JP2000330019A - Endoscope objective variable power optical system - Google Patents

Endoscope objective variable power optical system

Info

Publication number
JP2000330019A
JP2000330019A JP11140032A JP14003299A JP2000330019A JP 2000330019 A JP2000330019 A JP 2000330019A JP 11140032 A JP11140032 A JP 11140032A JP 14003299 A JP14003299 A JP 14003299A JP 2000330019 A JP2000330019 A JP 2000330019A
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
variable power
objective variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11140032A
Other languages
Japanese (ja)
Other versions
JP4394197B2 (en
Inventor
Masaru Eguchi
勝 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP14003299A priority Critical patent/JP4394197B2/en
Publication of JP2000330019A publication Critical patent/JP2000330019A/en
Application granted granted Critical
Publication of JP4394197B2 publication Critical patent/JP4394197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a small-sized and high-performance objective variable power optical system of a bifocal type which does not change an object-image distance at the time of variable power in spite of simple constitution consisting of just one group of a lens group which moves at the time of the variable power. SOLUTION: This optical system comprises, successively from an object side, a negative first lens group 10, a brightness stop S, a positive second lens group 20 and a third lens group 30 having negative refracting power. At the time of the variable power, the first lens group 10 and the third lens group 30 are immobile and the second lens group 20 moves at two different points which do not change the object image distance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は、内視鏡に使用する対物変倍光学
系に関し、特に2焦点タイプの内視鏡対物変倍光学系に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an objective zoom optical system used for an endoscope, and more particularly to a bifocal type objective zoom optical system.

【0002】[0002]

【従来技術及びその問題点】近年、内視鏡において拡大
観察のニーズが増加傾向にあるが、内視鏡では先端部の
構成の大型化や操作性の悪化は許されないという制約が
あり、一般カメラ用のズームレンズのように、ズーミン
グ(変倍)とフォーカシング(合焦)をそれぞれ別々の
レンズ(群)で行うという構成にするのは困難である。
すなわち、そのような構成にすると、可動のレンズ群枚
数が増加し、メカニカルな移動機構が複雑となるため、
対物光学系の大型化を招く。そこで、従来は、例えば、
特開昭51−44937号公報や、特開平1−2792
19号公報に記載の対物変倍光学系のように、1つのレ
ンズ群を移動させることで、視野角120゜程度の通常
観察の状態(短焦点距離)と、近接拡大観察の状態(長
焦点距離)の2つの焦点距離で切換使用できる構成(2
焦点タイプ)としていた。
2. Description of the Related Art In recent years, there is an increasing need for magnifying observation in endoscopes. However, in endoscopes, there is a restriction that the size of the distal end cannot be increased and operability cannot be reduced. It is difficult to adopt a configuration in which zooming (magnification) and focusing (focusing) are performed by separate lenses (groups), like a zoom lens for a camera.
That is, with such a configuration, the number of movable lens groups increases, and the mechanical moving mechanism becomes complicated.
This leads to an increase in the size of the objective optical system. Therefore, conventionally, for example,
JP-A-51-44937 and JP-A-1-2792
By moving one lens group as in the objective variable power optical system described in Japanese Patent Application Publication No. 19-1992, a normal observation state (short focal length) with a viewing angle of about 120 ° and a close-up magnification observation state (long focal length) Distance) can be switched between two focal lengths (2
Focus type).

【0003】しかしながら、従来のこのような内視鏡
は、変倍時に物点が移動する(物像間距離が変化する)
ため、変倍と同時にフォーカシング(体内挿入部先端の
移動)が必要となり、操作性の点で問題があり、改善が
望まれていた。また、生体部位によっては、拡大観察時
に接近できないこともあり、物像間距離が一定の対物変
倍光学系が望まれていた。
However, in such a conventional endoscope, the object point moves during zooming (the distance between object images changes).
For this reason, focusing (movement of the tip of the insertion portion in the body) is required at the same time as zooming, and there is a problem in operability, and improvement has been desired. In addition, depending on the part of the living body, it may not be possible to approach at the time of magnifying observation. Therefore, an objective variable magnification optical system having a constant object-image distance has been desired.

【0004】[0004]

【発明の目的】本発明は、変倍時に移動するレンズ群が
1群のみという簡素な構成でありながら、変倍時に物像
間距離が変化しない、小型で高性能な2焦点タイプの対
物変倍光学系を得ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a small, high-performance bifocal type objective lens which has a simple structure in which only one lens unit moves during zooming, but does not change the distance between object images during zooming. The objective is to obtain a magnification optical system.

