JP2000334441A - Composite treatment of power plant waste water and composite treatment apparatus - Google Patents
Composite treatment of power plant waste water and composite treatment apparatusInfo
- Publication number
- JP2000334441A JP2000334441A JP11147672A JP14767299A JP2000334441A JP 2000334441 A JP2000334441 A JP 2000334441A JP 11147672 A JP11147672 A JP 11147672A JP 14767299 A JP14767299 A JP 14767299A JP 2000334441 A JP2000334441 A JP 2000334441A
- Authority
- JP
- Japan
- Prior art keywords
- wastewater
- water
- flue gas
- gas desulfurization
- catalytic wet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、発電所で排出され
る復水脱塩装置再生排水及び排煙脱硫排水の複合処理に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined treatment of a condensate desalination unit regeneration wastewater and a flue gas desulfurization wastewater discharged from a power plant.
【0002】[0002]
【従来の技術】発電所で発生する排水の中に、復水脱塩
装置再生排水と排煙脱硫排水がある。例えば、火力発電
所においては、復水は復水脱塩装置を備えた復水処理装
置で処理された後、再びボイラーへ送られるが、上記復
水脱塩装置としては一般に混床式のイオン交換装置が使
用されており、したがって復水脱塩装置のイオン交換樹
脂の再生処理を行ったときに上述の復水脱塩装置再生排
水が排出される。また、硫黄分が含まれる重油や石炭等
を燃料として用いる火力発電所では、公害防止の目的で
排煙の脱硫処理を行うが、この排煙脱硫プロセスから上
述の排煙脱硫排水が排出される。2. Description of the Related Art Wastewater generated at power plants includes condensate desalination unit regeneration wastewater and flue gas desulfurization wastewater. For example, in a thermal power plant, condensate is treated by a condensate treatment unit equipped with a condensate desalination device and then sent to the boiler again. An exchange device is used, and thus, when the ion exchange resin of the condensate desalination device is regenerated, the above-mentioned reclaimed water of the condensate desalination device is discharged. Further, in a thermal power plant using fuel oil or coal containing sulfur as a fuel, flue gas desulfurization treatment is performed for the purpose of preventing pollution, and the above-mentioned flue gas desulfurization wastewater is discharged from the flue gas desulfurization process. .
【0003】前述した復水脱塩装置再生排水中にはアン
モニア性窒素が高濃度で含まれ、排煙脱硫排水中には高
濃度の硫酸イオン、カルシウムイオンの他、フッ素イオ
ンや重金属イオンが含まれているため、いずれの排水も
処理を行う必要があるが、これら復水脱塩装置再生排水
及び排煙脱硫排水に関しては、近年の排水処理技術開発
により、それぞれ新しい処理方法が提案されている。例
えば、復水脱塩装置再生排水の処理には触媒湿式酸化法
が、排煙脱硫排水の処理には蒸発濃縮法が提案されてい
る。なお、触媒湿式酸化法及び蒸発濃縮法の詳細につい
ては後述する。The above-mentioned reclaimed wastewater from the condensate desalination apparatus contains ammonia nitrogen at a high concentration, and the flue gas desulfurization wastewater contains high concentrations of sulfate ions and calcium ions as well as fluorine ions and heavy metal ions. Therefore, any wastewater must be treated, but new treatment methods have been proposed for these condensate and desalination unit regeneration wastewater and flue gas desulfurization wastewater due to recent development of wastewater treatment technology. . For example, a catalytic wet oxidation method has been proposed for the treatment of condensate desalination unit regeneration wastewater, and an evaporative concentration method has been proposed for the treatment of flue gas desulfurization wastewater. The details of the catalytic wet oxidation method and the evaporative concentration method will be described later.
【0004】触媒湿式酸化法及び蒸発濃縮法は、いずれ
も処理に熱を利用するため、これらの方法では熱の有効
利用のための工夫が図られている。すなわち、触媒湿式
酸化法の処理温度は通常100〜370℃程度、好まし
くは150〜300℃程度であり、また、蒸発濃縮法の
処理温度は50〜100℃程度であり、したがってこれ
らの方法では、処理水の廃熱を有効利用するために、熱
交換器を介して処理水の廃熱によって原水(復水脱塩装
置再生排水あるいは排煙脱硫排水)を予熱することが多
い。[0004] Since both the catalytic wet oxidation method and the evaporative concentration method use heat for the treatment, these methods are devised for effective use of heat. That is, the treatment temperature of the catalytic wet oxidation method is usually about 100 to 370 ° C, preferably about 150 to 300 ° C, and the treatment temperature of the evaporative concentration method is about 50 to 100 ° C. In order to effectively use the waste heat of the treated water, the raw water (condensate demineralizer regeneration wastewater or flue gas desulfurized wastewater) is often preheated by the waste heat of the treated water via a heat exchanger.
【0005】また、復水脱塩装置再生排水の触媒湿式酸
化法による処理水及び排煙脱硫排水の蒸発濃縮法による
処理水の廃熱をさらに有効利用するために、従来、図2
に示す装置によって復水脱塩装置再生排水及び排煙脱硫
排水を複合処理することが行われている。Conventionally, in order to further effectively use the waste heat of the treated water of the condensate desalination unit regeneration wastewater by the catalytic wet oxidation method and the treated heat of the flue gas desulfurization wastewater by the evaporative concentration method, FIG.
The combined treatment of the condensate desalination equipment regeneration wastewater and flue gas desulfurization wastewater is performed by the apparatus shown in (1).
