JP2000332226A - Microlens array and manufacture thereof - Google Patents

Microlens array and manufacture thereof

Info

Publication number
JP2000332226A
JP2000332226A JP11140425A JP14042599A JP2000332226A JP 2000332226 A JP2000332226 A JP 2000332226A JP 11140425 A JP11140425 A JP 11140425A JP 14042599 A JP14042599 A JP 14042599A JP 2000332226 A JP2000332226 A JP 2000332226A
Authority
JP
Japan
Prior art keywords
pattern
thermoplastic resin
region
microlens array
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11140425A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kawajiri
和廣 川尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Fujifilm Microdevices Co Ltd
Original Assignee
Fujifilm Microdevices Co Ltd
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Microdevices Co Ltd, Fuji Photo Film Co Ltd filed Critical Fujifilm Microdevices Co Ltd
Priority to JP11140425A priority Critical patent/JP2000332226A/en
Publication of JP2000332226A publication Critical patent/JP2000332226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide structure of a microlens array, which can increase the number of picture elements of an image sensing device or improve light condensing efficiency, and a manufacturing method of the array. SOLUTION: This manufacturing method of a microlens array consists of a process for forming a plurality of thermoplastic resins 2a of a first pattern on a substrate 1 interposing air gaps having a specified width, a process for transforming the thermoplastic resin to a lens type by heating the thermoplastic resin 2a of the first pattern, a process forming a plurality of thermoplastic resins 6a of a second pattern in the air gaps between the thermoplastic resins 2a of the first pattern, in such a manner that a part overlaps the thermoplastic resin of the first pattern, and a process transforming the thermoplastic resin to a lens type by heating the thermoplastic resin 6a of the second pattern.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロレンズに
係わり、特に、複数の対象に光を集光するために好都合
なマイクロレンズアレイとその製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a microlens, and more particularly, to a microlens array convenient for condensing light on a plurality of objects and a method of manufacturing the same.

【0002】[0002]

【従来の技術】CCDイメージセンサをはじめとする固
体撮像装置には、半導体基板に形成された複数のフォト
ダイオードなどの受光素子の各々の上に微小なマイクロ
レンズが設けられている。マイクロレンズで集光された
光は、受光素子の受光領域に効率的に導かれる。マイク
ロレンズアレイは、撮像素子の複数の受光素子(画素)
に対応して配列した複数のマイクロレンズのつながりで
構成される。
2. Description of the Related Art In a solid-state image pickup device such as a CCD image sensor, a minute microlens is provided on each of a plurality of light receiving elements such as photodiodes formed on a semiconductor substrate. The light condensed by the microlens is efficiently guided to the light receiving region of the light receiving element. The micro lens array is composed of multiple light receiving elements (pixels)
And a connection of a plurality of microlenses arranged corresponding to.

【0003】[0003]

【発明が解決しようとする課題】図6に従来のマイクロ
レンズアレイの一部を模式的に示す。図6(a)は、平
面図であり、図6(b)は図6(a)のI−I´線に沿
った縦断面図である。複数のマイクロレンズ20は、半
導体基板21の上に形成されている。半導体基板21に
は例えばフォトダイオード22とCCD(図示せず。)な
どが形成されている。マイクロレンズ20はフォトダイ
オード22の受光領域に光を集光するように配置され
る。
FIG. 6 schematically shows a part of a conventional microlens array. FIG. 6A is a plan view, and FIG. 6B is a longitudinal sectional view taken along line II ′ of FIG. 6A. The plurality of microlenses 20 are formed on a semiconductor substrate 21. On the semiconductor substrate 21, for example, a photodiode 22 and a CCD (not shown) are formed. The micro lens 20 is arranged so as to condense light on a light receiving area of the photodiode 22.

【0004】図6に示す従来のマイクロレンズアレイで
は、隣接するマイクロレンズ間にレンズの役目をしない
無効領域23が広く形成されている。このような構造で
は、撮像素子の全面積に対する実質的な受光面積の割合
が少なくなるので、光の利用効率が低い。また、マイク
ロレンズの配置間隔で受光素子の配列が決まるので、撮
像素子の画素を高密度化する場合に不利な制限となる。
[0006] In the conventional microlens array shown in FIG. 6, an ineffective area 23 which does not serve as a lens is formed widely between adjacent microlenses. In such a structure, the ratio of the substantial light receiving area to the entire area of the image sensor decreases, so that the light use efficiency is low. Further, since the arrangement of the light receiving elements is determined by the arrangement interval of the microlenses, there is a disadvantageous limitation in increasing the density of the pixels of the imaging element.

