JP2000320948A - Frosting detecting device - Google Patents

Frosting detecting device

Info

Publication number
JP2000320948A
JP2000320948A JP11131454A JP13145499A JP2000320948A JP 2000320948 A JP2000320948 A JP 2000320948A JP 11131454 A JP11131454 A JP 11131454A JP 13145499 A JP13145499 A JP 13145499A JP 2000320948 A JP2000320948 A JP 2000320948A
Authority
JP
Japan
Prior art keywords
evaporator
ultrasonic
refrigerant
frost
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11131454A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yoshimura
弘幸 吉村
Motohito Hori
元人 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11131454A priority Critical patent/JP2000320948A/en
Publication of JP2000320948A publication Critical patent/JP2000320948A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary
    • F25B2700/111Sensor to detect if defrost is necessary using an emitter and receiver, e.g. sensing by emitting light or other radiation and receiving reflection by a sensor

Landscapes

  • Defrosting Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a frosting detecting device to accurately detect a frosted state throughout the whole of an evaporator. SOLUTION: A frosting detecting device for a refrigerator comprises a refrigerator consisting of a compressor, a condenser, an expansion valve, an evaporator 2, and a refrigerant; a refrigerator for cooling through circulation of the refrigerant and evaporation of it by the evaporator 2; and ultrasonic sensors 31, 31A, 32A situated opposite to each other at the two end part of the evaporator 2 and making a pair. The evaporator k2 comprises a refrigerant line 21 connected to a piping and vaporizing a refrigerant 19, sand a plurality of fins 2A-2M disposed in the refrigerant line 21 and absorbing heat from the circumference of the evaporator 2 and transferring heat to the refrigerant in the refrigerant line 21. A plurality of fins 2A-2M have a through-hole linearly extending through and constitute a propagation route for ultrasonic signals 3a and 3b from the ultrasonic sensors 31 making a pair through the through-hole.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸発器のフィンに
付着する霜の量を検知する霜付着検知装置に関して、特
に、スーパーやコンビニエンスストアなどにおいて用い
られるオープンショーケースの冷凍機に使用される霜付
着検知装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frost adhering detecting device for detecting the amount of frost adhering to fins of an evaporator, and more particularly, to an open showcase refrigerator used in a supermarket or a convenience store. The present invention relates to a frost adhesion detection device.

【0002】[0002]

【従来の技術】従来技術による霜付着検知装置は、(1)
蒸発器2のいずれかのフィン例えば2Aに測温抵抗体を直
接配備する、あるいは、(2) フィン2A〜2Mに似た形状を
し霜を付着させる構造体とこの構造体に温度を測定する
測温抵抗体とを備えてなるセンサを蒸発器2の近傍に配
備し、この測温抵抗体による温度監視で蒸発器2のフィ
ン2A〜2Mに付着する霜の検知を行っていた。
2. Description of the Related Art A frost adhesion detection device according to the prior art is described in (1)
A temperature-measuring resistor is directly provided on one of the fins of the evaporator 2, for example, 2A, or (2) a structure having a shape similar to the fins 2A to 2M to which frost is adhered and the temperature measured on this structure A sensor including a resistance temperature detector is provided near the evaporator 2, and the temperature monitoring by the resistance temperature detector detects frost adhering to the fins 2 </ b> A to 2 </ b> M of the evaporator 2.

【0003】また、超音波センサを用いて霜の付着を検
知する方法として、特開昭61-41869「霜付着検知方法」
が開示されている。図4において、51は、冷凍機におい
て熱を吸収し一定空間を冷却する蒸発器2の被測定部52
の近傍に対向して配備されるセンサブロックである。こ
のセンサブロック51は被測定部52に対し超音波を発信す
る発信子53およびこの発信子53が発信し被測定部52で反
射した超音波を受信する受信子54とから構成されてい
る。この発信子53は、超音波を発信するために励振する
連続波の発振器55が接続され、また、受信子54は、受信
した受信波をほぼ発信子53の出力電圧と同じ絶対値にな
るまで増幅する増幅器56が接続される。そして、発振器
55の出力電圧と増幅器56の出力信号とが位相比較器57で
比較され、両出力電圧の位相ズレを検出する。
As a method for detecting the adhesion of frost using an ultrasonic sensor, Japanese Patent Application Laid-Open No. 61-41869, "Method for detecting frost adhesion"
Is disclosed. In FIG. 4, reference numeral 51 denotes a measured part 52 of the evaporator 2 which absorbs heat in the refrigerator and cools a certain space.
Is a sensor block provided to face the vicinity of. The sensor block 51 includes a transmitter 53 for transmitting an ultrasonic wave to the measured section 52, and a receiver 54 for transmitting the ultrasonic wave transmitted from the transmitter 53 and reflected by the measured section 52. The transmitter 53 is connected to a continuous wave oscillator 55 that excites to transmit an ultrasonic wave, and the receiver 54 converts the received wave until the output voltage of the transmitter 53 becomes almost the same as the absolute value. An amplifier 56 for amplification is connected. And the oscillator
The output voltage of 55 and the output signal of amplifier 56 are compared by phase comparator 57 to detect a phase shift between both output voltages.

【0004】かかる構成において、今、予め定められた
被測定部52とセンサブロック51との距離αで両出力電圧
の位相ズレがゼロに設定されたとし、被測定部52が霜の
付着の厚みでΔd だけズレたとすると、この両出力電圧
の位相差を測定することにより、被測定部52が霜付着厚
さΔd を計測することができる。
In this configuration, it is assumed that the phase shift between the two output voltages is set to zero at a predetermined distance α between the measured section 52 and the sensor block 51, and the measured section 52 has a thickness of frost adhesion. Assuming that the output voltage is shifted by Δd, by measuring the phase difference between the two output voltages, the measured portion 52 can measure the frost adhesion thickness Δd.

