 53D; a comparator 55; a storage circuit 56; a central processing unit (CPU) 57; Arithmetic unit 54 comprising unit 58
And is provided.

【0033】かかる構成において、第2信号処理回路5B
は、励振部52で第1超音波センサ23を励振し、この第1
超音波センサ23が冷媒32,33 の流れ方向に対して超音波
連続波ビーム2aを斜めに放射し、この超音波連続波ビー
ム2aが冷媒32,33 中の気泡33で散乱する散乱波2bを第2
超音波センサ23A で受信し、この第2超音波センサ23A
が受信する受信周波数(f1 ±Δf2) を増幅器53A で増幅
し、この増幅器53A の出力53a と励振部52からの周波数
f1の信号52a とを、例えば、ミキシング部53Eの非線形
要素でミキシングし、2つの周波数(f1, (f1±Δf2))の
正弦波信号の積信号を形成し、以下実施例1と同様に、
ローパスフィルタ53B で高周波成分(2f1±Δf2) をフィ
ルタ除去してドプラー周波数偏移±Δf2を検出し、振幅
検出部53C でドプラー周波数偏移±Δf2の振幅値、即
ち、気泡33の発生量5bを検出し(第2気泡発生量演算手
段53C)、周波数検出部53D,例えばカウンタ, で周波数Δ
f2を検出し(第2気泡流速演算手段53D)、冷媒32,33 の
流速5fを検出することができる。
In such a configuration, the second signal processing circuit 5B
Excites the first ultrasonic sensor 23 with the excitation unit 52,
The ultrasonic sensor 23 radiates the ultrasonic continuous wave beam 2a obliquely to the flow direction of the refrigerant 32, 33, and the ultrasonic continuous wave beam 2a generates the scattered wave 2b scattered by the bubble 33 in the refrigerant 32, 33. Second
Received by the ultrasonic sensor 23A, the second ultrasonic sensor 23A
The amplifier 53A amplifies the reception frequency (f1 ± Δf2) received by the amplifier 53A, and the output 53a of the amplifier 53A and the frequency from the excitation unit 52
The signal 52a of f1 is mixed with, for example, a non-linear element of the mixing unit 53E to form a product signal of sine wave signals of two frequencies (f1, (f1 ± Δf2)).
The low-pass filter 53B filters out the high-frequency component (2f1 ± Δf2) to detect the Doppler frequency deviation ± Δf2, and the amplitude detector 53C determines the amplitude value of the Doppler frequency deviation ± Δf2, that is, the amount 5b of generated bubbles 33. Is detected (second air bubble generation amount calculation means 53C), and the frequency Δ
By detecting f2 (second bubble flow velocity calculating means 53D), the flow velocity 5f of the refrigerants 32, 33 can be detected.

【0034】そして、演算装置54は、検出された冷媒3
2,33 の流速5fを基に、記憶回路56に予め定められた図
7に図示される泡量(有無)特性曲線5Dより、流速5fの
検出値の近傍データを読み出し、例えば比例演算で流速
5fに対応する基準値5dを演算処理部58で演算し、第1気
泡発生量演算手段53C のデータ(気泡33の発生量)5bと
基準値5dとを比較手段55で比較して、冷媒漏れの有無を
判定することができる。特に、実施例1と比較して、散
乱波2bを受信する信号レベルが低いとき、第2超音波セ
ンサ23A で散乱波2bを個別に受信し、これを増幅して、
ミキシング部(53E) で励振部52と, 受信し増幅した散乱
波2bと, の信号を非線形素子を介してミキシングするこ
とにより、ドプラー周波数偏移±Δf2の信号をより安定
に検出することができ、以下、実施例1で述べたと同様
の処理で冷媒漏れの有無を判定することができる。
Then, the arithmetic unit 54 outputs the detected refrigerant 3
Based on the flow rate 5f of 2,33, the data near the detected value of the flow rate 5f is read out from the foam amount (presence / absence) characteristic curve 5D shown in FIG.
The reference value 5d corresponding to 5f is calculated by the arithmetic processing unit 58, and the data (the amount of generated bubbles 33) 5b of the first bubble generation amount calculation means 53C is compared with the reference value 5d by the comparison means 55, and the refrigerant leakage is calculated. Can be determined. In particular, when the signal level for receiving the scattered wave 2b is lower than that of the first embodiment, the scattered wave 2b is individually received by the second ultrasonic sensor 23A, and the amplified scattered wave 2b is amplified.
By mixing the signals of the excitation unit 52 and the received and amplified scattered wave 2b with the mixing unit (53E) through the nonlinear element, the signal of the Doppler frequency shift ± Δf2 can be detected more stably. Hereinafter, it is possible to determine the presence or absence of refrigerant leakage by the same processing as described in the first embodiment.

【0035】また、実施例1、2で説明した実施例と異
なる他の実施例として、図12に図示する冷媒漏れ検知装
置がある。図12において、冷媒漏れ検知装置は、圧縮機
11の消費電流または消費電力を検出する電気量センサ27
を備える、あるいは、圧縮機11またはこの圧縮機11の出
口冷媒管に冷媒圧力を測定する圧力センサ28を備えて構
成することができる。
Further, as another embodiment different from the embodiments described in the first and second embodiments, there is a refrigerant leak detecting device shown in FIG. In FIG. 12, the refrigerant leak detection device is a compressor
11 Electric quantity sensor 27 that detects current consumption or power consumption
Alternatively, the compressor 11 or the outlet refrigerant pipe of the compressor 11 may be provided with a pressure sensor 28 for measuring a refrigerant pressure.