【0005】本発明の目的は、撮像素子の画素数を増加
すること、あるいは集光効率を高めることを可能とする
マイクロレンズアレイ又はその製造方法を提供すること
にある。
An object of the present invention is to provide a microlens array capable of increasing the number of pixels of an image pickup device or increasing the light collection efficiency or a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明の一観点によれ
ば、光透過性材料の複数の凸レンズが間隔を置いて配列
された第1の領域と、光透過性材料の複数の凸レンズが
間隔を置いて配列された第2の領域とを有し、前記第1
の領域の凸レンズと前記第2の領域の凸レンズとが交互
に市松模様状に配列するように前記第1と第2の領域が
配置され、隣接する前記第1の領域の凸レンズと前記第
2の領域の凸レンズとが一部で互いに重複する部分を有
するマイクロレンズアレイが提供される。
According to one aspect of the present invention, a first region in which a plurality of convex lenses of light transmissive material are arranged at intervals, and a plurality of convex lenses of light transmissive material are spaced apart. And a second region arranged with
The first and second regions are arranged such that the convex lens of the region and the convex lens of the second region are alternately arranged in a checkered pattern, and the convex lens of the adjacent first region and the second lens are arranged in a checkered pattern. There is provided a microlens array having a portion where a convex lens in a region partially overlaps with each other.

【0007】本発明の他の観点によれば、基板上に、所
定幅の空隙を介在させて複数の第1のパターンの熱可塑
性樹脂を形成する工程と、前記第1のパターンの熱可塑
性樹脂を加熱して該熱可塑性樹脂がレンズ状になるよう
に変形させる工程と、一部が前記第1のパターンの熱可
塑性樹脂に重なるように、前記第1のパターンの熱可塑
性樹脂の間の空隙に複数の第2のパターンの熱可塑性樹
脂を形成する工程と、前記第2のパターンの熱可塑性樹
脂を加熱して該熱可塑性樹脂がレンズ状になるように変
形させる工程とを有するマイクロレンズアレイの製造方
法が提供される。
According to another aspect of the present invention, a step of forming a plurality of first-pattern thermoplastic resins on a substrate with a gap having a predetermined width therebetween; Heating the resin to deform the thermoplastic resin into a lens shape, and a gap between the thermoplastic resin of the first pattern so that a part thereof overlaps the thermoplastic resin of the first pattern. Forming a plurality of second-pattern thermoplastic resins, and heating the second-pattern thermoplastic resin to deform the thermoplastic resin into a lens shape. Is provided.

【0008】隣接するマイクロレンズ間は互いに重複す
る部分を有するように形成されるので、無効領域が最小
限になる。
Since the adjacent microlenses are formed so as to have portions overlapping each other, the ineffective area is minimized.

【0009】[0009]

【発明の実施の形態】図1から図4は、本発明の実施例
によるマイクロレンズアレイの製造方法の各工程を順に
示したものである。これら各図で(a)はマイクロレン
ズアレイの一部分の平面図で、(b)は平面図(a)の
I−I´線に沿った縦断面図を表す。なお、これらの図
では理解を判りやすくするために、マイクロレンズアレ
イの下に形成されている半導体撮像素子の基板の詳細に
ついては省略している。基板の詳細は、後に図5を参照
しながら説明する。
1 to 4 show steps of a method for manufacturing a microlens array according to an embodiment of the present invention. In each of these figures, (a) is a plan view of a part of the microlens array, and (b) is a longitudinal sectional view taken along line II ′ of the plan view (a). Note that, in these figures, details of a substrate of the semiconductor imaging element formed below the microlens array are omitted for easy understanding. Details of the substrate will be described later with reference to FIG.