【0005】[0005]

【発明の概要】本発明の内視鏡対物変倍光学系は、物体
側から順に、負の屈折力を有する第1レンズ群と、明る
さ絞りと、正の屈折力を有する第2レンズ群と、負の屈
折力を有する第3レンズ群とから構成され、変倍に際
し、第1レンズ群と第3レンズ群は不動であり、第2レ
ンズ群が物像間距離を変化させない光軸上の異なる2点
に移動することを特徴としている。
SUMMARY OF THE INVENTION An endoscope objective variable power optical system according to the present invention comprises, in order from the object side, a first lens unit having a negative refractive power, a brightness stop, and a second lens unit having a positive refractive power. And a third lens unit having a negative refractive power. During zooming, the first lens unit and the third lens unit do not move, and the second lens unit does not change the object-image distance on the optical axis. Is moved to two different points.

【0006】本発明の内視鏡対物変倍光学系は、次の条
件式(1)を満足することが好ましい。 (1)0.5<Y/f2<0.8 (2)0.05<|Y/f3|<0.2 但し、 Y:最大像高、 fi:第iレンズ群の焦点距離(i=1,2,3)、 である。
[0006] The endoscope objective variable power optical system of the present invention preferably satisfies the following conditional expression (1). (1) 0.5 <Y / f2 <0.8 (2) 0.05 <| Y / f3 | <0.2, where Y: maximum image height, fi: focal length of the ith lens group (i = 1, 2, 3).

【0007】第1レンズ群は負の単レンズから構成し、
次の条件式(3)を満足させることが好ましい。 (3)0.5<|Y/f1|<0.8 である。
The first lens group comprises a negative single lens,
It is preferable to satisfy the following conditional expression (3). (3) 0.5 <| Y / f1 | <0.8.

【0008】[0008]

【発明の実施の形態】本発明の内視鏡対物変倍光学系
は、図10の簡易移動図に示すように、物体側から順
に、負の第1レンズ群10と、明るさ絞りSと、正の第
2レンズ群20と、負の第3レンズ群30とからなって
いる。この対物変倍光学系は、変倍に際し、第1レンズ
群10と第3レンズ群30は不動であり、第2レンズ群
20が、物像間距離を変化させない光軸上の2点に移動
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An endoscope objective variable power optical system according to the present invention has a negative first lens group 10, a brightness stop S, and a , A positive second lens group 20 and a negative third lens group 30. In the objective variable power optical system, the first lens group 10 and the third lens group 30 do not move during zooming, and the second lens group 20 moves to two points on the optical axis that do not change the object-image distance. I do.

【0009】本発明の内視鏡対物光学系は、上述のよう
に3群構成とし、負の第1レンズ群を不動とし、正の第
2レンズ群だけを移動させることで2焦点タイプの変倍
作用を持たせている。像面を固定し第2レンズ群だけを
移動させると、物点が移動することが避けられない。物
点を移動させずに物像間距離を一定にすることは、例え
ば負の第3レンズ群を、第2レンズ群による物点移動を
補償するように移動させることにより可能である。しか
し、可動レンズ群の増加はレンズ系全体の大型化を招く
ため、内視鏡には好ましくない。そこで、第3レンズ群
を固定し、第2レンズ群のみを移動させることによっ
て、変倍によって物像間距離が変化しない2焦点タイプ
の対物変倍光学系を得ている。
The objective optical system for an endoscope of the present invention has a three-group structure as described above. The first negative lens group is immobile, and only the second positive lens group is moved. Has a doubling effect. If the image plane is fixed and only the second lens group is moved, it is inevitable that the object point moves. It is possible to make the distance between object images constant without moving the object point, for example, by moving the negative third lens group so as to compensate for the movement of the object point by the second lens group. However, an increase in the number of movable lens groups causes an increase in the size of the entire lens system, which is not preferable for an endoscope. Therefore, by fixing the third lens group and moving only the second lens group, a bifocal type objective variable magnification optical system in which the object-image distance does not change due to the magnification change is obtained.