【0036】かかる構成により、第1信号処理回路5Cの
演算処理部58または第2信号処理回路5Dの演算処理部58
は(図3、4参照)、第1または第2気泡流速演算手段
53Dが求めるデータ5fの代わりに、消費電流または消費
電力のデータを基に泡量(有無)特性曲線5E,5D より基
準値5e,5d を演算し、第1または第2気泡発生量演算手
段53C のデータ5c,5b が泡量(有無)特性曲線の基準値
5e,5d より大きいとき冷媒漏れありと判定することがで
きる。 (実施例3)実施形態2を補足説明する。実施例1およ
び実施例2で説明した実施形態1と本発明の実施形態2
との差異は次の点にある。即ち、実施形態1では、冷媒
管17中の気泡33の発生量5c,5b の検出を、気泡33で散乱
される散乱波2c,2b を自身の第1超音波センサ23あるい
は第2超音波センサ23A でドプラー周波数偏移±Δf2し
た周波数成分の振幅を検出することによって行ってい
る。他方、実施形態2では、第3超音波センサ25を冷媒
管17中の別箇所に垂直に設置し、冷媒管17で反射する反
射波を測定し、この反射波の減少程度から、気泡33の発
生量6c,6b を間接的に検出するものである。即ち、第3
超音波センサ25による超音波信号が気泡33で散乱される
がこの残りの冷媒管17中を透過する超音波透過量を測定
するものである。この第3信号処理回路6A,6B を図5に
図示する。尚、実施例1に対応する信号処理回路6Aを中
心に説明し、実施例2に対応する信号処理回路6Bは括弧
内で説明する。
With such a configuration, the arithmetic processing unit 58 of the first signal processing circuit 5C or the arithmetic processing unit 58 of the second signal processing circuit 5D
(See FIGS. 3 and 4), first or second bubble flow velocity calculating means
Instead of the data 5f obtained by 53D, the reference values 5e, 5d are calculated from the bubble amount (presence / absence) characteristic curves 5E, 5D based on the data of the current consumption or the power consumption, and the first or second bubble generation amount calculating means 53C Data 5c and 5b are the reference values of the foam amount (presence / absence) characteristic curve
When it is larger than 5e, 5d, it can be determined that there is refrigerant leakage. (Embodiment 3) The embodiment 2 will be supplementarily described. Embodiment 1 described in Embodiment 1 and Embodiment 2 and Embodiment 2 of the present invention
The difference is as follows. That is, in the first embodiment, the detection of the generation amount 5c, 5b of the bubble 33 in the refrigerant pipe 17 is performed by using the scattered waves 2c, 2b scattered by the bubble 33 in the first ultrasonic sensor 23 or the second ultrasonic sensor. This is performed by detecting the amplitude of the frequency component obtained by Doppler frequency deviation ± Δf2 at 23A. On the other hand, in the second embodiment, the third ultrasonic sensor 25 is installed vertically at another position in the refrigerant pipe 17, and the reflected wave reflected by the refrigerant pipe 17 is measured. The amount of generation 6c, 6b is detected indirectly. That is, the third
Although the ultrasonic signal from the ultrasonic sensor 25 is scattered by the bubbles 33, the amount of ultrasonic transmission that passes through the remaining refrigerant pipe 17 is measured. The third signal processing circuits 6A and 6B are shown in FIG. The signal processing circuit 6A corresponding to the first embodiment will be mainly described, and the signal processing circuit 6B corresponding to the second embodiment will be described in parentheses.

【0037】図5において、第3信号処理回路6A(6B)
は、実施例1(2)に対応する第1超音波センサ23を励
振する励振部52と、第1超音波センサ23が受信する検出
信号22c(あるいは第2超音波センサ23A が受信する検出
信号22b)を増幅する増幅器53Aと,(この増幅器53A の出
力と励振部52からの周波数f1の信号とをミキシングする
ミキシング部53E と),ローパスフィルタ53B と周波数検
出部53D とからなり受信部63の一部を形成し、冷媒管17
中の気泡33の通過流速を求める第3気泡流速演算手段
(52〜53D)と、一定間隔でパルスを発生するタイミング
生成器61と、このタイミングパルスを受けて第3超音波
センサ25を励振する送信部62と、増幅器63A と, 帯域通
過フィルタ63B と, 振幅検出部63C とからなり受信部63
の残り部分を形成し、冷媒管17中の気泡33を透過する反
射波2fを検出する受信レベル検出手段(61〜63C)と、比
較器55とゲート回路55A と記憶回路66と中央処理装置(C
PU)57 と演算処理部68とからなる演算装置64と、を備え
て構成される。
In FIG. 5, the third signal processing circuit 6A (6B)
Are the excitation unit 52 for exciting the first ultrasonic sensor 23 corresponding to the first embodiment (2), and the detection signal 22c received by the first ultrasonic sensor 23 (or the detection signal received by the second ultrasonic sensor 23A). 22b), (a mixing unit 53E for mixing the output of the amplifier 53A and the signal of the frequency f1 from the excitation unit 52), a low-pass filter 53B and a frequency detection unit 53D. Form a part, refrigerant pipe 17
Third bubble flow velocity calculating means (52 to 53D) for determining the flow velocity of the bubble 33 inside, a timing generator 61 for generating pulses at regular intervals, and the third ultrasonic sensor 25 is excited upon receiving this timing pulse. The receiving section 63 includes a transmitting section 62, an amplifier 63A, a band-pass filter 63B, and an amplitude detecting section 63C.
, A reception level detecting means (61-63C) for detecting a reflected wave 2f passing through the bubble 33 in the refrigerant pipe 17, a comparator 55, a gate circuit 55A, a storage circuit 66, and a central processing unit ( C
PU) 57 and an arithmetic unit 64 including an arithmetic processing unit 68.

