JP2000327495A - Method for growing gallium nitride single crystal - Google Patents

Method for growing gallium nitride single crystal

Info

Publication number
JP2000327495A
JP2000327495A JP11136415A JP13641599A JP2000327495A JP 2000327495 A JP2000327495 A JP 2000327495A JP 11136415 A JP11136415 A JP 11136415A JP 13641599 A JP13641599 A JP 13641599A JP 2000327495 A JP2000327495 A JP 2000327495A
Authority
JP
Japan
Prior art keywords
substrate
gallium nitride
single crystal
gallium
nitride single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11136415A
Other languages
Japanese (ja)
Other versions
JP3957918B2 (en
Inventor
Takatomo Sasaki
孝友 佐々木
Yusuke Mori
勇介 森
Hisanori Yamane
久典 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP13641599A priority Critical patent/JP3957918B2/en
Publication of JP2000327495A publication Critical patent/JP2000327495A/en
Application granted granted Critical
Publication of JP3957918B2 publication Critical patent/JP3957918B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the generation of nuclei and to synthesize a high-quality large bulky gallium nitride single crystal at relatively low temperature and low pressure. SOLUTION: A substrate with a thin gallium nitride (GaN) film or a thin aluminum nitride (A1N) film deposited on the surface and starting materials of nitrogen and gallium are heated to generate nuclei on only the surface of the substrate and the objective bulky gallium nitride single crystal is grown. A sapphire substrate, a GaAs substrate, a GaP substrate or a silicon substrate is preferably used as the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、窒化ガリ
ウム単結晶の育成方法に関するものである。さらに詳し
くは、この出願の発明は、比較的低温低圧で、高品質な
バルク状の窒化ガリウム単結晶を育成することのできる
新しい方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a gallium nitride single crystal. More specifically, the invention of this application relates to a novel method capable of growing a high-quality bulk gallium nitride single crystal at a relatively low temperature and a low pressure.

【0002】[0002]

【従来の技術とその課題】窒化ガリウム青色発光素子の
材料として注目されている。そして、窒化ガリウムは、
エピタキシャル成長による薄膜として、例えば、サファ
イア基板を用いたヘテロエピタキシャル成長によるもの
が知られている。しかしながら、このような薄膜として
の窒化ガリウムには、基板と薄膜との格子定数差(1
3.8%)、熱膨張係数差(25.5%)、および、壁
開面の違いがネックとなり、基板との整合性が悪いこと
から、充分な結晶性を得ることが難しいという問題があ
る。
2. Description of the Related Art Gallium nitride has attracted attention as a material for blue light emitting devices. And gallium nitride is
As a thin film formed by epitaxial growth, for example, a thin film formed by heteroepitaxial growth using a sapphire substrate is known. However, gallium nitride as such a thin film has a lattice constant difference (1) between the substrate and the thin film.
3.8%), the difference in thermal expansion coefficient (25.5%), and the difference in the wall open surface are the bottlenecks, and poor matching with the substrate makes it difficult to obtain sufficient crystallinity. is there.

【0003】このような問題点を考慮して、窒化ガリウ
ム単結晶基板上にホモエピタキシャル成長によるデバイ
スを作製する方法が検討されており、その基板となるバ
ルク状窒化ガリウム単結晶の実現が重要な課題となって
いる。しかしながら、GaN、AlNなどのバルク状の
窒化物結晶は、融点における窒素の平衡蒸気圧が1万気
圧以上であるため、GaNの融液成長では1200℃、
8000気圧、AlNではそれ以上の高温・高圧を必要
とし、このようなバルク状単結晶の育成は極めて困難で
あった。
In consideration of such problems, a method of fabricating a device by homoepitaxial growth on a gallium nitride single crystal substrate has been studied, and it is important to realize a bulk gallium nitride single crystal serving as the substrate. It has become. However, bulk nitride crystals such as GaN and AlN have an equilibrium vapor pressure of nitrogen at the melting point of 10,000 atm or more.
At 8000 atm and AlN, higher temperature and pressure are required, and it is extremely difficult to grow such a bulk single crystal.

【0004】一方、ごく最近になって、Naを触媒に用
いると800℃・100気圧という比較的低温・低圧で
高品質のバルク状窒化ガリウム単結晶を合成できること
が見出されている。このバルク状窒化ガリウム単結晶の
合成方法は注目されるものであるが、まだ多くの問題点
が残されていることが明らかとなってきた。それは、自
然核発生による結晶成長では核発生制御ができないた
め、多量に核が発生してしまうということである。した
がって、合成された窒化ガリウム単結晶は、非常に小さ
い結晶としてしか得られないという問題点があった。
On the other hand, it has only recently been found that when Na is used as a catalyst, a high-quality bulk gallium nitride single crystal can be synthesized at a relatively low temperature and low pressure of 800 ° C. and 100 atm. Although this bulky gallium nitride single crystal synthesis method has attracted attention, it has become clear that many problems still remain. That is, since nucleation cannot be controlled by crystal growth by natural nucleation, a large amount of nuclei is generated. Therefore, there is a problem that the synthesized gallium nitride single crystal can be obtained only as a very small crystal.