【0010】具体的に説明する。変倍に際し、第3レン
ズ群30が可動であると仮定し、物像間距離が一定にな
るように移動させると、図11に示すように、第3レン
ズ群30の移動軌跡は放物線状となる。そのため、第3
レンズ群30は、2つの異なる焦点距離(f1とf2)
で光軸方向の位置が同一となる。この位置に第3レンズ
群30を固定し、第2レンズ群20を移動させて変倍す
ると、2つの焦点距離f1、f2で物像間距離を等しく
することができる。すなわち、第3レンズ群30が可動
であると仮定したときの物像間距離を一定にするための
移動軌跡から、第3レンズ群30の光軸方向の位置が同
一になる2つの焦点距離を選択して固定することによ
り、1つのレンズ群(第2レンズ群20)のみを移動さ
せることで2つの焦点距離においては物像間距離が変化
しない2焦点タイプの対物変倍光学系が得られる。
A specific description will be given. At the time of zooming, assuming that the third lens group 30 is movable and moving so that the object-image distance becomes constant, the movement trajectory of the third lens group 30 becomes parabolic as shown in FIG. Become. Therefore, the third
The lens group 30 has two different focal lengths (f1 and f2)
And the position in the optical axis direction becomes the same. When the third lens group 30 is fixed at this position and the second lens group 20 is moved to change the magnification, the distance between the object and the image can be equalized at the two focal lengths f1 and f2. That is, two focal lengths at which the position of the third lens group 30 in the optical axis direction is the same are determined from the movement trajectory for keeping the object-image distance constant when the third lens group 30 is assumed to be movable. By selecting and fixing, by moving only one lens group (the second lens group 20), it is possible to obtain a bifocal objective variable magnification optical system in which the distance between object images does not change at two focal lengths. .

【0011】2つの焦点距離のみで使用する対物変倍光
学系は、物体側から順に、負レンズ群、正レンズ群の2
群構成でも得ることができる。それに対して、本発明の
3群構成では、変倍作用を受け持つ第2レンズ群の像側
に負のレンズ群(第3レンズ群)があるため、正の第2
レンズ群の屈折力を大きくすることができる。それによ
り必要な拡大倍率を得るための第2レンズ群の移動量を
小さくすることができるために、2群構成に比べてメカ
ニカルな負担を軽減でき、光学系全体の小型化を図るこ
とができる。
The objective variable power optical system used only at two focal lengths includes, in order from the object side, a negative lens group and a positive lens group.
It can also be obtained in a group configuration. On the other hand, in the three-unit configuration of the present invention, since the negative lens unit (third lens unit) is on the image side of the second lens unit that performs the zooming action,
The refractive power of the lens group can be increased. As a result, the amount of movement of the second lens group for obtaining the required magnification can be reduced, so that the mechanical load can be reduced as compared with the two-group configuration, and the overall size of the optical system can be reduced. .

【0012】条件式(1)は、第2レンズ群の屈折力に
関するものである。条件式(1)の下限を越えて、第2
レンズ群の正の屈折力が弱くなると、必要な倍率を得る
ために第2レンズ群の移動量が大きくなり、光学系の大
型化を招く。また、長焦点距離端でのFナンバーが大き
くなる。条件式(1)の下限を越えて第2レンズ群の屈
折力が強くなると、短焦点距離端から長焦点距離端まで
の諸収差をバランスよく補正することが困難となる。特
に、長焦点距離端での像面湾曲がアンダーとなる。
Conditional expression (1) relates to the refractive power of the second lens group. Beyond the lower limit of conditional expression (1), the second
When the positive refracting power of the lens unit becomes weak, the amount of movement of the second lens unit becomes large in order to obtain a required magnification, which causes an increase in the size of the optical system. Also, the F number at the long focal length extremity increases. If the refracting power of the second lens unit is increased beyond the lower limit of the conditional expression (1), it becomes difficult to correct various aberrations from the short focal length end to the long focal length end in a well-balanced manner. In particular, the field curvature at the long focal length end becomes under.

【0013】条件式(2)は、第3レンズ群の屈折力に
関するものである。条件式(2)の下限を越えて、第3
レンズ群の負の屈折力が弱くなりすぎると、第2レンズ
群の正の屈折力を大きくすることができなくなり、光学
系の大型化を招く。条件式(2)の上限を越えて第3レ
ンズ群の屈折力が強くなると、短焦点距離端において射
出瞳位置を十分に像面から遠ざけることができず、良好
なテレセントリック性が得られないため、カラー撮像素
子を用いる電子内視鏡に適用すると、色ムラなどの問題
が発生する。
Condition (2) relates to the refractive power of the third lens group. Beyond the lower limit of condition (2), the third
If the negative refractive power of the lens group becomes too weak, it becomes impossible to increase the positive refractive power of the second lens group, resulting in an increase in the size of the optical system. If the refracting power of the third lens unit is increased beyond the upper limit of the conditional expression (2), the exit pupil position cannot be sufficiently moved away from the image plane at the short focal length extremity, and good telecentricity cannot be obtained. When applied to an electronic endoscope using a color image sensor, problems such as color unevenness occur.

