JP2017011091A - Solid-state image pickup device and electronic equipment - Google Patents

Solid-state image pickup device and electronic equipment Download PDF

Info

Publication number
JP2017011091A
JP2017011091A JP2015124742A JP2015124742A JP2017011091A JP 2017011091 A JP2017011091 A JP 2017011091A JP 2015124742 A JP2015124742 A JP 2015124742A JP 2015124742 A JP2015124742 A JP 2015124742A JP 2017011091 A JP2017011091 A JP 2017011091A
Authority
JP
Japan
Prior art keywords
microlens
solid
light
curvature
microlenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015124742A
Other languages
Japanese (ja)
Other versions
JP6613648B2 (en
Inventor
優 大久保
Masaru Okubo
優 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2015124742A priority Critical patent/JP6613648B2/en
Publication of JP2017011091A publication Critical patent/JP2017011091A/en
Application granted granted Critical
Publication of JP6613648B2 publication Critical patent/JP6613648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress sensitivity deterioration at a peripheral portion as compared with sensitivity deterioration at a center portion in a solid-state image pickup element such as CCD, CMOS sensor or the ike on which microlenses are uniformly laid.SOLUTION: In a solid-state image pickup element 10 including a photoelectric conversion area 1a, color filters 4 which are provided on the light incident side of the photoelectric conversion area and transmit therethrough light of a predetermined wavelength for each pixel, and convex microlenses 5 which are provided on the light incidence side of the color filters 4 and formed in one-to-one correspondence with the color filters, the microlenses comprise two types of microlenses 5 which are different in radius of curvature, and the ratio between the arrangement numbers of the two types of microlenses, the arrangement number of the first microlenses 5a having a small radius of curvature and the arrangement number of the second microlenses 5b having a large radius of curvature is monotonously reduced from the center portion to the peripheral portion.SELECTED DRAWING: Figure 1

Description

本発明は、受光素子上に微小なマイクロレンズが設けられた固体撮像素子に関し、中央部に対する周辺部の感度低下を抑えることのできる固体撮像素子と、それを備えた電子機器に関する。   The present invention relates to a solid-state image pickup device in which a minute microlens is provided on a light-receiving element, and relates to a solid-state image pickup device that can suppress a decrease in sensitivity in a peripheral portion with respect to a central portion, and an electronic apparatus including the solid-state image pickup device.

近年では、ビデオカメラ、デジタルカメラ、カメラ付き携帯電話に搭載される撮像装置の高画素化が進められている。撮像装置に組み込まれるCCDやCMOSセンサー等の固体撮像素子の画素微細化に伴い、1画素あたりに入射する光量減少による感度低下が問題となっている。   In recent years, an increase in the number of pixels of an imaging device mounted on a video camera, a digital camera, or a mobile phone with a camera has been promoted. Along with pixel miniaturization of solid-state imaging devices such as CCDs and CMOS sensors incorporated in an imaging apparatus, there is a problem of sensitivity reduction due to a decrease in the amount of light incident on each pixel.

感度低下を抑えるために、受光素子の入射側に、画素に一対一に対応させてマイクロレンズを形成する方式が広く用いられている。マイクロレンズを形成することで、入射光を効率よくフォトダイオードに集光することができ、受光感度を向上させることができる(特許文献1)。   In order to suppress a decrease in sensitivity, a method of forming microlenses on the incident side of the light receiving element so as to correspond to the pixels on a one-to-one basis is widely used. By forming the microlens, incident light can be efficiently collected on the photodiode, and the light receiving sensitivity can be improved (Patent Document 1).

しかし、集光性の高いマイクロレンズの形状は、入射光の入射角度に依存するため、主光線が垂直に入射するセンサー中央部と、主光線が傾いて入射するセンサー周辺部とでは、最適なレンズ形状が異なる。   However, since the shape of a highly condensing microlens depends on the incident angle of incident light, it is optimal for the sensor center where the chief ray is incident vertically and the sensor periphery where the chief ray is incident at an angle. The lens shape is different.

そのため、主光線が垂直である条件で最適化したマイクロレンズを一様に敷き詰めた場合、センサーの中央部で十分感度が高かったとしても、周辺部で感度が十分に足りないという問題が発生する。   Therefore, when the microlenses optimized under the condition that the chief ray is vertical are spread uniformly, even if the sensitivity is sufficiently high in the central part of the sensor, there is a problem that the sensitivity is insufficient in the peripheral part. .

特開2000−332226号公報JP 2000-332226 A

本発明は、上記のような問題に鑑みてなされたものであり、マイクロレンズを、一様に敷き詰めたCCDやCMOSセンサー等の固体撮像素子の、中央部に対する周辺部の感度低下を抑えることを目的とする。   The present invention has been made in view of the above problems, and suppresses a decrease in sensitivity of a peripheral portion with respect to a central portion of a solid-state imaging device such as a CCD or a CMOS sensor in which microlenses are uniformly spread. Objective.

上記の課題を解決するための手段として、本発明の第1の態様は、光電変換領域と、
前記光電変換領域の光入射側に設けられ、画素ごとに所定の波長の光を透過させるカラーフィルタと、前記カラーフィルタの光入射側に設けられ、前記カラーフィルタと一対一に対応させた凸状のマイクロレンズからなるマイクロレンズ群と、を有する固体撮像素子であって、
前記マイクロレンズ群は、頂部の曲率半径がR1の第一のマイクロレンズと頂部の曲率半径がR2の第二のマイクロレンズから構成され、R1<R2を満たし、前記マイクロレンズ群の単位領域における前記第一のマイクロレンズの配置数N1と、前記第二のマイクロレンズの配置数N2の比率N1/N2が、中央部から周辺部に向かうに従って単調減少することを特徴とする固体撮像素子である。
As means for solving the above problems, the first aspect of the present invention includes a photoelectric conversion region,
A color filter that is provided on the light incident side of the photoelectric conversion region and transmits light of a predetermined wavelength for each pixel, and a convex shape that is provided on the light incident side of the color filter and has a one-to-one correspondence with the color filter A solid-state imaging device having a microlens group of microlenses,
The microlens group includes a first microlens having a top radius of curvature R1 and a second microlens having a top radius of curvature R2, satisfying R1 <R2, and the unit area of the microlens group The solid-state imaging device is characterized in that the ratio N1 / N2 between the number N1 of the first microlens and the number N2 of the second microlens decreases monotonously from the central portion toward the peripheral portion.

また、前記第一のマイクロレンズの断面が、略放物線の一部からなり、かつ、前記第二
のマイクロレンズの断面が、略楕円の一部からなることを特徴とする。
The cross section of the first microlens may be a part of a substantially parabola, and the cross section of the second microlens may be a part of a substantially ellipse.

また、前記マイクロレンズの高さをH、前記画素のピッチをPとしたとき、H/Pが0.25以上0.65以下であることを特徴とする。   Further, when the height of the microlens is H and the pitch of the pixels is P, H / P is 0.25 or more and 0.65 or less.

また、前記第一のマイクロレンズの曲率半径R1および前記第二のマイクロレンズの曲率半径R2と、前記ピッチPとの比であるR1/PおよびR2/Pが、共に0.4以上2以下であることを特徴とする。   Further, R1 / P and R2 / P, which are ratios between the radius of curvature R1 of the first microlens and the radius of curvature R2 of the second microlens and the pitch P, are both 0.4 or more and 2 or less. It is characterized by being.

また、前記マイクロレンズの表面に、高さが50nm以下の微細凹凸形状が形成されていることを特徴とする。   In addition, a fine uneven shape having a height of 50 nm or less is formed on the surface of the microlens.