【0005】そこでこの出願の発明は、以上の通りの事
情に鑑みてなされたものであり、核発生の制御を可能と
し、比較的低温・低圧で、高品質な、大きなバルク状の
窒化ガリウム単結晶を合成する新しい方法を提供するこ
とを課題としている。
The invention of this application has been made in view of the above circumstances, and enables the control of nucleation, and is a relatively high temperature, low pressure, high quality, large bulk gallium nitride monolith. It is an object to provide a new method for synthesizing crystals.

【0006】[0006]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、第1には、窒化ガリウム
(GaN)薄膜または窒化アルミニウム(AlN)薄膜
を表面に堆積させた基板と、窒素原料およびガリウム原
料とを加熱して、基板表面上にのみ核発生させてバルク
状窒化ガリウム単結晶を育成することを特徴とする窒化
ガリウム単結晶の育成方法を提供する。
Means for Solving the Problems According to the invention of the present application, as a solution to the above-mentioned problems, firstly, there is provided a substrate having a gallium nitride (GaN) thin film or aluminum nitride (AlN) thin film deposited on a surface thereof. A method for growing a gallium nitride single crystal, comprising heating a nitrogen raw material and a gallium raw material to generate nuclei only on a substrate surface to grow a bulk gallium nitride single crystal.

【0007】さらに、この発明は、第2には、基板とし
て、サファイア基板やGaAs基板、GaP基板または
シリコン基板を用いる方法を、第3には、レーザーアブ
レーション法により、GaN薄膜またはAlN薄膜を表
面に堆積させた基板を用いる方法を、第4には、窒素原
料として、アジ化ナトリウム(NaN3 )を用いる方法
を、第5には、ガリウム原料として、単体ガリウム金属
を用いる方法を、第6には、600℃以上で加熱する方
法をも提供する。
Further, the present invention provides, secondly, a method using a sapphire substrate, a GaAs substrate, a GaP substrate or a silicon substrate as a substrate, and thirdly, a GaN thin film or an AlN thin film formed on a surface by a laser ablation method. Fourth, a method using sodium azide (NaN 3 ) as a nitrogen source, a method using a single gallium metal as a gallium source, and a sixth method using a substrate deposited on a substrate. Also provides a method of heating at 600 ° C. or higher.

【0008】以上のとおりのこの出願の発明は、発明者
らにより見いだされた次のとおりの新しい知見に基づい
て完成されている。すなわち、GaN薄膜またはAlN
薄膜を表面に若干堆積させた基板を導入すると、バルク
状窒化ガリウム単結晶はその表面上にしか核発生せず、
一方、薄膜を堆積させずに基板のみを導入しても、それ
ら基板上には窒化ガリウムの核は発生しないことであ
る。
[0008] The invention of this application as described above has been completed based on the following new findings discovered by the inventors. That is, GaN thin film or AlN
When a substrate on which a thin film is slightly deposited is introduced, the bulk gallium nitride single crystal nucleates only on its surface,
On the other hand, even if only a substrate is introduced without depositing a thin film, gallium nitride nuclei are not generated on those substrates.

【0009】したがって、従来のNa触媒を用いた自然
核発生法では不可能であった窒化ガリウムの核発生位置
の制御がこの出願の発明によって可能となり、大面積で
高品質のバルク状窒化ガリウム単結晶の提供を可能とさ
れる。
Therefore, the invention of this application makes it possible to control the nucleation position of gallium nitride, which is impossible with the conventional natural nucleation method using a Na catalyst, and to provide a large-area, high-quality bulk gallium nitride monolithium. It is possible to provide crystals.

【0010】[0010]

【発明の実施の形態】この出願の発明は上記のとおりの
特徴を有するものであるが、以下にその実施の形態につ
いて説明する。まず、この発明の窒化ガリウム単結晶の
育成方法においては、窒化ガリウム(GaN)または窒
化アルミニウム(AlN)の薄膜を表面に堆積させた基
板の使用が欠かせない。この場合のGaN、AlNの薄
膜は、CVD、レーザーCVD、レーザーアブレーショ
ン、反応性スパッタリング、反応性イオンプレーティン
グ、クラスターイオン成膜法、その他の各種の気相法、
あるいは可能とされるその他の方法によって成膜堆積さ
れたものであってよい。たとえばより具体的には、この
発明においては、GaN薄膜またはAlN薄膜の堆積方
法として、例えば、レーザーアブレーション法を好適に
用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and the embodiments will be described below. First, in the method for growing a gallium nitride single crystal of the present invention, it is essential to use a substrate having a thin film of gallium nitride (GaN) or aluminum nitride (AlN) deposited on the surface. In this case, the GaN and AlN thin films are formed by CVD, laser CVD, laser ablation, reactive sputtering, reactive ion plating, cluster ion film formation, other various gas phase methods,
Alternatively, it may be a film formed and deposited by another method that is enabled. For example, more specifically, in the present invention, as a method for depositing a GaN thin film or an AlN thin film, for example, a laser ablation method can be suitably used.