【0005】[0005]

【発明が解決しようとする課題】この様に、従来技術に
よる霜付着検知装置では、蒸発器全体の霜の付着状況を
検出しているのではなく、蒸発器の一部のフィンあるい
は霜付着センサのフィンに付着する霜を検出している。
蒸発器の長さは数十cmから2m近くに長いので、局部的
な霜の検出では、全体の霜付着の量を把握することが困
難であり、また、局部データから全体の霜付着量を推定
しても実際と異なる恐れがある。
As described above, the frost adhesion detecting device according to the prior art does not detect the frost adhesion state of the entire evaporator, but detects a fin or a frost adhesion sensor of a part of the evaporator. Frost on the fins is detected.
Since the length of the evaporator is as long as several tens of cm to nearly 2 m, it is difficult to grasp the entire amount of frost by local frost detection. Even if it is estimated, it may be different from the actual one.

【0006】本発明は上記の点にかんがみてなされたも
のであり、その目的は前記した課題を解決して、より正
しく蒸発器全体にわたる霜付着状況を検出できる霜付着
検知装置を提供することにある。
[0006] The present invention has been made in view of the above points, and an object of the present invention is to solve the above-mentioned problems and to provide a frost adhesion detection device which can more correctly detect the frost adhesion state over the entire evaporator. is there.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明による霜付着検知装置は、圧縮機と, 凝縮器
と, 膨張弁と, 蒸発器と, これらの機器を配管で接続し
循環系を構成する冷却装置に冷媒を充填し,これらの機
器内を循環し蒸発器で蒸発して冷却を行う冷凍機と、蒸
発器の両端部に対向して配備される対をな超音波センサ
と、を備えてなる冷凍機の霜付着検知装置において、蒸
発器は、配管と接続され冷媒を蒸発させる冷媒管路と、
この冷媒管路に配設され,蒸発器周辺部分から熱を吸収
して冷媒管路中の冷媒にこの熱を伝熱する複数枚のフィ
ンと、を備え、これらの複数枚のフィンは、直線状に貫
通する貫通孔を有し、これらの貫通孔を介して対をなし
対向配備される超音波センサの超音波信号の伝搬経路を
構成するものとする。
Means for Solving the Problems To achieve the above object, a frost adhesion detection device according to the present invention comprises a compressor, a condenser, an expansion valve, an evaporator, and these devices connected by piping. A refrigerator that fills a cooling device that constitutes a circulation system with refrigerant, circulates through these devices, evaporates and cools with an evaporator, and a pair of ultrasonic waves that are installed opposite to both ends of the evaporator In a frost adhesion detection device for a refrigerator including a sensor, the evaporator is connected to a pipe and a refrigerant pipe for evaporating the refrigerant,
A plurality of fins arranged in the refrigerant pipe and absorbing heat from a peripheral portion of the evaporator to transfer the heat to the refrigerant in the refrigerant pipe. It has a through-hole penetrating in a shape, and constitutes a propagation path of an ultrasonic signal of an ultrasonic sensor which is formed in a pair via these through-holes and opposed to each other.

【0008】かかる構成により、霜付着検知装置は、一
方の超音波センサから超音波信号を送信し、他方の超音
波センサで貫通孔からなる伝搬経路からの超音波信号を
受信し、この受信する超音波信号レベルから蒸発器のフ
ィンに付着する霜の量を検知することができる。
With this configuration, the frost adhesion detecting device transmits an ultrasonic signal from one ultrasonic sensor, and receives and receives an ultrasonic signal from a propagation path including a through hole with the other ultrasonic sensor. The amount of frost adhering to the evaporator fins can be detected from the ultrasonic signal level.

【0009】また、上述の霜付着検知装置は、対をなす
第2超音波センサを蒸発器のフィンの外側に配備し、こ
の第2超音波センサの伝搬経路は、貫通孔から超音波信
号を授受する第1超音波センサの伝搬経路と平行,か
つ,第1超音波センサの伝搬経路長と同じ伝搬経路長と
することができる。
In the above frost adhesion detecting device, a pair of second ultrasonic sensors is provided outside the fins of the evaporator, and the propagation path of the second ultrasonic sensor transmits an ultrasonic signal from a through hole. The propagation path length can be parallel to the propagation path of the first ultrasonic sensor to be transmitted and received, and the same as the propagation path length of the first ultrasonic sensor.

【0010】かかる構成により、第1超音波センサが受
信する超音波信号レベルと第2超音波センサが受信する
超音波信号レベルとの比から蒸発器のフィンに付着する
霜の量を検知することができる。
With this configuration, the amount of frost adhering to the fin of the evaporator is detected from the ratio of the ultrasonic signal level received by the first ultrasonic sensor to the ultrasonic signal level received by the second ultrasonic sensor. Can be.

【0011】また、対をなす超音波センサの送信側およ
び受信側を交互に切り換えることができる。かかる構成
により、超音波センサが送信する超音波信号のビーム広
がり特性に対して霜付着検知の偏り特性を補正すること
ができる。
Further, the transmitting side and the receiving side of the paired ultrasonic sensors can be switched alternately. With this configuration, it is possible to correct the bias characteristic of frost adhesion detection with respect to the beam spread characteristic of the ultrasonic signal transmitted by the ultrasonic sensor.