【0006】図2において、2は復水脱塩装置再生排水
貯槽、4は排水貯槽2に接続された再生排水導入管、6
は再生排水導入管4に設けられたポンプ、8は再生排水
導入管4に設けられたpH調整剤添加機構、10は再生
排水導入管4に接続された第1の熱交換器、12は第1
の熱交換器10に接続された加熱器、14は加熱器12
に接続された触媒湿式酸化法による処理装置(触媒湿式
酸化装置)、16は触媒湿式酸化装置14に連結された
触媒湿式酸化処理水流出管を示す。また、22は排煙脱
硫排水貯槽、24は排水貯槽22に接続された排煙脱硫
排水導入管、26は排煙脱硫排水導入管24に設けられ
たポンプ、28は排煙脱硫排水導入管24に設けられた
pH調整剤添加機構、30は排煙脱硫排水導入管24に
接続された第2の熱交換器、32は第2の熱交換器30
に接続された加熱器、34は加熱器32に接続された蒸
発濃縮法による処理装置(蒸発濃縮装置)、36は蒸発
濃縮装置34に連結された蒸発濃縮処理水流出管、38
は蒸発濃縮装置34に連結された濃縮液排出管を示す。
さらに、本例の装置では、触媒湿式酸化処理水流出管1
6の流出端は、pH調整剤添加機構28と第2の熱交換
器30との間において排煙脱硫排水導入管24に連結さ
れている。In FIG. 2, reference numeral 2 denotes a reclaimed drainage tank for a condensate desalination unit, 4 denotes a reclaimed drainage introduction pipe connected to the drainage tank 2, 6
Is a pump provided in the regeneration drain introduction pipe 4, 8 is a pH adjusting agent addition mechanism provided in the regeneration drain introduction pipe 4, 10 is a first heat exchanger connected to the regeneration drain introduction pipe 4, and 12 is a first heat exchanger. 1
The heater connected to the heat exchanger 10 of the
The treatment wet oxidation device (catalyst wet oxidation device) connected to the catalyst wet oxidation device 16 is connected to the catalyst wet oxidation treatment device 14 and is an outflow pipe of the catalyst wet oxidation treatment water. Reference numeral 22 denotes a flue gas desulfurization drainage storage tank; 24, a flue gas desulfurization drainage introduction pipe connected to the drainage storage tank 22; 26, a pump provided on the flue gas desulfurization drainage introduction pipe 24; , A second heat exchanger connected to the flue gas desulfurization drainage introduction pipe 24, and a second heat exchanger 30
Is an evaporating and concentrating treatment device (evaporating and concentrating device) connected to the heater 32; 36 is an evaporating and condensing water outlet pipe connected to the evaporating and concentrating device 34;
Denotes a concentrated liquid discharge pipe connected to the evaporating and concentrating device 34.
Further, in the apparatus of the present embodiment, the catalyst wet oxidation treated water outflow pipe 1
6 is connected to the flue gas desulfurization drainage introduction pipe 24 between the pH adjusting agent addition mechanism 28 and the second heat exchanger 30.
【0007】図2に示した装置による復水脱塩装置再生
排水及び排煙脱硫排水の複合処理は、次のように行われ
る。すなわち、復水脱塩装置再生排水貯槽2内の復水脱
塩装置再生排水は、ポンプ6の作動により第1の熱交換
器10に導入される。このとき、pH調整剤添加機構8
によって再生排水導入管4を流れる排水にpH調整剤
(アルカリ)が添加され、排水のpHが9〜12程度に
調整される。次に、排水は加熱器12、触媒湿式酸化装
置14に順次通水され、触媒湿式酸化装置14において
150〜300℃程度の高温下で排水中のアンモニア性
窒素が除去される。触媒湿式酸化装置14の高温の処理
水(触媒湿式酸化処理水)は触媒湿式酸化処理水流出管
16に流出し、第1の熱交換器10で復水脱塩装置再生
排水(原水、通常は20℃程度)と熱交換を行った後、
排煙脱硫排水導入管24を流れる排煙脱硫排水に混合さ
れる。なお、触媒湿式酸化装置14で発生した排ガスは
排ガス流出管(図示せず)から排出される。[0007] The combined treatment of the reclaimed wastewater and the flue gas desulfurization wastewater by the apparatus shown in FIG. 2 is performed as follows. That is, the condensed water desalination apparatus regeneration drainage in the condensate desalination apparatus regeneration drainage storage tank 2 is introduced into the first heat exchanger 10 by the operation of the pump 6. At this time, the pH adjusting agent addition mechanism 8
Thereby, a pH adjuster (alkali) is added to the wastewater flowing through the recycled wastewater introduction pipe 4, and the pH of the wastewater is adjusted to about 9 to 12. Next, the waste water is sequentially passed through the heater 12 and the catalytic wet oxidizer 14, and the catalytic wet oxidizer 14 removes ammonia nitrogen in the waste water at a high temperature of about 150 to 300 ° C. The high-temperature treated water (catalyst wet oxidized water) of the catalytic wet oxidizer 14 flows out of the catalyst wet oxidized water outlet pipe 16 and is condensed by the first heat exchanger 10 in a condensate desalination unit regeneration wastewater (raw water, usually About 20 ° C) and heat exchange,
It is mixed with the flue gas desulfurization wastewater flowing through the flue gas desulfurization wastewater introduction pipe 24. The exhaust gas generated by the catalytic wet oxidation device 14 is discharged from an exhaust gas outflow pipe (not shown).
【0008】また、排煙脱硫排水貯槽22内の排煙脱硫
排水はポンプ26の作動により第2の熱交換器30に導
入される。このとき、pH調整剤添加機構28によって
排煙脱硫排水導入管24を流れる排水にpH調整剤(酸
あるいはアルカリ)が添加され、濃縮液のpHが弱酸性
〜中性になるように排水のpHが調整される。次に、排
水は加熱器32、蒸発濃縮装置34に順次通水され、蒸
発濃縮装置34において排水の蒸発濃縮処理が行われ
る。発生した蒸気は蒸発濃縮装置34のコンデンサで凝
縮され、凝縮水は蒸発濃縮処理水として蒸発濃縮処理水
流出管36に流出する。この蒸発濃縮処理水は第2の熱
交換器30で排煙脱硫排水(原水)と熱交換を行った
後、放流又は再利用される。この蒸発濃縮処理水は、比
較的高純度な蒸留水である。また、蒸発濃縮装置34で
生成した濃縮液は濃縮液排出管38から排出される。Further, the flue gas desulfurization wastewater in the flue gas desulfurization wastewater storage tank 22 is introduced into the second heat exchanger 30 by the operation of the pump 26. At this time, a pH adjuster (acid or alkali) is added to the wastewater flowing through the flue gas desulfurization wastewater introduction pipe 24 by the pH adjuster addition mechanism 28, and the pH of the wastewater is adjusted so that the pH of the concentrated solution becomes weakly acidic to neutral. Is adjusted. Next, the waste water is sequentially passed through the heater 32 and the evaporative concentration device 34, and the evaporative concentration device 34 performs the evaporative concentration treatment of the waste water. The generated steam is condensed by the condenser of the evaporative concentrator 34, and the condensed water flows out to the evaporative concentrated water outlet pipe 36 as the evaporative concentrated water. This evaporatively concentrated water is subjected to heat exchange with flue gas desulfurization wastewater (raw water) in the second heat exchanger 30 and then discharged or reused. This evaporative concentration treated water is distilled water of relatively high purity. The concentrated liquid generated by the evaporating and concentrating device 34 is discharged from a concentrated liquid discharge pipe 38.