【0011】基板として、サファイア基板やGaAs基
板、AaAlAs基板、GaP基板、InP基板、シリ
コン基板などの各種の基板を用いることができる。Ga
N,AlNの薄膜の厚さについては特に限定はない。た
だ、この薄膜は、バルク状GaN単結晶成長の核を選択
的に生成させる役割を触媒的に果たしていることから、
その厚みは、基本的には、このような役割を果たす限り
の薄いものであってよい。もちろん、その平面大きさ
は、基板の大きさとともに、バルク単結晶の大きさを左
右するとの観点により定めればよい。
As the substrate, various substrates such as a sapphire substrate, a GaAs substrate, an AaAlAs substrate, a GaP substrate, an InP substrate, and a silicon substrate can be used. Ga
There is no particular limitation on the thickness of the thin film of N and AlN. However, since this thin film catalytically plays a role of selectively generating nuclei for bulk GaN single crystal growth,
Its thickness may be basically thin as long as it fulfills such a role. Of course, the plane size may be determined from the viewpoint that the size of the bulk single crystal is affected together with the size of the substrate.

【0012】以上のとおりの基板とともに用いるこの発
明の方法の窒素原料およびガリウム原料は、固体物質と
して各種のものでよく、育成反応時に、窒素およびガリ
ウムを生成しやすく、GaNの生成を阻害することのな
いものであればよい。Na(ナトリウム)が触媒的作用
を示すことが知られていることを考慮すると、Naの含
窒素化合物、特に、Naのアジド、アジン、ヒドラジ
ド、等の化合物が好適なものとして例示される。その他
のアルカリ金属やアルカリ土類金属等のGaとの間で化
合物等を生成させることのない元素の含窒素化合物であ
ってもよい。
The nitrogen raw material and gallium raw material used in the method of the present invention used together with the substrate as described above may be of various types as solid substances. Nitrogen and gallium are easily produced during the growth reaction, and GaN production is inhibited. Anything that does not have to be used. Considering that Na (sodium) is known to exhibit a catalytic action, nitrogen-containing compounds of Na, particularly compounds such as azide, azine and hydrazide of Na are exemplified as suitable ones. It may be a nitrogen-containing compound of an element that does not generate a compound or the like with Ga such as an alkali metal or an alkaline earth metal.

【0013】ガリウム原料についても、単体金属、合
金、化合物の各種のものでよい。なかでもガリウムの単
体金属が取扱いの上からも好適なものの一つである。加
熱反応は、ステンレス容器等の耐熱性で、耐圧性、そし
て非反応性の容器内で行うことができる。この発明にお
いては、600℃という比較的低温でも、窒化ガリウム
単結晶が核発生する。この温度は、従来の自然核発生法
では核発生がほとんど不可能な温度である。
[0013] The gallium raw material may be various kinds of simple metals, alloys and compounds. Among them, gallium simple metal is one of the preferable ones from the viewpoint of handling. The heating reaction can be performed in a heat-resistant, pressure-resistant, and non-reactive container such as a stainless steel container. In the present invention, a gallium nitride single crystal nucleates even at a relatively low temperature of 600 ° C. This temperature is a temperature at which nucleation is almost impossible by the conventional natural nucleation method.

【0014】以下実施例を示し、さらにこの発明につい
て詳しく説明する。
Hereinafter, the present invention will be described in detail with reference to Examples.

【0015】[0015]

【実施例】実施例1 この発明の製造方法を用いて、基板の種類を変えて、バ
ルク状窒化ガリウム単結晶育成を行った。まずはじめ
に、出発原料であるアジ化ナトリウム(NaN3)と単
体ガリウム金属をステンレスチューブに封入し、800
℃程度まで加熱した。GaとNaN3 の秤量比はγ=N
a/(Na+Ga)で定義した。
EXAMPLE 1 A bulk gallium nitride single crystal was grown using the manufacturing method of the present invention while changing the type of substrate. First, sodium azide (NaN 3 ) as a starting material and a simple gallium metal were sealed in a stainless steel tube, and 800
Heated to about ° C. The weighing ratio of Ga and NaN 3 is γ = N
a / (Na + Ga).

【0016】できるだけ視覚的に種結晶の効果が見られ
る育成を行うために、GaNとの格子定数差の小さい基
板(約25mm2 )を出発原料に加えて、チューブ(内
径12mm、長さ10cm)内に封入して育成を試み
た。基板としては、サファイア基板上にAlN薄膜を堆
積させたAlN薄膜サファイア基板と、従来技術である
薄膜を堆積させない基板、すなわち、SiC基板、Si
基板およびサファイア基板をも用いた。各基板面は、A
lN薄膜(0001)面(サファイア基板上)、従来技
術のSi基板(111)面、サファイア基板(000
1)面、およびSiC基板(0001)面とした。Ga
Nと各基板との格子定数差は表1に示すとおりであり、
本発明の格子定数は、非常に小さい。
In order to grow the seed crystal as visually as possible, a substrate (about 25 mm 2 ) having a small lattice constant difference from GaN is added to the starting material, and a tube (inner diameter: 12 mm, length: 10 cm) is added. And tried to grow them. The substrates include an AlN thin film sapphire substrate in which an AlN thin film is deposited on a sapphire substrate, and a conventional substrate in which a thin film is not deposited, that is, a SiC substrate, a SiC substrate,
Substrates and sapphire substrates were also used. Each board surface is A
1N thin film (0001) surface (on sapphire substrate), conventional Si substrate (111) surface, sapphire substrate (000
1) plane and the SiC substrate (0001) plane. Ga
The lattice constant difference between N and each substrate is as shown in Table 1,
The lattice constant of the present invention is very small.