【0038】かかる構成において、第3信号処理回路6A
(6B)は、励振部52で第1超音波センサ23を励振し、この
第1超音波センサ23が冷媒32,33 の流れ方向に対して超
音波連続波ビーム2aを斜めに放射し、この超音波連続波
ビーム2aが冷媒32,33 中の気泡33で散乱する散乱波2cを
第1超音波センサ23(あるいは散乱波2bを第2超音波セ
ンサ23A)で受信し、超音波センサ23(23A) が受信する受
信周波数(f1 ±Δf2)を増幅器53A で増幅し、(ミキシ
ング部53E で増幅器53A の出力と励振部52からの周波数
f1の信号をミキシングし、2つの周波数(f1, (f1±Δf
2))の正弦波信号の積信号を形成し)、以下、ローパス
フィルタ53B で高周波成分(2f1±Δf2) をフィルタ除去
してドプラー周波数偏移±Δf2を弁別し、周波数検出部
53D,例えばカウンタ, で周波数Δf2を検出し、冷媒32,3
3 の流速5fを検出する。
In such a configuration, the third signal processing circuit 6A
In (6B), the first ultrasonic sensor 23 is excited by the excitation section 52, and the first ultrasonic sensor 23 radiates the ultrasonic continuous wave beam 2a obliquely to the flow direction of the refrigerants 32 and 33. The first ultrasonic sensor 23 (or the second ultrasonic sensor 23A receives the scattered wave 2b) in which the ultrasonic continuous wave beam 2a is scattered by the bubbles 33 in the refrigerants 32 and 33 is received by the ultrasonic sensor 23 ( The reception frequency (f1 ± Δf2) received by the amplifier 53A is amplified by the amplifier 53A, and the output of the amplifier 53A and the frequency from the excitation unit 52 are mixed by the mixing unit 53E.
The signal of f1 is mixed and two frequencies (f1, (f1 ± Δf
2)), a high-frequency component (2f1 ± Δf2) is removed by a low-pass filter 53B to discriminate the Doppler frequency deviation ± Δf2,
53D, for example, a counter, detects the frequency Δf2, and the refrigerant 32,3
Detect the flow velocity 5f of 3.

【0039】また、図8を併用して図5において、第3
信号処理回路6A(6B)は、タイミング生成器61より予め定
められた一定間隔で発生するタイミングパルス61a によ
って、一方は送信部62で電力増幅して超音波センサ25を
励振し、超音波センサ25に矩形波の励振信号を印加する
と、超音波センサ25の電気・機械振動系によって定まる
高いQ(ピーク値)を有する高周波振動波2d(図9の
(B) 参照) が発生し、この高周波振動波形が冷媒管17中
の冷媒32,33 を垂直に伝搬し、冷媒管17の配管裏面19で
反射する反射波2fを当該超音波センサ25で受信する。こ
の受信信号25c は気泡33の発生が無いときは気泡33によ
る散乱の影響を受けることなく透過され(図8の(A))、
気泡33があるときは気泡33によって散乱され、透過する
超音波信号2fは減少し、受信信号25c も減少する。
FIG. 5 is used in combination with FIG.
The signal processing circuit 6A (6B) excites the ultrasonic sensor 25 by amplifying the power in the transmitting unit 62 by the timing pulse 61a generated at a predetermined constant interval from the timing generator 61, When an excitation signal of a rectangular wave is applied to the high-frequency vibration wave 2d having a high Q (peak value) determined by the electric / mechanical vibration system of the ultrasonic sensor 25 (see FIG. 9).
(Refer to (B)), this high-frequency vibration waveform propagates vertically through the refrigerants 32 and 33 in the refrigerant pipe 17, and the ultrasonic wave sensor 25 receives the reflected wave 2f reflected on the pipe back surface 19 of the refrigerant pipe 17. I do. This reception signal 25c is transmitted without being affected by the scattering by the bubble 33 when the bubble 33 is not generated (FIG. 8A),
When the air bubble 33 is present, the ultrasonic signal 2f scattered by the air bubble 33 and transmitted decreases, and the reception signal 25c also decreases.

【0040】この受信信号25c は、増幅器63A で増幅さ
れ、帯域通過フィルタ63B で電気的ノイズおよび音響ノ
イズを除去して、振幅検出部63C で受信信号25c の振幅
6cを検出し、演算装置64に出力される。この受信信号25
c の振幅の測定は、受信信号25c のピーク値、半波(全
波)整流値の積分値、あるいは、実効値の積分値などを
利用することができる。
The received signal 25c is amplified by the amplifier 63A, and the electric noise and the acoustic noise are removed by the band-pass filter 63B, and the amplitude of the received signal 25c is detected by the amplitude detector 63C.
6c is detected and output to the arithmetic unit 64. This received signal 25
The amplitude of c can be measured using the peak value of the received signal 25c, the integral value of the half-wave (full-wave) rectified value, or the integral value of the effective value.