【0010】最初、透明(光透過性)な熱可塑性(熱軟
化性)及び感光性樹脂材料を例えばフォトリソグラフィ
ー処理あるいは他の塗布処理工程により、基板1の上に
図1の(a)に示すような平面パターンで樹脂2を形成
する。樹脂2は、例えばアクリル系樹脂のポリグリシジ
ルメタクリレート(PGMA)等が用いられ、第1のフ
ォトダイオード4の受光領域の上に形成される。図1
(b)はその断面図であり、ほぼ円柱状に近い樹脂2が
空隙3を間に挟んで形成される。つまり、熱可塑性樹脂
2のある領域と無い領域3とが交互に市松模様状に配列
したパターンとなる。
First, a transparent (light transmitting) thermoplastic (thermo-softening) and photosensitive resin material is shown on the substrate 1 by, for example, photolithography or another coating process as shown in FIG. The resin 2 is formed in such a plane pattern. The resin 2 is formed on the light receiving region of the first photodiode 4 using, for example, polyglycidyl methacrylate (PGMA) of an acrylic resin. FIG.
(B) is a cross-sectional view, in which a resin 2 having a substantially columnar shape is formed with a gap 3 interposed therebetween. In other words, a pattern in which areas with the thermoplastic resin 2 and areas 3 without the thermoplastic resin 2 are alternately arranged in a checkered pattern.

【0011】次に、熱可塑性樹脂2を約180℃で30
秒間加熱して、熱可塑性樹脂を溶かして角部を丸く変形
させ、図2(b)に示したような凸レンズ状のマイクロ
レンズ2aに変形させる。この熱可塑性樹脂2は、熱硬
化性を有し、熱変形のあとで冷却した後は、硬化してそ
れ以後加熱しても変形はしない。図2(a)は、マイク
ロレンズ2aを凸レンズとして表現するために同心円状
で描いてある。
Next, the thermoplastic resin 2 is heated at about 180 ° C. for 30 minutes.
After heating for 2 seconds, the thermoplastic resin is melted and the corners are deformed to be rounded, and deformed into the convex lens-shaped microlenses 2a as shown in FIG. 2B. The thermoplastic resin 2 has thermosetting properties, and after cooling after thermal deformation, hardens and does not deform when heated thereafter. FIG. 2A is drawn concentrically in order to represent the micro lens 2a as a convex lens.

【0012】次に、図2の工程で得たマイクロレンズア
レイの空隙3に、同じ熱可塑性及び感光性樹脂材料を例
えばフォトリソグラフィー処理あるいは他の塗布処理工
程により、図3(a)に示すような平面パターンで樹脂
6を形成する。樹脂6は、第2のフォトダイオード5の
受光領域の上に形成される。樹脂6の平面形状は四角形
である。図3(b)で示すようにすでに形成された両隣
のマイクロレンズ2aの端と重なりあって形成されてい
る。
Next, the same thermoplastic and photosensitive resin materials are applied to the gaps 3 of the microlens array obtained in the step of FIG. 2 by, for example, a photolithography process or another coating process, as shown in FIG. The resin 6 is formed in a simple planar pattern. The resin 6 is formed on the light receiving area of the second photodiode 5. The planar shape of the resin 6 is a quadrangle. As shown in FIG. 3B, it is formed so as to overlap with the ends of the already formed microlenses 2a on both sides.

【0013】最後に、最初の加熱条件と同じく、熱可塑
性樹脂6を約180℃で30秒間加熱して、熱可塑性樹
脂6を溶かして角部を丸く変形させ、図4(b)に示し
たような凸レンズ状のマイクロレンズ6aに変形させ
る。なお、この加熱によって最初の加熱で形成した凸レ
ンズ2aが変形することはない。
Finally, as in the first heating condition, the thermoplastic resin 6 is heated at about 180 ° C. for 30 seconds to melt the thermoplastic resin 6 and deform the rounded corners, as shown in FIG. 4B. It is transformed into such a convex lens-shaped microlens 6a. The heating does not deform the convex lens 2a formed by the first heating.

【0014】これによって、凸レンズ2aの領域と凸レ
ンズ6aの領域とが互いにその一部を重複する部分7を
有するように重なって配列することになり、隣接レンズ
間の間隔は狭まって、レンズの無効領域は最小限に減少
する。このような、マイクロレンズアレイの製造方法を
採用すると、例えばカラー撮像素子でベイヤ配列ような
画素配列を用いることが好ましい。例えば、最初のレン
ズ形成のマイクロレンズ2aをすべて緑色(G)画素の
ためのレンズとし、次のレンズ形成のマイクロレンズ6
aを赤色(R)画素及び青色(B)画素のためのレンズ
とすれば、色毎に同じ条件のレンズが一度に形成される
ことになり、色特性が均一化され、特性上好ましい。逆
に、マイクロレンズ2aを赤色画素及び青色画素のため
のレンズとし、マイクロレンズ6aを緑色画素のための
レンズとしてもよい。
As a result, the region of the convex lens 2a and the region of the convex lens 6a are arranged so as to overlap with each other so as to have a portion 7 which partially overlaps with each other. The area is reduced to a minimum. When such a method of manufacturing a microlens array is adopted, it is preferable to use a pixel array such as a Bayer array in a color image sensor, for example. For example, the first micro lens 2a for forming a lens is a lens for a green (G) pixel, and the micro lens 6a for the next lens is formed.
If a is a lens for the red (R) pixel and the blue (B) pixel, a lens having the same condition for each color is formed at a time, and the color characteristics are uniform, which is preferable in characteristics. Conversely, the micro lens 2a may be a lens for a red pixel and a blue pixel, and the micro lens 6a may be a lens for a green pixel.