【0017】[0017]

【表1】 [Table 1]

【0018】圧力100気圧、γNa=0.4、温度保
持時間24時間とし、最高到達温度を800℃から、7
00℃、600℃、500℃と低温化して育成を行っ
た。その結果、600℃以上で、GaNともっとも格子
定数差の小さい、本発明のAlN薄膜上にのみ窒化ガリ
ウム単結晶成長が起こった。しかしながら、従来技術の
Si基板、サファイア基板、および、SiC基板上には
窒化ガリウム単結晶成長は起こらなかった。
The pressure was set to 100 atm, γNa = 0.4, and the temperature holding time was set to 24 hours.
The growth was performed at a low temperature of 00 ° C, 600 ° C, and 500 ° C. As a result, at 600 ° C. or higher, gallium nitride single crystal growth occurred only on the AlN thin film of the present invention having the smallest lattice constant difference from GaN. However, gallium nitride single crystal growth did not occur on the conventional Si substrate, sapphire substrate, and SiC substrate.

【0019】AlN薄膜(サファイア基板)上のGaN
結晶のSEM写真と光学顕微鏡写真を図1として示し
た。光学顕微鏡写真にも示されているように、六角形状
のグレインが配列しており、温度が低くなるにつれてグ
レインサイズが小さくなっている。窒化ガリウム単結晶
のX線回折測定結果は図2に示した通りであった。この
図2より、600℃以上でGaN(0002)面からの
回折ピークが得られ、AlN薄膜上の窒化ガリウム単結
晶はC軸配向していることが分かった。
GaN on AlN thin film (sapphire substrate)
An SEM photograph and an optical microscope photograph of the crystal are shown in FIG. As shown in the optical micrograph, hexagonal grains are arranged, and the grain size decreases as the temperature decreases. X-ray diffraction measurement results of the gallium nitride single crystal were as shown in FIG. From FIG. 2, a diffraction peak from the GaN (0002) plane was obtained at 600 ° C. or higher, and it was found that the gallium nitride single crystal on the AlN thin film was C-axis oriented.

【0020】また、この発明の窒化ガリウム単結晶の結
晶性を評価するために、X線ロッキングカーブ測定とカ
ソードルミネッセンス測定を行った。そのX線ロッキン
グカーブ測定の結果は図3(a)(b)に示した通りで
あった。この図3から温度が低くなる程、結晶性や配向
性が悪くなっていることがわかる。さらにカソードルミ
ネッセンス測定の結果は図4に示した通りであり、約
3.4(eV)のバンド端付近発光を観測し、温度が低
い程半値幅が大きくなっていることがわかる。
Further, in order to evaluate the crystallinity of the gallium nitride single crystal of the present invention, X-ray rocking curve measurement and cathodoluminescence measurement were performed. The results of the X-ray rocking curve measurement were as shown in FIGS. It can be seen from FIG. 3 that the lower the temperature, the worse the crystallinity and orientation. Further, the result of the cathodoluminescence measurement is as shown in FIG. 4, and emission near the band edge of about 3.4 (eV) is observed. It can be seen that the lower the temperature, the larger the half width.

【0021】以上の実施例より、基板を導入することに
よって、自然核成長より低温の600℃でAlN薄膜上
に窒素ガリウム単結晶成長が起こることがわかる。比較例 基板を挿入することなく、自然核成長による窒化ガリウ
ム単結晶の育成を行った。基板を挿入することを除いて
は、実施例1と同様の条件であった。すなわち、内径7
mm、長さ10cmのステンレスチューブを用いて、最
高到達温度を800℃とし、チューブ内の圧力が100
気圧となるようにNaN3 を秤量してγNa=0.25
〜0.64の範囲で育成を行ったところ、γNa=0.
4〜0.47で窒化ガリウム単結晶が得られた。
From the above examples, it can be seen that by introducing a substrate, single crystal growth of nitrogen gallium occurs on an AlN thin film at 600 ° C. lower than natural nucleation. A gallium nitride single crystal was grown by natural nucleus growth without inserting a comparative substrate. The conditions were the same as in Example 1 except that the substrate was inserted. That is, the inner diameter 7
Using a stainless steel tube with a length of 10 mm and a maximum length of 800 ° C.
NaN 3 was weighed so that the pressure became γNa = 0.25.
When the cultivation was performed in the range of 0.60.64, γNa = 0.
A gallium nitride single crystal was obtained at 4-0.47.