【0014】条件式(3)は第1レンズ群の屈折力に関
するものである。条件式(3)の下限を越えると、短焦
点距離端で広い視野角とフィルター類を配置するために
必要なバックフォーカスが得られなくなる。条件式
(3)の上限を越えると、バックフォーカスが長くなり
すぎて全長(第1レンズ群の最も物体側のレンズの物体
側の面から像面までの距離)が長くなる。そのため、ス
コープ先端部の湾曲操作性が低下する。
Condition (3) relates to the refractive power of the first lens unit. When the lower limit of conditional expression (3) is exceeded, a wide viewing angle at the short focal length extremity and a back focus required for arranging the filters cannot be obtained. If the upper limit of conditional expression (3) is exceeded, the back focus becomes too long and the overall length (the distance from the object-side surface of the lens closest to the object in the first lens group to the image plane) becomes long. Therefore, the bending operability of the distal end of the scope is reduced.

【0015】次に具体的な実施例を示す。諸収差図中、
球面収差で表される色収差図及び倍率色収差図中のd
線、g線、C線はそれぞれの波長に対する収差であり、
Sはサジタル、Mはメリディオナルである。また、表中
のFNOはFナンバー、fは全系の焦点距離、Wは半画角
(゜)、fBはバックフォーカス(最も像側の面から像
面までの空気換換算距離)、Mは横倍率、u-1は物体距
離、rは曲率半径、dはレンズ厚またはレンズ間隔、N
d はd線の屈折率、νはアッベ数を示す。d欄の数値で
幅のある数値は、表示されている数値のいずれかをとる
2焦点位置に切換前後の位置である。
Next, a specific embodiment will be described. In the various aberration diagrams,
D in the chromatic aberration diagram and the magnification chromatic aberration diagram represented by spherical aberration
Line, g line, and C line are aberrations for each wavelength,
S is sagittal, M is meridional. In the table, F NO is the F number, f is the focal length of the entire system, W is the half angle of view (゜), f B is the back focus (the air-equivalent distance from the most image side surface to the image surface), M is lateral magnification, u-1 is object distance, r is radius of curvature, d is lens thickness or lens interval, N
d indicates the refractive index of the d-line, and ν indicates the Abbe number. Numerical values having a width in the column d are positions before and after switching to the bifocal position which takes one of the displayed numerical values.

【0016】[実施例1]図1ないし図3は、本発明の
内視鏡対物変倍光学系の実施例1を示す。図1はレンズ
構成図であり、第1レンズ群10は、負の単レンズで構
成され、第2レンズ群20は、物体側から順に、正レン
ズ、正レンズと負レンズの接合レンズで構成され、第3
レンズ群30は負の単レンズで構成されている。r10
〜r11は撮像素子の撮像面の前に置かれたフィルター
類Gである。明るさ絞りSは第2レンズ群と一体に移動
する。図2、図3はそれぞれ、この内視鏡対物変倍光学
系の短焦点距離位置、長焦点距離位置における諸収差
図、表1はその数値データである。
[Embodiment 1] FIGS. 1 to 3 show Embodiment 1 of an endoscope objective variable power optical system according to the present invention. FIG. 1 is a lens configuration diagram. The first lens group 10 includes a negative single lens, and the second lens group 20 includes, in order from the object side, a positive lens and a cemented lens of a positive lens and a negative lens. , Third
The lens group 30 includes a single negative lens. r10
-R11 are filters G placed in front of the imaging surface of the imaging device. The aperture stop S moves integrally with the second lens group. 2 and 3 show various aberration diagrams of the endoscope objective variable power optical system at the short focal length position and the long focal length position, respectively, and Table 1 shows numerical data thereof.