【0009】上述した図2の装置による複合処理は、復
水脱塩装置再生排水を触媒湿式酸化法により処理した後
に、触媒湿式酸化処理水を排煙脱硫排水と混合し、この
混合水を蒸発濃縮法により処理するものである。この複
合処理では、触媒湿式酸化処理水の廃熱を復水脱塩装置
再生排水の予熱に利用し、蒸発濃縮処理水の廃熱を排煙
脱硫排水の予熱に利用するのみならず、触媒湿式酸化処
理水の廃熱を排煙脱硫排水の予熱に利用するので、復水
脱塩装置再生排水及び排煙脱硫排水をそれぞれ単独で処
理する場合に比べ、処理水の廃熱をさらに有効に利用す
ることができる。In the combined treatment using the apparatus shown in FIG. 2, the reclaimed wastewater from the condensate desalination unit is treated by the catalytic wet oxidation method, and then the catalytic wet oxidation treated water is mixed with the flue gas desulfurization wastewater, and the mixed water is evaporated. It is processed by the concentration method. In this combined treatment, not only the waste heat of the catalytic wet oxidation treatment water is used for preheating the condensate desalination equipment regeneration wastewater, and the waste heat of the evaporation concentrated treatment water is used for preheating the flue gas desulfurization wastewater, but also the catalytic wet Since the waste heat of the oxidized water is used for preheating the flue gas desulfurization wastewater, the waste heat of the treated water is more effectively used than when the reclaimed water and the flue gas desulfurization wastewater are treated separately. can do.
【0010】なお、図2の装置においては、復水脱塩装
置再生排水を触媒湿式酸化装置で処理した後、第1の熱
交換器を介して触媒湿式酸化処理水と復水脱塩装置再生
排水との熱交換を行うが、この熱交換による触媒湿式酸
化処理水の水温低下によって、触媒湿式酸化処理水が後
段で排煙脱硫排水と混合されて圧力が低下する時の急激
な沸騰が防止される。In the apparatus shown in FIG. 2, after treating the reclaimed wastewater from the condensate desalination apparatus with the catalytic wet oxidizer, the treated wet oxidized water and the condensate desalinizer regenerate through the first heat exchanger. The heat exchange with the wastewater is performed, but due to the decrease in the temperature of the catalytic wet oxidation water due to this heat exchange, rapid boiling when the pressure drops due to the catalytic wet oxidation water being mixed with the flue gas desulfurization wastewater at the subsequent stage is prevented. Is done.
【0011】[0011]
【発明が解決しようとする課題】排煙脱硫排水は腐食性
が強く、またスケーリング(スケール析出)が生じ易い
性質を持っている。そのため、図2に示した複合処理装
置では、排煙脱硫排水が通水される第2の熱交換器30
の材質に腐食しにくい高級ステンレス鋼などの高価な材
料を使用する必要があり、装置製作コストが増大する要
因となっていた。また、スケーリングが生じた場合には
熱交換器の化学洗浄を行う必要があるため、化学洗浄設
備の設置による装置製作コストの増大や、洗浄作業の必
要性に起因する装置運転コストの増大が生じていた。な
お、復水脱塩装置再生排水は腐食性が弱く、またスケー
リングが生じにくいので、第1の熱交換器10には上記
のような問題は生じない。The flue gas desulfurization effluent has a property of being highly corrosive and easily causing scaling (precipitation of scale). Therefore, in the combined treatment apparatus shown in FIG. 2, the second heat exchanger 30 through which the flue gas desulfurization wastewater flows is passed.
It is necessary to use an expensive material such as high-grade stainless steel which is hardly corroded, which has been a factor of increasing the device manufacturing cost. In addition, if scaling occurs, it is necessary to perform chemical cleaning of the heat exchanger, so the installation of chemical cleaning equipment increases the equipment manufacturing cost, and the necessity of the cleaning work increases the equipment operating cost. I was The regenerated wastewater from the condensate desalination apparatus has low corrosiveness and is unlikely to be scaled, so that the first heat exchanger 10 does not have the above-described problems.
【0012】本発明は、前述した事情に鑑みてなされた
もので、復水脱塩装置再生排水を触媒湿式酸化法、排煙
脱硫排水を蒸発濃縮法により処理するに当たり、両排水
の複合処理を行って各処理水の廃熱を有効に利用するこ
とができ、しかも装置製作コスト及び装置運転コストの
増大を抑制することができる発電所排水の複合処理方法
及び複合処理装置を提供することを目的とする。The present invention has been made in view of the above-mentioned circumstances. In treating condensate demineralizer regenerated wastewater by catalytic wet oxidation, and flue gas desulfurization wastewater by evaporative concentration, a combined treatment of both wastewaters is performed. It is an object of the present invention to provide a combined treatment method and a combined treatment device for power plant wastewater capable of effectively utilizing the waste heat of each treated water and suppressing an increase in device manufacturing cost and device operation cost. And
【0013】[0013]
【課題を解決するための手段】本発明は、前記目的を達
成するため、復水脱塩装置再生排水を触媒湿式酸化法、
排煙脱硫排水を蒸発濃縮法により処理するに当たり、復
水脱塩装置再生排水を触媒湿式酸化法により処理し、得
られた触媒湿式酸化処理水を復水脱塩装置再生排水と熱
交換した後、触媒湿式酸化処理水を排煙脱硫排水と混合
し、この混合水を蒸発濃縮法により処理した後に、得ら
れた蒸発濃縮処理水を復水脱塩装置再生排水と熱交換す
ることを特徴とする発電所排水の複合処理方法を提供す
る。In order to achieve the above object, the present invention provides a condensate desalination unit reclaimed wastewater by a catalytic wet oxidation method,
In treating the flue gas desulfurization wastewater by the evaporative concentration method, the condensate desalination unit regeneration wastewater is treated by the catalytic wet oxidation method, and the obtained catalyst wet oxidation treatment water is subjected to heat exchange with the condensate desalination unit regeneration wastewater. Mixing the catalyst wet oxidation treated water with flue gas desulfurization wastewater, treating this mixed water by the evaporative concentration method, and then heat-exchanging the obtained evaporated concentrated treated water with the condensate desalination unit regeneration wastewater. The present invention provides a combined treatment method for power plant wastewater.
