JP2000329720A - ジルコニウム合金の耐食性判定方法 - Google Patents

ジルコニウム合金の耐食性判定方法

Info

Publication number
JP2000329720A
JP2000329720A JP11138178A JP13817899A JP2000329720A JP 2000329720 A JP2000329720 A JP 2000329720A JP 11138178 A JP11138178 A JP 11138178A JP 13817899 A JP13817899 A JP 13817899A JP 2000329720 A JP2000329720 A JP 2000329720A
Authority
JP
Japan
Prior art keywords
specific resistance
zirconium alloy
oxide film
corrosion
corrosion rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11138178A
Other languages
English (en)
Inventor
Shiyuuichi Nanikawa
修一 何川
Yoshinori Eito
良則 栄藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Nuclear Fuel Development Co Ltd
Hitachi Ltd
Original Assignee
Toshiba Corp
Nippon Nuclear Fuel Development Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Nuclear Fuel Development Co Ltd, Hitachi Ltd filed Critical Toshiba Corp
Priority to JP11138178A priority Critical patent/JP2000329720A/ja
Publication of JP2000329720A publication Critical patent/JP2000329720A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】 【課題】ジルコニウム合金について一様腐食の加速の発
生時期を、腐食速度の加速が発生する前に予測すること
ができ、耐食性の判定に有効であり、かつジルコニウム
合金製材料の使用限界をより正確に把握でき経済的かつ
安全な材料の使用に役立てることができるジルコニウム
合金の耐食性の判定方法を提供する。 【解決手段】ジルコニウム合金の表面に形成された酸化
膜について比抵抗値を調べることにより腐食速度の加速
時期を予測するようにした。また、ジルコニウム合金の
表面に形成された酸化膜について比抵抗値の経時変化を
調べることにより腐食速度の加速時期を予測するように
した。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、原子炉に使用され
るジルコニウム合金の耐食性を判定する方法に関し、特
に一様腐食の加速性の判定に有効である判定方法に関す
る。
【0002】
【従来の技術】現在、ジルコニウム合金は沸騰水型軽水
炉、加圧水型軽水炉などにおいて燃料被覆管および炉心
構造材料として広く使用されている。これまで最も一般
的に用いられてきたジルコニウム合金は、ジルカロイ−
2(Sn1.2〜1.7重量%、Fe0.07〜0.2
0重量%、Cr0.05〜0.15重量%、Ni0.0
3〜0.08重量%、残部Zr)およびジルカロイ−4
(Sn1.2〜1.7重量%、Fe0.18〜0.24
重量%、Cr0.07〜0・13重量%、残部Zr)で
あるが、他にもZr−2.5%Nb、Zr−1%Nb合
金なども原子炉に適用されている。
【0003】上記合金は主に、中性子経済性、強度およ
び耐食性を考慮して開発された合金である。しかしなが
ら、沸騰水型原子炉においては、原子炉運転中に上記材
料表面にノジュラー腐食と呼ばれるレンズ状の局部腐食
が発生することが問題となっていた。ノジュラー腐食は
照射の進行につれて成長し、腐食層が厚くなると剥離に
至ることもある。
【0004】従つて、ノジュラー腐食の発生は構造材の
減肉をもたらすのみならず、腐食層の剥離により冷却材
中の放射線濃度を高め、定検時の被曝量を増加させる恐
れがある。ノジュラー腐食を防止するため、α+β相あ
るいはβ相温度範囲に短時間加熱し急冷する熱処理方法
(特公昭61−45699号、特公昭63−58223
号公報)および合金組成の変更(特開昭60−4345
0号、特開昭62−228442号公報)が知られてい
る。上記のような改良によりノジュラー腐食の発生は抑
制され、腐食形態は腐食生成物である酸化被膜が均一に
成長するという一様腐食へと変化しつつある。