【0017】[0017]

【表1】 FNO=1:4.6-7.0 f=1.01-2.52(変倍比;2.50) u-1=10 W=60.2-17.6 fB=1.12-1.12(d9+d10/Nd10) M=-0.093- -0.289 面 No. r d Nd ν 1 ∞ 0.40 1.88300 40.8 2 1.391 2.70-0.60 - - 明るさ絞り ∞ 0.41 - - 3 2.503 1.50 1.88300 40.8 4 -1.954 0.05 - - 5 -9.679 0.70 1.49700 81.6 6 -0.900 0.25 1.84666 23.8 7 -3.339 0.48-2.58 - - 8 -4.372 0.30 1.76182 26.5 9 ∞ 0.20 - - 10 ∞ 1.40 1.51633 64.1 11 ∞ - - -[Table 1] F NO = 1: 4.6-7.0 f = 1.01-2.52 (magnification ratio; 2.50) u-1 = 10 W = 60.2-17.6 f B = 1.12-1.12 (d9 + d10 / Nd10) M =- 0.093- -0.289 Surface No. rd Nd ν 1 ∞ 0.40 1.88300 40.8 2 1.391 2.70-0.60--Brightness aperture ∞ 0.41--3 2.503 1.50 1.88300 40.8 4 -1.954 0.05--5 -9.679 0.70 1.49700 81.6 6 -0.900 0.25 1.84666 23.8 7 -3.339 0.48-2.58--8 -4.372 0.30 1.76182 26.5 9 ∞ 0.20--10 ∞ 1.40 1.51633 64.1 11 ∞---

【0018】[実施例2]図4ないし図6は、本発明の
内視鏡対物変倍光学系の実施例2を示す。図4はレンズ
構成図であり、図5、図6はそれぞれ、この内視鏡対物
変倍光学系の短焦点距離位置、長焦点距離位置における
諸収差図、表2はその数値データである。基本的なレン
ズ構成は実施例1と同様である。
Embodiment 2 FIGS. 4 to 6 show Embodiment 2 of the endoscope objective variable power optical system of the present invention. FIG. 4 is a lens configuration diagram, FIGS. 5 and 6 are aberration diagrams of the endoscope objective variable power optical system at the short focal length position and the long focal length position, respectively, and Table 2 shows numerical data thereof. The basic lens configuration is the same as in the first embodiment.

【0019】[0019]

【表2】 FNO=1:4.7-6.4 f=1.04-1.93(変倍比;1.86) u-1=10 W=57.2-25.1 fB=1.12-1.12(d9+d10/Nd10) M=-0.098- -0.203 面 No. r d Nd ν 1 ∞ 0.40 1.51633 64.1 2 0.745 1.79-0.75 - - 明るさ絞り ∞ 0.00 - - 3 2.393 0.84 1.88300 40.8 4 -1.881 0.05 - - 5 -191.754 0.70 1.49700 81.6 6 -0.794 0.25 1.84666 23.8 7 -2.043 0.35-1.39 - - 8 -6.914 0.30 1.76182 26.5 9 ∞ 0.20 - - 10 ∞ 1.40 1.51633 64.1 11 ∞ - - -[Table 2] F NO = 1: 4.7-6.4 f = 1.04-1.93 (magnification ratio; 1.86) u-1 = 10 W = 57.2-25.1 f B = 1.12-1.12 (d9 + d10 / Nd10) M =- 0.098- -0.203 Surface No. rd Nd ν 1 ∞ 0.40 1.51633 64.1 2 0.745 1.79-0.75--Brightness aperture ∞ 0.00--3 2.393 0.84 1.88300 40.8 4 -1.881 0.05--5 -191.754 0.70 1.49700 81.6 6 -0.794 0.25 1.84666 23.8 7 -2.043 0.35-1.39--8 -6.914 0.30 1.76182 26.5 9 ∞ 0.20--10 ∞ 1.40 1.51633 64.1 11 ∞---

【0020】[実施例3]図7ないし図9は、本発明の
内視鏡対物変倍光学系の実施例3を示す。図7はレンズ
構成図であり、第1レンズ群10は、負の単レンズで構
成され、第2レンズ群20は、物体側から順に、正レン
ズ、正レンズと負レンズの接合レンズで構成され、第3
レンズ群30は負レンズと正レンズの接合レンズで構成
されている。r11〜r12はフィルター類Gである。
図8、図9はそれぞれ、この内視鏡対物変倍光学系の短
焦点距離位置、長焦点距離位置における諸収差図、表3
はその数値データである。
[Embodiment 3] FIGS. 7 to 9 show Embodiment 3 of the endoscope objective variable power optical system of the present invention. FIG. 7 is a lens configuration diagram. The first lens group 10 is composed of a single negative lens, and the second lens group 20 is composed of a positive lens and a cemented lens of a positive lens and a negative lens in order from the object side. , Third
The lens group 30 includes a cemented lens of a negative lens and a positive lens. r11 to r12 are filters G.
8 and 9 show various aberration diagrams of the endoscope objective variable power optical system at a short focal length position and a long focal length position, respectively.
Is the numerical data.