【0014】また、本発明は、前記目的を達成するた
め、復水脱塩装置再生排水を触媒湿式酸化法により処理
する触媒湿式酸化装置と、触媒湿式酸化装置に復水脱塩
装置再生排水を導入する再生排水導入管と、再生排水導
入管に介装された第1及び第2の熱交換器と、触媒湿式
酸化装置の処理水が流出する触媒湿式酸化処理水流出管
と、排煙脱硫排水を蒸発濃縮法により処理する蒸発濃縮
装置と、蒸発濃縮装置に排煙脱硫排水を導入する排煙脱
硫排水導入管と、蒸発濃縮装置の処理水が流出する蒸発
濃縮処理水流出管とを具備し、かつ、第1の熱交換器が
触媒湿式酸化処理水流出管に介装され、触媒湿式酸化処
理水流出管の流出端が蒸発濃縮装置又はその上流側の配
管若しくは装置に連結されているとともに、第2の熱交
換器が蒸発濃縮処理水流出管に介装されていることを特
徴とする発電所排水の複合処理装置を提供する。Further, in order to achieve the above-mentioned object, the present invention provides a catalytic wet oxidizer for treating regenerated wastewater from a condensate desalination apparatus by a catalytic wet oxidation method, A regeneration wastewater introduction pipe to be introduced, first and second heat exchangers interposed in the regeneration wastewater introduction pipe, a catalytic wet oxidation treatment water discharge pipe through which treated water of the catalytic wet oxidation device flows, and flue gas desulfurization Evaporating and concentrating equipment that treats wastewater by the evaporative concentration method, a flue gas desulfurization wastewater introduction pipe that introduces flue gas desulfurization wastewater into the evaporative concentrator, and an evaporative concentration treated water outflow pipe through which treated water from the evaporative concentrator flows out. And, the first heat exchanger is interposed in the outflow pipe of the catalytic wet oxidation water, and the outflow end of the outflow pipe of the catalytic wet oxidation water is connected to the evaporative concentrator or a pipe or device upstream thereof. At the same time, the second heat exchanger To provide a composite processor power plants waste water, characterized in that it is interposed in the outlet pipe.
【0015】本発明によれば、温度の高い触媒湿式酸化
処理水及び蒸発濃縮処理水を温度の低い復水脱塩装置再
生排水と熱交換し、熱交換によって温度の低下した触媒
湿式酸化処理水を排煙脱硫排水と混合するので、触媒湿
式酸化処理水及び蒸発濃縮処理水の廃熱を有効利用する
ことができる。また、排煙脱硫排水は熱交換に用いない
ので、熱交換器には排水として腐食性が弱くスケーリン
グが生じにくい復水脱塩装置再生排水のみを通水すれば
よく、腐食性が強くスケーリングが生じ易い排煙脱硫排
水を通水する必要がない。したがって、熱交換器の材質
には腐食しにくい高価な材料を用いる必要がなく、一般
的なステンレス鋼などでよいため、装置製作コストの増
大を抑制することができる。また、熱交換器にスケーリ
ングが生じにくく、化学洗浄設備の設置や洗浄作業の必
要をなくすことができるため、装置製作コスト及び装置
運転コストの増大を抑制することができる。さらに、熱
交換器のメンテナンスが容易になるため、装置運転コス
トを低減することができる。According to the present invention, the catalytic wet oxidized water having a high temperature is subjected to heat exchange with the regenerated wastewater of a condensate desalination apparatus having a low temperature, and the catalytic wet oxidized water having a reduced temperature due to the heat exchange. Is mixed with flue gas desulfurization wastewater, so that the waste heat of the catalytic wet oxidation treatment water and the evaporative concentration treatment water can be effectively used. In addition, flue gas desulfurization wastewater is not used for heat exchange, so it is only necessary to pass through the heat exchanger as reclaimed water from the condensate desalination equipment regeneration wastewater, which is weakly corrosive and less likely to cause scaling. There is no need to pass flue gas desulfurization wastewater, which is likely to occur. Therefore, it is not necessary to use an expensive material that is hardly corroded as the material of the heat exchanger, and it is sufficient to use general stainless steel or the like, so that it is possible to suppress an increase in apparatus manufacturing cost. In addition, scaling is unlikely to occur in the heat exchanger, and the necessity of installing chemical cleaning equipment and cleaning work can be eliminated, so that an increase in apparatus manufacturing cost and apparatus operating cost can be suppressed. Further, since the maintenance of the heat exchanger is facilitated, the operation cost of the apparatus can be reduced.
【0016】以下、本発明につきさらに詳しく説明す
る。本発明では、復水脱塩装置再生排水を触媒湿式酸化
法により処理し、排煙脱硫排水を蒸発濃縮法により処理
する。復水脱塩装置再生排水は、復水脱塩装置のイオン
交換樹脂の再生処理を行ったときに排出される排水であ
る。排煙脱硫排水は、排煙の脱硫処理を行う排煙脱硫プ
ロセスから排出される排水である。Hereinafter, the present invention will be described in more detail. In the present invention, the regenerated wastewater from the condensate desalination unit is treated by a catalytic wet oxidation method, and the flue gas desulfurization wastewater is treated by an evaporative concentration method. The condensate desalination apparatus regeneration wastewater is wastewater discharged when the ion exchange resin of the condensate desalination apparatus is regenerated. Flue gas desulfurization wastewater is wastewater discharged from a flue gas desulfurization process that performs desulfurization treatment of flue gas.