【0041】次に、演算装置54の動作を説明する。実施
例3の冷媒漏れ検知装置は、実用運転開始に先立ち、冷
媒漏れが無い状態で冷凍機を運転したときの第3気泡流
速演算手段(52〜53D)による冷媒32,33 の流速相当の出
力5fと, 受信レベル検出手段(61〜63C)による受信信号
レベル6cと, の関係特性を予め調べ、泡量判定基準特性
(6G)としてこのデータを記憶回路56に保有し、受信信号
レベル6cがこの泡量判定基準特性(6G)の泡量判定基準値
6g以下になったとき冷媒漏れありと判定することができ
る。
Next, the operation of the arithmetic unit 54 will be described. The refrigerant leak detection device according to the third embodiment outputs an output corresponding to the flow rates of the refrigerants 32 and 33 by the third bubble flow velocity calculating means (52 to 53D) when the refrigerator is operated without refrigerant leakage prior to the start of practical operation. The relationship characteristic between 5f and the received signal level 6c by the reception level detecting means (61 to 63C) is checked in advance, and the bubble amount determination reference characteristic
This data is stored in the storage circuit 56 as (6G), and the received signal level 6c is the bubble amount determination reference value of the bubble amount determination reference characteristic (6G).
When it becomes 6 g or less, it can be determined that there is refrigerant leakage.

【0042】図7は基準泡量(有無)設定値を示す特性
図である。図7において、縦軸に基準泡量を、横軸に第
3気泡流速演算手段(52〜53D)による冷媒32,33 の流速
相当の出力5fをパラメータにとり、冷却装置に冷媒が適
正充填されているときの冷凍機の運転データを予め測定
し、このデータを処理して記憶回路66に記憶させる。こ
のデータ処理は、冷媒32,33 の流速相当の出力5fに対す
る超音波センサ25の受信信号25c を受信処理しこの受信
信号レベル6cを測定し、この測定データ6cに予め定めら
れた泡量(有無)特性曲線6Fの値を減算補正して、気泡
33の有無を判定する冷媒32,33 流速相当出力5fをパラメ
ータとする泡量判定基準特性6Gとして、当該冷凍機の冷
媒漏れ検知装置の第3信号処理回路6A,6B の記憶回路66
にそのデータを保持することができる。
FIG. 7 is a characteristic diagram showing a set value of the reference bubble amount (presence / absence). In FIG. 7, the vertical axis represents the reference bubble amount, and the horizontal axis represents the output 5f corresponding to the flow rates of the refrigerants 32 and 33 by the third bubble flow velocity calculating means (52 to 53D). The operation data of the refrigerator during the operation is measured in advance, and this data is processed and stored in the storage circuit 66. In this data processing, the reception signal 25c of the ultrasonic sensor 25 with respect to the output 5f corresponding to the flow velocity of the refrigerants 32 and 33 is received and processed, and the reception signal level 6c is measured. ) Subtract the value of characteristic curve 6F and correct it.
The refrigerant 32,33 which determines the presence or absence of 33 The storage circuit 66 of the third signal processing circuits 6A, 6B of the refrigerant leak detection device of the refrigerator as a foam amount determination reference characteristic 6G using the flow rate equivalent output 5f as a parameter.
Can hold the data.

【0043】そして、冷凍機として運用するときは、冷
媒32,33 流速相当出力5fを演算し、この演算データ5fの
近傍データを第3信号処理回路6A,6B の記憶回路66に保
持されたデータから読み出し、演算処理部68で例えば比
例配分して、冷媒漏れ有無を判定する泡量判定基準値6g
を演算し、受信信号レベル6cと比較して冷媒漏れの有無
を検知することができる。
When operating as a refrigerator, the outputs 32f corresponding to the flow rates of the refrigerants 32 and 33 are calculated, and the vicinity data of the calculated data 5f is stored in the storage circuit 66 of the third signal processing circuits 6A and 6B. From, and, for example, proportionally distributed by the arithmetic processing unit 68 to determine the presence or absence of refrigerant leakage.
Is calculated, and the presence or absence of refrigerant leakage can be detected by comparing with the reception signal level 6c.

【0044】図10は第1〜第3信号処理回路5A,5B,6A,6
B での上記処理プログラムであり、図10の(A) に第1、
第2信号処理回路5A,5B を示し、図10の(B) に第3信号
処理回路6A,6B を示す。図10の(A) において、ステップ
S1で、第1あるいは第2気泡流速演算手段53D から冷媒
32,33 流速相当出力5fを演算する。ステップS2で、この
データ5fを基に冷媒漏れ有無を判定する泡量(有無)特
性曲線5D,5E のいずれかの該当する基準値5dまたは5eを
演算し、この演算値を目標値SVとして比較器55の基準値
として設定する。ステップS3で、気泡発生量演算手段53
C の受信信号5b,5c のレベル値PVを読み取り、ステップ
S4で、演算された泡量(有無)基準値5d,5e の該当する
演算値SVと受信信号5b,5c のレベルPVとを比較し、受信
信号5b,5c のレベルPVが演算値SVよりも大(Yes) なると
きステップS5で、冷媒漏れ有を出力する。また、ステッ
プS4で、受信信号5b,5c のレベルPVが演算値SVよりも小
(No)なるときステップS1に戻り、監視を継続する。
FIG. 10 shows the first to third signal processing circuits 5A, 5B, 6A, 6
The above processing program in B is shown in FIG.
The second signal processing circuits 5A and 5B are shown, and the third signal processing circuits 6A and 6B are shown in FIG. In FIG. 10A, the steps
In S1, the refrigerant is supplied from the first or second bubble flow velocity calculating means 53D.
32,33 Flow velocity equivalent output 5f is calculated. In step S2, a corresponding reference value 5d or 5e of the foam amount (presence / absence) characteristic curves 5D and 5E for judging the presence or absence of refrigerant leakage based on the data 5f is calculated, and the calculated value is compared as a target value SV. Is set as the reference value of the container 55. In step S3, the bubble generation amount calculation means 53
Read the level value PV of the received signals 5b and 5c of C, and
In S4, the corresponding calculated value SV of the calculated foam amount (presence / absence) reference values 5d and 5e is compared with the level PV of the received signals 5b and 5c, and the level PV of the received signals 5b and 5c is smaller than the calculated value SV. When it is larger (Yes), in step S5, it is output that there is a refrigerant leak. In step S4, the level PV of the received signals 5b and 5c is smaller than the calculated value SV.
If (No), the process returns to step S1 to continue monitoring.