【0022】しかしながら、結晶は多数できてしまい、
サイズは最大のもので0.5mm程度の非常に小さいも
のしかできなかった。結晶の一つに注目すると平板状の
結晶になっていた。次に、従来技術で生成された窒化ガ
リウム単結晶について、結晶の平板な面に対するX線回
折、ロッキングカーブ、および、カソードルミネッセン
スを測定した。その結晶X線回折測定結果は、図5
(A)(B)に示した通りであり、(0002)面に対
応する回折ピークが観察され、平板な面が(0002)
面であることがわかった。さらに、この面に対するロッ
キングカーブを測定したところ半値幅77秒という値が
得られた。また、カソードルミネッセンス測定の結果、
室温で図6のような約3.4(eV)にピークをもつバ
ンド端付近発光を観測した。
However, many crystals are formed,
The maximum size was only very small, about 0.5 mm. Focusing on one of the crystals, it was a flat crystal. Next, with respect to the gallium nitride single crystal produced by the conventional technique, X-ray diffraction, rocking curve, and cathodoluminescence on a flat surface of the crystal were measured. The result of the crystal X-ray diffraction measurement is shown in FIG.
(A) As shown in (B), a diffraction peak corresponding to the (0002) plane is observed, and the flat plane is (0002) plane.
Turned out to be a plane. Further, when a rocking curve for this surface was measured, a value of a half width of 77 seconds was obtained. Also, as a result of cathodoluminescence measurement,
At room temperature, emission near the band edge having a peak at about 3.4 (eV) as shown in FIG. 6 was observed.

【0023】[0023]

【発明の効果】以上詳しく説明したように、この発明に
より、核発生の制御を可能とし、比較的低温・低圧で、
高品質な大きなバルク状窒化ガリウム単結晶を育成する
ことができる。
As described above in detail, the present invention enables the control of nucleation and enables the control at a relatively low temperature and low pressure.
High quality bulk bulk gallium nitride single crystals can be grown.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例としてのSEM写真と光学顕
微鏡写真を示したものである。
FIG. 1 shows an SEM photograph and an optical microscope photograph as an example of the present invention.

【図2】この発明の実施例であって、この発明の結晶の
X線回折結果である。
FIG. 2 is an X-ray diffraction result of a crystal of the present invention, which is an example of the present invention.

【図3】(a)(b)は、この発明の実施例であって、
この発明の結晶のX線ロッキングカーブ測定結果であ
る。
FIGS. 3A and 3B are embodiments of the present invention,
5 is a result of measuring an X-ray rocking curve of the crystal of the present invention.

【図4】この発明の実施例であって、この発明の結晶の
カソードルミネッセンス測定結果である。
FIG. 4 is an example of the present invention, and is a result of cathodoluminescence measurement of the crystal of the present invention.

【図5】従来方法で得られた結晶のX線ロッキングカー
ブ測定結果である。
FIG. 5 is an X-ray rocking curve measurement result of a crystal obtained by a conventional method.

【図6】従来方法で得られた結晶のカソードルミネッセ
ンス測定結果である。
FIG. 6 shows a result of cathodoluminescence measurement of a crystal obtained by a conventional method.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 窒化ガリウム(GaN)薄膜または窒化
アルミニウム(AlN)薄膜を表面に堆積させた基板
と、窒素原料およびガリウム原料とを加熱して、基板表
面上にのみ核発生させてバルク状窒化ガリウム単結晶を
育成することを特徴とする窒化ガリウム単結晶の育成方
法。
1. A substrate on which a gallium nitride (GaN) thin film or an aluminum nitride (AlN) thin film is deposited, and a nitrogen source and a gallium source are heated to generate nuclei only on the substrate surface, thereby forming a bulk nitride. A method for growing a gallium nitride single crystal, comprising growing a gallium single crystal.
【請求項2】 基板として、サファイア基板、GaAs
基板、GaP基板またはシリコン基板を用いる請求項1
の窒化ガリウム単結晶の育成方法。
2. A sapphire substrate or GaAs substrate.
2. A substrate, a GaP substrate, or a silicon substrate.
Of growing gallium nitride single crystals.
【請求項3】 レーザーアブレーション法により、Ga
N薄膜またはAlN薄膜を表面に堆積させた基板を用い
る請求項1または2の窒化ガリウム単結晶の育成方法。
3. The method according to claim 1, wherein Ga is a laser ablation method.
3. The method of growing a gallium nitride single crystal according to claim 1, wherein a substrate on which an N thin film or an AlN thin film is deposited is used.
【請求項4】 窒素原料として、アジ化ナトリウム(N
aN3 )を用いる請求項1ないし3のいずれかの窒化ガ
リウム単結晶の育成方法。
4. As a nitrogen raw material, sodium azide (N
4. The method for growing a gallium nitride single crystal according to claim 1, wherein aN 3 ) is used.
【請求項5】 ガリウム原料として、単体ガリウム金属
を用いる請求項1ないし4のいずれかの窒化ガリウム単
結晶の育成方法。
5. The method for growing a gallium nitride single crystal according to claim 1, wherein a single gallium metal is used as the gallium raw material.
【請求項6】 600℃以上で加熱する請求項1ないし
5のいずれかの窒化ガリウム単結晶の育成方法。
6. The method of growing a gallium nitride single crystal according to claim 1, wherein the heating is performed at 600 ° C. or higher.
JP13641599A 1999-05-17 1999-05-17 Method for growing gallium nitride single crystal Expired - Lifetime JP3957918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13641599A JP3957918B2 (en) 1999-05-17 1999-05-17 Method for growing gallium nitride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13641599A JP3957918B2 (en) 1999-05-17 1999-05-17 Method for growing gallium nitride single crystal