【0017】また、触媒湿式酸化処理法は、触媒の存在
下で酸化剤を用いて被処理水中のアンモニア態窒素を窒
素ガスに酸化分解する方法である。触媒湿式酸化処理法
では、一般に、金属触媒の存在下、被処理水を所定温度
(通常100〜370℃)に加熱するとともに、被処理
水を液相を保持する圧力にまで加圧し、かつ酸素含有ガ
ス(例えば空気)等を酸化剤として被処理水に供給す
る。触媒としては、例えば、銀、金、白金、コバルト、
ニッケル、パラジウム、ロジウム、ルテニウム、インジ
ウム、イリジウムやこれらの酸化物、塩化物、硫化物等
から選ばれる触媒成分を適宜担体に担持させたものが使
用される。The catalyst wet oxidation treatment method is a method in which ammonia nitrogen in the water to be treated is oxidatively decomposed into nitrogen gas using an oxidizing agent in the presence of a catalyst. In the catalytic wet oxidation treatment method, generally, the water to be treated is heated to a predetermined temperature (usually 100 to 370 ° C.) in the presence of a metal catalyst, and the water to be treated is pressurized to a pressure for maintaining a liquid phase, and oxygen is added. A contained gas (for example, air) is supplied to the water to be treated as an oxidizing agent. As the catalyst, for example, silver, gold, platinum, cobalt,
A catalyst is used in which a catalyst component selected from nickel, palladium, rhodium, ruthenium, indium, iridium and their oxides, chlorides, sulfides and the like is appropriately supported on a carrier.
【0018】蒸発濃縮法は、蒸発器を用いて被処理水を
蒸発濃縮し、発生した蒸気を凝縮して、凝縮水を蒸発濃
縮処理水として得る方法である。蒸発濃縮処理は、一般
に、処理温度50〜100℃程度、処理圧力−670〜
0mmHg程度の条件で行われる。また、通常、濃縮液
のpHが弱酸性〜中性になるように被処理水のpHが調
整される。蒸発器としては、例えば、構造的には水平伝
熱管方式、竪型の薄膜方式等のものが使用され、加熱方
式としては外部加熱方式、自己蒸気圧縮型等のものが使
用される。In the evaporative concentration method, the water to be treated is evaporated and concentrated using an evaporator, the generated steam is condensed, and condensed water is obtained as evaporative concentrated water. In general, the evaporative concentration processing is performed at a processing temperature of about 50 to 100 ° C. and a processing pressure of −670 to 670.
This is performed under the condition of about 0 mmHg. Usually, the pH of the water to be treated is adjusted so that the pH of the concentrated solution is weakly acidic to neutral. As the evaporator, for example, a horizontal heat transfer tube system, a vertical thin film system, or the like is used structurally, and an external heating system, a self vapor compression type, or the like is used as a heating system.
【0019】[0019]
【発明の実施の形態】次に、実施形態により本発明を具
体的に示す。図1は、本発明に係る発電所排水の複合処
理装置の一実施形態を示すフロー図である。図1の装置
は、図2の装置において、蒸発濃縮処理水流出管36に
介装された第2の熱交換器30を排煙脱硫排水導入管2
4に設置せず、再生排水導入管4のpH調整剤添加機構
8と第1の熱交換器10との間に設置したこと、触媒湿
式酸化処理水流出管16の流出端を排煙脱硫排水導入管
24に連結せず、蒸発濃縮装置34に連結したこと、及
び、第1の熱交換器10と蒸発濃縮装置34との間にお
いて触媒湿式酸化処理水流出管16に減圧弁40を設け
たこと以外は、図2の装置と同様のものである。したが
って、図1において図2の装置と同一の部分には、同一
の参照符号を付してその説明を省略する。Next, the present invention will be specifically described by way of embodiments. FIG. 1 is a flowchart showing an embodiment of a combined treatment apparatus for power plant wastewater according to the present invention. The apparatus shown in FIG. 1 is different from the apparatus shown in FIG. 2 in that the second heat exchanger 30 interposed in the evaporative concentration treated water outlet pipe 36 is connected to the flue gas desulfurization drain introduction pipe 2.
4 and installed between the pH adjusting agent addition mechanism 8 of the regeneration drain introduction pipe 4 and the first heat exchanger 10, and the outlet end of the catalyst wet oxidation treatment water outlet pipe 16 is disposed of flue gas desulfurization wastewater. The connection to the evaporating and concentrating device 34 without connecting to the introduction tube 24, and the provision of the pressure reducing valve 40 in the catalyst wet-type oxidized water outlet pipe 16 between the first heat exchanger 10 and the evaporating and concentrating device 34. Otherwise, it is similar to the device of FIG. Therefore, in FIG. 1, the same parts as those of the apparatus of FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted.
【0020】図1に示した装置による復水脱塩装置再生
排水及び排煙脱硫排水の複合処理は、次のように行われ
る。すなわち、復水脱塩装置再生排水貯槽2内の復水脱
塩装置再生排水は、ポンプ6の作動により第2の熱交換
器30及び第1の熱交換器10に順次通水され、復水脱
塩装置再生排水と蒸発濃縮処理水及び触媒湿式酸化処理
水との熱交換が順次行われて復水脱塩装置再生排水が予
熱される。このとき、排水のpHが図2の装置と同様に
調整される。The combined treatment of the reclaimed wastewater and the flue gas desulfurization wastewater by the apparatus shown in FIG. 1 is performed as follows. That is, the regenerated condensate desalination device reclaimed wastewater in the condensate desalination device reclaimed drainage storage tank 2 is successively passed through the second heat exchanger 30 and the first heat exchanger 10 by the operation of the pump 6, and condensed. The heat exchange between the reclaimed wastewater from the desalination unit, the evaporatively-concentrated treated water, and the catalytic wet-oxidized treated water is sequentially performed to preheat the reclaimed condensate desalinated unit reclaimed wastewater. At this time, the pH of the wastewater is adjusted in the same manner as in the apparatus of FIG.
【0021】次に、排水は加熱器12に通水されて例え
ば150〜300℃程度に加熱された後、触媒湿式酸化
装置14に通水され、触媒湿式酸化装置14において排
水中のアンモニア性窒素が除去される。高温の触媒湿式
酸化処理水は触媒湿式酸化処理水流出管16に流出し、
第1の熱交換器10で復水脱塩装置再生排水(原水)と
熱交換を行った後(この熱交換で触媒湿式酸化処理水の
温度は100〜200℃程度にまで低下する)、蒸発濃
縮装置34に導入され、蒸発濃縮装置34の配管内ある
いは蒸発器内部において排煙脱硫排水と混合される。な
お、触媒湿式酸化装置14で発生した排ガスは排ガス流
出管(図示せず)から排出される。Next, the waste water is passed through a heater 12 and heated to, for example, about 150 to 300 ° C., and then passed through a catalytic wet oxidizer 14. Is removed. The high temperature catalytic wet oxidation water flows out to the catalyst wet oxidation water outlet pipe 16,
After performing heat exchange with the condensed water desalination equipment reclaimed wastewater (raw water) in the first heat exchanger 10 (the temperature of the catalytic wet oxidation treatment water is reduced to about 100 to 200 ° C. by this heat exchange), evaporation is performed. It is introduced into the concentration device 34 and mixed with the flue gas desulfurization wastewater in the piping of the evaporative concentration device 34 or in the evaporator. The exhaust gas generated by the catalytic wet oxidation device 14 is discharged from an exhaust gas outflow pipe (not shown).