【0045】また、図10の(B) において、ステップS11
で、第3気泡流速演算手段53D から冷媒32,33 流速相当
出力5fを演算する。ステップS12 で、このデータ5fを基
に冷媒漏れ有無を判定する泡量判定基準特性6Gの基準値
6gを演算し、この基準値6gを目標値SVとして比較器55に
設定する。ステップS13 で、受信レベル検出手段(61〜
63C)の受信信号レベル6cのレベル値PVを読み取り、ステ
ップS14 で、演算された泡量判定基準値6g(SV)と受信信
号レベル6c(PV)とを比較し、受信信号レベル6c(PV)が基
準値6g(SV)よりも小(Yes) なるときステップS15 で、冷
媒漏れ有を出力する。また、ステップS14 で、受信信号
レベル6c(PV)が基準値6g(SV)よりも大(No)なるときステ
ップS11 に戻り、監視を継続する。
Further, in FIG. 10B, step S11
Then, the output 5f corresponding to the flow rate of the refrigerant 32, 33 is calculated from the third bubble flow rate calculating means 53D. In step S12, the reference value of the bubble amount determination reference characteristic 6G for determining the presence or absence of refrigerant leakage based on the data 5f
6g is calculated, and the reference value 6g is set in the comparator 55 as the target value SV. In step S13, the reception level detection means (61 to
The level value PV of the received signal level 6c of (63C) is read, and in step S14, the calculated foam amount determination reference value 6g (SV) is compared with the received signal level 6c (PV), and the received signal level 6c (PV) is compared. Is smaller than the reference value 6 g (SV) (Yes), a refrigerant leak is output in step S15. When the received signal level 6c (PV) is larger (No) in step S14 than the reference value 6g (SV), the process returns to step S11 to continue monitoring.

【0046】実施例3による冷媒漏れ検知装置では、超
音波信号の透過波を監視しているので、透過波そのもの
が検出されないなどの検知装置の異常状態を含めて監視
することができるので、例えば、人命に危機に関連する
場合などの高信頼性安全化システムに適用することがで
きる。
In the refrigerant leak detecting device according to the third embodiment, since the transmitted wave of the ultrasonic signal is monitored, it is possible to perform monitoring including an abnormal state of the detecting device such that the transmitted wave itself is not detected. The present invention can be applied to a highly reliable safety system in a case where a human life is related to a crisis.

【0047】[0047]

【発明の効果】以上述べたように本発明によれば、冷媒
管に外部から超音波センサを設置し、この超音波センサ
の送受信信号を処理することにより、サイトグラスを設
けるなどの冷媒管への加工を不要とする冷媒漏れ検知装
置を提供することができ、また、圧縮機の電流、電力あ
るいは圧力を監視することにより、冷凍機のフル稼働時
の誤検知を防止することができる自動化された冷媒漏れ
検知装置を提供することができる。
As described above, according to the present invention, an ultrasonic sensor is installed in a refrigerant pipe from the outside, and a transmission / reception signal of the ultrasonic sensor is processed so that a sight glass is provided to the refrigerant pipe. It is possible to provide a refrigerant leak detection device that eliminates the need for processing, and to monitor the current, power, or pressure of the compressor to prevent erroneous detection during full operation of the refrigerator. The refrigerant leak detecting device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例としての冷凍機の冷媒漏れ検
知装置の要部構成図
FIG. 1 is a configuration diagram of a main part of a refrigerant leak detection device for a refrigerator as one embodiment of the present invention.

【図2】他の実施例としての冷凍機の冷媒漏れ検知装置
の要部構成図
FIG. 2 is a main part configuration diagram of a refrigerant leak detection device for a refrigerator as another embodiment.

【図3】一実施例の第1信号処理回路の要部構成図FIG. 3 is a configuration diagram of a main part of a first signal processing circuit according to one embodiment;

【図4】第2信号処理回路の要部構成図FIG. 4 is a configuration diagram of a main part of a second signal processing circuit.

【図5】第3信号処理回路の要部構成図FIG. 5 is a configuration diagram of a main part of a third signal processing circuit.

【図6】一実施例の原理説明図FIG. 6 is a diagram illustrating the principle of one embodiment.

【図7】泡量(有無)特性曲線および泡量判定基準特性
を説明する説明図
FIG. 7 is an explanatory diagram for explaining a bubble amount (presence / absence) characteristic curve and a bubble amount determination reference characteristic.

【図8】他の冷媒漏れの検出原理を説明する説明図FIG. 8 is an explanatory diagram illustrating another principle of detecting a refrigerant leak.

【図9】図8の検出原理を説明するタイミング図FIG. 9 is a timing chart illustrating the detection principle of FIG. 8;

【図10】冷媒漏れの判定フローチャートFIG. 10 is a flowchart for determining a refrigerant leak.

【図11】従来技術による冷媒漏れ検知センサの概念図FIG. 11 is a conceptual diagram of a refrigerant leak detection sensor according to the related art.