Publications (2)

Publication Number Publication Date
JP2000327495A true JP2000327495A (en) 2000-11-28
JP3957918B2 JP3957918B2 (en) 2007-08-15

Family

ID=15174636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13641599A Expired - Lifetime JP3957918B2 (en) 1999-05-17 1999-05-17 Method for growing gallium nitride single crystal

Country Status (1)

Country Link
JP (1) JP3957918B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168650A (en) * 2002-11-08 2004-06-17 Ricoh Co Ltd Group iii nitride crystal, method and apparatus for growing group iii nitride crystal, and semiconductor device and system equipped with it
JP2004189590A (en) * 2002-11-26 2004-07-08 Ricoh Co Ltd Iii-group nitride crystal, method for crystal growth thereof, and semiconductor device and system
US6780239B2 (en) 2000-10-19 2004-08-24 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group-III nitride semiconductor device
JP2005060216A (en) * 2003-07-29 2005-03-10 Ngk Insulators Ltd Method and apparatus for manufacturing group iii nitride single crystal
JP2005225681A (en) * 2003-01-20 2005-08-25 Matsushita Electric Ind Co Ltd Production method of group iii nitride substrate, group iii nitride substrate produced thereby, and semiconductor device and production method thereof
JP2005247594A (en) * 2004-03-01 2005-09-15 Ricoh Co Ltd Crystal growth method of group iii nitride, group iii nitride crystal and semiconductor device
US6949140B2 (en) 2001-12-05 2005-09-27 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group-III nitride semiconductor device
US7001457B2 (en) 2001-05-01 2006-02-21 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group-III nitride semiconductor device
US7160388B2 (en) 2001-06-06 2007-01-09 Nichia Corporation Process and apparatus for obtaining bulk monocrystalline gallium-containing nitride
WO2007105832A1 (en) * 2006-03-16 2007-09-20 Toyoda Gosei Co., Ltd. Semiconductor substrate, electronic device, optical device, and production methods therefor
US7335262B2 (en) 2002-05-17 2008-02-26 Ammono Sp. Z O.O. Apparatus for obtaining a bulk single crystal using supercritical ammonia
US7374615B2 (en) 2001-06-06 2008-05-20 Ammono.Sp.Zo.O Method and equipment for manufacturing aluminum nitride bulk single crystal
WO2008059901A1 (en) 2006-11-14 2008-05-22 Osaka University PROCESS FOR PRODUCTION OF GaN CRYSTALS, GaN CRYSTALS, GaN CRYSTAL SUBSTRATE, SEMICONDUCTOR DEVICES, AND APPARATUS FOR PRODUCTION OF GaN CRYSTALS
US7435295B2 (en) 2004-02-19 2008-10-14 Matsushita Electric Industrial Co., Ltd. Method for producing compound single crystal and production apparatus for use therein
US7449064B2 (en) 2004-09-16 2008-11-11 Ngk Insulators, Ltd. Method for producing AlN single crystal and AlN single crystal
US7507292B2 (en) 2002-07-31 2009-03-24 Osaka Industrial Promotion Organization Method for producing group III element nitride single crystal and group III element nitride transparent single crystal prepared thereby
JP2009091247A (en) * 2009-01-23 2009-04-30 Ricoh Co Ltd Method for manufacturing crystal of group-iii nitride
JP2010138070A (en) * 2002-11-26 2010-06-24 Ricoh Co Ltd Method for producing crystal of group iii nitride
US7750355B2 (en) 2001-10-26 2010-07-06 Ammono Sp. Z O.O. Light emitting element structure using nitride bulk single crystal layer
US7811380B2 (en) 2002-12-11 2010-10-12 Ammono Sp. Z O.O. Process for obtaining bulk mono-crystalline gallium-containing nitride
US7833346B2 (en) 2006-03-20 2010-11-16 Ngk Insulators, Ltd. Method and apparatus for manufacturing group III nitride crystals
US7871843B2 (en) 2002-05-17 2011-01-18 Ammono. Sp. z o.o. Method of preparing light emitting device
US7905957B2 (en) 2004-11-26 2011-03-15 Ammono Sp. Z.O.O. Method of obtaining bulk single crystals by seeded growth
US7959729B2 (en) 2003-03-17 2011-06-14 Osaka University Method for producing group-III-element nitride single crystals and apparatus used therein
US7981213B2 (en) 2002-11-08 2011-07-19 Ricoh Company, Ltd. Group III nitride crystal, crystal growth process and crystal growth apparatus of group III nitride
US8110848B2 (en) 2002-12-11 2012-02-07 Ammono Sp. Z O.O. Substrate for epitaxy and method of preparing the same
US8398767B2 (en) 2004-06-11 2013-03-19 Ammono S.A. Bulk mono-crystalline gallium-containing nitride and its application
US8404045B2 (en) 2007-07-13 2013-03-26 Ngk Insulators, Ltd. Method for manufacturing group III nitride single crystals
US8916124B2 (en) 2007-12-05 2014-12-23 Ricoh Company, Ltd. Group III nitride crystal, method for growing the group III nitride crystal, and apparatus for growing the same
US9231155B2 (en) 2012-08-30 2016-01-05 Ngk Insulators, Ltd. Composite substrates, a method of producing the same, a method of producing functional layers made of nitrides of group 13 elements, and functional devices