【0012】[0012]

【発明の実施の形態】図1は本発明の一実施例としての
冷凍機の蒸発器に配備する霜付着検知装置の要部構成
図、図2は冷凍機の要部構成図、図3は霜付着の有無に
よる超音波信号の受信レベルを説明する説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a main part of a frost adhesion detecting device provided in an evaporator of a refrigerator as one embodiment of the present invention, FIG. 2 is a diagram showing a main part of a refrigerator, and FIG. FIG. 5 is an explanatory diagram illustrating a reception level of an ultrasonic signal depending on whether or not frost is attached.

【0013】図2において、本発明による冷凍機は、圧
縮機11と, 凝縮器12と, ドライヤ13と、キャピラリチュ
ーブまたは膨張弁14と, 蒸発器2と, これらの機器11〜
14,2を接続し循環系を構成する配管16と, を備えてな
る冷却装置と、この冷却装置に充填されこれらの機器11
〜14,2,16 内を循環し蒸発器2で蒸発して冷却を行う
冷媒(気体18、液体19)と、を備えて構成され、この冷
凍機の蒸発器2の霜付着検知装置は、図1において、蒸
発器2の両端部に対向して配備される対をなす実線で図
示される超音波センサ31,32 を備えて構成される。
In FIG. 2, a refrigerator according to the present invention comprises a compressor 11, a condenser 12, a dryer 13, a capillary tube or expansion valve 14, an evaporator 2, and these devices 11 to
A cooling system comprising: a pipe 16 connecting the fuel cells 14 and 2 to form a circulation system;
And a refrigerant (gas 18 and liquid 19) that circulates through the inside of the evaporator 2 and evaporates in the evaporator 2 for cooling. In FIG. 1, a pair of ultrasonic sensors 31 and 32 shown by solid lines and arranged opposite to both ends of the evaporator 2 are provided.

【0014】この蒸発器2は、配管16と接続され冷媒19
を蒸発させる冷媒管路21と、この冷媒管路21に配設さ
れ,蒸発器2の周辺部分から熱を吸収して冷媒管路21中
の冷媒19にこの熱を伝熱する複数枚のフィン2A〜2Mと、
を備え、これらの複数枚のフィン2A〜2Mは、直線状に貫
通する貫通孔2a〜2mを有し、これらの貫通孔2a〜2mを介
して上記の対をなし対向配備される超音波センサ31,32
の超音波信号3a,3b の伝搬経路33を構成することができ
る。
The evaporator 2 is connected to a pipe 16 and connected to a refrigerant 19.
And a plurality of fins arranged in the refrigerant line 21 for absorbing heat from the peripheral portion of the evaporator 2 and transferring the heat to the refrigerant 19 in the refrigerant line 21. 2A-2M,
The plurality of fins 2A to 2M have through-holes 2a to 2m penetrating in a straight line, and the ultrasonic sensors which are paired and disposed facing each other through these through-holes 2a to 2m are provided. 31,32
A propagation path 33 for the ultrasonic signals 3a and 3b can be configured.

【0015】かかる構成により、一方の超音波センサ
(例えば、31)から超音波信号3aを送信し、他方の超音
波センサ32で貫通孔2a〜2mからなる伝搬経路33からの超
音波信号3bを受信し、この受信する超音波信号3bのレベ
ルから蒸発器2のフィン2A〜2Mに付着する霜の量を検知
することができる。
With this configuration, the ultrasonic signal 3a is transmitted from one ultrasonic sensor (for example, 31), and the ultrasonic signal 3b from the propagation path 33 including the through holes 2a to 2m is transmitted by the other ultrasonic sensor 32. The amount of frost adhering to the fins 2A to 2M of the evaporator 2 can be detected from the level of the received and received ultrasonic signal 3b.

【0016】[0016]

【実施例】先に、冷凍機の構成と冷却原理を説明する。
図2において、冷凍機は、上述した様に、圧縮機11と,
凝縮器12と, ドライヤ13と、キャピラリチューブまたは
膨張弁14と, 蒸発器2と, これらの機器11〜14、2を接
続し循環系を構成する配管16と, を備えてなる冷却装置
と、この冷却装置に充填されこれらの機器11〜14、2、
16内を循環し蒸発器2で蒸発して冷却を行う冷媒18,19
と、を備えて構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the structure of a refrigerator and the principle of cooling will be described.
In FIG. 2, the refrigerator includes the compressor 11 and
A cooling device including a condenser 12, a dryer 13, a capillary tube or an expansion valve 14, an evaporator 2, and a pipe 16 connecting these devices 11 to 14, 2 and forming a circulation system; This cooling device is filled with these devices 11-14, 2,
Refrigerants 18 and 19 which circulate in 16 and evaporate and cool in evaporator 2
And is provided.