【0021】[0021]

【表3】 FNO=1:4.6-6.8 f=1.00-2.33(変倍比;2.33) u-1=10 W=60.9-20.1 fB=1.12-1.12(d9+d10/Nd10) M=-0.092- -0.253 面 No. r d Nd ν 1 ∞ 0.40 1.88300 40.8 2 1.338 2.51-0.73 - - 明るさ絞り ∞ 0.19 - - 3 2.616 1.50 1.88300 40.8 4 -1.971 0.10 - - 5 -11.928 0.70 1.58913 61.2 6 -0.870 0.25 1.84666 23.8 7 -3.602 0.32-2.10 - - 8 -6.196 0.25 1.80518 25.4 9 5.888 0.35 1.83481 42.7 10 ∞ 0.20 - - 11 ∞ 1.40 1.51633 64.1 12 ∞ - - -[Table 3] F NO = 1: 4.6-6.8 f = 1.00-2.33 (magnification ratio; 2.33) u-1 = 10 W = 60.9-20.1 f B = 1.12-1.12 (d9 + d10 / Nd10) M =- 0.092- -0.253 Surface No. rd Nd ν 1 ∞ 0.40 1.88300 40.8 2 1.338 2.51-0.73--Brightness aperture ∞ 0.19--3 2.616 1.50 1.88300 40.8 4 -1.971 0.10--5 -11.928 0.70 1.58913 61.2 6 -0.870 0.25 1.84666 23.8 7 -3.602 0.32-2.10--8 -6.196 0.25 1.80518 25.4 9 5.888 0.35 1.83481 42.7 10 ∞ 0.20--11 ∞ 1.40 1.51633 64.1 12 ∞---

【0022】各実施例の各条件式に対する値を表4に示
す。
Table 4 shows values for each conditional expression in each embodiment.

【表4】 実施例1 実施例2 実施例3 条件式(1) 0.539 0.673 0.557 条件式(2) 0.164 0.104 0.117 条件式(3) 0.597 0.651 0.620 各実施例は各条件式を満足しており、諸収差も比較的よ
く補正されている。また、いずれの実施例も第2レンズ
群の移動の前後(2焦点位置)での物像間距離(u-1)
は一定(10mm)である。すなわち、第1レンズ群は固定
であり、第1レンズ群の物体側の面から像面までの距離
が一定であるから、物像間距離も一定である。
[Table 4] Example 1 Example 2 Example 3 Conditional expression (1) 0.539 0.673 0.557 Conditional expression (2) 0.164 0.104 0.117 Conditional expression (3) 0.597 0.651 0.620 Each example satisfies each conditional expression. Various aberrations are also corrected relatively well. In each embodiment, the object image distance (u-1) before and after the movement of the second lens unit (two focal positions).
Is constant (10 mm). That is, since the first lens group is fixed and the distance from the object-side surface of the first lens group to the image plane is constant, the distance between the object and the image is also constant.

【0023】[0023]

【発明の効果】本発明によれば、変倍時に物像間距離が
変化しない、小型で高性能な2焦点タイプの内視鏡対物
変倍光学系を得ることができる。
According to the present invention, it is possible to obtain a compact and high-performance bifocal type endoscope objective variable power optical system in which the distance between object images does not change at the time of variable power.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による対物光学系の実施例1のレンズ構
成図である。
FIG. 1 is a lens configuration diagram of Embodiment 1 of an objective optical system according to the present invention.

【図2】図1のレンズ構成の短焦点距離位置における諸
収差図である。
FIG. 2 is a diagram illustrating various aberrations at a short focal length position of the lens configuration in FIG. 1;

【図3】図1のレンズ構成の長焦点距離位置における諸
収差図である。
FIG. 3 is a diagram illustrating various aberrations at a long focal length position of the lens configuration in FIG. 1;

【図4】本発明による対物光学系の実施例2のレンズ構
成図である。
FIG. 4 is a lens configuration diagram of Embodiment 2 of the objective optical system according to the present invention.