【図12】他の実施例としての冷凍機の冷媒漏れ検知装置
の要部構成図
FIG. 12 is a main part configuration diagram of a refrigerant leak detection device of a refrigerator as another embodiment.

【符号の説明】[Explanation of symbols]

11 圧縮機 12 凝縮器 13 ドライヤ 14 膨張弁 15 蒸発器 16 配管 17 高圧側冷媒管 23,23A,25 超音波センサ 24,24A 楔 27 電気量センサ 28 圧力センサ 22a,22b,22c,25c 検出信号 2a,2b,2c,2d,2e,2f 超音波信号 31 冷媒(ガス) 32 冷媒(液体) 33 気泡 41 発光素子 42 受光素子 43 サイトグラス 45 表示と信号処理回路 46 緑LED 47 赤LED 52 励振電源 53,53M,63 受信部 53A,63A 増幅器 53B ローパスフィルタ 53C,63C 振幅検出部 53D 周波数検出部 53E ミキシング部 54,64 演算装置 55 比較器 55A ゲート回路 56,66 記憶回路 57 中央処理装置 58,68 演算処理部 5c,5b,6c 受信信号レベル 5e,5d 基準値 5f 冷媒の流速 5d,5e,6g 基準値 5D,5E,6F 泡量(有無)特性曲線 6G 泡量判定基準特性 61 タイミング生成器 62 送信部 63B 帯域通過フィルタ 11 Compressor 12 Condenser 13 Dryer 14 Expansion valve 15 Evaporator 16 Piping 17 High pressure side refrigerant pipe 23,23A, 25 Ultrasonic sensor 24,24A Wedge 27 Electric quantity sensor 28 Pressure sensor 22a, 22b, 22c, 25c Detection signal 2a , 2b, 2c, 2d, 2e, 2f Ultrasonic signal 31 Refrigerant (gas) 32 Refrigerant (liquid) 33 Bubbles 41 Light emitting element 42 Light receiving element 43 Sight glass 45 Display and signal processing circuit 46 Green LED 47 Red LED 52 Excitation power supply 53 , 53M, 63 Receiver 53A, 63A Amplifier 53B Low-pass filter 53C, 63C Amplitude detector 53D Frequency detector 53E Mixing unit 54, 64 Computing unit 55 Comparator 55A Gate circuit 56, 66 Storage circuit 57 Central processing unit 58, 68 Computation Processing unit 5c, 5b, 6c Received signal level 5e, 5d Reference value 5f Refrigerant flow rate 5d, 5e, 6g Reference value 5D, 5E, 6F Bubble amount (presence / absence) characteristic curve 6G Foam amount determination reference characteristic 61 Timing generator 62 Transmission Part 63B Bandpass filter