【0017】かかる構成により、冷凍機は、冷媒18,19
の蒸発と、凝縮液化と、のサイクルを利用して冷却が行
われる。冷媒液19は蒸発器2中でその圧力に対応した温
度で蒸発する。この際、その蒸発器2の温度が周囲温度
より低ければ、周囲より熱を吸収して蒸発が続き、蒸発
器2の圧力を一定に保つならば、この圧力に対応する定
温度に保つことができる。冷媒液19を膨張弁14で減圧し
て低圧の蒸発器2に送り、ここで周囲の熱を吸収して蒸
発させ、発生する蒸気18を圧縮機11に吸入し、圧縮機11
に加えられる動力によって圧縮し、高圧・高温のガス18
となし、このガス18を凝縮器12に導き、水・大気などに
放熱することにより液化させ、液溜めに受け、これを上
述の膨張弁14に導き、冷却サイクルが形成される。
[0017] With this configuration, the refrigerator is provided with the refrigerants 18, 19
The cooling is performed by using the cycle of evaporation and condensation and liquefaction. The refrigerant liquid 19 evaporates in the evaporator 2 at a temperature corresponding to the pressure. At this time, if the temperature of the evaporator 2 is lower than the ambient temperature, the heat is absorbed from the surroundings and evaporation continues, and if the pressure of the evaporator 2 is kept constant, the evaporator 2 can be kept at a constant temperature corresponding to this pressure. it can. The refrigerant liquid 19 is decompressed by the expansion valve 14 and sent to the low-pressure evaporator 2 where it absorbs the surrounding heat and evaporates, and the generated steam 18 is sucked into the compressor 11,
Compressed by the power applied to the
Then, the gas 18 is led to the condenser 12, liquefied by radiating heat to water, the atmosphere, and the like, received in the liquid reservoir, and guided to the expansion valve 14 to form a cooling cycle.

【0018】冷媒18,19 は、熱を移動させるための媒質
であり、この場合冷媒18,19 の状態をガス状(18)、液状
(19)に変化するのみである。このサイクルを繰り返すこ
とにより蒸発器2の周辺の限られた部分内の物体の温度
を降下させ、冷凍(冷却)を生成することができる。即
ち、冷凍サイクルは、仕事を費やして、(1) 低温度の箇
所(蒸発器2)にて熱を吸収して、(2) これを高温度の
箇所(凝縮器12)にて費やされた仕事に相当する熱と共
に放熱を行う。圧縮機11は加えられた動力により熱を汲
み上げる熱のポンプの働きを行う。
The refrigerants 18 and 19 are mediums for transferring heat. In this case, the refrigerants 18 and 19 are in a gaseous state (18) or a liquid state.
It only changes to (19). By repeating this cycle, the temperature of the object in a limited portion around the evaporator 2 can be reduced, and freezing (cooling) can be generated. That is, the refrigeration cycle spends work, (1) absorbs heat at a low temperature location (evaporator 2), and (2) spends it at a high temperature location (condenser 12). Dissipates heat with heat equivalent to the work done. The compressor 11 functions as a heat pump that draws heat by the applied power.

【0019】この様に、蒸発器2では、液状の冷媒19は
その圧力を低く保つと、低い温度で蒸発し、このとき液
冷媒19が蒸発するために多量の熱が必要であり、液体は
その周辺からこの熱を奪って蒸発するため、周辺のもの
を冷却することができる。液冷媒19が蒸発し気化してい
る間はその圧力に対する蒸発温度は一定であり、奪った
熱は状態変化(液体から気体)のために費やされる。
As described above, in the evaporator 2, when the pressure of the liquid refrigerant 19 is kept low, the liquid refrigerant 19 evaporates at a low temperature. At this time, a large amount of heat is required for the liquid refrigerant 19 to evaporate. Since the heat is removed from the surroundings and evaporates, the surroundings can be cooled. While the liquid refrigerant 19 evaporates and evaporates, the evaporation temperature with respect to the pressure is constant, and the heat taken is consumed for a state change (from liquid to gas).

【0020】また、圧縮機11は、蒸発器2でどんどん蒸
発する冷媒18の蒸気をシリンダに吸い込み、常に蒸発器
2を低圧に維持し、冷媒18の蒸発温度を低く保つことが
できる。熱の運搬役である気体冷媒18から多量の熱を吐
き出させるためには、圧力を高くして凝縮温度を上げ、
外気より高くすることにより放熱を容易にすることがで
きる。
Further, the compressor 11 sucks the vapor of the refrigerant 18 evaporating rapidly in the evaporator 2 into the cylinder, and can always keep the evaporator 2 at a low pressure and keep the evaporation temperature of the refrigerant 18 low. In order to discharge a large amount of heat from the gas refrigerant 18 which is a heat carrier, the pressure is increased and the condensation temperature is increased,
Heat radiation can be facilitated by setting it higher than the outside air.

【0021】凝縮器12は、圧縮機11で高温高圧になった
気体冷媒18を常温の外気あるいは水で冷却して液化させ
ることができる。気体冷媒18は凝縮して液体冷媒19に戻
る際、凝縮の潜熱を外気あるいは水に放出する。従っ
て、凝縮器12での液体冷媒19そのものの温度はあまり変
化しない。ドライヤ13は、液体冷媒19にに含まれる水分
やゴミなどを除去し、冷媒18,19の質的低下を防止し、
冷媒18,19 のリサイクルを可能とさせる。
The condenser 12 can liquefy the gaseous refrigerant 18 which has been heated to a high temperature and a high pressure by the compressor 11 by cooling it with ambient air or water at normal temperature. When the gas refrigerant 18 condenses and returns to the liquid refrigerant 19, the latent heat of the condensation is released to the outside air or water. Therefore, the temperature of the liquid refrigerant 19 itself in the condenser 12 does not change much. The dryer 13 removes moisture, dust, and the like contained in the liquid refrigerant 19, and prevents qualitative deterioration of the refrigerants 18, 19,
Recycling of refrigerants 18 and 19 is made possible.