【0005】耐ノジュラー腐食性が改善された上記材料
は、現在の実炉の運転条件下ではその機能を充分に果た
している。ところが、現在原子力発電プラントの経済性
向上のため燃料の高燃焼度化が計画されている。このよ
うに原子炉燃料集合体の炉内滞在時間が長期化すると、
腐食量が大きくなり材料にとっては一層苛酷な環境とな
る。一例を挙げると、腐食速度が最初のある期間には低
いが高燃焼度で突然大きくなるという腐食速度の加速が
懸念されている。
【0006】このように腐食速度の加速が発生すると、
腐食量は腐食速度の加速前と比較して加速的に増加する
ため、ノジュラー腐食の場合と同じく構造材の減肉をも
たらすのみならず、腐食層の剥離により冷却材中の放射
線濃度を高め定検時の被曝量を増加させる恐れがある。
【0007】また腐食速度の加速発生によって、酸化反
応によって発生する水素量も増加し、また緻密で安定な
酸化膜の破壊により水素透過性も増加すると考えられる
ため、ジルコニウム合金基材に吸収される水素吸収量が
増加し、構造材が脆化する可能性がある。上記したこと
から、腐食速度の加速の発生の有無を把握することが重
要となるため、腐食速度の加速を判定する耐食性評価法
が所望されている。
【0008】これまで腐食速度の加速の判定は、酸化量
や時間に対する腐食量の変化より判定を行つていた。す
なわち、腐食による重量増加あるいは酸化膜厚さを測定
し試料間で比較すること、また測定した腐食量を時間に
対して整理し、時間に対する変化量の増加より判定して
いた。
【0009】しかしながら、ジルコニウム合金の一様腐
食は形成された酸化膜中の酸素イオンや電子の移動を介
して進行するため、それらの移動の障壁となる酸化膜の
性質の変化により腐食速度の加速は発生するものと考え
られる。このように腐食速度の加速は酸化膜の性質に大
きく依存するので腐食量が相対的に小さい場合や、腐食
量の変化量が小さい場合にも発生する可能性がある。ま
た実際の原子炉で使用する場合、腐食量を随時モニター
することは困難であり、実際には約1年ごとの照射サイ
クルごとに測定を行つている。したがって、もし仮に測
定直前に腐食速度の加速が発生した場合、腐食量の変化
量はほとんどなく、これまでの腐食量を基にした方法で
は腐食速度の加速を判定することは不可能である。
【0010】そこで発明者等は、ジルコニウム合金の表
面に形成された酸化膜について電気化学的応答を調べる
ことにより腐食速度の加速を判定できることを見いだし
た。すなわち、ジルコニウム合金酸化膜について交流電
圧ΔEを印加し、出力される交流電流ΔIを測定し、Z
=ΔE/ΔIより評価されるインピーダンスZの周波数
依存性を調べること(以下交流インピーダンス測定法と
記す)により腐食速度の加速の発生の有無を判定できる
評価法が提供される。
【0011】
【発明が解決しようとする課題】しかしながら、現状で
は上記した交流インピーダンス測定は原子炉内で材料の
使用中に随時測定することは不可能であり、実際は約1
年周期の照射サイクル終了後の測定によってしか腐食速
度の加速の有無は判定できない。この場合、実際に腐食
速度の加速が発生してから、交流インピーダンス測定に
よって腐食速度の加速の有無を判定するまでに時間があ
り、その期間中に悪影響を及ぼす可能性が考えられる。
したがって腐食速度の加速を正確に判定し、なおかつ腐
食速度の加速が発生する前に腐食速度の加速時期を予測
することが重要となる。
【0012】したがってジルコニウム合金について腐食
速度の加速時期を予測する評価法が要望されている。本
発明はこれに鑑みなされたもので、その目的とするとこ
ろは、ジルコニウム合金について一様腐食の加速の発生
時期を、腐食速度の加速が発生する前に予測することが
でき、耐食性の判定に有効であり、かつジルコニウム合
金製材料の使用限界をより正確に把握でき経済的かつ安
全な材料の使用に役立てることができるこの種のジルコ
ニウム合金の耐食性の判定方法を提供することにある。
【0013】
【課題を解決するための手段】すなわち本発明は、ジル
コニウム合金の表面に形成された酸化膜について比抵抗
値を調べることにより腐食速度の加速時期を予測するよ
うにし所期の目的を達成するようにしたものである。ま
た、ジルコニウム合金の表面に形成された酸化膜につい
て比抵抗値の経時変化を調べることにより腐食速度の加
速時期を予測するようにしたものである。
【0014】また、ジルコニウム合金の表面に形成され
た酸化膜の比抵抗値(σ)を縦軸にとり、横軸時間
(t)に対して整理し、両者の相関をある関数σ=f
(t)で近似した時、f(t)=a(a:定数)となる
時の時間tを腐食速度の加速時期であると定義するよう
にしたものである。
【0015】またこの場合、前記定数aを1×1011Ω
cmとしたものである。また、前記酸化膜の比抵抗値
を、交流電圧ΔEを印加し、出力される交流電流ΔIを
測定し、Z=ΔE/ΔIより評価されるインピーダンス
Zの周波数依存性を調べる交流インピーダンス測定法に
より評価するか、あるいは交流電圧ΔEを印加し、出力