また、第1の様態に係る固体撮像素子を備えたことを特徴とする電子機器である。   In addition, an electronic apparatus including the solid-state imaging device according to the first aspect.

本発明により、マイクロレンズ群中央部に対する周辺部の感度低下を抑えることができ、受光感度の向上を図ることができ、特に主光線が傾いた場合の、感度改善に効果があることが分かった。   According to the present invention, it is possible to suppress a decrease in sensitivity of the peripheral portion with respect to the central portion of the microlens group, to improve the light receiving sensitivity, and it has been found that the sensitivity improvement is particularly effective when the chief ray is inclined. .

本発明の実施形態のマイクロレンズを備えた固体撮像素子の一例を表した模数断面図である。1 is a schematic cross-sectional view illustrating an example of a solid-state imaging device including a microlens according to an embodiment of the present invention. 本発明の実施形態における、マイクロレンズの配置例を示した模数平面および断面図である。It is the number plane and sectional drawing which showed the example of arrangement | positioning of the micro lens in embodiment of this invention. 本発明の実施形態の固体撮像素子において、マイクロレンズの頂部の曲率半径の違いによる光の伝搬経路の差を現しており、主光線が傾いた場合の、マイクロレンズの頂部の曲率の違いによる光の伝搬経路の差を示した模数断面図である。In the solid-state imaging device of the embodiment of the present invention, the light propagation path difference due to the difference in the radius of curvature of the top of the microlens is shown, and the light due to the difference in the curvature of the top of the microlens when the chief ray is tilted It is a schematic cross-sectional view showing the difference in the propagation path. 本発明の実施形態における、略矩形形状の固体撮像素子の模数平面図および模数断面図である。1 is a schematic plan view and a schematic cross-sectional view of a substantially rectangular solid-state imaging device in an embodiment of the present invention. 本発明の実施形態の固体撮像素子において、光が固体撮像素子に対して0°方向から傾いて照射された場合の受光感度のグラフである。In the solid-state image sensor of the embodiment of the present invention, it is a graph of the light receiving sensitivity when light is irradiated to the solid-state image sensor tilted from the 0 ° direction. 本発明の実施形態の固体撮像素子において、光が固体撮像素子に対して20°方向から傾いて照射された場合の受光感度のグラフである。In the solid-state image sensor of the embodiment of the present invention, it is a graph of light receiving sensitivity when light is irradiated with tilting from the direction of 20 ° to the solid-state image sensor.

以下本発明を実施するための形態を、図面を用いて詳細に説明する。図1は、マイクロレンズを備えた固体撮像素子10の一例を示す平面図(a)と、図1(a)で示す破線Vから厚み方向に切断した断面図(b)である。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1A is a plan view showing an example of a solid-state imaging device 10 having a microlens, and FIG. 1B is a cross-sectional view taken in the thickness direction from a broken line V shown in FIG.

図1中の1は基板、1aは光電変換領域、2は遮光膜、3aは第一の平坦化層、4はカラーフィルタ、3bは第二の平坦化層、5はマイクロレンズである。   In FIG. 1, 1 is a substrate, 1a is a photoelectric conversion region, 2 is a light shielding film, 3a is a first planarizing layer, 4 is a color filter, 3b is a second planarizing layer, and 5 is a microlens.

また、Pはマイクロレンズ5のピッチ、Hはマイクロレンズ5の頂点Tにおける高さを示す。ここで、高さHは、第二の平坦化層3bの光入射面側の面3b’上を基準としたときの高さとする。また、第二の平坦化層3bを形成しない場合は、カラーフィルタ4の光入射面側の面4’上を基準としたときの高さとする。   P represents the pitch of the microlenses 5 and H represents the height at the apex T of the microlenses 5. Here, the height H is a height when the surface 3b 'on the light incident surface side of the second planarizing layer 3b is used as a reference. When the second planarizing layer 3b is not formed, the height is based on the surface 4 'on the light incident surface side of the color filter 4 as a reference.

さらに、マイクロレンズ5の高さHは、マイクロレンズ5の谷部の厚みH0と、曲レンズ部の高さH1との和(H=H0+H1)からなる。   Further, the height H of the microlens 5 is a sum (H = H0 + H1) of the thickness H0 of the valley portion of the microlens 5 and the height H1 of the curved lens portion.

固体撮像素子10に入射した光は、マイクロレンズ5で屈折し、さらに、カラーフィルタ3を透過して、画素ごとの色に応じた光が光電変換領域1aに集光する。光電変換領域1aは、画素ごとに分離されており、光電変換領域1aに光が照射されることで発生した電荷が電子回路に流れ、信号として読み出される。   The light incident on the solid-state imaging device 10 is refracted by the microlens 5 and further passes through the color filter 3, and light corresponding to the color of each pixel is condensed on the photoelectric conversion region 1a. The photoelectric conversion region 1a is separated for each pixel, and electric charges generated by irradiating the photoelectric conversion region 1a with light flow to the electronic circuit and are read out as signals.

基板1および光電変換領域1aは例えばシリコンで構成される。画素間の混色を防ぐため、必要に応じて遮光膜2をアルミニウム、銀、クロム、タングステンなどの金属で形成する。平坦化層3は、酸化シリコンや窒化シリコン等で形成する。   The substrate 1 and the photoelectric conversion region 1a are made of silicon, for example. In order to prevent color mixture between the pixels, the light shielding film 2 is formed of a metal such as aluminum, silver, chromium, tungsten, or the like as necessary. The planarization layer 3 is formed of silicon oxide, silicon nitride, or the like.

カラーフィルタ4は、例えば、G(緑)、B(青)、R(赤)の色に対応する波長を選択的に透過する顔料や染料を含んだ有機材料により構成される。マイクロレンズ5は、例えば屈折率が1.4以上1.7以下程度の透明樹脂により構成される。マイクロレンズ5は、入射光を光電変換領域1aに集光するために凸レンズ形状とする。   The color filter 4 is made of, for example, an organic material including a pigment or a dye that selectively transmits wavelengths corresponding to colors of G (green), B (blue), and R (red). The microlens 5 is made of, for example, a transparent resin having a refractive index of about 1.4 or more and 1.7 or less. The microlens 5 has a convex lens shape for condensing incident light on the photoelectric conversion region 1a.

図2は、マイクロレンズ5の配置例を示した図である。図2(a)は、マイクロレンズ5の底面が円形で、画素間に隙間なく配置した場合である。図2(a)の配置例では、画素の幅方向Vで切断した場合に、隣接するマイクロレンズ5が重なるため、マイクロレンズ5の谷が厚みH0を有する。   FIG. 2 is a diagram illustrating an arrangement example of the microlenses 5. FIG. 2A shows a case where the bottom surface of the microlens 5 is circular and arranged with no gap between pixels. In the arrangement example shown in FIG. 2A, when the pixel is cut in the width direction V, the adjacent microlenses 5 overlap each other, so that the valleys of the microlenses 5 have a thickness H0.

図2(b)は、マイクロレンズ5の底面が矩形で、画素間に隙間なく配置した場合である。図2(b)の配置例では、画素の幅方向Vで切断した場合に、隣接するマイクロレンズ5は重ならないため、マイクロレンズ5の谷の厚みH0は形成されない。   FIG. 2B shows a case where the bottom surface of the microlens 5 is rectangular and arranged with no gap between pixels. In the arrangement example of FIG. 2B, when the pixel is cut in the width direction V, the adjacent microlenses 5 do not overlap with each other, and therefore the valley thickness H0 of the microlenses 5 is not formed.

固体撮像素子10に入射した光が辿る経路を分類すると、(イ)マイクロレンズ5で集光され、光電変換領域1aに到達する光、(ロ)隣接する画素の光電変換領域1aに入射する光、(ハ)隣接する画素のカラーフィルタ4に吸収される光、(ニ)マイクロレンズ5表面もしくは固体撮像素子10内部からの反射光、に分類される。   When the path followed by the light incident on the solid-state imaging device 10 is classified, (a) light collected by the microlens 5 and reaching the photoelectric conversion region 1a, and (b) light incident on the photoelectric conversion region 1a of the adjacent pixel. (C) Light absorbed by the color filter 4 of an adjacent pixel, and (d) Light reflected from the surface of the microlens 5 or the solid-state imaging device 10.

受光感度を高めるためには、光(イ)を増やし、ロスとなる光(ロ)〜(ニ)を減らす必要がある。特に、光(ロ)は隣接画素の光(クロストーク光)が漏れこむことにより、色純度の劣化やノイズの発生を招くため好ましくない。クロストーク光は、主光線が固体撮像素子10に対して傾いて入射する場合に発生しやすくなる。   In order to increase the light receiving sensitivity, it is necessary to increase the light (A) and reduce the light (B) to (D) that becomes a loss. In particular, light (b) is not preferable because light from adjacent pixels (crosstalk light) leaks, leading to deterioration in color purity and generation of noise. Crosstalk light is likely to occur when the chief ray is incident on the solid-state imaging device 10 at an angle.

本発明の固体撮像素子10を構成するマイクロレンズ5は、頂部の曲率半径がR1の第一のマイクロレンズ5aと、頂部の曲率半径がR2の第二のマイクロレンズ5bのいずれかで構成される。   The microlens 5 constituting the solid-state imaging device 10 of the present invention is configured by one of a first microlens 5a having a top radius of curvature R1 and a second microlens 5b having a top radius of curvature R2. .

第一のマイクロレンズ5aと第二のマイクロレンズ5bはR1<R2を満たし、かつ、固体撮像素子10の面内の単位領域Sにおいて、第一のマイクロレンズ5aが形成された画素の数をN1、第二のマイクロレンズ5bが形成された画素の数をN2としたとき、固体撮像素子10の中央部から周辺部に向かうに従って、比率N1/N2が単調減少することを特徴とする。下記に本構成を採用した理由を述べる。   The first microlens 5a and the second microlens 5b satisfy R1 <R2, and the number of pixels in which the first microlens 5a is formed in the unit region S in the plane of the solid-state imaging device 10 is N1. When the number of pixels on which the second microlenses 5b are formed is N2, the ratio N1 / N2 monotonously decreases from the central part to the peripheral part of the solid-state imaging device 10. The reason why this configuration is adopted is described below.

図3は、固体撮像素子10に主光線が傾いて入射した場合の、マイクロレンズ5の頂部の曲率の違いによる光の伝搬経路の差を模数的に表したものである。図3(a)はマイクロレンズ5の頂部の曲率が小さい場合を示し、図3(b)はマイクロレンズ5の頂部の曲率が大きい場合を示している。   FIG. 3 schematically shows the difference in the propagation path of light due to the difference in the curvature of the top of the microlens 5 when the chief ray is incident on the solid-state image sensor 10. FIG. 3A shows a case where the curvature of the top of the microlens 5 is small, and FIG. 3B shows a case where the curvature of the top of the microlens 5 is large.

図3(a)のようにマイクロレンズ5の頂部の曲率が小さい場合、マイクロレンズに入射した傾斜光はほとんど屈折せずに固体撮像素子10内部に入り込むため、隣接画素への
クロストーク光が増加し、受光感度が低下する。
When the curvature of the top of the microlens 5 is small as shown in FIG. 3A, the inclined light incident on the microlens enters the solid-state imaging device 10 without being refracted, so that crosstalk light to adjacent pixels increases. As a result, the light receiving sensitivity decreases.

他方で、マイクロレンズ5の頂部の曲率を小さくすると、固体撮像素子10に対して垂直に入射した主光線の集光性を高められ、受光感度を効果的に高めることができる。以下では、図3(a)のような頂部の曲率が小さいマイクロレンズを第一のマイクロレンズ5aと呼ぶ。   On the other hand, if the curvature of the top of the microlens 5 is reduced, the light condensing property of the principal ray incident perpendicularly to the solid-state imaging device 10 can be enhanced, and the light receiving sensitivity can be effectively increased. Hereinafter, a microlens having a small curvature at the top as shown in FIG. 3A is referred to as a first microlens 5a.

また、図3(b)のようにマイクロレンズ5の頂部の曲率が大きい場合、マイクロレンズ5に入射した傾斜光は光電変換領域1aの方向に屈折されやすい。そのため、頂部の曲率が小さい場合と比べて隣接画素へのクロストーク光を抑えることができ、受光感度は上昇する。以下では、図3(b)のような頂部の曲率が大きいマイクロレンズを第二のマイクロレンズ5bと呼ぶ。   In addition, when the curvature of the top of the microlens 5 is large as shown in FIG. 3B, the inclined light incident on the microlens 5 is easily refracted in the direction of the photoelectric conversion region 1a. Therefore, crosstalk light to adjacent pixels can be suppressed as compared with the case where the top curvature is small, and the light receiving sensitivity is increased. Hereinafter, a microlens having a large curvature at the top as shown in FIG. 3B is referred to as a second microlens 5b.

マイクロレンズ5の曲率半径は以下の数1から求めることができる。   The radius of curvature of the microlens 5 can be obtained from the following formula 1.

数1のR(x)は、座標xにおけるマイクロレンズ5の曲率半径である。ここで、xは図1(b)に示すようにマイクロレンズ5の頂点Tから水平方向に測った距離であり、h(x)はマイクロレンズ5の頂点Tから水平方向にx離れた位置におけるマイクロレンズ5の高さである。 R (x) in Equation 1 is the radius of curvature of the microlens 5 at the coordinate x. Here, x is a distance measured in the horizontal direction from the apex T of the microlens 5 as shown in FIG. 1B, and h (x) is at a position x away from the apex T of the microlens 5 in the horizontal direction. This is the height of the microlens 5.

R1、R2はマイクロレンズ5の頂部の曲率半径であるので、数1においてx=P/2におけるR(x)を求めることにより得られる。   Since R1 and R2 are the radii of curvature at the top of the microlens 5, they are obtained by calculating R (x) at x = P / 2 in Equation 1.

図4(a)は、略矩形形状の固体撮像素子10の平面図、図4(b)と(c)は図4(a)における直線Qに沿った断面図である。マイクロレンズ5と光電変換素子1aの配置について、図4(b)に示すように、画素ごとのマイクロレンズ5の中心位置とカラーフィルタ4の中心位置を一致させてもよいし、図4(c)に示すように、周辺部へ向かうにつれてマイクロレンズ5とカラーフィルタ4の画素ごとの中心位置を水平方向にずらして配置してもよい。画素ごとの中心位置をずらすことで、主光線が傾いた光が光電変換素子1aに入射しやすくなる。   4A is a plan view of the substantially rectangular solid-state imaging device 10, and FIGS. 4B and 4C are cross-sectional views taken along a straight line Q in FIG. 4A. As for the arrangement of the microlens 5 and the photoelectric conversion element 1a, as shown in FIG. 4B, the center position of the microlens 5 and the center position of the color filter 4 for each pixel may be matched. ), The center positions of the pixels of the microlens 5 and the color filter 4 may be shifted in the horizontal direction toward the periphery. By shifting the center position of each pixel, the light whose chief ray is inclined can easily enter the photoelectric conversion element 1a.