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】圧縮機と, 凝縮器と, 膨張弁と, 蒸発器
と, これらの機器を接続し循環系を構成する配管と, を
備えてなる冷却装置と、この冷却装置に充填されこれら
の機器内を循環し蒸発器で蒸発して冷却を行う冷媒と、
蒸発器に接続される高圧側冷媒管の片側面に傾斜して配
設され,冷媒の流れ方向に対して超音波連続波ビームを
斜めに放射する第1超音波センサと、この第1超音波セ
ンサを連続的に励振し,この第1超音波センサの超音波
連続波ビームが冷媒中の気泡で散乱する散乱波を当該超
音波センサで受信し,この受信信号を処理する第1信号
処理回路と、を備え、 第1信号処理回路は、第1超音波センサが送信する送信
周波数と, 受信する受信周波数と, の偏移周波数信号か
ら冷媒の通過流速を求める第1気泡流速演算手段と、こ
の偏移周波数信号の振幅より冷媒中の気泡発生量を求め
る第1気泡発生量演算手段と、第1気泡流速演算手段の
データを基に泡量(有無)特性曲線より基準値を演算す
る演算処理部と、第1気泡発生量演算手段のデータと基
準値とを比較する比較手段と、を備え、 第1気泡発生量演算手段のデータが泡量(有無)特性曲
線の基準値より大きいとき冷媒漏れありと判定する、 ことを特徴とする冷媒漏れ検知装置。
1. A cooling device comprising a compressor, a condenser, an expansion valve, an evaporator, and a pipe connecting these devices to form a circulation system. Refrigerant that circulates through the equipment and evaporates and cools with an evaporator,
A first ultrasonic sensor which is disposed on one side of a high-pressure side refrigerant pipe connected to the evaporator and emits an ultrasonic continuous wave beam obliquely with respect to the flow direction of the refrigerant; A first signal processing circuit that continuously excites the sensor, receives a scattered wave in which an ultrasonic continuous wave beam of the first ultrasonic sensor is scattered by bubbles in the refrigerant, and processes the received signal; The first signal processing circuit comprises: a first bubble sensor that calculates a refrigerant flow velocity from a shift frequency signal of a transmission frequency transmitted by the first ultrasonic sensor, a reception frequency of the first ultrasonic sensor, A first bubble generation amount calculating means for calculating a bubble generation amount in the refrigerant from the amplitude of the shift frequency signal, and a calculation for calculating a reference value from a bubble amount (presence / absence) characteristic curve based on data of the first bubble flow velocity calculating means. Data of the processing unit and the first bubble generation amount calculating means Comparing means for comparing with a reference value, wherein it is determined that there is a refrigerant leak when the data of the first bubble generation amount calculating means is larger than the reference value of the bubble amount (presence / absence) characteristic curve. Detection device.
【請求項2】圧縮機と, 凝縮器と, 膨張弁と, 蒸発器
と, これらの機器を接続し循環系を構成する配管と, を
備えてなる冷却装置と、この冷却装置に充填されこれら
の機器内を循環し蒸発器で蒸発して冷却を行う冷媒と、
蒸発器に接続される高圧側冷媒管の片側面に傾斜して配
設され,冷媒の流れ方向に対して超音波連続波ビームを
斜めに放射する第1超音波センサと、第1超音波センサ
の超音波連続波ビームが冷媒中の気泡で散乱する散乱波
を受信する第2超音波センサと、第1超音波センサを連
続的に励振し,第2超音波センサが受信する受信信号を
処理する第2信号処理回路と、を備え、 第2信号処理回路は、第1超音波センサが送信する送信
周波数と, 第2超音波センサが受信する受信周波数と,
の偏移周波数信号から冷媒の通過流速を求める第2気泡
流速演算手段と、この偏移周波数信号の振幅より冷媒中
の気泡発生量を求める第2気泡発生量演算手段と、第2
気泡流速演算手段のデータを基に泡量(有無)特性曲線
より基準値を演算する演算処理部と、第2気泡発生量演
算手段のデータと基準値とを比較する比較手段と、を備
え、 第2気泡発生量演算手段のデータが泡量(有無)特性曲
線の基準値より大きいとき冷媒漏れありと判定する、 ことを特徴とする冷媒漏れ検知装置。
2. A cooling system comprising a compressor, a condenser, an expansion valve, an evaporator, and a pipe connecting these devices to form a circulation system. Refrigerant that circulates through the equipment and evaporates and cools with an evaporator,
A first ultrasonic sensor, which is disposed obliquely on one side of a high-pressure refrigerant pipe connected to the evaporator and emits a continuous ultrasonic wave beam obliquely with respect to the flow direction of the refrigerant, and a first ultrasonic sensor A second ultrasonic sensor that receives a scattered wave of the ultrasonic continuous wave beam scattered by bubbles in the refrigerant and a first ultrasonic sensor that are continuously excited to process a received signal received by the second ultrasonic sensor A second signal processing circuit, the second signal processing circuit comprising: a transmission frequency transmitted by the first ultrasonic sensor; a reception frequency received by the second ultrasonic sensor;
A second bubble flow rate calculating means for calculating the flow velocity of the refrigerant from the shift frequency signal, a second bubble generation amount calculating means for determining the amount of bubbles generated in the refrigerant from the amplitude of the shift frequency signal,
An arithmetic processing unit for calculating a reference value from a bubble amount (presence / absence) characteristic curve based on data of the bubble flow rate calculating means; and a comparing means for comparing data of the second bubble generation amount calculating means with the reference value; A refrigerant leakage detecting device, wherein when the data of the second bubble generation amount calculating means is larger than a reference value of a bubble amount (presence / absence) characteristic curve, it is determined that there is refrigerant leakage.
【請求項3】請求項1または請求項2に記載の冷媒漏れ
検知装置において、 蒸発器に接続される高圧側冷媒管の別の場所の片側面に
垂直に配設される第3超音波センサと、第1または第2
信号処理回路に代わって、第1超音波センサを連続的に
励振しこの超音波信号が冷媒中の気泡で散乱する散乱波
を第1超音波センサあるいは第2超音波センサで受信す
る受信信号を処理する第3信号処理回路と、を備え、 第3信号処理回路は、送信周波数と受信周波数との偏移
周波数信号から冷媒の通過流速を求める第3気泡流速演
算手段と、第3超音波センサをパルス状に励振し当該超
音波センサに戻る反射波を受信しこの第3受信信号の振
幅を検出する受信レベル検出手段と、第3気泡流速演算
手段のデータを基に泡量判定基準値を演算する第3演算
処理部と、受信レベル検出手段のデータと第3演算処理
部の基準値とを比較する比較手段と、を備え、 受信レベル検出手段のデータが泡量判定基準値より低い
とき、冷媒漏れありと判定する、 ことを特徴とする冷媒漏れ検知装置。
3. The refrigerant leakage detecting device according to claim 1, wherein the third ultrasonic sensor is vertically arranged on one side surface of another high pressure side refrigerant pipe connected to the evaporator. And the first or second
In place of the signal processing circuit, the first ultrasonic sensor is continuously excited, and the ultrasonic signal is received by the first ultrasonic sensor or the second ultrasonic sensor to receive a scattered wave scattered by bubbles in the refrigerant. A third signal processing circuit for performing processing, the third signal processing circuit comprising: a third bubble flow velocity calculating means for determining a passage velocity of the refrigerant from a shift frequency signal between the transmission frequency and the reception frequency; and a third ultrasonic sensor. And a receiving level detecting means for receiving a reflected wave returning to the ultrasonic sensor and detecting the amplitude of the third received signal, and a bubble amount determination reference value based on data of the third bubble flow rate calculating means. A third arithmetic processing unit for calculating, and comparing means for comparing data of the reception level detection means with a reference value of the third arithmetic processing unit, wherein the data of the reception level detection means is lower than the bubble amount determination reference value. Determined that there is a refrigerant leak That refrigerant leakage detection device, characterized in that.
【請求項4】請求項1または請求項2に記載の冷媒漏れ
検知装置において、 圧縮機の消費電流または消費電力を検出する電気量セン
サを備え、 第1または第2信号処理回路の演算処理部は、第1また
は第2気泡流速演算手段が求めるデータの代わりに、消
費電流または消費電力のデータを基に泡量(有無)特性
曲線より基準値を演算し、第1または第2気泡発生量演
算手段のデータが泡量(有無)特性曲線の基準値より大
きいとき冷媒漏れありと判定する、 ことを特徴とする冷媒漏れ検知装置。
4. The refrigerant leak detection device according to claim 1, further comprising an electric quantity sensor for detecting current consumption or power consumption of the compressor, and an arithmetic processing unit of the first or second signal processing circuit. Calculates a reference value from a bubble amount (presence / absence) characteristic curve based on current consumption or power consumption data instead of the data obtained by the first or second bubble flow rate calculation means, and calculates the first or second bubble generation amount. A refrigerant leakage detection device, wherein it is determined that there is refrigerant leakage when the data of the calculating means is larger than the reference value of the bubble amount (presence / absence) characteristic curve.
【請求項5】請求項1または請求項2に記載の冷媒漏れ
検知装置において、 圧縮機あるいはこの圧縮機の出口冷媒管に冷媒圧力を測
定する圧力センサを備え、 第1または第2信号処理回路の演算処理部は、第1また
は第2気泡流速演算手段が求めるデータの代わりに、こ
の圧力センサのデータを基に泡量(有無)特性曲線より
基準値を演算し、第1または第2気泡発生量演算手段の
データが泡量(有無)特性曲線の基準値より大きいとき
冷媒漏れありと判定する、 ことを特徴とする冷媒漏れ検知装置。
5. The refrigerant leak detecting device according to claim 1, further comprising a pressure sensor for measuring a refrigerant pressure at a compressor or at an outlet refrigerant pipe of the compressor, wherein the first or second signal processing circuit is provided. The arithmetic processing unit calculates a reference value from a bubble amount (presence / absence) characteristic curve based on the data of the pressure sensor instead of the data obtained by the first or second bubble flow rate calculating means, and calculates the first or second bubble. A refrigerant leakage detection device, wherein it is determined that there is refrigerant leakage when data of the generation amount calculation means is larger than a reference value of a bubble amount (presence / absence) characteristic curve.
JP14301699A 1999-05-24 1999-05-24 Refrigerant leakage detecting device Pending JP2000337741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14301699A JP2000337741A (en) 1999-05-24 1999-05-24 Refrigerant leakage detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14301699A JP2000337741A (en) 1999-05-24 1999-05-24 Refrigerant leakage detecting device