【0015】図5は、本実施例によるCCDカラーイメ
ージセンサの一部の断面図を示す。半導体基板のp型半
導体領域10内に、n型半導体領域31と、n型半導体
領域からなる電荷結合素子(CCD)33が形成されて
いる。半導体領域10及び31間のpn接合がフォトダ
イオードを形成する。n型半導体領域31の表面にさら
にp型領域を形成し、埋め込みpn接合としてもよい。
フォトダイオード領域31とその右のCCD領域33と
の間には、p型半導体領域からなるチャネルストップ3
2が形成される。
FIG. 5 is a sectional view of a part of the CCD color image sensor according to the present embodiment. An n-type semiconductor region 31 and a charge-coupled device (CCD) 33 composed of an n-type semiconductor region are formed in a p-type semiconductor region 10 of a semiconductor substrate. The pn junction between the semiconductor regions 10 and 31 forms a photodiode. A p-type region may be further formed on the surface of the n-type semiconductor region 31 to form a buried pn junction.
A channel stop 3 made of a p-type semiconductor region is provided between the photodiode region 31 and the right CCD region 33.
2 are formed.

【0016】トランスファゲートTGは、CCD33の
上からフォトダイオードに向かって張り出すように形成
され、フォトダイオード領域31からCCD領域33へ
電荷を転送することができる。フォトダイオード領域3
1の上には光を透過するPSG層11が形成される。A
l材料による遮光膜12は、フォトダイオード領域31
のみに光が入射するようにフォトダイオード領域31以
外の領域の上部を覆う。それらの上には平坦化層13が
形成され、さらにその上にカラーフィルタ14が形成さ
れる。さらにカラーフィルタ14の上に形成した平坦化
層15の上に、マイクロレンズ2a、6aが重なり合っ
て形成される。例えば、マイクロレンズ2aの下には、
緑のカラーフィルタ14が形成され、マイクロレンズ6
aの下には赤又は青色のカラーフィルタ14が形成され
る。
The transfer gate TG is formed so as to protrude from above the CCD 33 toward the photodiode, and can transfer charges from the photodiode region 31 to the CCD region 33. Photodiode area 3
A PSG layer 11 that transmits light is formed on the first layer 1. A
The light shielding film 12 made of the material 1
The upper part of the region other than the photodiode region 31 is covered so that light is incident only on the region. A flattening layer 13 is formed thereon, and a color filter 14 is further formed thereon. Further, on the flattening layer 15 formed on the color filter 14, the microlenses 2a and 6a are formed so as to overlap. For example, under the micro lens 2a,
A green color filter 14 is formed, and the micro lens 6
A red or blue color filter 14 is formed below a.

【0017】以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。例えば、種
々の変更、改良、組み合わせ等が可能なことは当業者に
自明であろう。
The present invention has been described in connection with the preferred embodiments.
The present invention is not limited to these. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
隣接するマイクロレンズ間は互いに重複する部分を有す
るように形成されるので、無効領域が最小限に狭めら
れ、撮像素子の画素数を高密度化することができる。ま
た、レンズの集光効率を高めることができる。
As described above, according to the present invention,
Since the adjacent microlenses are formed so as to have portions overlapping each other, the ineffective area is reduced to a minimum and the number of pixels of the image sensor can be increased. In addition, the light collection efficiency of the lens can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例によるマイクロレンズアレイの
製造方法の工程を示す平面図と断面図である。
1A and 1B are a plan view and a cross-sectional view illustrating steps of a method for manufacturing a microlens array according to an embodiment of the present invention.