【図5】図4のレンズ構成の短焦点距離位置における諸
収差図である。
FIG. 5 is a diagram illustrating various aberrations at a short focal length position of the lens configuration of FIG. 4;

【図6】図4のレンズ構成の長焦点距離位置における諸
収差図である。
FIG. 6 is a diagram illustrating various aberrations at a long focal length position of the lens configuration in FIG. 4;

【図7】本発明による対物光学系の実施例3のレンズ構
成図である。
FIG. 7 is a lens configuration diagram of Embodiment 3 of the objective optical system according to the present invention.

【図8】図7のレンズ構成の短焦点距離位置における諸
収差図である。
8 is a diagram illustrating various aberrations of the lens configuration in FIG. 7 at a short focal length position.

【図9】図7のレンズ構成の長焦点距離位置における諸
収差図である。
9 is a diagram illustrating various aberrations at a long focal length position of the lens configuration in FIG. 7;

【図10】本発明の内視鏡対物変倍光学系の簡易移動図
である。
FIG. 10 is a simplified movement diagram of the endoscope objective variable power optical system of the present invention.

【図11】第3レンズ群が可動であると仮定したときの
物像間距離を一定にするための移動軌跡を示す図であ
る。
FIG. 11 is a diagram illustrating a movement trajectory for maintaining a constant object-image distance when the third lens group is assumed to be movable.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H040 AA02 BA03 CA23 2H087 KA10 PA04 PA18 PA19 PB05 PB06 QA01 QA05 QA18 QA21 QA25 QA33 QA38 QA42 QA45 QA46 RA36 SA14 SA16 SA20 SA63 SA72 SA74 SB02 SB14 SB22 SB23  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H040 AA02 BA03 CA23 2H087 KA10 PA04 PA18 PA19 PB05 PB06 QA01 QA05 QA18 QA21 QA25 QA33 QA38 QA42 QA45 QA46 RA36 SA14 SA16 SA20 SA63 SA72 SA74 SB02 SB14 SB22 SB23

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、負の屈折力を有する第
1レンズ群と、明るさ絞りと、正の屈折力を有する第2
レンズ群と、負の屈折力を有する第3レンズ群とから構
成され、変倍に際し、第1レンズ群と第3レンズ群は不
動であり、第2レンズ群が物像間距離を変化させない光
軸上の異なる2点に移動することを特徴とする内視鏡対
物変倍光学系。
1. A first lens unit having a negative refractive power, a brightness stop, and a second lens unit having a positive refractive power, in order from the object side.
The first lens group and the third lens group do not move during zooming, and the second lens group does not change the object-image distance. An endoscope objective variable power optical system, which moves to two different points on an axis.
【請求項2】 請求項1記載の内視鏡物変倍光学系にお
いて、次の条件式(1)、(2)を満足する内視鏡対物
変倍光学系。 (1)0.5<Y/f2<0.8 (2)0.05<|Y/f3|<0.2 但し、 Y:最大像高、 fi:第iレンズ群の焦点距離(i=1,2,3)。
2. The variable magnification optical system for an endoscope according to claim 1, wherein the following conditional expressions (1) and (2) are satisfied. (1) 0.5 <Y / f2 <0.8 (2) 0.05 <| Y / f3 | <0.2, where Y: maximum image height, fi: focal length of the ith lens group (i = 1, 2, 3).
【請求項3】 請求項1または2記載の内視鏡対物変倍
光学系において、上記第1レンズ群は負の単レンズから
なり、次の条件式(3)を満足する内視鏡対物変倍光学
系。 (3)0.5<|Y/f1|<0.8
3. The endoscope objective variable power optical system according to claim 1, wherein said first lens group comprises a single negative lens and satisfies the following conditional expression (3). Double optical system. (3) 0.5 <| Y / f1 | <0.8
JP14003299A 1999-05-20 1999-05-20 Endoscope objective variable magnification optical system Expired - Fee Related JP4394197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14003299A JP4394197B2 (en) 1999-05-20 1999-05-20 Endoscope objective variable magnification optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14003299A JP4394197B2 (en) 1999-05-20 1999-05-20 Endoscope objective variable magnification optical system

Publications (2)

Publication Number Publication Date
JP2000330019A true JP2000330019A (en) 2000-11-30
JP4394197B2 JP4394197B2 (en) 2010-01-06