図4(a)において、固体撮像素子10の中心をO、固体撮像素子10の周辺部をE、中心Oから周辺部Eに向けて引いた垂線をQとする。周辺部Eは、略矩形状の固体撮像素子10のいずれかの端辺を表す。   4A, the center of the solid-state imaging device 10 is O, the peripheral portion of the solid-state imaging device 10 is E, and the perpendicular drawn from the center O toward the peripheral portion E is Q. The peripheral portion E represents one of the sides of the substantially rectangular solid-state imaging device 10.

ここで、第一のマイクロレンズ5aと第二のマイクロレンズ5bの配置手法について説明する。まず、ある単位面積を有する矩形形状の単位領域Sを設定し、単位領域Sに中心Oが含まれる位置を開始位置とする。そして、単位領域Sを1画素ずつずらしながら周辺部Eに向けて移動させ、周辺部Eに単位領域Sの一辺が達したら移動を終了させる。   Here, an arrangement method of the first microlens 5a and the second microlens 5b will be described. First, a rectangular unit region S having a certain unit area is set, and a position where the center O is included in the unit region S is set as a start position. Then, the unit region S is moved toward the peripheral portion E while shifting one pixel at a time, and the movement is terminated when one side of the unit region S reaches the peripheral portion E.

このとき、中心Oから周辺部Eに移動するに従って、単位領域Sに含まれる第一のマイクロレンズ5aの数N1と第二のマイクロレンズ5bの数N2の比率N1/N2が単調減少するように、第一のマイクロレンズ5aと第二のマイクロレンズ5bを固体撮像素子10上に配列する。   At this time, the ratio N1 / N2 of the number N1 of the first microlenses 5a and the number N2 of the second microlenses 5b included in the unit region S monotonously decreases as the center O moves from the peripheral portion E to the peripheral portion E. The first microlens 5 a and the second microlens 5 b are arranged on the solid-state imaging device 10.

図4は、単位領域Sに含まれる画素数を9(縦3画素×横3画素)としたときの例である。ここでの単調減少とは、単位領域Sを1画素ずらしたときに、比率N1/N2が不変の場合も含む。但し、単位領域Sの移動終了時の比率N1/N2は、単位領域Sの移動開始時の比率N1/N2よりも小さくなるように設定する。   FIG. 4 is an example when the number of pixels included in the unit region S is 9 (3 vertical pixels × 3 horizontal pixels). The monotonic decrease here includes a case where the ratio N1 / N2 is unchanged when the unit region S is shifted by one pixel. However, the ratio N1 / N2 at the end of movement of the unit area S is set to be smaller than the ratio N1 / N2 at the start of movement of the unit area S.

単位領域Sの画素数は上述の9画素のほか16画素(4×4)や25画素(5×5)等の正方形としてもよく、6画素(2×3)や12画素(3×4)等の矩形としてもよい。   The number of pixels in the unit area S may be a square such as 16 pixels (4 × 4) or 25 pixels (5 × 5) in addition to the 9 pixels described above, and may be 6 pixels (2 × 3) or 12 pixels (3 × 4). It is good also as rectangles, such as.

固体撮像素子10の中心O付近は、主光線がほぼ垂直に入射するため、垂直入射光に対する集光効果の高い第一のマイクロレンズ5aを単位領域S内により多く配置することで、集光性を高めることができる。一方、固体撮像素子10の周辺部Eに近付くにつれて、主光線が傾いて入射するようになるため、傾斜光を光電変換領域1aの方向に屈折しやすい第二のマイクロレンズ5bを単位領域S内により多く配置する。   In the vicinity of the center O of the solid-state imaging device 10, the chief ray is incident substantially perpendicularly. Can be increased. On the other hand, since the principal ray is inclined and enters as it approaches the peripheral portion E of the solid-state imaging device 10, the second microlens 5b that easily refracts the inclined light in the direction of the photoelectric conversion region 1a is provided in the unit region S. Place more.

このように、第一のマイクロレンズ5aの数N1と第二のマイクロレンズ5bの数N2を、単位領域Sが固体撮像素子10の中央部から周辺部に向かうに従って、比率N1/N2が単調減少するように配置することで、固体撮像素子10の中心O付近と周辺部E付近の双方の感度を高めることができる。   As described above, the number N1 of the first microlenses 5a and the number N2 of the second microlenses 5b are monotonically decreased as the unit region S moves from the central portion to the peripheral portion of the solid-state imaging device 10. By arranging so, the sensitivity of both the vicinity of the center O and the vicinity of the peripheral portion E of the solid-state imaging device 10 can be increased.

第一のマイクロレンズ5aには、例えば断面が略放物線の一部からなるレンズを、第二のマイクロレンズ5bには、例えば断面が略楕円の一部からなるレンズを採用すると、受光感度を効果的に高めることができる。   When the first microlens 5a is a lens whose cross section is substantially a parabola, for example, and the second microlens 5b is a lens whose cross section is a part of a substantially ellipse, for example, the light receiving sensitivity is improved. Can be enhanced.

断面が略放物線の一部からなるレンズは、断面が略楕円の一部からなるレンズと比べて頂部の曲率半径が小さいため、所望の効果が期待できる(詳細は実施例に記載)。ここで、放物線形状、楕円形状とは、マイクロレンズ5の高さh(x)がそれぞれ以下の数2、数3で表されるものを意味する。   A lens having a cross section that is substantially a parabola has a smaller radius of curvature at the top than a lens having a cross section that is a part of a substantially ellipse, so that a desired effect can be expected (details are described in the examples). Here, the parabolic shape and the elliptical shape mean those in which the height h (x) of the microlens 5 is expressed by the following equations 2 and 3, respectively.

数2、数3におけるH0、H1は任意定数である。マイクロレンズ5の頂点における高さH(H=H0+H1)と、マイクロレンズ5のピッチPの比H/Pは、0.25以上となるように設定するのが好ましく、また、H/Pが、0.25以上0.65以下となるように設定するのが特に好ましい。 In Equations 2 and 3, H0 and H1 are arbitrary constants. The ratio H / P of the height H (H = H0 + H1) at the apex of the microlens 5 and the pitch P of the microlens 5 is preferably set to be 0.25 or more, and H / P is It is particularly preferable to set it to be 0.25 or more and 0.65 or less.

H/Pが上記の範囲を外れると、マイクロレンズ5の集光性が悪くなり、受光感度の低下が大きくなる。詳細については、実施例に記載する。   When H / P is out of the above range, the light condensing property of the microlens 5 is deteriorated, and the light receiving sensitivity is greatly reduced. Details are described in the Examples.

ここで、「略放物線」、「略楕円」の「略」とは、数2、数3に記した高さHに対して±50nm以内の誤差を許容することを意味する。高さHの誤差がこの範囲に収まっていれば、可視光の散乱による集光性への悪影響が無視できるからである。   Here, “substantially” of “substantially parabola” and “substantially oval” means that an error within ± 50 nm is allowed with respect to the height H described in Equations 2 and 3. This is because, if the error of the height H is within this range, the adverse effect on the light collecting property due to the scattering of visible light can be ignored.

マイクロレンズ5の表面には、振幅が±50nm以内の微細凹凸形状を意図的に付与させても良い。波長よりも小さな振幅の微細凹凸形状を付与することで、マイクロレンズ5表面で光が感じる屈折率変化が緩やかになり、レンズ表面におけるフレネルロスを低減することができる。   The surface of the microlens 5 may be intentionally provided with a fine uneven shape having an amplitude within ± 50 nm. By providing a fine concavo-convex shape with an amplitude smaller than the wavelength, the refractive index change felt by the light on the surface of the microlens 5 becomes moderate, and the Fresnel loss on the lens surface can be reduced.

このようなマイクロレンズ5は、光リソグラフィを利用することで作製できる。光リソグラフィを利用する方法として、熱フローを利用する方法と、グレースケールマスクを利用する方法が知られている。   Such a microlens 5 can be manufactured by utilizing photolithography. As a method using optical lithography, a method using heat flow and a method using a gray scale mask are known.

前者の方法では、マイクロレンズに対応するパターンが形成されたフォトマスクを用いて基材上に塗布された感光性レジストを露光し、現像することで立体形状の矩形パターン
を作製する。その後、熱フローによりレジストを曲面形状に変形させることで、マイクロレンズを形成する。さらに、必要に応じ、レジストを基材とともにエッチングすることで、基材にマイクロレンズのパターンを転写する。
In the former method, a three-dimensional rectangular pattern is produced by exposing and developing a photosensitive resist coated on a substrate using a photomask on which a pattern corresponding to a microlens is formed. Thereafter, the microlens is formed by deforming the resist into a curved shape by heat flow. Further, if necessary, the pattern of the microlens is transferred to the base material by etching the resist together with the base material.

後者の方法では、光透過率が段階的に変化するマスクを使用してレジストを露光、現像し、立体的なレジストパターンを得る。さらに、必要に応じ、レジストパターンを基材に転写することで、基材のマイクロレンズパターンを作製する。   In the latter method, a resist is exposed and developed using a mask whose light transmittance changes stepwise to obtain a three-dimensional resist pattern. Furthermore, the microlens pattern of a base material is produced by transferring a resist pattern to a base material as needed.

次に、このような構成の本実施形態の固体撮像素子10の作用について説明する。固体撮像素子10に入射した光Lは、マイクロレンズ5により集光され、カラーフィルタ4に入射する。カラーフィルタ4では、画素に応じて必要な波長の光が透過し、不要な波長の光は吸収される。   Next, the operation of the solid-state imaging device 10 of this embodiment having such a configuration will be described. The light L incident on the solid-state image sensor 10 is collected by the microlens 5 and enters the color filter 4. The color filter 4 transmits light having a necessary wavelength according to the pixel and absorbs light having an unnecessary wavelength.

カラーフィルタ4を透過した光は、平坦化層3を透過し、光電変換領域1aに集光される。光電変換領域1aに光が照射されると、光強度に比例して電荷が発生し、発生した電荷は電子回路に転送されて信号が読み出される。   The light that has passed through the color filter 4 passes through the planarization layer 3 and is condensed on the photoelectric conversion region 1a. When the photoelectric conversion region 1a is irradiated with light, a charge is generated in proportion to the light intensity, and the generated charge is transferred to an electronic circuit to read a signal.

固体撮像素子10の平面視中央部には頂部の曲率半径の小さな第一のマイクロレンズ5aが、固体撮像素子10の平面視周辺部には頂部の曲率半径の大きな第二のマイクロレンズ5bが、単位領域S内により多く配置される。それにより、固体撮像素子10の中央部に対する周辺部の受光感度の低下を抑えることができる。   A first microlens 5a having a small curvature radius at the top is provided at the center of the solid-state image sensor 10 in a plan view, and a second microlens 5b having a large curvature radius at the top is provided at a periphery in the plan view of the solid-state image sensor 10. More units are arranged in the unit area S. Thereby, the fall of the light reception sensitivity of the peripheral part with respect to the center part of the solid-state image sensor 10 can be suppressed.

本実施形態における固体撮像素子10は、例えばデジタルカメラやビデオカメラ、カメラ付き携帯電話等に代表される電子機器に適用することで、これらの電子機器の感度と画質の均一性を高めることができる。   The solid-state imaging device 10 according to this embodiment can be applied to electronic devices typified by, for example, digital cameras, video cameras, camera-equipped mobile phones, and the like, so that the sensitivity and image quality uniformity of these electronic devices can be improved. .

本発明の固体撮像素子10の実施例について説明する。   An embodiment of the solid-state imaging device 10 of the present invention will be described.

マイクロレンズ5の断面が(a)放物線の一部、(b)楕円の一部、(c)三角形、(d)Sinカーブ、で構成される場合の、受光感度のシミュレーションを行った。曲率半径Rの大きさは、高さHを同一とした場合、楕円の一部>放物線の一部>Sinカーブ>三角形の順である。マイクロレンズ5は、底面が略円形とし、図2(a)のように画素に隙間なく配列した。シミュレーションは、波長オーダーの構造の光学解析で一般的に用いられる時間領域差分法(FDTD法)を用いて実施した。   The simulation of the light receiving sensitivity was performed when the cross section of the microlens 5 was composed of (a) a part of a parabola, (b) a part of an ellipse, (c) a triangle, and (d) a Sin curve. When the height H is the same, the curvature radius R is in the order of part of ellipse> part of parabola> Sin curve> triangle. The microlenses 5 have a substantially circular bottom surface, and are arranged in the pixels without gaps as shown in FIG. The simulation was performed using a time-domain difference method (FDTD method) generally used in optical analysis of wavelength order structures.

<計算条件>
画素ピッチ:1.2μm
マイクロレンズ5高さ:0.2μm〜0.8μm、0.05μm刻み
マイクロレンズ5屈折率:1.5
カラーフィルタ4:0.7μm厚、RGB3色のベイヤー配列
遮光膜2:なし
第一の平坦化層3a:SiO層(0.5μm)
第二の平坦化層3b:なし
入射波長:0.55μm
入射角:0°、20°
偏光:TE波、TM波
受光面:平坦化層3と光電変換領域1aとの界面に設定(受光面は画素面積と同サイズに設定)
表1に、マイクロレンズ5の断面が放物線の一部である場合の高さH[μm]、H0[μ
m]、H1[μm]における頂部の曲率半径R[μm]、ピッチPで規格化した曲率半径R/Pを記した。
<Calculation conditions>
Pixel pitch: 1.2 μm
Microlens 5 height: 0.2 μm to 0.8 μm, in increments of 0.05 μm Microlens 5 refractive index: 1.5
Color filter 4: 0.7 μm thickness, RGB three-color Bayer arrangement Light-shielding film 2: None First planarization layer 3 a: SiO 2 layer (0.5 μm)
Second planarizing layer 3b: None Incident wavelength: 0.55 μm
Incident angle: 0 °, 20 °
Polarization: TE wave, TM wave Light receiving surface: set at the interface between the planarization layer 3 and the photoelectric conversion region 1a (the light receiving surface is set to the same size as the pixel area)
Table 1 shows the heights H [μm] and H0 [μ when the cross section of the microlens 5 is part of a parabola.
m], the radius of curvature R [μm] at the top of H1 [μm], and the radius of curvature R / P normalized by the pitch P are shown.

また、表2に、マイクロレンズ5の断面が楕円の一部である場合の高さH[μm]、H0[μm]、H1[μm]における頂部の曲率半径R[μm]、ピッチPで規格化した曲率半径R/Pを記した。 Table 2 also shows the specifications of the radius of curvature R [μm] and the pitch P at the top at heights H [μm], H0 [μm], and H1 [μm] when the cross section of the microlens 5 is part of an ellipse. The converted radius of curvature R / P is shown.

さらに、表3に、マイクロレンズ5の断面が三角形の場合の高さH[μm]、H0[μm]、H1[μm]を記した。断面形状が三角形のため、表3には曲率半径Rは記載していない。 Further, Table 3 shows heights H [μm], H0 [μm], and H1 [μm] when the cross section of the microlens 5 is a triangle. Since the cross-sectional shape is a triangle, the radius of curvature R is not shown in Table 3.

表4に、マイクロレンズ5の断面がSinカーブである場合の高さH[μm]、H0[μm]、H1[μm]における頂部の曲率半径R[μm]、ピッチPで規格化した曲率半径R/Pを記した。   Table 4 shows the curvature radii normalized by the top radius of curvature R [μm] and the pitch P at heights H [μm], H0 [μm], and H1 [μm] when the cross section of the microlens 5 is a Sin curve. R / P is noted.

入射光が0°入射(固体撮像素子10に対して垂直に入射)のときのG画素の受光感度を、表1乃至4に示したマイクロレンズ5の高さ別に計算した結果を表5及び図5に示す。即ち、表5及び図5には、マイクロレンズの断面が放物線、楕円、三角形、Sinカーブの場合における受光感度の計算結果をそれぞれ記している。 The results of calculating the light receiving sensitivity of the G pixel when the incident light is incident at 0 ° (incident perpendicular to the solid-state imaging device 10) according to the height of the microlens 5 shown in Tables 1 to 4 are shown in Table 5 and FIG. As shown in FIG. That is, Table 5 and FIG. 5 show the calculation results of the light receiving sensitivity when the cross section of the microlens is a parabola, an ellipse, a triangle, and a Sin curve.

ここで受光感度は、G画素に1のパワーの光を入射したときの、光電変換面1aに入射する光の全パワー(TE、TMの平均)を表す(光電変換面1aでの反射は加味していない)。   Here, the light receiving sensitivity represents the total power (average of TE and TM) of light incident on the photoelectric conversion surface 1a when light of 1 power is incident on the G pixel (reflection on the photoelectric conversion surface 1a is taken into consideration). Not)

また、入射光を20°で入射したときの受光感度の結果を表6及び図6に記した。 In addition, Table 6 and FIG. 6 show the results of light receiving sensitivity when incident light is incident at 20 °.

表5及び図5より0°入射において最大感度が得られたのはマイクロレンズ5の断面が放物線からなり、高さが350nmの場合であった。また、マイクロレンズ5の断面を放物線とし、高さHとピッチPの比H/Pが、0.25以上に設定するのが好ましいことがわかる。特に、高さHとピッチPの比H/Pは0.25以上0.65以下に設定するのがさらに好ましい。上記範囲に比H/Pを設定することで、マイクロレンズ5の集光性悪化による感度低下を、最大感度から3%以内に抑えることができる。 From Table 5 and FIG. 5, the maximum sensitivity was obtained at 0 ° incidence when the cross section of the microlens 5 was a parabola and the height was 350 nm. Moreover, it turns out that it is preferable that the cross section of the microlens 5 is a parabola, and the ratio H / P of the height H and the pitch P is set to 0.25 or more. In particular, the ratio H / P of the height H to the pitch P is more preferably set to 0.25 or more and 0.65 or less. By setting the ratio H / P within the above range, it is possible to suppress the sensitivity reduction due to the deterioration of the light condensing property of the microlens 5 within 3% from the maximum sensitivity.

一方、表6及び図6より、20°入射において最大感度が得られたのはマイクロレンズ5の断面が楕円の一部からなり、高さが550nmの場合であった。また、マイクロレンズ5の断面を楕円の一部とし、高さHとピッチPの比H/Pが、0.25以上に設定するのが好ましい。   On the other hand, from Table 6 and FIG. 6, the maximum sensitivity at 20 ° incidence was obtained when the cross section of the microlens 5 was part of an ellipse and the height was 550 nm. Moreover, it is preferable that the cross section of the micro lens 5 is a part of an ellipse, and the ratio H / P of the height H to the pitch P is set to 0.25 or more.

特に、高さHとピッチPの比H/Pは、0.25以上0.65以下に設定するのがさらに好ましい。上記範囲に比H/Pを設定することで、マイクロレンズ5の集光性悪化による感度低下を、最大感度から3%以内に抑えることができる。   In particular, the ratio H / P between the height H and the pitch P is more preferably set to 0.25 or more and 0.65 or less. By setting the ratio H / P within the above range, it is possible to suppress the sensitivity reduction due to the deterioration of the light condensing property of the microlens 5 within 3% from the maximum sensitivity.

表1、表2及び上述の結果から、マイクロレンズ5の曲率半径Rとピッチの比R/Pは
、0.4以上2以下に設定するのが好ましい。例えば、R/Pが0.4となる場合、表1より、マイクロレンズ5の断面が放物線の場合に、高さHが0.75[μm]となる。
From Tables 1 and 2 and the above-described results, it is preferable that the ratio R / P of the radius of curvature R and the pitch of the microlens 5 is set to 0.4 or more and 2 or less. For example, when R / P is 0.4, according to Table 1, when the cross section of the microlens 5 is a parabola, the height H is 0.75 [μm].

ここで、R/Pが0.4よりも小さくなると、マイクロレンズ5の高さがさらに増すことになり、集光性の悪化が顕著となる。また、R/Pが2である場合、表2より、マイクロレンズ5の断面が楕円の一部からなる場合に、高さHが0.3[μm]となる。R/Pが2よりも大きくなると、マイクロレンズ5の高さがさらに低下することで、集光性の悪化が顕著となる。   Here, when R / P is smaller than 0.4, the height of the microlens 5 is further increased, and the deterioration of the light collecting property becomes remarkable. When R / P is 2, from Table 2, when the cross section of the microlens 5 is a part of an ellipse, the height H is 0.3 [μm]. When R / P is larger than 2, the height of the microlens 5 is further lowered, and the deterioration of the light collecting property becomes remarkable.

従って、断面が放物線もしくは楕円の一部からなるマイクロレンズ5が集光力を失わない範囲として、R/Pは、0.4以上2以下に規定するのが好ましい。   Therefore, it is preferable that R / P is defined to be not less than 0.4 and not more than 2 as a range in which the microlens 5 whose section is a part of a parabola or an ellipse does not lose the focusing power.

表5、表6及び図5、図6より、マイクロレンズの断面形状を三角形とした場合、マイクロレンズの高さによらず放物線及び楕円形状よりも受光感度が低い結果となることがわかる。断面形状を三角形とした場合、側面の断面形状が直線なので、光の集光性が弱く、隣接画素の光電変換素子1aに散乱する光や、隣接するカラーフィルタに入射して吸収する光が多くなるためと考えられる。   From Tables 5 and 6 and FIGS. 5 and 6, it can be seen that when the cross-sectional shape of the microlens is triangular, the light receiving sensitivity is lower than that of the parabola and the elliptical shape regardless of the height of the microlens. When the cross-sectional shape is a triangle, since the cross-sectional shape of the side surface is a straight line, the light condensing property is weak, and there is a lot of light scattered on the photoelectric conversion element 1a of the adjacent pixel or absorbed and absorbed by the adjacent color filter. It is thought to be.

また、断面形状をSinカーブとした場合、高さが400nm以上になると、曲率半径とピッチの比R/Pが0.3以下と小さくなるため、上述のとおり光電変換素子1a上に効果的に光を集光することが出来ず、感度が低下していることが確認できる。   Further, when the cross-sectional shape is a Sin curve, when the height is 400 nm or more, the ratio R / P of the radius of curvature to the pitch becomes as small as 0.3 or less, so that it is effective on the photoelectric conversion element 1a as described above. It can be confirmed that the light cannot be collected and the sensitivity is lowered.