【図2】本発明の実施例によるマイクロレンズアレイの
製造方法の別の工程を示す平面図と断面図である。
2A and 2B are a plan view and a cross-sectional view illustrating another process of the method for manufacturing a microlens array according to the embodiment of the present invention.

【図3】本発明の実施例によるマイクロレンズアレイの
製造方法のさらに別の工程を示す平面図と断面図であ
る。
3A and 3B are a plan view and a cross-sectional view illustrating still another step of the method of manufacturing the microlens array according to the embodiment of the present invention.

【図4】本発明の実施例によるマイクロレンズアレイの
製造方法の最後の工程を示す平面図と断面図である。
FIGS. 4A and 4B are a plan view and a cross-sectional view illustrating a final step of a method for manufacturing a microlens array according to an embodiment of the present invention.

【図5】本発明の実施例によるCCDカラーイメージセ
ンサの一部の断面図である。
FIG. 5 is a partial cross-sectional view of a CCD color image sensor according to an embodiment of the present invention.

【図6】従来の技術によるマイクロレンズアレイの構造
を示す平面図と断面図である。
FIG. 6 is a plan view and a sectional view showing a structure of a microlens array according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 基板 2、6 熱可塑性樹脂による凸部 3 空隙 4、5 受光部 2a,6a 凸レンズ(マイクロレンズ) 7 重複部分 10 半導体基板 11 PSG 12 遮光膜 13、15 平坦化膜 15 カラーフィルタ 20 従来のマイクロレンズ 21 半導体基板 22 フォトダイオード 23 無効領域 31 フォトダイオード領域 32 チャンネルストップ 33 電荷結合素子(CCD) DESCRIPTION OF SYMBOLS 1 Substrate 2, 6 Convex part made of thermoplastic resin 3 Void 4, 5 Light-receiving part 2a, 6a Convex lens (micro lens) 7 Overlapping part 10 Semiconductor substrate 11 PSG 12 Light-shielding film 13, 15 Flattening film 15 Color filter 20 Conventional micro Lens 21 Semiconductor substrate 22 Photodiode 23 Invalid area 31 Photodiode area 32 Channel stop 33 Charge coupled device (CCD)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4M118 AA01 AB01 BA10 CA02 CA04 FA06 FA26 FA35 GB11 GC08 GD02 GD04 GD06 GD07 5C024 AA01 CA11 CA12 CA31 EA04 FA12 GA51  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4M118 AA01 AB01 BA10 CA02 CA04 FA06 FA26 FA35 GB11 GC08 GD02 GD04 GD06 GD07 5C024 AA01 CA11 CA12 CA31 EA04 FA12 GA51