される交流電流ΔIを測定し、Z=ΔE/ΔIより評価
されるインピーダンスZの周波数依存性を調べる交流イ
ンピーダンス測定法により評価し、かつ比抵抗値を酸化
膜中で考えられる比抵抗値の中で一番小さな比抵抗値と
するようにしたものである。
【0016】
【発明の実施の形態】まず、ジルコニウム合金酸化膜に
ついて酸化膜の比抵抗値を測定する手法を以下に記す。
酸化膜の比抵抗値は、交流電圧ΔEを印加し、出力され
る交流電流ΔIを測定し、Z=ΔE/ΔIより評価され
るインピーダンスZの周波数依存性を調べる交流インピ
ーダンス測定法により測定した。
【0017】交流電圧ΔEを印加し、出力される交流電
流ΔIを測定し、Z=ΔE/ΔIより評価されるインピ
ーダンスZの周波数依存性を調べる交流インピーダンス
測定においては、交流電圧ΔEおよび交流電流ΔIはそ
れぞれ複素数表示により
【0018】
【数1】 ΔE=│ΔE│exp(jωt) ΔI=│ΔI│exp{j(ωt−θ)} と表せるので、インピーダンスZは
【0019】
【数2】 Z=ΔE/ΔI =(│ΔE│/│ΔI│)exp(jθ) =Z(cosθ+jsinθ) =Zcosθ+jZsinθ =Z’+jZ” となる。
【0020】交流インピーダンス測定法では、測定によ
って得られるインピーダンス応答と電気的に同じ応答を
与える等価回路を基に、実際の物理現象との相関を検討
する。ジルコニウム合金の酸化膜の等価回路は図2のよ
うに表すことができる(P.M.Rosecrans:
ASTM STP824,531(1984)、A.U
rquhart and A.D.Vermiliy
a:ASTM STP551,463,(197
4))。各回路素子は以下のものを表す。
【0021】RΩ:溶液抵抗 R:酸化膜の電気抵抗 C:酸化膜の電気容量 図2に示した等価回路に対し、インピーダンスZは複素
数表示を用いて
【0022】
【数3】
【0023】データの解析には通常、インピーダンスZ
をその実数部Z’虚数部Z”に分けて表示する方法が一
般的である(F.Mansfeed:Corrosio
n,37,301(1981))。ここで、Z=Z’+
jZ”である。
【0024】
【数4】
【0025】(2)、(3)式より角周波数ωを消去す
ると
【0026】
【数5】
【0027】となる。したがって、横軸にインピーダン
スの実数部Z’の絶対値│Z’│をとり、縦軸にインピ
ーダンスの実数部Z”の絶対値│Z”│をとったナイキ
スト線図で示すと、(4)式のようにデータは半円弧で
近似できる。図3にナイキスト線図と酸化膜の等価回路
との相関を模式的に示す。理想的な系である場合、円の
直径はZ’軸上にのる(図3中、実線で示した半円)
が、実際の測定においては表面の不均一性等に起因した
電流の不均一さから、インピーダンスZは(1)式で示
す理想的な値からはずれる。この場合補正因子βを導入
することが一般的である。βは0〜1の値をとり(1)
式は次のように書き換えられる。
【0028】
【数6】
【0029】(5)式をCole−Coleプロットで
表示すると、図3の破線で示すように理想的な半円(図
3中、実線で示した半円)を時計周りに回転した半円と
なる。この時、酸化膜の電気抵抗Rは理想的な場合と同
じく円の直径で示される。
【0030】図4に実際に2種類の合金について酸化膜
のインピーダンス測定結果をナイキスト線図で示す。下
図には上図の拡大図が示されている。図4に示されてい
るように、得られた実測データをナイキスト線図で表
し、(5)式を最小二乗近似して半円弧を描き、酸化膜
の電気抵抗Rを算出した。
【0031】試料間での比較をするため、以下の式より
物質固有の物理量である比抵抗値ρ(Ωcm)を算出し
た。
【0032】
【数7】
【0033】以上に述べた手順で、実際の原子炉で1,
2、4サイクル照射されたジルコニウム合金酸化膜につ
いて(6)式により比抵抗値ρ(Ωcm)を評価し、図
5に整理した。なお、酸化膜厚さは腐食増量からの換算
値あるいは、金相観察による評価値を用いた。酸化膜厚
さの増加に対して比抵抗値が低下する傾向が見られるこ
とが分かる。
【0034】また、腐食速度の加速の有無を判定する
と、図5に記したようにおよそ1×1011Ωcmの値
(図5中の直線に相当)を境に、この値以上では腐食速
度の加速が発生せず、これ以下では腐食速度の加速が発
生したものと区別することができた。
【0035】すなわち、腐食速度の加速の発生に対し
て、比抵抗値のしきい値があることを見い出した。また
酸化膜厚さに対して、比抵抗値は次第に低下する傾向を
示しているので、時間に対する比抵抗値の低下速度を調
べることにより、腐食速度の加速が発生する比抵抗値の
しきい値までの到達時間、すなわち腐食速度の加速発生
時期を予測することができることを見い出した。
【0036】以下本発明の実施例を説明する。本発明に
よる交流インピーダンス測定法は、一般的に腐食反応等
の電極反応の解析に用いられている手法である。まず測