Family

ID=15259379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14003299A Expired - Fee Related JP4394197B2 (en) 1999-05-20 1999-05-20 Endoscope objective variable magnification optical system

Country Status (1)

Country Link
JP (1) JP4394197B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110202A1 (en) * 2004-05-14 2005-11-24 Olympus Medical Systems Corp. Electronic endoscope
US6995923B2 (en) 2003-06-30 2006-02-07 Fujinon Corporation Small lightweight zoom lens
CN105278095A (en) * 2014-07-02 2016-01-27 富士胶片株式会社 Endoscope objective lens and endoscope
CN108604001A (en) * 2016-02-24 2018-09-28 松下知识产权经营株式会社 Zoom-lens system, the photographic device with zoom-lens system and the vehicle with photographic device
JP2020140026A (en) * 2019-02-27 2020-09-03 株式会社タムロン Imaging optical system and image capturing device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995923B2 (en) 2003-06-30 2006-02-07 Fujinon Corporation Small lightweight zoom lens
WO2005110202A1 (en) * 2004-05-14 2005-11-24 Olympus Medical Systems Corp. Electronic endoscope
AU2005244353B2 (en) * 2004-05-14 2009-07-16 Olympus Corporation Electronic endoscope
KR100911793B1 (en) * 2004-05-14 2009-08-12 올림푸스 메디칼 시스템즈 가부시키가이샤 Electronic endoscope
US7828721B2 (en) 2004-05-14 2010-11-09 Olympus Medical Systems Corp. Electronic endoscope
US8444548B2 (en) 2004-05-14 2013-05-21 Olympus Medical Systems Corp. Electronic endoscope
CN105278095A (en) * 2014-07-02 2016-01-27 富士胶片株式会社 Endoscope objective lens and endoscope
JP2016014754A (en) * 2014-07-02 2016-01-28 富士フイルム株式会社 Endoscope objective lens and endoscope
CN105278095B (en) * 2014-07-02 2019-04-12 富士胶片株式会社 Endoscope objective lens and endoscope
CN108604001A (en) * 2016-02-24 2018-09-28 松下知识产权经营株式会社 Zoom-lens system, the photographic device with zoom-lens system and the vehicle with photographic device
EP3422070A4 (en) * 2016-02-24 2019-02-27 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, image pickup device having zoom lens system, and vehicle having image pickup device
CN108604001B (en) * 2016-02-24 2020-12-15 松下知识产权经营株式会社 Zoom lens system, image pickup apparatus having zoom lens system, and vehicle having image pickup apparatus
US10967794B2 (en) 2016-02-24 2021-04-06 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, imaging device having zoom lens system, and vehicle having imaging device
JP2020140026A (en) * 2019-02-27 2020-09-03 株式会社タムロン Imaging optical system and image capturing device
JP7285091B2 (en) 2019-02-27 2023-06-01 株式会社タムロン Imaging optical system and imaging device

Also Published As

Publication number Publication date
JP4394197B2 (en) 2010-01-06

Similar Documents

Publication Publication Date Title
JP2804267B2 (en) Endoscope objective lens
JP3845331B2 (en) Endoscope objective optical system
JP2876252B2 (en) Endoscope objective lens
JP5006514B2 (en) Zoom lens and imaging apparatus having the same
JP2001194586A (en) Zoom lens and photographing device using the same
JPH07253542A (en) Zoom lens
JP4406112B2 (en) Endoscope objective variable magnification optical system
JP2001296476A (en) Zoom lens and optical equipment using the same
JP2001272602A (en) Zoom lens and optical equipment using the same
JP4634578B2 (en) Endoscope objective variable magnification optical system
WO2016129054A1 (en) Zoom imaging device
JP2004021158A (en) Endoscope objective optical system and endoscope
JPH06294932A (en) Zoom lens
JP3695612B2 (en) Zoom lens
JP4394197B2 (en) Endoscope objective variable magnification optical system
KR100256205B1 (en) Small type zoom lens
JPH11249017A (en) Three-group zoom lens
JP3340686B2 (en) Eyepiece zoom optical system
JPH11174322A (en) Zoom lens
JP2000275524A (en) Zoom lens
JP3569473B2 (en) Zoom lens system
JP2001166203A (en) Objective lens for endoscope of observation distance variable type
JP3984231B2 (en) Zoom lens
JP2005091655A (en) Endoscope objective optical system
JPH08248315A (en) Real image type variable power finder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees