JP2000323636A - Heat sink - Google Patents

Heat sink

Info

Publication number
JP2000323636A
JP2000323636A JP11127971A JP12797199A JP2000323636A JP 2000323636 A JP2000323636 A JP 2000323636A JP 11127971 A JP11127971 A JP 11127971A JP 12797199 A JP12797199 A JP 12797199A JP 2000323636 A JP2000323636 A JP 2000323636A
Authority
JP
Japan
Prior art keywords
flow path
contact surface
heat sink
refrigerant
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11127971A
Other languages
Japanese (ja)
Inventor
Takashi Sesekura
孝 瀬々倉
Mikio Bessho
三樹生 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11127971A priority Critical patent/JP2000323636A/en
Publication of JP2000323636A publication Critical patent/JP2000323636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat sink for developing the maximum performance of a thyristor for large currents such as a GCT(Gate Commutated Turn-off) thyristor by concentrately cooling a high heating part. SOLUTION: This heat sink is provided with a contact face 14 with a semiconductor heating element, a coolant flow passage 6 arranged adjacently to the contact face 14 whose primary part is shaped like an almost circular-arc, and a coolant entrance 2 and a coolant exit 3 communicated with the flow passage 6. In this case, the flow passage 6 is arranged so that cooling capability on the contact face 14 can be made non-uniform according to the position in the contact face. Thus, the place with high heating values of the semiconductor heating element can be efficiently cooled without increasing the flow rate of the coolant in the flow passage 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発熱素子の
冷却に用いるヒートシンクに関するものであり、例え
ば、大電流用の発熱の大きなGCT(Gate Com
mutated Turn−off) サイリスタ、又
は、GTO(Gate Turn−Off)サイリスタ
の冷却に好適なヒートシンクに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink used for cooling a semiconductor heating element. For example, the present invention relates to a GCT (Gate Comb) which generates a large amount of heat for a large current.
The present invention relates to a heat sink suitable for cooling a mutated turn-off thyristor or a GTO (gate turn-off) thyristor.

【0002】[0002]

【従来の技術】図7は、実公平6−39502号公報に
示された従来のヒートシンクの内部形状の一例を示す要
部平面図である。図7において、21はヒートシンク、
22は冷媒の流路を形成する溝、23及び24は冷媒の
出入口である。この公報では、第一ブロックと面対称と
なる第二ブロックを重ね合わせることでヒートシンクを
構成しているが、冷媒の流路を構成する溝22の設けら
れた本体に、単なる平板を重ね合わせるのがより一般的
な構成である。
2. Description of the Related Art FIG. 7 is a plan view of a main part showing an example of the internal shape of a conventional heat sink disclosed in Japanese Utility Model Publication No. 6-39502. In FIG. 7, 21 is a heat sink,
Reference numeral 22 denotes a groove forming a flow path of the refrigerant, and reference numerals 23 and 24 denote ports for the refrigerant. In this publication, the heat sink is configured by superimposing the first block and the second block that is plane-symmetrical. However, a simple flat plate is superimposed on the main body provided with the groove 22 that configures the flow path of the refrigerant. Is a more general configuration.

【0003】半導体発熱素子の中には、例えば大電流用
の発熱の大きなGCTサイリスタ、GTOサイリスタな
どがある。これらの半導体発熱素子は複数個積み重ねた
構造のいわゆるスタック形として使用されることが多
い。その際に各半導体発熱素子をヒートシンクで挟んで
冷却することになる。従来、これらの半導体発熱素子で
は、例えば6kV、4kAで発生する熱量をヒートシン
クと接触する数10平方センチメートルで冷却する必要
があった。
[0003] Among the semiconductor heating elements, for example, there are a GCT thyristor and a GTO thyristor which generate a large amount of heat for a large current. These semiconductor heating elements are often used as a so-called stack type having a structure in which a plurality of semiconductor heating elements are stacked. At that time, each semiconductor heating element is cooled by sandwiching it between heat sinks. Conventionally, in these semiconductor heating elements, it has been necessary to cool the heat generated at, for example, 6 kV and 4 kA by several tens of square centimeters in contact with the heat sink.

【0004】このような課題を解決するため、現在まで
に、流路の断面積を大きくするため流路の幅を広くした
り深さを大きくして、若しくは、特開平8−97337
号公報に示されるように流路を二分割して冷却能力を高
めたり、又は、特開昭63−241956号公報に示さ
れるように、冷媒温度の低い入口側に近い流路と熱を奪
うことで冷媒温度が高くなる出口側に近い流路とを交互
に配置して、冷却能力の均一化を図ったりするヒートシ
ンクが提案されている。
[0004] In order to solve such a problem, until now, the width or depth of the flow path has been increased in order to increase the cross-sectional area of the flow path, or Japanese Unexamined Patent Publication No. Hei 8-97337.
The cooling capacity is increased by dividing the flow path into two as shown in Japanese Unexamined Patent Application Publication, or as shown in JP-A-63-241956, heat is taken from the flow path near the inlet side where the refrigerant temperature is low. There has been proposed a heat sink that alternately arranges flow paths near the outlet side where the refrigerant temperature becomes high to achieve uniform cooling capacity.

【0005】[0005]

【発明が解決しようとする課題】ところが、このような
従来技術では、流路の断面積を大きくするため流路の幅
を広くかつ深くして、あるいは流路を分割することで流
路断面積が増えるため、より多くの流量を確保すること
になりがちで、しかも、このような構造にするためにヒ
ートシンクの加工工数若しくは加工時間を増加させてい
たため、高価なヒートシンクになるという問題があっ
た。
However, in such a conventional technique, the width of the flow path is increased and reduced in order to increase the cross-sectional area of the flow path, or the cross-sectional area of the flow path is increased by dividing the flow path. Therefore, there is a problem in that it tends to secure a larger flow rate, and furthermore, since the number of processing steps or processing time of the heat sink is increased in order to make such a structure, the heat sink becomes expensive. .

【0006】また、冷媒温度の低い入口側に近い流路
と、熱を奪うことで冷媒温度が高くなる出口側に近い流
路とが、交互になるように配置され、ヒートシンクの冷
却能力の均一化をできるだけ図れるようにと工夫されて
いる場合には、逆に、被冷却部の中でも重点的に冷却す
べき領域の冷却能力が悪くなるという問題もあった。
In addition, a flow path near the inlet side where the refrigerant temperature is low and a flow path near the outlet side where the refrigerant temperature rises by removing heat are arranged alternately, so that the cooling capacity of the heat sink is uniform. On the other hand, if it is devised so that the cooling can be achieved as much as possible, on the contrary, there is a problem that the cooling capacity of a region to be cooled mainly in the portion to be cooled is deteriorated.

【0007】加えて、従来では、半導体発熱素子との接
触面の外縁に囲まれる範囲内にのみヒートシンクの冷媒
通路が設けられており、上記発熱素子との接触面の外側
では単に外部への出入口への流路を確保するだけであ
り、発熱素子との接触面から外側に広がる熱を冷却する
ための冷媒通路が無く、特に、接触面の外縁部の冷却能
力が求められる場合に冷却能力が悪くなる問題があっ
た。
[0007] In addition, conventionally, the coolant passage of the heat sink is provided only in a range surrounded by the outer edge of the contact surface with the semiconductor heating element. Only to secure a flow path to the heating element, there is no refrigerant passage for cooling the heat spreading outward from the contact surface with the heating element, and especially when the cooling capability of the outer edge of the contact surface is required, the cooling capability is reduced. There was a problem that got worse.

【0008】しかも、従来は、流速を揃えるために流路
の幅を揃えることに固執していたため、局所的に見た場
合に冷媒と接する割合が低くなり、冷却能力に問題が発
生する場合もあった。
[0008] In addition, conventionally, since it has been insistent to make the width of the flow path uniform in order to make the flow velocity uniform, the rate of contact with the refrigerant is low when viewed locally, and a problem may occur in the cooling capacity. there were.

【0009】この発明は上記のような問題点を解消する
ためになされたものであり、流量を増やすことなく、重
点的に冷却すべき領域の冷却能力を引き上げて、より効
率的に半導体発熱素子を冷却することができるヒートシ
ンクを得ることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it has been proposed to increase the cooling capacity of a region to be mainly cooled without increasing the flow rate so that a semiconductor heating element can be more efficiently provided. It is intended to obtain a heat sink capable of cooling the heat sink.

【0010】[0010]

【課題を解決するための手段】この発明に係るヒートシ
ンクは、半導体発熱素子との接触面と、この接触面近傍
に設けられた要部が略円弧形状である冷媒の流路と、当
該流路に通じる冷媒の入口及び出口とを備え、上記流路
が、上記接触面における冷却能力が該接触面内の位置に
より不均等となるように配置されているものである。
According to the present invention, there is provided a heat sink comprising: a contact surface with a semiconductor heat generating element; a coolant passage having a substantially arc-shaped main portion provided in the vicinity of the contact surface; And an inlet and an outlet for a refrigerant communicating with the cooling medium, and the flow path is arranged such that the cooling capacity at the contact surface becomes uneven depending on the position within the contact surface.

【0011】又、流路が、要部より小さい曲率半径の略
円弧形状であって冷媒の流れを逆方向に折り返す部分を
有するものである。
Further, the flow path has a substantially arc shape having a radius of curvature smaller than that of the main part, and has a portion where the flow of the refrigerant is turned in the opposite direction.

【0012】又、流路のうち冷媒の入口に近い部分が接
触面の外縁近傍に、冷媒の出口に近い部分が接触面の中
心付近に設けられているものである。
The portion of the flow path near the inlet of the refrigerant is provided near the outer edge of the contact surface, and the portion near the outlet of the refrigerant is provided near the center of the contact surface.

【0013】又、流路のうち冷媒の入口に近い部分が、
接触面の外縁の外側に設けられているものである。
Further, a portion of the flow path near the inlet of the refrigerant is
It is provided outside the outer edge of the contact surface.

【0014】又、流路は、冷媒の流れを逆方向に折り返
す部分の幅をその他の部分の幅よりも拡げたものであ
る。
[0014] In the flow path, the width of the portion where the flow of the refrigerant is turned in the opposite direction is made wider than the width of the other portions.

【0015】[0015]

【発明の実施の形態】実施の形態1.図1は本発明によ
るヒートシンクの要部平面図であり、図2は図1におけ
るA−A線断面図である。図1及び図2において、1は
ヒートシンク、2は入口側ニップル、3は出口側ニップ
ル、4は入口側流路、5は出口側流路、6は主要な部分
が略円弧状の冷媒が流れる流路、7は冷媒の流れを逆方
向に折り返す流路折り返し部、8は流路6のほぼ中心付
近に位置して流路折り返し部7と同様に冷媒の流れを逆
方向に折り返す曲率変化部、9はヒートシンク1に設け
られた位置合わせのためのセンター穴、10は流路6を
構成する溝12が加工されたブロック、11はブロック
10と銀ろうで接合される蓋、13は溝12どうしを隔
てる支柱部である。又、図中、一点鎖線で囲まれる領域
14は、半導体発熱素子からの熱伝達を受ける接触面を
表す。ここで、上記半導体発熱素子は、その外周が接触
面14の外縁(即ち、一点鎖線で示される領域)に重な
るように載置されるものとする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a plan view of a main part of a heat sink according to the present invention, and FIG. 2 is a sectional view taken along line AA in FIG. 1 and 2, 1 is a heat sink, 2 is an inlet nipple, 3 is an outlet nipple, 4 is an inlet flow path, 5 is an outlet flow path, and 6 is a substantially arc-shaped refrigerant whose main part flows. A flow path, 7 is a flow path fold that folds the flow of the refrigerant in the reverse direction, and 8 is a curvature change part that is located near the center of the flow path 6 and folds the flow of the refrigerant in the same direction as the flow path fold 7. , 9 is a center hole provided on the heat sink 1 for alignment, 10 is a block formed with a groove 12 constituting the flow path 6, 11 is a lid joined to the block 10 with silver solder, and 13 is a groove 12 It is a pillar that separates each other. In the drawing, a region 14 surrounded by a chain line represents a contact surface that receives heat transfer from the semiconductor heating element. Here, it is assumed that the semiconductor heating element is mounted so that the outer periphery thereof overlaps the outer edge of the contact surface 14 (that is, the area indicated by the dashed line).

【0016】本実施の形態において、流路6の平面形状
は、略円弧を中心とした曲線であり、冷媒の流れを逆方
向となるよう折り返すための前記円弧より小さい曲率半
径の円弧からなる折り返し部7が3個、同様に前記円弧
より小さい曲率半径の円弧からなる曲率変化部8が2
個、それぞれ形成されている。
In the present embodiment, the planar shape of the flow path 6 is a curved line centered on a substantially circular arc, and is formed by a circular arc having a smaller radius of curvature than the circular arc for folding the flow of the refrigerant in the opposite direction. The curvature changing portion 8 is composed of three portions 7, similarly having an arc having a radius of curvature smaller than the arc.
Each is formed.

【0017】半導体発熱素子の発熱量が均一に分布せ
ず、特定の箇所の発熱量が多い場合、流路6のうち冷媒
温度が低い部分をより大きな発熱量がある箇所に集中的
に配置する必要がある。ここで、入口側ニップル2から
ヒートシンク1に流れ込む冷媒は、入口側流路4の方
が、出口側流路5の冷媒よりも熱を吸収していない分だ
け温度が低くなる。そのため、この実施の形態において
は、外側に位置する流路6に流れる冷媒ほど温度が引く
なるため、所望の領域であるヒートシンクの外周に近い
方が、内周側よりも冷却能力が高く、半導体発熱素子の
外周部を集中して冷却するのに適することになる。
If the heat generation amount of the semiconductor heat generating element is not uniformly distributed and the heat generation amount at a specific location is large, the portion of the flow path 6 where the refrigerant temperature is low is intensively arranged at the location where the heat generation amount is larger. There is a need. Here, the temperature of the refrigerant flowing from the inlet side nipple 2 into the heat sink 1 is lower in the inlet side flow path 4 than the refrigerant in the outlet side flow path 5 because the refrigerant does not absorb heat. Therefore, in this embodiment, since the temperature of the refrigerant flowing in the flow path 6 located on the outer side decreases, the cooling capacity is higher in the area closer to the outer periphery of the heat sink, which is a desired area, than in the inner area. This is suitable for centrally cooling the outer peripheral portion of the heating element.

【0018】本実施の形態によれば、最も発熱量が多い
外周部に冷たい冷媒を配置することができるようになる
ため、流路と支柱の幅を狭くして流路を深くしたり、流
路を二分割にして冷却能力を高めたりせずに、流量を増
やすことなく発熱量の多い箇所を効率的に冷却すること
ができるようになる。また、流路6の経路を変化させる
だけであるため、加工工数の増大を最小限におさえるこ
とができ、冷却機能に対して低価格なヒートシンクとな
る。
According to the present embodiment, since the cold refrigerant can be arranged on the outer peripheral portion where the calorific value is the largest, the width of the flow path and the column is narrowed to make the flow path deep, Without increasing the cooling capacity by dividing the road into two parts, it is possible to efficiently cool a portion having a large amount of heat without increasing the flow rate. In addition, since only the path of the flow path 6 is changed, an increase in the number of processing steps can be minimized, and the heat sink is inexpensive for the cooling function.

【0019】実施の形態2.図3は本実施の形態による
ヒートシンクの要部平面図である。図3において図1と
同一の符号は、同様の構成要素を示す。又、図中、一点
鎖線で囲まれる領域14は、半導体発熱素子からの熱伝
達を受ける接触面を表す。ここで、上記半導体発熱素子
は、その外周が接触面14の外縁(即ち、一点鎖線で示
される領域)に重なるように載置されるものとする。
Embodiment 2 FIG. 3 is a plan view of a main part of the heat sink according to the present embodiment. 3, the same reference numerals as those in FIG. 1 indicate the same components. In the drawing, a region 14 surrounded by a chain line represents a contact surface that receives heat transfer from the semiconductor heating element. Here, it is assumed that the semiconductor heating element is mounted so that the outer periphery thereof overlaps the outer edge of the contact surface 14 (that is, the area indicated by the dashed line).

【0020】本実施の形態において、流路6は、円弧を
中心とした曲線であり、冷媒の流れを逆方向となるよう
折り返すための前記円弧より小さい曲率半径の円弧から
なる折り返し部7が3個、同様に前記円弧より小さい曲
率半径の円弧からなる曲率変化部8が2個、それぞれ形
成されており、しかも、半導体発熱素子からの熱伝達を
受ける接触面(即ち、一点鎖線で囲まれる領域14)の
外縁部に、主として冷媒温度の低い入口側流路4が設け
られている。
In the present embodiment, the flow path 6 is a curve centered on an arc, and the folded portion 7 formed of an arc having a smaller radius of curvature than the arc for turning the flow of the refrigerant in the opposite direction is formed by three. And two curvature changing portions 8 each having an arc having a radius of curvature smaller than that of the arc, and a contact surface (that is, a region surrounded by a dashed line) receiving heat transfer from the semiconductor heating element. The inlet side flow path 4 mainly having a low refrigerant temperature is provided at the outer edge portion of 14).

【0021】例えば、GCTサイリスタにおいては、電
流集中をおこして損失(発熱)が最も大きいと考えられ
るゲートが外周部にあるにもかかわらず、メサ形構造の
ウエハで外周部が放熱(伝熱)しにくい内部構造になっ
ている。このような場合、被冷却部の中でも重点的に冷
却すべき領域が接触面14の外縁部となり、この実施の
形態における構成のヒートシンクならば、GCTサイリ
スタの構造上の損失特性に応じて、最も冷却すべきウエ
ハの外周部を集中的に冷却することができ、冷却機能に
対して低価格なヒートシンクとなり、冷却効率を向上さ
せることができる。
For example, in a GCT thyristor, the outer periphery is radiated (heat transfer) in a mesa-shaped wafer even though the gate is considered to be the largest in loss (heat generation) due to current concentration. It has an internal structure that is difficult to handle. In such a case, the region to be cooled mainly in the portion to be cooled is the outer edge of the contact surface 14, and if the heat sink has the configuration in this embodiment, the heat sink having the configuration according to the GCT thyristor is most suitable according to the structural loss characteristics. The outer peripheral portion of the wafer to be cooled can be intensively cooled, so that the heat sink is inexpensive for the cooling function, and the cooling efficiency can be improved.

【0022】実施の形態3.図4は本発明によるヒート
シンクの要部平面図である。図4において図1と同一の
符号は、同様の構成要素を示す。又、図中、一点鎖線で
囲まれる領域14は、半導体発熱素子からの熱伝達を受
ける接触面を表す。ここで、上記半導体発熱素子は、そ
の外周が接触面14の外縁(即ち、一点鎖線で示される
領域)に重なるように載置されるものとする。
Embodiment 3 FIG. FIG. 4 is a plan view of a main part of a heat sink according to the present invention. 4, the same reference numerals as those in FIG. 1 indicate the same components. In the drawing, a region 14 surrounded by a chain line represents a contact surface that receives heat transfer from the semiconductor heating element. Here, it is assumed that the semiconductor heating element is mounted so that the outer periphery thereof overlaps the outer edge of the contact surface 14 (that is, the area indicated by the dashed line).

【0023】本実施の形態では、実施の形態2で折り返
し部7が3個であったのに対して、折り返し部7が2個
となっている点を除いて、実施の形態2と同様の構成で
あり、この場合も実施の形態2と同様の効果を有する。
又、折り返し部7を1個として流路6がヒートシンク1
のセンター穴9の方向へと渦巻き状に流路6を形成する
場合も同様の効果を有する。又、同様に、折り返し部が
4つ以上であってもかまわない。
In the present embodiment, the number of the folded portions 7 is two in the second embodiment, but the same as that of the second embodiment except that the number of the folded portions 7 is two. In this case, the same effect as in the second embodiment can be obtained.
Further, the flow path 6 is formed by using the folded portion 7 as one piece and the heat sink 1.
The same effect can be obtained when the flow path 6 is formed spirally in the direction of the center hole 9. Similarly, four or more folded portions may be used.

【0024】実施の形態4.図5は本実施の形態による
ヒートシンクの要部平面図である。図5において図1と
同一の符号は、同様の構成要素を示す。又、図中、一点
鎖線で囲まれる領域14は、半導体発熱素子からの熱伝
達を受ける接触面を表す。ここで、上記半導体発熱素子
は、その外周が接触面14の外縁(即ち、一点鎖線で示
される領域)に重なるように載置されるものとする。
Embodiment 4 FIG. 5 is a plan view of a main part of the heat sink according to the present embodiment. 5, the same reference numerals as those in FIG. 1 indicate the same components. In the drawing, a region 14 surrounded by a chain line represents a contact surface that receives heat transfer from the semiconductor heating element. Here, it is assumed that the semiconductor heating element is mounted so that the outer periphery thereof overlaps the outer edge of the contact surface 14 (that is, the area indicated by the dashed line).

【0025】本実施の形態において、流路6は、円弧を
中心とした曲線であり、冷媒の流れを逆方向となるよう
折り返すための前記円弧より小さい曲率半径の円弧から
なる折り返し部7が3個、同様に前記円弧より小さい曲
率半径の円弧からなる曲率変化部8が2個、それぞれ形
成されており、しかも、半導体発熱素子からの熱伝達を
受ける接触面(即ち、一点鎖線で囲まれる領域14)の
外縁部よりもさらに外側に、主として冷媒温度の低い入
口側流路4が設けられている。
In this embodiment, the flow path 6 is a curve centered on a circular arc, and the folded portion 7 formed of a circular arc having a smaller radius of curvature than the circular arc for returning the flow of the refrigerant in the opposite direction. And two curvature changing portions 8 each having an arc having a radius of curvature smaller than that of the arc, and a contact surface (that is, a region surrounded by a dashed line) receiving heat transfer from the semiconductor heating element. An inlet-side flow path 4 mainly having a low coolant temperature is provided further outside the outer edge portion of (14).

【0026】本実施の形態においては、このような構成
により、半導体発熱素子との接触面から外側に広がる熱
を冷却することができ、特に接触面14の外縁部の冷却
能力の向上が求められる場合に適することになる。この
ように、接触面14よりも一回り広い範囲、あるいはそ
れ以上に広い領域に流路6を設けることで、接触面14
より外側からも熱を奪う冷媒が配置されるので、外周部
の冷却性能をさらに向上させることができる。
In the present embodiment, with such a structure, heat spreading outward from the contact surface with the semiconductor heating element can be cooled, and particularly, the cooling capability of the outer edge of the contact surface 14 is required to be improved. Will be suitable for the case. As described above, by providing the flow path 6 in a region slightly wider than the contact surface 14 or a region wider than that, the contact surface 14
Since the refrigerant that takes away heat from the outside is arranged, the cooling performance of the outer peripheral portion can be further improved.

【0027】実施の形態5.図6は本実施の形態による
ヒートシンクの要部平面図である。図6において図1と
同一の符号は、同様の構成要素を示す。又、図中、一点
鎖線で囲まれる領域14は、半導体発熱素子からの熱伝
達を受ける接触面を表す。又、15は折り返し部7や曲
率変化部8に設けられた淀みである。
Embodiment 5 FIG. FIG. 6 is a plan view of a main part of the heat sink according to the present embodiment. 6, the same reference numerals as those in FIG. 1 indicate the same components. In the drawing, a region 14 surrounded by a chain line represents a contact surface that receives heat transfer from the semiconductor heating element. Reference numeral 15 denotes a stagnation provided in the folded portion 7 and the curvature changing portion 8.

【0028】本実施の形態においては、折り返し部7や
曲率変化部8のそれぞれに、流路6の他の部分よりも幅
が広い淀み部15を設けることで、当該箇所で局所的に
見た場合に、支柱13の割合が高く溝12の割合が低く
なることで冷媒と接する割合が低くなるといった不具合
を抑制し、冷却能力が低下することを防止することがで
きる。
In the present embodiment, each of the folded portion 7 and the curvature changing portion 8 is provided with a stagnation portion 15 having a width wider than other portions of the flow path 6, so that the stagnation portion 15 can be viewed locally at that portion. In this case, it is possible to suppress the problem that the ratio of the support 13 is high and the ratio of the groove 12 is low, and the ratio of contact with the refrigerant is low, and it is possible to prevent the cooling capacity from being lowered.

【0029】[0029]

【発明の効果】この発明に係るヒートシンクは、半導体
発熱素子との接触面と、この接触面近傍に設けられた要
部が略円弧形状である冷媒の流路と、当該流路に通じる
冷媒の入口及び出口とを備え、上記流路が、上記接触面
における冷却能力が該接触面内の位置により不均等とな
るように配置されているので、上記流路における冷媒の
流量を増やすことなく、上記半導体発熱素子の発熱量の
多い箇所を効率的に冷却することができる。
The heat sink according to the present invention has a contact surface with a semiconductor heat generating element, a flow path of a refrigerant provided in the vicinity of the contact surface and having a substantially circular arc shape, and a flow path of the refrigerant flowing through the flow path. With an inlet and an outlet, the flow path is arranged so that the cooling capacity at the contact surface becomes uneven at a position within the contact surface, without increasing the flow rate of the refrigerant in the flow path. It is possible to efficiently cool a portion of the semiconductor heating element that generates a large amount of heat.