定装置について説明する。作用電極に表面に酸化膜が形
成されたジルコニウム合金製の試験片を使用し、電解液
には特定の溶液を使用するものである。測定セル内に電
解液を満たし、作用電極、参照電極および対極を浸漬
し、作用電極と対極との間に交流電圧ΔEを印加しその
応答電流ΔIを測定する測定部と、測定の制御およびZ
=ΔE/ΔIで表せるインピーダンスZを計算し記録を
行う制御記録部を有する測定装置を使用する。
【0037】なお、電解液として本発明では0.05m
ol/I硫酸ナトリウム溶液を用い、Ar等のガスを通
気することにより脱気を施した。測定中も脱気し続け
た。なお、硫酸ナトリウム以外にも0.1規定の硫酸や
塩酸等の酸性溶液やNaOH等の溶液について測定した
が、0.05molの硫酸ナトリウム溶液の場合と本質
的に差はなく、一様腐食の加速発生の判定および比抵抗
値の評価に問題ないことを確認した。
【0038】試験片は次のようにして調製し、測定セル
に取り付けた。すなわち、燃料被覆管から長さ20m
m、縦半割れに切り出し、測定部との導通のため試験片
のうち測定部以外の酸化膜の一部を機械研磨により除去
しリード線を取り付けた。この試験片を測定したい酸化
膜表面のみが電解液に接するように、窓をあけた測定セ
ルに押し付けて取り付けた。
【0039】試料取り付け後、測定セルを最低12時間
放置した。これは電解液が酸化膜中のポアやクラックに
浸入し定常状態になるまでの時間を考慮したものであ
る。放置後、30分間自然浸漬電位の測定を行い、その
後この電位を基準として交流電圧を印加し交流インピー
ダンス測定を行つた。この時の交流印加電圧は、直流分
極による非定常状態を避けるため20〜100mVの微
少電圧とした。なお、測定は全て室温下で行つた。
【0040】以下に本発明の実際の適用例を示す。実際
の原子炉で1,2,4サイクル照射されたジルコニウム
合金酸化膜について比抵抗値を評価した。図1に比抵抗
値の評価結果を横軸照射時間に対して整理した。ここで
は3種類の合金の測定結果が示されている。図1中に示
した境界値は図5により評価できる腐食速度の加速の発
生に対する比抵抗値のしきい値が示されている。比抵抗
値と照射時間との相関を、各合金ごとに累乗関数で最小
ニ乗近似すると図中に示した近似直線が得られる。3種
類の合金で比抵抗値の低下速度は異なっており、合金1
と合金3では4サイクル終了時(約1500日後)に
は、既に、比抵抗値は境界値よりも低下し腐食速度の加
速が発生していた。
【0041】しかしながら、合金2は4サイクル終了時
には比抵抗値は境界値よりも高く、依然として腐食速度
の加速は発生していなかった。しかしながら、比抵抗値
が境界値と交わる時間を腐食速度の加速時期であると考
えると、合金2についても近似直線を境界値まで外挿す
ることにより、境界値まで到達する時間、すなわち腐食
速度の加速時期を予測できることになる。
【0042】このように、本発明は、未だ腐食速度の加
速が発生していない材料についても、比抵抗値の経時変
化を調べることにより腐食速度の加速時期を予測できる
ものである。
【0043】
【発明の効果】以上説明してきたように本発明によれ
ば、ジルコニウム合金について一様腐食の加速の発生時
期を、腐食速度の加速が発生する前に予測することがで
き、耐食性の判定に有効である。さらにジルコニウム合
金製材料の使用限界をより正確に把握でき経済的かつ安
全な材料の使用に役立てることができるものである。
【図面の簡単な説明】
【図1】本発明のジルコニウム合金の耐食性判定方法を
説明するためのもので、実炉で使用された3種類のジル
コニウム合金について酸化膜の比抵抗値の評価結果を炉
内滞在時間に対して整理した図で、比抵抗値が時間とと
もに低下し境界値に到達する時間を腐食速度の加速時期
と予想することを示す図である。
【図2】ジルコニウム合金酸化膜の等価回路を示す図で
ある。
【図3】ナイキスト線図と酸化膜の等価回路との相関を
示す模式図である。
【図4】2種類の合金について酸化膜のインピーダンス
測定結果を示すナイキスト線図である。
【図5】酸化膜の比抵抗値と酸化膜依存性を示す図であ
る。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G21D 1/00 G21C 17/00 R // C22C 16/00 G21D 1/00 W (72)発明者 何川 修一 茨城県東茨城郡大洗町成田町2163番地 日 本核燃料開発株式会社内 (72)発明者 栄藤 良則 茨城県東茨城郡大洗町成田町2163番地 日 本核燃料開発株式会社内 Fターム(参考) 2G050 AA01 BA01 BA03 BA10 BA11 BA20 CA02 CA04 EA01 EA04 EB06 2G055 AA05 BA12 CA19 FA06 2G060 AA10 AA20 AE28 AF06 HA02 KA11 2G075 CA04 CA38 CA43 CA45 DA14 EA01 FA20 FB08 FC13 FC19

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 ジルコニウム合金の表面に形成された酸
    化膜について比抵抗値を調べることにより腐食速度の加
    速時期を予測することを特徴とするジルコニウム合金の
    耐食性判定方法。
  2. 【請求項2】 ジルコニウム合金の表面に形成された酸
    化膜について比抵抗値の経時変化を調べることにより腐
    食速度の加速時期を予測することを特徴とするジルコニ
    ウム合金の耐食性判定方法。
  3. 【請求項3】 ジルコニウム合金の表面に形成された酸
    化膜の比抵抗値(σ)を縦軸にとり、横軸時間(t)に
    対して整理し、両者の相関をある関数σ=f(t)で近
    似した時、f(t)=a(a:定数)となる時の時間t
    を腐食速度の加速時期であると定義するようにしたこと
    を特徴とするジルコニウム合金の耐食性判定方法。
  4. 【請求項4】 前記定数aが1×1011Ωcmである請
    求項3記載のジルコニウム合金の耐食性判定方法。
  5. 【請求項5】 前記酸化膜の比抵抗値を、交流電圧ΔE
    を印加し、出力される交流電流ΔIを測定し、Z=ΔE
    /ΔIより評価されるインピーダンスZの周波数依存性
    を調べる交流インピーダンス測定法により評価するよう
    にしたものである請求項1〜4いずれかに記載のジルコ
    ニウム合金の耐食性判定方法。
  6. 【請求項6】 前記酸化膜の比抵抗値を、交流電圧ΔE
    を印加し、出力される交流電流ΔIを測定し、Z=ΔE
    /ΔIより評価されるインピーダンスZの周波数依存性
    を調べる交流インピーダンス測定法により評価し、かつ
    比抵抗値を酸化膜中で考えられる比抵抗値の中で一番小
    さな比抵抗値とするようにしたものである請求項1〜4
    いずれかに記載のジルコニウム合金の耐食性判定方法。
JP11138178A 1999-05-19 1999-05-19 ジルコニウム合金の耐食性判定方法 Pending JP2000329720A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11138178A JP2000329720A (ja) 1999-05-19 1999-05-19 ジルコニウム合金の耐食性判定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11138178A JP2000329720A (ja) 1999-05-19 1999-05-19 ジルコニウム合金の耐食性判定方法