【0022】キャピラリチューブまたは膨張弁14は、凝
縮器12で液化した冷媒19のままでは圧力が高すぎるの
で、蒸発器2での蒸発がし易い圧力まで減圧させるもの
である。キャピラリチューブまたは膨張弁14のいずれの
手段も、狭い通路を通して抵抗をつけ、絞り変化のた
め、冷媒19の圧力は急に下がる。絞り効果によって、冷
媒19の一部が蒸発し気泡を発生するが、このときの蒸発
は外部からの熱ではなく冷媒液自身の熱を奪って行われ
る。 (実施例1)図1において、冷凍機の霜付着検知装置
は、蒸発器2のフィン2A〜2Mの貫通孔2a〜2mがなす伝送
経路33の両端部に対をなす超音波センサ31、32が対向し
て配備して構成される。そしてこの蒸発器2は、蒸発器
2の周辺部分から熱を吸収して冷媒18,19 にこの熱を伝
熱し, 直線状に貫通する貫通孔を有する複数枚のフィン
2A〜2Mと, 冷媒18,19 を蒸発させる冷媒管路21と, から
構成され、冷媒管路21は配管16と接続されて冷却装置を
構成する。
Since the pressure of the capillary tube or expansion valve 14 is too high if the refrigerant 19 liquefied in the condenser 12 is too high, the pressure is reduced to a pressure at which the evaporator 2 can easily evaporate. Both means of the capillary tube or expansion valve 14 provide resistance through the narrow passage and the pressure of the refrigerant 19 drops sharply due to the throttle change. Due to the throttling effect, a part of the refrigerant 19 evaporates to generate air bubbles. At this time, the evaporation is performed not by external heat but by removing heat of the refrigerant liquid itself. (Embodiment 1) In FIG. 1, the frost adhesion detecting device of the refrigerator has ultrasonic sensors 31, 32 paired with both ends of a transmission path 33 formed by through holes 2a to 2m of fins 2A to 2M of the evaporator 2. Are arranged facing each other. The evaporator 2 absorbs heat from a peripheral portion of the evaporator 2 and transfers the heat to the refrigerants 18 and 19, and a plurality of fins having through holes that penetrate linearly.
2A to 2M, and a refrigerant pipe 21 for evaporating the refrigerants 18 and 19, and the refrigerant pipe 21 is connected to the pipe 16 to form a cooling device.

【0023】かかる構成により、フィン2A〜2Mの貫通孔
2a〜2mを通して、例えば、超音波センサ31から超音波信
号3aを送信し、対向して配置される超音波センサ32で超
音波信号3bを受信する。今、フィン2A〜2Mの貫通孔2a〜
2mの中心を通過する様に超音波信号3a,3b の伝搬経路を
設定し、予め定められた貫通孔2a〜2mの口径に設定する
と、この貫通孔2a〜2mを通過した超音波信号3bが超音波
センサ32で受信することができ、この貫通孔2a〜2mの孔
径あるいは超音波通過面積は、フィン2A〜2Mへの霜の付
着度合いによって変化するので、この受信する超音波信
号3bのレベルから蒸発器2のフィン2A〜2Mの付着する霜
の量を検知することができる。
With such a configuration, the through holes of the fins 2A to 2M
For example, an ultrasonic signal 3a is transmitted from the ultrasonic sensor 31 through 2a to 2m, and an ultrasonic signal 3b is received by the ultrasonic sensor 32 arranged opposite thereto. Now, the through holes 2a of the fins 2A to 2M
When the propagation path of the ultrasonic signals 3a and 3b is set so as to pass through the center of 2m, and is set to a predetermined diameter of the through holes 2a to 2m, the ultrasonic signal 3b passing through the through holes 2a to 2m is The ultrasonic sensor 32 can receive the ultrasonic signal 3b, since the hole diameter or the ultrasonic passage area of the through holes 2a to 2m varies depending on the degree of frost adhered to the fins 2A to 2M. Thus, the amount of frost on the fins 2A to 2M of the evaporator 2 can be detected.

【0024】図3は霜付着の有無による超音波信号の受
信レベルを説明する説明図である。図3の(A) は蒸発器
2のフィン2A〜2Mに霜が付着していない状態を示し、
(B) にこのときの対向して配置される超音波センサ31,3
2 の超音波信号の送受信信号3a,3b を図示するものであ
る。また、図3の(C) は蒸発器2のフィン2A〜2Mに霜が
付着し, 貫通孔2a〜2mを塞ぎ, 氷の状態になったときを
示し、(D) にこのときの超音波センサ31,32 の超音波信
号の送受信信号3a,3b を図示するものである。
FIG. 3 is an explanatory diagram for explaining the reception level of an ultrasonic signal depending on whether or not frost has adhered. FIG. 3A shows a state in which no frost is attached to the fins 2A to 2M of the evaporator 2,
(B), the ultrasonic sensors 31 and 3 arranged facing each other at this time
2 illustrates transmission / reception signals 3a and 3b of the second ultrasonic signal. FIG. 3 (C) shows a state in which frost adhered to the fins 2A to 2M of the evaporator 2 and closed the through holes 2a to 2m, resulting in an ice state. FIG. 3 (D) shows an ultrasonic wave at this time. FIG. 3 illustrates transmission / reception signals 3a and 3b of the ultrasonic signals of the sensors 31 and 32.

【0025】図3の(A) において、送信側の超音波セン
サ31は、超音波ビーム3aを貫通孔2a〜2mを介して受信側
の超音波センサ32に照射する。この照射する超音波ビー
ム3aは、間欠的に発射され超音波センサ31の電気−音響
的振動周波数で定まるQ値の高いパルス発振の超音波信
号でも、あるいは、連続的な正弦波信号で超音波センサ
31を励振しこの励振波形で駆動される超音波信号でも、
何れの波形の超音波信号を用いてもよい。超音波センサ
31から発射された超音波ビーム3aは、この超音波ビーム
3aのビーム広がり径と、貫通孔2a〜2mの貫通口径との関
係に従って、ビーム広がり径が大きく、貫通孔2a〜2mの
貫通口径を通過できない一部の超音波ビーム3aの損失は
あるが、大部分の超音波信号は超音波ビーム3bとして超
音波センサ32で受信することができる(図3の(B) 参
照)。
In FIG. 3A, the ultrasonic sensor 31 on the transmitting side irradiates the ultrasonic beam 3a to the ultrasonic sensor 32 on the receiving side through the through holes 2a to 2m. The irradiating ultrasonic beam 3a is an intermittently emitted ultrasonic signal of a pulse oscillation having a high Q value determined by the electro-acoustic vibration frequency of the ultrasonic sensor 31, or an ultrasonic signal of a continuous sine wave signal. Sensor
Even with the ultrasonic signal driven by this excitation waveform
An ultrasonic signal of any waveform may be used. Ultrasonic sensor
The ultrasonic beam 3a emitted from 31 is
According to the relationship between the beam spreading diameter of 3a and the through diameter of the through holes 2a to 2m, the beam spreading diameter is large, and there is a loss of some ultrasonic beams 3a that cannot pass through the through hole of the through holes 2a to 2m, Most of the ultrasonic signals can be received by the ultrasonic sensor 32 as the ultrasonic beam 3b (see FIG. 3B).

【0026】図3の(C) は、蒸発器2のフィン2A〜2Mに
霜が付着し, 貫通孔2a〜2mを塞ぎ,氷の状態になったと
きを示し、この様な状況では図3の(D) に点線で図示す
る様に、受信側の超音波センサ32で超音波ビーム3bを受
信することができない。 (実施例2)次に、他の実施例を説明する。図1におい
て、実施例1の霜付着検知装置に対して、対をなす第2
超音波センサ31A,32A を蒸発器2のフィン2A〜2Mの外側
に配備し、この第2超音波センサ31A,32A の伝搬経路33
a は、貫通孔2a〜2mから超音波信号3a,3b を授受する第
1超音波センサ31,32 の伝搬経路33と平行,かつ,第1
超音波センサ31,32 の伝搬経路長と同じ伝搬経路長とす
ることができる。
FIG. 3C shows a state in which frost adheres to the fins 2A to 2M of the evaporator 2 to block the through holes 2a to 2m and becomes an ice state. As shown by the dotted line in (D), the ultrasonic sensor 3 on the receiving side cannot receive the ultrasonic beam 3b. (Embodiment 2) Next, another embodiment will be described. In FIG. 1, the second frost adhesion detection device of the first embodiment is paired with the frost adhesion detection device of the first embodiment.
The ultrasonic sensors 31A and 32A are disposed outside the fins 2A to 2M of the evaporator 2, and the propagation paths 33 of the second ultrasonic sensors 31A and 32A are provided.
a is parallel to the propagation path 33 of the first ultrasonic sensors 31 and 32 for transmitting and receiving the ultrasonic signals 3a and 3b from the through holes 2a to 2m, and
The propagation path length can be the same as the propagation path length of the ultrasonic sensors 31 and 32.

【0027】かかる構成により、第1超音波センサ32が
受信する超音波信号3bレベルと第2超音波センサ32A が
受信する超音波信号3dレベルとの比から蒸発器2のフィ
ン2A〜2Mに付着する霜の量を検知することができる。
With this configuration, the ratio between the level of the ultrasonic signal 3b received by the first ultrasonic sensor 32 and the level of the ultrasonic signal 3d received by the second ultrasonic sensor 32A is applied to the fins 2A to 2M of the evaporator 2. The amount of frost to be generated can be detected.

【0028】特に、かかる構成をとることにより、蒸発
器2の周辺に蒸気が立ち込めていて、この蒸気によって
超音波ビーム3a,3b の一部が吸収あるいは反射・散乱の
影響を受けると言う環境条件が悪い状態でも、第1超音
波センサ31,32 のフィン2A〜2Mの近傍で伝搬経路33と平
行に第2超音波センサ31A,32A の伝搬経路33a を配置す
ることにより、例えば、蒸気が立ち込めるなどの蒸発器
2周辺の環境条件の影響を、第1超音波センサ32が受信
する超音波信号3bレベルと第2超音波センサ32A が受信
する超音波信号3dレベルとの比を演算することにより、
補償することができ、より正確な演算を行うことができ
る。
In particular, by adopting such a configuration, environmental conditions such that steam is trapped around the evaporator 2 and a part of the ultrasonic beams 3a and 3b are affected by absorption or reflection / scattering by the steam. Even if the condition is poor, by disposing the propagation path 33a of the second ultrasonic sensors 31A and 32A near the fins 2A to 2M of the first ultrasonic sensors 31 and 32 in parallel with the propagation path 33, for example, steam can be trapped. For example, the influence of environmental conditions around the evaporator 2 is calculated by calculating the ratio between the level of the ultrasonic signal 3b received by the first ultrasonic sensor 32 and the level of the ultrasonic signal 3d received by the second ultrasonic sensor 32A. ,
Compensation can be performed, and more accurate calculation can be performed.

【0029】また、実施例1、2において、対をなす超
音波センサ(31,32),(31A,32A) の送信側および受信側を
交互に切り換えることができる。かかる構成により、超
音波センサ(31,32),(31A,32A) の送信側および受信側を
交互に切り換えて、超音波信号の送受信信号(3a,3b),(3
c,3d) の向きを交互に変えることにより、霜の付着状況
が例えばフィン2Aとか、フィン2Mに付着し易いなどを区
分して蒸発器2のフィン2A〜2M全体にわたる霜付着状況
を検出・監視することができる。
In the first and second embodiments, the transmitting side and the receiving side of the paired ultrasonic sensors (31, 32) and (31A, 32A) can be switched alternately. With this configuration, the transmitting side and the receiving side of the ultrasonic sensors (31, 32) and (31A, 32A) are alternately switched to transmit and receive ultrasonic signals (3a, 3b), (3
By alternately changing the directions of (c, 3d), the frost adhesion state is classified, for example, into the fins 2A or the fins 2M, and the frost adhesion state over the entire fins 2A to 2M of the evaporator 2 is detected. Can be monitored.

【0030】[0030]

【発明の効果】以上述べたように本発明によれば、超音
波ビームを蒸発器のファンの貫通孔を介して受信側の超
音波センサに照射し、この超音波信号レベルを測定する
ことにより、蒸発器のファン全体にわたる霜付着状況を
検出することができる。
As described above, according to the present invention, the ultrasonic beam is irradiated to the ultrasonic sensor on the receiving side through the through hole of the fan of the evaporator, and the ultrasonic signal level is measured. In addition, it is possible to detect the frost adhesion state over the entire fan of the evaporator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例としての冷凍機の蒸発器に配
備する霜付着検知装置の要部構成図
FIG. 1 is a main configuration diagram of a frost adhesion detection device provided in an evaporator of a refrigerator as one embodiment of the present invention.

【図2】冷凍機の要部構成図FIG. 2 is a configuration diagram of a main part of a refrigerator.

【図3】霜付着の有無による超音波信号の受信レベルを
説明する説明図
FIG. 3 is an explanatory diagram illustrating a reception level of an ultrasonic signal according to the presence or absence of frost adhesion.

【図4】従来技術による霜付着検知方法の要部構成図FIG. 4 is a main part configuration diagram of a frost adhesion detection method according to the related art.

【符号の説明】[Explanation of symbols]

1 冷凍機 11 圧縮機 12 凝縮器 13 ドライヤ 14 膨張弁 16 配管 18 冷媒(ガス) 19 冷媒(液体) 2 蒸発器 21 冷媒管路 2A〜2M フィン 2a〜2m 貫通孔 31,31A,32,32A 超音波センサ 33,33a 伝搬経路 3a〜3d 超音波信号 51 センサブロック 52 被測定部 53 発信子 54 受信子 55 発振器 56 増幅器 57 位相比較器 α 距離 Δd 霜厚さ DESCRIPTION OF SYMBOLS 1 Refrigerator 11 Compressor 12 Condenser 13 Dryer 14 Expansion valve 16 Piping 18 Refrigerant (gas) 19 Refrigerant (liquid) 2 Evaporator 21 Refrigerant line 2A-2M Fin 2a-2m Through hole 31,31A, 32,32A Acoustic sensor 33, 33a Propagation path 3a to 3d Ultrasonic signal 51 Sensor block 52 Device under test 53 Transmitter 54 Receiver 55 Oscillator 56 Amplifier 57 Phase comparator α distance Δd Frost thickness

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】圧縮機と, 凝縮器と, 膨張弁と, 蒸発器
と, これらの機器を配管で接続し循環系を構成する冷却
装置に冷媒を充填し,これらの機器内を循環し蒸発器で
蒸発して冷却を行う冷凍機と、蒸発器の両端部に対向し
て配備され対をなす超音波センサと、を備えてなる冷凍
機の霜付着検知装置において、 蒸発器は、配管と接続され冷媒を蒸発させる冷媒管路
と、この冷媒管路に配設され,蒸発器周辺部分から熱を
吸収して冷媒管路中の冷媒にこの熱を伝熱する複数枚の
フィンと、を備え、これらの複数枚のフィンは、直線状
に貫通する貫通孔を有し、これらの貫通孔を介して前記
対をなし対向配備される超音波センサの超音波信号の伝
搬経路を構成する、 ことを特徴とする霜付着検知装置。
1. A compressor, a condenser, an expansion valve, an evaporator, and a cooling system which connects these devices by piping to form a circulating system and is filled with a refrigerant, circulates in these devices and evaporates. A frost adhesion detection device for a refrigerator, comprising: a refrigerator that cools by evaporating in a refrigerator; and a pair of ultrasonic sensors that are disposed opposite to both ends of the evaporator. A refrigerant pipe connected to evaporate the refrigerant, and a plurality of fins arranged in the refrigerant pipe, which absorb heat from a peripheral portion of the evaporator and transfer the heat to the refrigerant in the refrigerant pipe. The plurality of fins have through holes that penetrate in a straight line, and constitute a pair of ultrasonic sensors through which the ultrasonic signals are propagated. A frost adhesion detection device characterized by the above-mentioned.
【請求項2】請求項1に記載の霜付着検知装置におい
て、 一方の超音波センサから超音波信号を送信し、他方の超
音波センサで貫通孔からなる伝搬経路からの超音波信号
を受信し、この受信する超音波信号レベルから蒸発器の
フィンに付着する霜の量を検知する、 ことを特徴とする霜付着検知装置。
2. An apparatus for detecting frost adhesion according to claim 1, wherein one of the ultrasonic sensors transmits an ultrasonic signal, and the other ultrasonic sensor receives an ultrasonic signal from a propagation path including a through hole. Detecting the amount of frost adhering to the fins of the evaporator from the received ultrasonic signal level.
【請求項3】請求項1に記載の霜付着検知装置におい
て、 対をなす第2超音波センサを蒸発器のフィンの外側に配
備し、この第2超音波センサの伝搬経路は、貫通孔から
超音波信号を授受する第1超音波センサの伝搬経路と平
行,かつ,第1超音波センサの伝搬経路長と同じ伝搬経
路長とし、 第1超音波センサが受信する超音波信号レベルと第2超
音波センサが受信する超音波信号レベルとの比から蒸発
器のフィンに付着する霜の量を検知する、 ことを特徴とする霜付着検知装置。
3. The frost adhesion detecting device according to claim 1, wherein a pair of second ultrasonic sensors is provided outside the fins of the evaporator, and the propagation path of the second ultrasonic sensors is from the through hole. The propagation path length is parallel to the propagation path of the first ultrasonic sensor for transmitting and receiving the ultrasonic signal, and is the same as the propagation path length of the first ultrasonic sensor. The level of the ultrasonic signal received by the first ultrasonic sensor and the second A frost adhering detection device, wherein the amount of frost adhering to a fin of an evaporator is detected from a ratio with an ultrasonic signal level received by an ultrasonic sensor.
【請求項4】請求項1または請求項3に記載の霜付着検
知装置において、 対をなす超音波センサの送信側および受信側を交互に切
り換える、 ことを特徴とする霜付着検知装置。
4. The apparatus for detecting frost adhesion according to claim 1, wherein the transmitting side and the receiving side of the paired ultrasonic sensors are alternately switched.
JP11131454A 1999-05-12 1999-05-12 Frosting detecting device Pending JP2000320948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11131454A JP2000320948A (en) 1999-05-12 1999-05-12 Frosting detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11131454A JP2000320948A (en) 1999-05-12 1999-05-12 Frosting detecting device