【0022】この場合、触媒湿式酸化処理水と排煙脱硫
排水との混合点における触媒湿式酸化処理水の圧力が、
排煙脱硫排水の圧力や蒸発器内部の圧力よりも極端に大
きい場合には、減圧弁40を用いて触媒湿式酸化処理水
の圧力を低下させるのが好ましい。なぜならば、上記混
合点において触媒湿式酸化処理水と排煙脱硫排水や蒸発
器内部との間にあまり大きい圧力差を与えると、該混合
点において触媒湿式酸化処理水の急激な沸騰が生じ、水
蒸気爆発を発生させるおそれがあるためである。In this case, the pressure of the catalytic wet oxidation water at the mixing point of the catalytic wet oxidation water and the flue gas desulfurization wastewater is:
When the pressure is extremely higher than the pressure of the flue gas desulfurization wastewater or the pressure inside the evaporator, it is preferable to reduce the pressure of the catalytic wet oxidation treatment water using the pressure reducing valve 40. This is because if a very large pressure difference is applied between the catalytic wet oxidation water and the flue gas desulfurization wastewater or the inside of the evaporator at the mixing point, a sudden boiling of the catalytic wet oxidation water occurs at the mixing point, and steam This is because an explosion may occur.
【0023】また、排煙脱硫排水貯槽22内の排煙脱硫
排水はポンプ26の作動により加熱器32に導入され、
所定の温度、例えば70℃に加熱される。このとき、排
水のpHが図2の装置と同様に調整される。次に、排水
は蒸発濃縮装置34に導入され、ここで前記のように触
媒湿式酸化処理水と混合される。そして、蒸発濃縮装置
34で例えば温度70℃、圧力−530mmHgの条件
下で排煙脱硫排水と触媒湿式酸化処理水との混合水の蒸
発濃縮処理が行われ、図2の装置と同様に蒸発濃縮処理
水が蒸発濃縮処理水流出管36に流出する。蒸発濃縮処
理水は例えば温度が50℃程度であり、第2の熱交換器
30でほぼ常温の復水脱塩装置再生排水(原水)と熱交
換を行った後、放流又は再利用される。また、蒸発濃縮
装置34で生成した濃縮液は濃縮液排出管38から排出
される。濃縮液は後段でさらに処理し、重金属、COD
成分などを除去するのが一般的である。The flue gas desulfurization wastewater in the flue gas desulfurization wastewater storage tank 22 is introduced into the heater 32 by the operation of the pump 26,
It is heated to a predetermined temperature, for example, 70 ° C. At this time, the pH of the wastewater is adjusted in the same manner as in the apparatus of FIG. Next, the wastewater is introduced into the evaporative concentrator 34, where it is mixed with the catalytic wet oxidation treatment water as described above. The evaporating and concentrating device 34 performs evaporating and condensing treatment of the mixed water of the flue gas desulfurization wastewater and the catalytic wet oxidation treatment water, for example, at a temperature of 70 ° C. and a pressure of −530 mmHg. The treated water flows out to the evaporative concentrated treated water outflow pipe 36. The evaporatively-concentrated water has a temperature of, for example, about 50 ° C., and after being subjected to heat exchange with the condensate desalination apparatus regeneration wastewater (raw water) at approximately room temperature in the second heat exchanger 30, is discharged or reused. The concentrated liquid generated by the evaporating and concentrating device 34 is discharged from a concentrated liquid discharge pipe 38. The concentrate is further processed at a later stage, and heavy metals, COD
It is common to remove components and the like.
【0024】なお、図1の装置では、触媒湿式酸化処理
水流出管16の流出端を蒸発濃縮装置34に連結した
が、該流出端は蒸発濃縮装置34の上流側の配管あるい
は装置、例えば排煙脱硫排水導入管24あるいは加熱器
32に連結してもよい。また、本発明においては、上述
のごとく第1の熱交換器10に通水される触媒湿式酸化
処理水の温度の方が、第2の熱交換器30に通水される
蒸発濃縮処理水の温度により一般に高いので、第1及び
第2の熱交換器の設置位置としては、図1に示したごと
く、温度の高い触媒湿式酸化処理水が通水される第1の
熱交換器10の上流側に、それにより温度の低い蒸発濃
縮処理水が通水される第2の熱交換器30を設置するの
が良い。In the apparatus shown in FIG. 1, the outflow end of the catalytic wet oxidation treated water outflow pipe 16 is connected to the evaporative concentrator 34. The outflow end is connected to a pipe or apparatus upstream of the evaporative concentrator 34, for example, a drain. It may be connected to the smoke desulfurization drain introduction pipe 24 or the heater 32. Further, in the present invention, as described above, the temperature of the catalytic wet oxidized water passed through the first heat exchanger 10 is higher than the temperature of the evaporated concentrated water passed through the second heat exchanger 30. Since the temperature is generally higher depending on the temperature, the installation positions of the first and second heat exchangers are, as shown in FIG. 1, upstream of the first heat exchanger 10 through which the high-temperature catalytic wet oxidation water is passed. On the side, a second heat exchanger 30 by means of which low-temperature evaporatively-concentrated treated water is passed may be installed.
【0025】[0025]
【実施例】(実施例)図1に示した装置を用い、前述の
ようにして石炭火力発電所の復水脱塩装置再生排水及び
排煙脱硫排水の複合処理を行った。この場合、下記に示
す処理条件で100時間の連続処理を行った。その結
果、100時間の連続処理を行った後においても、第1
及び第2の熱交換器内にスケールの発生は見られず、排
水の流量や温度は安定していた。また、第1及び第2の
熱交換器を分解点検したところ、腐食は見られず材質は
健全であった。EXAMPLE (Example) Using the apparatus shown in FIG. 1, combined treatment of the condensate desalination equipment regeneration wastewater and flue gas desulfurization wastewater of a coal-fired power plant was performed as described above. In this case, continuous processing was performed for 100 hours under the following processing conditions. As a result, even after 100 hours of continuous processing, the first
No scale was observed in the second heat exchanger, and the flow rate and temperature of the wastewater were stable. When the first and second heat exchangers were disassembled and inspected, no corrosion was observed and the material was sound.
【0026】処理条件 (1)装置容積 触媒湿式酸化装置 0.05m3 蒸発濃縮装置 0.05m3 (2)流量(弁の開度で手動調整) 復水脱塩装置再生排水 1m3/day 排煙脱硫排水 1m3/day 蒸発濃縮処理水 0.95m3/day 濃縮液 0.05m3/day (3)処理温度 触媒湿式酸化処理装置 170℃ 蒸発濃縮装置 70℃(圧力:−530mmHg) (4)熱交換器材質 SUS316L (5)排水水質 排水の水質分析結果を表1に示す。The treatment conditions (1) device volume catalytic wet oxidation apparatus 0.05 m 3 evaporative concentration apparatus 0.05 m 3 (2) flow rate (manual adjustment in the degree of opening of the valve) condensate demineralizer regeneration effluent 1 m 3 / day waste smoke desulfurization effluent 1 m 3 / day evaporated treated water 0.95 m 3 / day concentrate 0.05m 3 / day (3) processing temperature catalytic wet oxidation treatment apparatus 170 ° C. evaporation apparatus 70 ° C. (pressure: -530mmHg) (4 ) Material of heat exchanger SUS316L (5) Wastewater quality Table 1 shows the results of water quality analysis of wastewater.
【0027】[0027]
【表1】 [Table 1]
【0028】(比較例)図2に示した装置を用い、前述
のようにして復水脱塩装置再生排水及び排煙脱硫排水の
複合処理を行った。処理条件は実施例と同様とした。そ
の結果、処理開始から約75時間後に排煙脱硫排水の流
量が低下したため、処理を中止した。第2の熱交換器を
分解して内部を観察したところ、原水側流路にカルシウ
ムスケールが生成し、部分的に流路が閉塞していること
がわかった。(Comparative Example) Using the apparatus shown in FIG. 2, the combined treatment of the condensate desalination unit regeneration wastewater and flue gas desulfurization wastewater was performed as described above. The processing conditions were the same as in the example. As a result, about 75 hours after the start of the treatment, the flow rate of the flue gas desulfurization effluent decreased, so the treatment was stopped. When disassembling the second heat exchanger and observing the inside, it was found that calcium scale was generated in the raw water side flow path and the flow path was partially blocked.
【0029】[0029]
【発明の効果】本発明によれば、復水脱塩装置再生排水
を触媒湿式酸化法、排煙脱硫排水を蒸発濃縮法により処
理するに当たり、両排水の複合処理を行って各処理水の
廃熱を有効に利用することができるとともに、装置製作
コスト及び装置運転コストの増大を抑制することができ
る。According to the present invention, when treating the reclaimed wastewater of the condensate desalination apparatus by the catalytic wet oxidation method and the flue gas desulfurization wastewater by the evaporative concentration method, the combined treatment of both wastewaters is carried out, and the wastewater of each treated water is treated. The heat can be effectively used, and increase in device manufacturing cost and device operating cost can be suppressed.
【図1】本発明に係る発電所排水の複合処理装置の一実
施形態を示すフロー図である。FIG. 1 is a flowchart illustrating an embodiment of a combined treatment apparatus for power plant wastewater according to the present invention.
【図2】従来の発電所排水の複合処理装置の一例を示す
フロー図である。FIG. 2 is a flowchart showing an example of a conventional combined treatment apparatus for power plant wastewater.
2 復水脱塩装置再生排水貯槽 4 再生排水導入管 10 第1の熱交換器 12 加熱器 14 触媒湿式酸化装置 16 触媒湿式酸化処理水流出管 22 排煙脱硫排水貯槽 24 排煙脱硫排水導入管 30 第2の熱交換器 32 加熱器 34 蒸発濃縮装置 36 蒸発濃縮処理水流出管 40 減圧弁 2 Condensate demineralizer regeneration drainage storage tank 4 Regeneration drainage introduction pipe 10 First heat exchanger 12 Heater 14 Catalytic wet oxidizer 16 Catalytic wet oxidation treatment water outflow pipe 22 Flue gas desulfurization drainage storage tank 24 Flue gas desulfurization drainage introduction pipe Reference Signs List 30 second heat exchanger 32 heater 34 evaporative concentrator 36 evaporative concentration treated water outlet pipe 40 pressure reducing valve
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 5/00 620 C02F 5/00 620B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 5/00 620 C02F 5/00 620B
Claims (4)
法、排煙脱硫排水を蒸発濃縮法により処理するに当た
り、復水脱塩装置再生排水を触媒湿式酸化法により処理
し、得られた触媒湿式酸化処理水を復水脱塩装置再生排
水と熱交換した後、触媒湿式酸化処理水を排煙脱硫排水
と混合し、この混合水を蒸発濃縮法により処理した後
に、得られた蒸発濃縮処理水を復水脱塩装置再生排水と
熱交換することを特徴とする発電所排水の複合処理方
法。In the treatment of reclaimed wastewater from a condensate desalination unit by a catalytic wet oxidation method and the treatment of flue gas desulfurization wastewater by an evaporative concentration method, the reclaimed wastewater from a condensate desalination unit is treated by a catalytic wet oxidation method. After heat exchange of the catalytic wet oxidation water with the condensate desalination unit regeneration wastewater, the catalytic wet oxidation water is mixed with the flue gas desulfurization wastewater, and this mixed water is treated by the evaporative concentration method, and the obtained evaporative concentration is obtained. A combined treatment method for power plant wastewater, wherein the treated water is heat-exchanged with a condensate desalination unit regeneration wastewater.