以上の実施例より、主光線が垂直の場合においてマイクロレンズ5の断面形状が放物線の一部からなる場合に、最も受光感度の向上に効果があることを確認した。また、断面形状を楕円の一部とすることで、主光線が傾いた場合の感度改善に最も効果があることを確認した。   From the above examples, it was confirmed that when the cross-sectional shape of the microlens 5 is part of a parabola when the chief ray is vertical, the light receiving sensitivity is most effectively improved. Moreover, it was confirmed that the cross-sectional shape is a part of an ellipse, so that it is most effective in improving sensitivity when the chief ray is tilted.

換言すると、主に入射光が垂直に入射される固体撮像素子10の平面視中央部には、断面形状が放物線の一部からなる(頂部の曲率半径の小さい)マイクロレンズ5を多く配置すればよい。また、主に入射光が傾いて入射される固体撮像素子10の平面視周辺部には、断面形状が楕円の一部からなる(頂部の曲率半径の大きい)マイクロレンズ5を、より多く配置すればよいと言える。   In other words, if a large number of microlenses 5 whose cross-sectional shape is a part of a parabola (having a small curvature radius at the top) are arranged in the central portion in plan view of the solid-state imaging device 10 where incident light is incident vertically. Good. In addition, more microlenses 5 whose cross-sectional shape is a part of an ellipse (having a large radius of curvature at the top) are arranged in the periphery of the solid-state imaging device 10 where incident light is incident with an inclination. I can say that.

さらに、固体撮像素子10へ入射する光は、固体撮像素子10の中央部から周辺部に向かうに従って、傾斜角度が垂直から徐々に傾斜していく。よって単位領域S内のマイクロレンズの配置数は、主光線の入射角に合わせて、固体撮像素子10の中央部から周辺部に向かうに従い、曲率半径の小さいマイクロレンズの配置数N1を単調減少させると共に、曲率半径の大きいマイクロレンズの配置数N2を単調増加させればよいことが分かる。   Furthermore, the incident angle of the light incident on the solid-state image sensor 10 is gradually inclined from the vertical as it goes from the central part to the peripheral part of the solid-state image sensor 10. Therefore, the number of arranged micro lenses in the unit region S monotonously decreases as the number of arranged micro lenses with a small radius of curvature increases from the central part to the peripheral part of the solid-state imaging device 10 in accordance with the incident angle of the principal ray. In addition, it can be seen that the number N2 of microlenses having a large curvature radius may be monotonously increased.

以上により、固体撮像素子10の中央部に対する周辺部の受光感度の低下を抑えることができる。   As described above, it is possible to suppress a decrease in the light receiving sensitivity of the peripheral portion with respect to the central portion of the solid-state imaging element 10.

1・・・基板
1a・・・光電変換領域
2・・・遮光膜
3・・・平坦化層
3a・・・第一の平坦化層
3b・・・第二の平坦化層
3b’・・・第二の平坦化層の光入射面側の面
4・・・カラーフィルタ
4’・・・カラーフィルタの光入射面側の面
5・・・マイクロレンズ
5a・・・第一のマイクロレンズ
5b・・・第二のマイクロレンズ
10・・・固体撮像素子
DESCRIPTION OF SYMBOLS 1 ... Substrate 1a ... Photoelectric conversion area | region 2 ... Light-shielding film 3 ... Planarization layer 3a ... 1st planarization layer 3b ... 2nd planarization layer 3b '... Surface 4 on the light incident surface side of the second planarizing layer ... Color filter 4 '... Surface 5 on the light incident surface side of the color filter ... Micro lens 5a ... First micro lens 5b .... Second microlens 10 ... Solid-state imaging device

Claims (6)

光電変換領域と、
前記光電変換領域の光入射側に設けられ、画素ごとに所定の波長の光を透過させるカラーフィルタと、
前記カラーフィルタの光入射側に設けられ、前記カラーフィルタと一対一に対応させた凸状のマイクロレンズからなるマイクロレンズ群と、を有する固体撮像素子であって、
前記マイクロレンズ群は、頂部の曲率半径がR1の第一のマイクロレンズと頂部の曲率半径がR2の第二のマイクロレンズから構成され、
R1<R2を満たし、
前記マイクロレンズ群の単位領域における前記第一のマイクロレンズの配置数N1と、前記第二のマイクロレンズの配置数N2の比率N1/N2が、前記マイクロレンズ群の中央部から周辺部に向かうに従って単調減少することを特徴とする固体撮像素子。
A photoelectric conversion region;
A color filter that is provided on the light incident side of the photoelectric conversion region and transmits light of a predetermined wavelength for each pixel;
A solid-state imaging device having a microlens group including convex microlenses provided on the light incident side of the color filter and corresponding to the color filter on a one-to-one basis,
The microlens group includes a first microlens having a top radius of curvature R1 and a second microlens having a top radius of curvature R2.
R1 <R2 is satisfied,
The ratio N1 / N2 of the number N1 of the first microlenses in the unit region of the microlens group and the number N2 of the second microlens is increased from the center to the periphery of the microlens group. A solid-state image pickup device that monotonously decreases.
前記第一のマイクロレンズの断面が、略放物線の一部からなり、かつ、前記第二のマイクロレンズの断面が、略楕円の一部からなることを特徴とする請求項1に記載の固体撮像素子。   2. The solid-state imaging according to claim 1, wherein a cross section of the first microlens is substantially part of a parabola, and a cross section of the second microlens is substantially part of an ellipse. element. 前記マイクロレンズの高さをH、前記画素のピッチをPとしたとき、H/Pが0.25以上0.65以下であることを特徴とする請求項1または請求項2に記載の固体撮像素子。   3. The solid-state imaging according to claim 1, wherein H / P is not less than 0.25 and not more than 0.65, where H is the height of the microlens and P is the pitch of the pixels. element. 前記第一のマイクロレンズの曲率半径R1および前記第二のマイクロレンズの曲率半径R2と、前記ピッチPとの比であるR1/PおよびR2/Pが、共に0.4以上2以下であることを特徴とする請求項1乃至3のいずれか一項に記載の固体撮像素子。   R1 / P and R2 / P, which are ratios of the radius of curvature R1 of the first microlens and the radius of curvature R2 of the second microlens and the pitch P, are both 0.4 or more and 2 or less. The solid-state imaging device according to claim 1, wherein 前記マイクロレンズの表面に、高さが50nm以下の微細凹凸形状が形成されていることを特徴とする請求項1乃至4のいずれか一項に記載の固体撮像素子。   5. The solid-state imaging device according to claim 1, wherein a fine uneven shape having a height of 50 nm or less is formed on a surface of the microlens. 請求項1乃至5のいずれか一項に記載の固体撮像素子を備えたことを特徴とする電子機器。   An electronic apparatus comprising the solid-state imaging device according to claim 1.
JP2015124742A 2015-06-22 2015-06-22 Solid-state imaging device and electronic device Active JP6613648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015124742A JP6613648B2 (en) 2015-06-22 2015-06-22 Solid-state imaging device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015124742A JP6613648B2 (en) 2015-06-22 2015-06-22 Solid-state imaging device and electronic device

Publications (2)

Publication Number Publication Date
JP2017011091A true JP2017011091A (en) 2017-01-12
JP6613648B2 JP6613648B2 (en) 2019-12-04

Family

ID=57763840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124742A Active JP6613648B2 (en) 2015-06-22 2015-06-22 Solid-state imaging device and electronic device

Country Status (1)

Country Link
JP (1) JP6613648B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186329A1 (en) * 2017-04-06 2018-10-11 パナソニックIpマネジメント株式会社 Imaging device, and solid-state imaging device used in same
JP2019087977A (en) * 2017-11-10 2019-06-06 凸版印刷株式会社 Solid-state imaging device and method of manufacturing the same
WO2021100772A1 (en) * 2019-11-20 2021-05-27 凸版印刷株式会社 Solid-state imaging element and method for producing same
WO2022019307A1 (en) * 2020-07-22 2022-01-27 国立大学法人静岡大学 Photoelectric conversion element

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575085A (en) * 1991-09-10 1993-03-26 Mitsubishi Electric Corp Manufacture of solid state image pickup device and solid state image pickup device
JPH0922995A (en) * 1995-05-02 1997-01-21 Matsushita Electron Corp Solid state imaging device and manufacture thereof
JPH11186530A (en) * 1997-12-25 1999-07-09 Sony Corp Method for forming microlens
JP2000332226A (en) * 1999-05-20 2000-11-30 Fuji Film Microdevices Co Ltd Microlens array and manufacture thereof
JP2001356202A (en) * 2001-04-20 2001-12-26 Dainippon Printing Co Ltd Microlens
JP2003287603A (en) * 2002-03-27 2003-10-10 Seiko Epson Corp Microlens array, its manufacturing method and optical device
WO2005109042A1 (en) * 2004-05-12 2005-11-17 Matsushita Electric Industrial Co., Ltd. Optical element and manufacturing method thereof
JP2006261238A (en) * 2005-03-15 2006-09-28 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus and manufacturing method thereof
JP2006332433A (en) * 2005-05-27 2006-12-07 Canon Inc Solid-state imaging device and manufacturing method thereof
JP2008060464A (en) * 2006-09-01 2008-03-13 Fujifilm Corp Material for microlens, microlens and manufacturing method therefor
JP2009111209A (en) * 2007-10-31 2009-05-21 Dainippon Printing Co Ltd Solid state image sensor, and imaging device using the same
JP2009168872A (en) * 2008-01-11 2009-07-30 Sony Corp Method for manufacturing lens and solid state imaging apparatus
JP2010211078A (en) * 2009-03-12 2010-09-24 Dainippon Printing Co Ltd Lens shape design method, imaging element, and photomask design method
JP2010223989A (en) * 2009-03-19 2010-10-07 Sharp Corp Microlens device, microlens forming method, solid-state image pickup element and manufacturing method thereof, display device and manufacturing method thereof, and electronic information device
JP2012174885A (en) * 2011-02-22 2012-09-10 Sony Corp Image sensor, manufacturing method therefor, pixel design method and electronic apparatus

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575085A (en) * 1991-09-10 1993-03-26 Mitsubishi Electric Corp Manufacture of solid state image pickup device and solid state image pickup device
JPH0922995A (en) * 1995-05-02 1997-01-21 Matsushita Electron Corp Solid state imaging device and manufacture thereof
JPH11186530A (en) * 1997-12-25 1999-07-09 Sony Corp Method for forming microlens
JP2000332226A (en) * 1999-05-20 2000-11-30 Fuji Film Microdevices Co Ltd Microlens array and manufacture thereof
JP2001356202A (en) * 2001-04-20 2001-12-26 Dainippon Printing Co Ltd Microlens
JP2003287603A (en) * 2002-03-27 2003-10-10 Seiko Epson Corp Microlens array, its manufacturing method and optical device
WO2005109042A1 (en) * 2004-05-12 2005-11-17 Matsushita Electric Industrial Co., Ltd. Optical element and manufacturing method thereof
JP2006261238A (en) * 2005-03-15 2006-09-28 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus and manufacturing method thereof
JP2006332433A (en) * 2005-05-27 2006-12-07 Canon Inc Solid-state imaging device and manufacturing method thereof
JP2008060464A (en) * 2006-09-01 2008-03-13 Fujifilm Corp Material for microlens, microlens and manufacturing method therefor
JP2009111209A (en) * 2007-10-31 2009-05-21 Dainippon Printing Co Ltd Solid state image sensor, and imaging device using the same
JP2009168872A (en) * 2008-01-11 2009-07-30 Sony Corp Method for manufacturing lens and solid state imaging apparatus
JP2010211078A (en) * 2009-03-12 2010-09-24 Dainippon Printing Co Ltd Lens shape design method, imaging element, and photomask design method
JP2010223989A (en) * 2009-03-19 2010-10-07 Sharp Corp Microlens device, microlens forming method, solid-state image pickup element and manufacturing method thereof, display device and manufacturing method thereof, and electronic information device
JP2012174885A (en) * 2011-02-22 2012-09-10 Sony Corp Image sensor, manufacturing method therefor, pixel design method and electronic apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186329A1 (en) * 2017-04-06 2018-10-11 パナソニックIpマネジメント株式会社 Imaging device, and solid-state imaging device used in same
JPWO2018186329A1 (en) * 2017-04-06 2019-12-26 パナソニックIpマネジメント株式会社 Imaging device and solid-state imaging device used therein
JP2019087977A (en) * 2017-11-10 2019-06-06 凸版印刷株式会社 Solid-state imaging device and method of manufacturing the same
JP7098912B2 (en) 2017-11-10 2022-07-12 凸版印刷株式会社 Solid-state image sensor and its manufacturing method
WO2021100772A1 (en) * 2019-11-20 2021-05-27 凸版印刷株式会社 Solid-state imaging element and method for producing same
WO2022019307A1 (en) * 2020-07-22 2022-01-27 国立大学法人静岡大学 Photoelectric conversion element

Also Published As

Publication number Publication date
JP6613648B2 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
KR101117391B1 (en) Photoelectric conversion device and imaging system
US8969776B2 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus having an on-chip micro lens with rectangular shaped convex portions
US20090250594A1 (en) Solid-state image sensor and manufacturing method thereof
JP2014154662A (en) Solid state image sensor, electronic apparatus, and manufacturing method
US20140375852A1 (en) Solid-state imaging apparatus, method of manufacturing the same, camera, imaging device, and imaging apparatus
JP6613648B2 (en) Solid-state imaging device and electronic device
JP2007180157A (en) Solid-state imaging element
US9601534B2 (en) Solid state image sensor, method of manufacturing solid state image sensor, and image capturing system
JP2009266900A (en) Solid-state image sensor
JP6638347B2 (en) Solid-state imaging device and electronic equipment
JP4998310B2 (en) Solid-state imaging device and imaging apparatus using the same
JP2018082002A (en) Solid state imaging device and electronic apparatus
JP6801230B2 (en) Solid-state image sensor and electronic equipment
US20150137296A1 (en) Color Filter Array and Micro-Lens Structure for Imaging System
JP2011243749A (en) Solid state image pickup device and manufacturing method thereof
JP5408216B2 (en) Manufacturing method of solid-state imaging device
JP2010074218A (en) Solid-state image pickup element and method of manufacturing the same, and image pickup apparatus using the solid-state image pickup element
JP4998334B2 (en) Solid-state imaging device and imaging apparatus using the same
JP5326390B2 (en) Solid-state imaging device and imaging apparatus using the same
JP2009176857A (en) Solid-state image pickup element and image pickup device using same
JP4708721B2 (en) Solid-state image sensor
JP5440649B2 (en) Manufacturing method of solid-state imaging device
US20240036237A1 (en) Microlens array and manufacturing method thereof
JP5408215B2 (en) Solid-state imaging device, manufacturing method thereof, and imaging apparatus using solid-state imaging device
JP2005203676A (en) Solid-state imaging device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R150 Certificate of patent or registration of utility model

Ref document number: 6613648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250