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光透過性材料の複数の凸レンズが間隔を
置いて配列された第1の領域と、光透過性材料の複数の
凸レンズが間隔を置いて配列された第2の領域とを有
し、前記第1の領域の凸レンズと前記第2の領域の凸レ
ンズとが交互に市松模様状に配列するように前記第1と
第2の領域が配置され、隣接する前記第1の領域の凸レ
ンズと前記第2の領域の凸レンズとが一部で互いに重複
する部分を有するマイクロレンズアレイ。
A first region in which a plurality of convex lenses of a light-transmitting material are arranged at intervals; and a second region in which a plurality of convex lenses of a light-transmitting material are arranged at intervals. The first and second regions are arranged so that the convex lenses of the first region and the convex lenses of the second region are alternately arranged in a checkered pattern, and the convex lenses of the adjacent first region are arranged. And a convex lens in the second region partially overlaps with each other.
【請求項2】 基板上に、所定幅の空隙を介在させて複
数の第1のパターンの熱可塑性樹脂を形成する工程と、 前記第1のパターンの熱可塑性樹脂を加熱して該熱可塑
性樹脂がレンズ状になるように変形させる工程と、 一部が前記第1のパターンの熱可塑性樹脂に重なるよう
に、前記第1のパターンの熱可塑性樹脂の間の空隙に複
数の第2のパターンの熱可塑性樹脂を形成する工程と、 前記第2のパターンの熱可塑性樹脂を加熱して該熱可塑
性樹脂がレンズ状になるように変形させる工程とを有す
るマイクロレンズアレイの製造方法。
2. A step of forming a plurality of first-pattern thermoplastic resins on a substrate with a gap having a predetermined width interposed therebetween, and heating the first-pattern thermoplastic resin to form the thermoplastic resin. And forming a plurality of second patterns in the gaps between the thermoplastic resins of the first pattern so that a portion thereof overlaps the thermoplastic resin of the first pattern. A method for manufacturing a microlens array, comprising: a step of forming a thermoplastic resin; and a step of heating the thermoplastic resin of the second pattern to deform the thermoplastic resin into a lens shape.
【請求項3】 前記第1のパターンの熱可塑性樹脂は、
該熱可塑性樹脂の領域と前記空隙の領域とが交互に市松
模様状に配列されている請求項2記載のマイクロレンズ
アレイの製造方法。
3. The thermoplastic resin of the first pattern,
3. The method according to claim 2, wherein the thermoplastic resin regions and the void regions are alternately arranged in a checkered pattern.
【請求項4】 前記第2のパターンの熱可塑性樹脂は、
その平面形状が四角形である請求項2あるいは3記載の
マイクロレンズアレイの製造方法。
4. The thermoplastic resin of the second pattern,
4. The method of manufacturing a microlens array according to claim 2, wherein the planar shape is a quadrangle.
【請求項5】 前記基板は複数の受光素子が形成された
半導体基板であり、前記第1と第2のパターンの熱可塑
性樹脂は前記受光素子の上に配置される請求項2から4
のいずれか記載のマイクロレンズアレイの製造方法。
5. The substrate according to claim 2, wherein the substrate is a semiconductor substrate on which a plurality of light receiving elements are formed, and the thermoplastic resin of the first and second patterns is disposed on the light receiving elements.
The method for producing a microlens array according to any one of the above.
【請求項6】 前記半導体基板は、前記各受光素子の上
に赤色フィルタ、緑色フィルタ及び青色フィルタのうち
のいずれか一つを有し、前記第1のパターンの熱可塑性
樹脂は前記緑色フィルタの上に形成されかつ前記第2の
パターンの熱可塑性樹脂は前記赤色フィルタ及び青色フ
ィルタの上に形成され、又は前記第1のパターンの熱可
塑性樹脂は前記赤色フィルタ及び青色フィルタの上に形
成されかつ前記第2のパターンの熱可塑性樹脂は前記緑
色フィルタの上に形成される請求項5記載のマイクロレ
ンズアレイの製造方法。
6. The semiconductor substrate has, on each of the light receiving elements, one of a red filter, a green filter, and a blue filter, and the thermoplastic resin of the first pattern is formed of the green filter. And the second pattern of thermoplastic resin is formed on the red and blue filters, or the first pattern of thermoplastic resin is formed on the red and blue filters and 6. The method according to claim 5, wherein the thermoplastic resin of the second pattern is formed on the green filter.
JP11140425A 1999-05-20 1999-05-20 Microlens array and manufacture thereof Pending JP2000332226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11140425A JP2000332226A (en) 1999-05-20 1999-05-20 Microlens array and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11140425A JP2000332226A (en) 1999-05-20 1999-05-20 Microlens array and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000332226A true JP2000332226A (en) 2000-11-30

Family

ID=15268404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11140425A Pending JP2000332226A (en) 1999-05-20 1999-05-20 Microlens array and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000332226A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035801A (en) * 2001-07-24 2003-02-07 Toppan Printing Co Ltd Method for manufacturing solid-state image pickup device
JP2003332547A (en) * 2002-05-16 2003-11-21 Fuji Film Microdevices Co Ltd Solid-state image pickup element and method of manufacturing the same
GB2419054A (en) * 2004-10-08 2006-04-12 Boeing Co Optical communications receiver including a photodetector array, A transimpedance amplifier assembly and a summing amplifier assembly
US7167306B2 (en) 2002-08-30 2007-01-23 Seiko Epson Corporation Transmissive screen and rear projector
JP2007155944A (en) * 2005-12-01 2007-06-21 Seiko Epson Corp Manufacturing method of lens substrate, lens substrate, transmission type screen and rear projector
US7708914B2 (en) 2004-02-27 2010-05-04 Fujifilm Corporation Method of and apparatus for producing micro lens and micro lens
JP2010122420A (en) * 2008-11-19 2010-06-03 Toppan Printing Co Ltd Microlens array, density distribution mask and design device for the same
WO2011090115A1 (en) * 2010-01-25 2011-07-28 日産化学工業株式会社 Microlens production method
JP2012187927A (en) * 2009-04-27 2012-10-04 Dainippon Screen Mfg Co Ltd Inkjet printer, printing method, and printed matter
JP2017011091A (en) * 2015-06-22 2017-01-12 凸版印刷株式会社 Solid-state image pickup device and electronic equipment
WO2021100772A1 (en) * 2019-11-20 2021-05-27 凸版印刷株式会社 Solid-state imaging element and method for producing same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035801A (en) * 2001-07-24 2003-02-07 Toppan Printing Co Ltd Method for manufacturing solid-state image pickup device
JP2003332547A (en) * 2002-05-16 2003-11-21 Fuji Film Microdevices Co Ltd Solid-state image pickup element and method of manufacturing the same
US7167306B2 (en) 2002-08-30 2007-01-23 Seiko Epson Corporation Transmissive screen and rear projector
US7708914B2 (en) 2004-02-27 2010-05-04 Fujifilm Corporation Method of and apparatus for producing micro lens and micro lens
GB2419054B (en) * 2004-10-08 2007-03-07 Boeing Co Lenslet/detector array assembly for high data rate optical communications
GB2419054A (en) * 2004-10-08 2006-04-12 Boeing Co Optical communications receiver including a photodetector array, A transimpedance amplifier assembly and a summing amplifier assembly
JP2007155944A (en) * 2005-12-01 2007-06-21 Seiko Epson Corp Manufacturing method of lens substrate, lens substrate, transmission type screen and rear projector
JP4655910B2 (en) * 2005-12-01 2011-03-23 セイコーエプソン株式会社 Microlens substrate manufacturing method, microlens substrate, transmissive screen, and rear projector
JP2010122420A (en) * 2008-11-19 2010-06-03 Toppan Printing Co Ltd Microlens array, density distribution mask and design device for the same
JP2012187927A (en) * 2009-04-27 2012-10-04 Dainippon Screen Mfg Co Ltd Inkjet printer, printing method, and printed matter
WO2011090115A1 (en) * 2010-01-25 2011-07-28 日産化学工業株式会社 Microlens production method
US8766158B2 (en) 2010-01-25 2014-07-01 Nissan Chemical Industries, Ltd. Production method of microlens
JP5618096B2 (en) * 2010-01-25 2014-11-05 日産化学工業株式会社 Microlens manufacturing method
JP2017011091A (en) * 2015-06-22 2017-01-12 凸版印刷株式会社 Solid-state image pickup device and electronic equipment
WO2021100772A1 (en) * 2019-11-20 2021-05-27 凸版印刷株式会社 Solid-state imaging element and method for producing same

Similar Documents

Publication Publication Date Title
JP3128297B2 (en) Solid-state imaging device and manufacturing method thereof
US8704323B2 (en) Method for manufacturing solid state image forming device, and solid state image forming device
US7303931B2 (en) Microfeature workpieces having microlenses and methods of forming microlenses on microfeature workpieces
CN100466282C (en) CMOS image sensor and manufacturing method thereof
US5422285A (en) Method of producing solid-state imaging device
US6495813B1 (en) Multi-microlens design for semiconductor imaging devices to increase light collection efficiency in the color filter process
US7986019B2 (en) Solid-state imaging device and its manufacturing method
JP2004253573A (en) Semiconductor device and its manufacturing method
JP2000332226A (en) Microlens array and manufacture thereof
JP2008052004A (en) Lens array and method for manufacturing solid-state image pickup element
JPH1074927A (en) Mask for micro-lens pattern
JPH05167054A (en) Manufacture of solid-state image sensing device
JPS6059752B2 (en) Solid-state imaging device and its manufacturing method
KR20080053569A (en) Pattern mask used for forming micro lense, image sensor and method of manufacturing the same
JP2000260968A (en) Solid-state image pickup element and its manufacture
JP3747682B2 (en) Solid-state imaging device and manufacturing method thereof
JPH11289073A (en) Solid image pickup device and manufacture thereof
JP4497076B2 (en) Solid-state imaging device and manufacturing method thereof
KR0165376B1 (en) Ccd image sensor and fabricating method thereof
JP4465750B2 (en) Manufacturing method of solid-state imaging device
JP2000260969A (en) Manufacture of solid-state image pickup element
JP2000260970A (en) Solid-state image pickup element and its manufacture
JPS59122193A (en) Solid-state image pickup device
JP2001024179A (en) Manufacture of micro-lens
JP2000332227A (en) Solid-state image pickup device and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826