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780239B2 (en) 2000-10-19 2004-08-24 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group-III nitride semiconductor device
US8562737B2 (en) 2000-10-19 2013-10-22 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group III nitride semiconductor device
US8623138B2 (en) 2001-05-01 2014-01-07 Ricoh Company, Ltd. Crystal growth apparatus
US7531038B2 (en) 2001-05-01 2009-05-12 Ricoh Company, Ltd. Crystal growth method
US7001457B2 (en) 2001-05-01 2006-02-21 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group-III nitride semiconductor device
US7374615B2 (en) 2001-06-06 2008-05-20 Ammono.Sp.Zo.O Method and equipment for manufacturing aluminum nitride bulk single crystal
US7744697B2 (en) 2001-06-06 2010-06-29 Nichia Corporation Bulk monocrystalline gallium nitride
US7160388B2 (en) 2001-06-06 2007-01-09 Nichia Corporation Process and apparatus for obtaining bulk monocrystalline gallium-containing nitride
US7252712B2 (en) 2001-06-06 2007-08-07 Ammono Sp. Z O.O. Process and apparatus for obtaining bulk monocrystalline gallium-containing nitride
US7422633B2 (en) 2001-06-06 2008-09-09 Ammono Sp. Zo. O. Method of forming gallium-containing nitride bulk single crystal on heterogeneous substrate
US7750355B2 (en) 2001-10-26 2010-07-06 Ammono Sp. Z O.O. Light emitting element structure using nitride bulk single crystal layer
US7935550B2 (en) 2001-10-26 2011-05-03 Ammono Sp. Z O.O. Method of forming light-emitting device using nitride bulk single crystal layer
US6949140B2 (en) 2001-12-05 2005-09-27 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group-III nitride semiconductor device
US7335262B2 (en) 2002-05-17 2008-02-26 Ammono Sp. Z O.O. Apparatus for obtaining a bulk single crystal using supercritical ammonia
US7871843B2 (en) 2002-05-17 2011-01-18 Ammono. Sp. z o.o. Method of preparing light emitting device
US7507292B2 (en) 2002-07-31 2009-03-24 Osaka Industrial Promotion Organization Method for producing group III element nitride single crystal and group III element nitride transparent single crystal prepared thereby
JP2004168650A (en) * 2002-11-08 2004-06-17 Ricoh Co Ltd Group iii nitride crystal, method and apparatus for growing group iii nitride crystal, and semiconductor device and system equipped with it
US7981213B2 (en) 2002-11-08 2011-07-19 Ricoh Company, Ltd. Group III nitride crystal, crystal growth process and crystal growth apparatus of group III nitride
JP4560287B2 (en) * 2002-11-08 2010-10-13 株式会社リコー Group III nitride crystal manufacturing method
JP2004189590A (en) * 2002-11-26 2004-07-08 Ricoh Co Ltd Iii-group nitride crystal, method for crystal growth thereof, and semiconductor device and system
JP2010138070A (en) * 2002-11-26 2010-06-24 Ricoh Co Ltd Method for producing crystal of group iii nitride
JP4508613B2 (en) * 2002-11-26 2010-07-21 株式会社リコー Group III nitride crystal manufacturing method
US8110848B2 (en) 2002-12-11 2012-02-07 Ammono Sp. Z O.O. Substrate for epitaxy and method of preparing the same
US7811380B2 (en) 2002-12-11 2010-10-12 Ammono Sp. Z O.O. Process for obtaining bulk mono-crystalline gallium-containing nitride
JP4597534B2 (en) * 2003-01-20 2010-12-15 パナソニック株式会社 Method for manufacturing group III nitride substrate
JP2005225681A (en) * 2003-01-20 2005-08-25 Matsushita Electric Ind Co Ltd Production method of group iii nitride substrate, group iii nitride substrate produced thereby, and semiconductor device and production method thereof
US7959729B2 (en) 2003-03-17 2011-06-14 Osaka University Method for producing group-III-element nitride single crystals and apparatus used therein
JP2005060216A (en) * 2003-07-29 2005-03-10 Ngk Insulators Ltd Method and apparatus for manufacturing group iii nitride single crystal
JP4493427B2 (en) * 2003-07-29 2010-06-30 日本碍子株式会社 Method for producing group III nitride single crystal
US7435295B2 (en) 2004-02-19 2008-10-14 Matsushita Electric Industrial Co., Ltd. Method for producing compound single crystal and production apparatus for use therein
JP4560307B2 (en) * 2004-03-01 2010-10-13 株式会社リコー Group III nitride crystal manufacturing method
JP2005247594A (en) * 2004-03-01 2005-09-15 Ricoh Co Ltd Crystal growth method of group iii nitride, group iii nitride crystal and semiconductor device
US8398767B2 (en) 2004-06-11 2013-03-19 Ammono S.A. Bulk mono-crystalline gallium-containing nitride and its application
US7449064B2 (en) 2004-09-16 2008-11-11 Ngk Insulators, Ltd. Method for producing AlN single crystal and AlN single crystal
US7905957B2 (en) 2004-11-26 2011-03-15 Ammono Sp. Z.O.O. Method of obtaining bulk single crystals by seeded growth
US8084281B2 (en) 2006-03-16 2011-12-27 Toyoda Gosei Co., Ltd. Semiconductor substrate, electronic device, optical device, and production methods therefor
WO2007105832A1 (en) * 2006-03-16 2007-09-20 Toyoda Gosei Co., Ltd. Semiconductor substrate, electronic device, optical device, and production methods therefor
US7833346B2 (en) 2006-03-20 2010-11-16 Ngk Insulators, Ltd. Method and apparatus for manufacturing group III nitride crystals
US8187507B2 (en) 2006-11-14 2012-05-29 Osaka University GaN crystal producing method, GaN crystal, GaN crystal substrate, semiconductor device and GaN crystal producing apparatus
WO2008059901A1 (en) 2006-11-14 2008-05-22 Osaka University PROCESS FOR PRODUCTION OF GaN CRYSTALS, GaN CRYSTALS, GaN CRYSTAL SUBSTRATE, SEMICONDUCTOR DEVICES, AND APPARATUS FOR PRODUCTION OF GaN CRYSTALS
US8404045B2 (en) 2007-07-13 2013-03-26 Ngk Insulators, Ltd. Method for manufacturing group III nitride single crystals
US8916124B2 (en) 2007-12-05 2014-12-23 Ricoh Company, Ltd. Group III nitride crystal, method for growing the group III nitride crystal, and apparatus for growing the same
JP2009091247A (en) * 2009-01-23 2009-04-30 Ricoh Co Ltd Method for manufacturing crystal of group-iii nitride
US9231155B2 (en) 2012-08-30 2016-01-05 Ngk Insulators, Ltd. Composite substrates, a method of producing the same, a method of producing functional layers made of nitrides of group 13 elements, and functional devices
JPWO2014034338A1 (en) * 2012-08-30 2016-08-08 日本碍子株式会社 COMPOSITE SUBSTRATE, PROCESS FOR PRODUCING THE SAME, METHOD FOR PRODUCING FUNCTIONAL LAYER COMPRISING GROUP 13 ELEMENT NITRIDE, AND FUNCTIONAL DEVICE