Publications (1)

Publication Number Publication Date
JP2000320948A true JP2000320948A (en) 2000-11-24

Family

ID=15058345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11131454A Pending JP2000320948A (en) 1999-05-12 1999-05-12 Frosting detecting device

Country Status (1)

Country Link
JP (1) JP2000320948A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110096668A (en) * 2010-02-23 2011-08-31 엘지전자 주식회사 A refrigerator and control method the same
WO2011105717A3 (en) * 2010-02-23 2011-11-24 엘지전자 주식회사 Refrigerator and controlling method thereof
EP2673580A4 (en) * 2011-02-09 2017-04-26 Control Products, Inc. System, apparatus, and method for ice detection
KR102443948B1 (en) * 2021-06-30 2022-09-15 김남일 Refrigeration apparatus with defrost function

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110096668A (en) * 2010-02-23 2011-08-31 엘지전자 주식회사 A refrigerator and control method the same
WO2011105717A3 (en) * 2010-02-23 2011-11-24 엘지전자 주식회사 Refrigerator and controlling method thereof
US9328953B2 (en) 2010-02-23 2016-05-03 Lg Electronics Inc. Refrigerator and controlling method thereof
EP2541174A4 (en) * 2010-02-23 2016-11-23 Lg Electronics Inc Refrigerator and controlling method thereof
KR101704813B1 (en) 2010-02-23 2017-02-08 엘지전자 주식회사 A refrigerator and control method the same
US10488098B2 (en) 2010-02-23 2019-11-26 Lg Electronics Inc. Refrigerator and controlling method thereof
EP3779335A1 (en) * 2010-02-23 2021-02-17 LG Electronics Inc. Refrigerator
US11326828B2 (en) 2010-02-23 2022-05-10 Lg Electronics Inc. Refrigerator and controlling method thereof
EP2673580A4 (en) * 2011-02-09 2017-04-26 Control Products, Inc. System, apparatus, and method for ice detection
KR102443948B1 (en) * 2021-06-30 2022-09-15 김남일 Refrigeration apparatus with defrost function

Similar Documents

Publication Publication Date Title
US6868678B2 (en) Non-intrusive refrigerant charge indicator
US9657983B2 (en) Apparatus for defrosting evaporator in refrigeration system using infrared emitting diode sensor
US8851745B2 (en) Hygrometer and dew-point instrument
US7631508B2 (en) Apparatus and method for determining refrigerant charge level
US20150377691A1 (en) Flow measuring device, as well as use of such device and method for ascertaining flow velocity
CY1105859T1 (en) REFRIGERATOR MERCHANDISER
KR20100058813A (en) Cooling system and method for controlling the same
JP4123764B2 (en) Refrigeration cycle equipment
JP2000320948A (en) Frosting detecting device
US6581452B2 (en) Apparatus for measuring volume under microgravity
US20040144129A1 (en) Direct cooling type refrigerator and evaporating pipe fixing method in the refrigerator
EP1462745A2 (en) Refrigerator and temperature sensor fixing method in the refrigerator
de Aguiar et al. Frost measurement methods for demand defrost control systems: A review
JP2000320937A (en) Refrigerant leak detecting device
JP4231024B2 (en) Absorption diagnosis method and apparatus for absorption refrigerator
JP4292525B2 (en) Refrigerant amount detection method for vapor compression refrigeration cycle
JP2000337741A (en) Refrigerant leakage detecting device
JP3584274B2 (en) Refrigerant amount adjustment method and refrigerant amount determination device
JP2007285885A (en) Sensor part structure for dew point transmitter, and dew point transmitter
JP2000146374A (en) Refrigerator
CN114207366B (en) Refrigerating device, temperature sensor mounting tube and temperature sensor mounting structure
JPH10176877A (en) System for judging enclosing amount of refrigerant
JPH07280397A (en) Refrigerating capacity measuring method for refrigerator
JP2000329602A (en) Ice storage tank and method for measuring ice filling rate thereof
JP2017219243A (en) Abnormality detection system for refrigerator freezer equipment