Publications (1)

Publication Number Publication Date
JP2000329720A true JP2000329720A (ja) 2000-11-30

Family

ID=15215882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11138178A Pending JP2000329720A (ja) 1999-05-19 1999-05-19 ジルコニウム合金の耐食性判定方法

Country Status (1)

Country Link
JP (1) JP2000329720A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008744A (ja) * 2006-06-29 2008-01-17 Hitachi Ltd 隙間水質測定方法及び隙間水質測定装置
WO2013065207A1 (ja) * 2011-11-02 2013-05-10 三菱電機株式会社 防食性能劣化検知センサー並びに給湯暖房システム及び設備機器
JP2013250223A (ja) * 2012-06-04 2013-12-12 Hioki Ee Corp 等価回路解析装置および等価回路解析方法
JP2015028433A (ja) * 2013-07-30 2015-02-12 日立Geニュークリア・エナジー株式会社 貴金属被覆率監視方法、貴金属被覆率監視装置および原子力プラントの運転方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008744A (ja) * 2006-06-29 2008-01-17 Hitachi Ltd 隙間水質測定方法及び隙間水質測定装置
WO2013065207A1 (ja) * 2011-11-02 2013-05-10 三菱電機株式会社 防食性能劣化検知センサー並びに給湯暖房システム及び設備機器
CN103917863A (zh) * 2011-11-02 2014-07-09 三菱电机株式会社 防腐性能劣化探测传感器以及供给热水供暖系统以及设备仪器
JPWO2013065207A1 (ja) * 2011-11-02 2015-04-02 三菱電機株式会社 防食性能劣化検知センサー並びに給湯暖房システム及び設備機器
US9677992B2 (en) 2011-11-02 2017-06-13 Mitsubishi Electric Corporation Corrosion protection performance degradation detection sensor, hot-water supply heating system, and facility apparatus
JP2013250223A (ja) * 2012-06-04 2013-12-12 Hioki Ee Corp 等価回路解析装置および等価回路解析方法
JP2015028433A (ja) * 2013-07-30 2015-02-12 日立Geニュークリア・エナジー株式会社 貴金属被覆率監視方法、貴金属被覆率監視装置および原子力プラントの運転方法

Similar Documents

Publication Publication Date Title
Sabol et al. Development of a cladding alloy for high burnup
Manahan Sr et al. Determination of the fate of the current in the stress corrosion cracking of sensitized type 304SS in high temperature aqueous systems
Garde et al. Corrosion behavior of Zircaloy-4 cladding with varying tin content in high-temperature pressurized water reactors
US5366690A (en) Zirconium alloy with tin, nitrogen, and niobium additions
JPH0821793A (ja) 金属材料の耐腐食性評価方法、高耐食合金の設計方法、金属材料の腐食状態診断方法およびプラントの運転方法
Yan et al. High-temperature oxidation kinetics of sponge-based E110 cladding alloy
Valance et al. Statistical analysis of hydride reorientation properties in irradiated Zircaloy-2
JP2000329720A (ja) ジルコニウム合金の耐食性判定方法
Stehle et al. Characterization of ZrO2 Films Formed In-Reactor and Ex-Reactor to Study the Factors Contributing to the In-Reactor Waterside Corrosion of Zircaloy
JP2008008750A (ja) 原子炉冷却水の腐食環境定量方法およびその装置
Markelov et al. Irradiation test under advanced PWR conditions in the Halden reactor and post-irradiation examination of fuel rod claddings from different zirconium alloys
JP2000199751A (ja) ジルコニウム合金の耐食性判定方法
JP3061707B2 (ja) 金属材料の腐食性測定方法および測定装置
JP2000097843A (ja) ジルコニウム系金属の腐食評価法およびジルコニウム基合金
Malgin et al. Research of high-temperature oxidation behavior of E110 opt and E110М sponge based zirconium alloys
JPH03505127A (ja) 核放射線照射下で一群のジルコニウム合金中の相対的水素化を予測する方法
JPS6118842A (ja) ジルコニウム基合金の耐食性判別法
Forsberg et al. Studies of corrosion of cladding materials in simulated BWR environment using impedance measurements
Neves et al. Characterisation of oxide films formed on Alloy 600 in simulated PWR primary water
Ulaganathan et al. Mitigating effect of magnetite buffering on alloy 800 tubing degradation in acidic, sulphate-dominated environments at 300 o C
Vankeerberghen et al. In-pile electrochemical measurements on AISI 316 L (N) IG and EUROFER 97–I: experimental results
Vermeeren et al. In-pile sub-miniature fission chambers testing in BR2
Elmoselhi et al. Hydrogen Ingress Into Zirconium Alloys as a Life-Limiting Factor—Methods of In-Line Monitoring, Prediction and Control
JP2002122561A (ja) ニッケル基合金の粒界腐食性診断方法およびシステム
JPH0368852A (ja) ジルコニウム合金の耐食性判定方法