排水と熱交換した後、触媒湿式酸化処理水を減圧してか
ら排煙脱硫排水と混合する請求項1に記載の発電所排水
の複合処理方法。2. The power plant effluent according to claim 1, wherein the catalyst wet oxidized water is heat-exchanged with the condensate desalination unit regeneration wastewater, and then the catalyst wet oxidized water is decompressed and then mixed with the flue gas desulfurization wastewater. Complex processing method.
により処理する触媒湿式酸化装置と、触媒湿式酸化装置
に復水脱塩装置再生排水を導入する再生排水導入管と、
再生排水導入管に介装された第1及び第2の熱交換器
と、触媒湿式酸化装置の処理水が流出する触媒湿式酸化
処理水流出管と、排煙脱硫排水を蒸発濃縮法により処理
する蒸発濃縮装置と、蒸発濃縮装置に排煙脱硫排水を導
入する排煙脱硫排水導入管と、蒸発濃縮装置の処理水が
流出する蒸発濃縮処理水流出管とを具備し、かつ、第1
の熱交換器が触媒湿式酸化処理水流出管に介装され、触
媒湿式酸化処理水流出管の流出端が蒸発濃縮装置又はそ
の上流側の配管若しくは装置に連結されているととも
に、第2の熱交換器が蒸発濃縮処理水流出管に介装され
ていることを特徴とする発電所排水の複合処理装置。3. A catalytic wet oxidizer for treating the condensate demineralizer regeneration wastewater by a catalytic wet oxidation method, a regeneration drainage introduction pipe for introducing the condensate demineralizer regeneration wastewater to the catalytic wet oxidation device,
The first and second heat exchangers interposed in the regeneration drain introduction pipe, the catalytic wet oxidation treated water outflow pipe from which the treated water of the catalytic wet oxidation device flows out, and the flue gas desulfurization wastewater are treated by the evaporative concentration method. A first evaporative concentrator, a flue gas desulfurization wastewater introduction pipe for introducing flue gas desulfurization wastewater into the evaporative concentrator, and an evaporative condensed treated water outflow pipe from which treated water of the evaporative concentrator flows out;
Is disposed in the outflow pipe of the catalytically oxidized water, and the outflow end of the outflow pipe of the catalytically wet oxidized water is connected to the evaporative concentrator or a pipe or device upstream thereof, and the second heat exchanger A combined treatment device for power plant wastewater, characterized in that an exchanger is interposed in an evaporative concentration treated water outflow pipe.
上流側の配管若しくは装置との間において、触媒湿式酸
化処理水流出管に減圧弁を設けた請求項3に記載の発電
所排水の複合処理装置。4. The power plant drainage according to claim 3, wherein a pressure reducing valve is provided in the outflow pipe of the catalytically-oxidized water for treatment between the first heat exchanger and the evaporative concentrator or a pipe or apparatus upstream thereof. Complex processing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11147672A JP2000334441A (en) | 1999-05-27 | 1999-05-27 | Composite treatment of power plant waste water and composite treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11147672A JP2000334441A (en) | 1999-05-27 | 1999-05-27 | Composite treatment of power plant waste water and composite treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000334441A true JP2000334441A (en) | 2000-12-05 |
Family
ID=15435677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11147672A Pending JP2000334441A (en) | 1999-05-27 | 1999-05-27 | Composite treatment of power plant waste water and composite treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000334441A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108503116A (en) * | 2018-04-11 | 2018-09-07 | 中国科学院过程工程研究所 | A kind of system and method for high concentrated organic wastewater recycling |
CN110848721A (en) * | 2019-11-25 | 2020-02-28 | 衢州佰强新材料科技有限公司 | Fluorine plastic steel low temperature flue gas advanced treatment device |
-
1999
- 1999-05-27 JP JP11147672A patent/JP2000334441A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108503116A (en) * | 2018-04-11 | 2018-09-07 | 中国科学院过程工程研究所 | A kind of system and method for high concentrated organic wastewater recycling |
CN110848721A (en) * | 2019-11-25 | 2020-02-28 | 衢州佰强新材料科技有限公司 | Fluorine plastic steel low temperature flue gas advanced treatment device |
CN110848721B (en) * | 2019-11-25 | 2021-05-25 | 衢州佰强新材料科技有限公司 | Fluorine plastic steel low temperature flue gas advanced treatment device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5916515B2 (en) | Treatment method for added water and generated wastewater for cooling water circulation system and steam circulation system of thermal power plant | |
WO2016063578A1 (en) | Ammonia-containing wastewater treatment apparatus and treatment method | |
US4213830A (en) | Method for the transfer of heat | |
WO2006104181A1 (en) | Boiler apparatus | |
WO2017213050A1 (en) | Water treatment method and device, water treatment device modification method, and kit for water treatment device modification | |
JP2000334441A (en) | Composite treatment of power plant waste water and composite treatment apparatus | |
JP4164896B2 (en) | Landfill leachate treatment method | |
JP2005152745A (en) | Wet flue gas desulfurization method and wet flue gas desulfurizer | |
CN111453795A (en) | High-magnesium desulfurization wastewater concentration and reduction treatment system and process | |
JP2005066544A (en) | Method for recovering monoethanolamine | |
WO2016063581A1 (en) | Treatment method and treatment apparatus for ammonia-containing wastewater | |
RU2704193C1 (en) | Oxidation by moist air at low temperatures | |
CN215506353U (en) | Equipment for preheating raw water by using heat of reverse osmosis system | |
JP3194123B2 (en) | Ultrapure water production and wastewater treatment method for closed system | |
CN212050614U (en) | Contain concentrated system of salt sewage | |
JP2003136094A (en) | Method and apparatus for treating boiler supply water | |
JPH10118405A (en) | Method for concentrating liquid | |
KR20190037938A (en) | Waterwater treatment apparatus and treatment method discharged from a desulfurization tower | |
JP4931107B2 (en) | Electrodeionization device and secondary line water treatment device for pressurized water nuclear power plant using the same | |
JP2017064639A (en) | Method and apparatus for recovering and using waste water from steam power plant | |
JP3313549B2 (en) | Decomposition and removal method of organic matter in chloride ion-containing wastewater | |
CN111484092A (en) | Contact heat exchange type sewage concentration system and process | |
JP2020067209A (en) | Boiler water treatment device and treatment method | |
JP2002540915A (en) | Device for purifying fluid in the form of vapor delivered from a circuit | |
JP4465786B2 (en) | Method and apparatus for treating human waste and / or septic tank sludge |