Publications (1)

Publication Number Publication Date
JP2000337741A true JP2000337741A (en) 2000-12-08

Family

ID=15328986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14301699A Pending JP2000337741A (en) 1999-05-24 1999-05-24 Refrigerant leakage detecting device

Country Status (1)

Country Link
JP (1) JP2000337741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210153A (en) * 2009-03-11 2010-09-24 Hitachi Appliances Inc Refrigerating cycle device
JP2012513285A (en) * 2008-12-22 2012-06-14 カリディアンビーシーティー、インコーポレーテッド Blood processing apparatus with bubble detector
US10151663B2 (en) 2015-09-15 2018-12-11 Emerson Climate Technologies, Inc. Leak detector sensor systems using tag-sensitized refrigerants

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513285A (en) * 2008-12-22 2012-06-14 カリディアンビーシーティー、インコーポレーテッド Blood processing apparatus with bubble detector
JP2014061425A (en) * 2008-12-22 2014-04-10 Termo Bct Inc Blood processing apparatus with air bubble detector
JP2010210153A (en) * 2009-03-11 2010-09-24 Hitachi Appliances Inc Refrigerating cycle device
US10151663B2 (en) 2015-09-15 2018-12-11 Emerson Climate Technologies, Inc. Leak detector sensor systems using tag-sensitized refrigerants

Similar Documents

Publication Publication Date Title
JP2005090953A (en) Refrigerant leakage detection system and refrigerant leakage detection method
US7631508B2 (en) Apparatus and method for determining refrigerant charge level
US20050086952A1 (en) Refrigerator-freezer controller of refrigenator-freezer, and method for determination of leakage of refrigerant
US20210018200A1 (en) Refrigerant leakage determination device, air-conditioning apparatus, and refrigerant leakage determination method
JP4412385B2 (en) Refrigerant leak detection method for refrigeration cycle equipment
US8775123B2 (en) Method for determination of the coefficient of performanace of a refrigerating machine
US9657983B2 (en) Apparatus for defrosting evaporator in refrigeration system using infrared emitting diode sensor
CN206420200U (en) Refrigerating circulatory device
JP4123764B2 (en) Refrigeration cycle equipment
CN106032929B (en) Defrosting control method and device
JP2014095514A (en) Refrigeration apparatus
JP2000337741A (en) Refrigerant leakage detecting device
JP2000320937A (en) Refrigerant leak detecting device
US7681407B2 (en) Method and a device for detecting flash gas
JP4231024B2 (en) Absorption diagnosis method and apparatus for absorption refrigerator
JPH07151432A (en) Insufficient refrigerant detector for refrigerator
JP3490908B2 (en) Refrigerant refrigerant leak detection system
JP2000320948A (en) Frosting detecting device
JPH10288379A (en) Air-conditioning equipment with service-life prediction device
JP2000146374A (en) Refrigerator
JP2004245497A (en) Method of controlling supply of refrigerant liquid to liquid reservoir in refrigerating plant and its device
JP2000337740A (en) Refrigerant amount regulating method and refrigerant amount judging device
JP3453179B2 (en) Refrigerant amount detection device in refrigeration / air conditioning equipment
JP2008111609A (en) Cold equipment
JP2023102420A (en) Method for charging refrigerant into refrigeration cycle device