Also Published As

Publication number Publication date
JP3957918B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP3957918B2 (en) Method for growing gallium nitride single crystal
TWI277666B (en) Process and apparatus for obtaining bulk mono-crystalline gallium-containing nitride
US7282381B2 (en) Method of producing self supporting substrates comprising III-nitrides by means of heteroepitaxy on a sacrificial layer
TWI274735B (en) Bulk single crystal production facility employing supercritical ammonia
EP2000567B1 (en) Method for growing iii nitride single crystal
JP4603386B2 (en) Method for producing silicon carbide single crystal
CN100582324C (en) Method for producing AIN single crystal and AIN single crystal
JP2004137142A (en) Single crystal aluminum nitride membrane and forming method thereof, underlying substrate for group iii nitride membrane, luminescent element, as well as surface elastic wave device
JP2006509707A (en) An improved process for obtaining bulk single crystals of gallium-containing nitrides
JP2009543946A5 (en)
US20080206121A1 (en) Solid solution wide bandgap semiconductor materials
Yumigeta et al. The synthesis of competing phase GeSe and GeSe 2 2D layered materials
JP3716440B2 (en) Boron-containing aluminum nitride thin film and manufacturing method
JP4340866B2 (en) Nitride semiconductor substrate and manufacturing method thereof
JP2005219962A (en) Diamond single crystal substrate and its manufacturing method
US20120125255A1 (en) Method and apparatus for producing crystal of metal nitride of group 13 of the periodic table
US8008173B2 (en) III nitride single crystal and method of manufacturing semiconductor device incorporating the III nitride single crystal
WO1997013891A1 (en) METHOD OF MANUFACTURING EPITAXIAL LAYERS OF GaN OR Ga(A1,In)N ON SINGLE CRYSTAL GaN AND MIXED Ga(A1,In)N SUBSTRATES
TWI254465B (en) Method of manufacturing III-V group compound semiconductor
JP2011153055A (en) Method for producing nitride single crystal
US20230200245A1 (en) Hybrid chemical and physical vapor deposition of transition-metal-alloyed piezoelectric semiconductor films
JP3970789B2 (en) Nitride single crystal manufacturing method and manufacturing apparatus thereof
JP4779848B2 (en) Group 13 metal nitride crystal manufacturing method and semiconductor device manufacturing method using the same
US20160284545A1 (en) System and method for producing polycrystalline group iii nitride articles and use thereof in production of single crystal group iii nitride articles
JP4760652B2 (en) Method for producing Ga-containing nitride crystal and method for producing semiconductor device using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term