【0030】又、流路が、要部より小さい曲率半径の略
円弧形状であって冷媒の流れを逆方向に折り返す部分を
有するので、支柱の幅を狭くかつ流路を深くしたり、流
路を分割したりする必要がないために、加工工数の増大
をおさえることができ、冷却機能に対して低価格なヒー
トシンクを得ることが可能となる。
Further, since the flow path has a substantially arc shape having a radius of curvature smaller than that of the main part and has a portion where the flow of the refrigerant is turned in the opposite direction, the width of the column is narrowed and the flow path is deepened. Since it is not necessary to divide the heat sink, it is possible to suppress an increase in the number of processing steps, and to obtain a low-cost heat sink for the cooling function.

【0031】又、流路のうち冷媒の入口に近い部分が接
触面の外縁近傍に、冷媒の出口に近い部分が接触面の中
心付近に設けられているので、被冷却部の中でも重点的
に冷却すべき領域が接触面の外縁付近にあるときに、冷
却効率を向上させることができる。
Since the portion of the flow path near the inlet of the refrigerant is provided near the outer edge of the contact surface, and the portion near the outlet of the refrigerant is provided near the center of the contact surface, the flow passage is also focused on the portion to be cooled. When the area to be cooled is near the outer edge of the contact surface, the cooling efficiency can be improved.

【0032】又、流路のうち冷媒の入口に近い部分が、
接触面の外縁の外側に設けられているので、半導体発熱
素子との接触面から外側に広がる熱を冷却することがで
き、特に、上記接触面の外縁部の冷却能力の向上が求め
られる場合に適することになる。
A portion of the flow path near the refrigerant inlet is
Since it is provided outside the outer edge of the contact surface, it is possible to cool the heat spreading outward from the contact surface with the semiconductor heating element, particularly when the cooling capability of the outer edge of the contact surface is required to be improved. Would be suitable.

【0033】又、流路は、冷媒の流れを逆方向に折り返
す部分の幅をその他の部分の幅よりも拡げたので、上記
冷媒の流れを逆方向に折り返す部分において局所的に見
た場合に、冷媒と接する割合が低くなることを抑制し
て、冷却能力が低下することを防止することができる。
In the flow path, the width of the portion where the flow of the refrigerant is turned in the opposite direction is made wider than the width of the other portions. Therefore, when the flow of the refrigerant is viewed locally in the portion where the flow of the refrigerant is turned in the opposite direction. In addition, it is possible to suppress a decrease in the rate of contact with the refrigerant and prevent a decrease in cooling capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1によるヒートシンクの
要部平面図である。
FIG. 1 is a plan view of a main part of a heat sink according to a first embodiment of the present invention.

【図2】 図1におけるA−A線断面図である。FIG. 2 is a sectional view taken along line AA in FIG.

【図3】 本発明の実施の形態2によるヒートシンクの
要部平面図である。
FIG. 3 is a plan view of a main part of a heat sink according to a second embodiment of the present invention.

【図4】 本発明の実施の形態3によるヒートシンクの
要部平面図である。
FIG. 4 is a plan view of a main part of a heat sink according to a third embodiment of the present invention.

【図5】 本発明の実施の形態4によるヒートシンクの
要部平面図である。
FIG. 5 is a plan view of a main part of a heat sink according to a fourth embodiment of the present invention.

【図6】 本発明の実施の形態5によるヒートシンクの
要部平面図である。
FIG. 6 is a plan view of a main part of a heat sink according to a fifth embodiment of the present invention.

【図7】 従来のヒートシンクの要部平面図である。FIG. 7 is a plan view of a main part of a conventional heat sink.

【符号の説明】[Explanation of symbols]

1 ヒートシンク、 2 入口側ニップル、 3 出口
側ニップル、4 入口側流路、 5 出口側流路、 6
流路、 7 折り返し部、8 曲率変化部、 9 セ
ンター穴、 10 ブロック、 11 蓋、12 溝、
13 支柱部、 14 発熱素子との接触面、 15
淀み。
DESCRIPTION OF SYMBOLS 1 Heat sink, 2 Inlet nipple, 3 Outlet nipple, 4 Inlet side flow path, 5 Outlet side flow path, 6
Channel, 7 folded part, 8 curvature changing part, 9 center hole, 10 block, 11 lid, 12 groove,
13 pillar part, 14 contact surface with heating element, 15
Stagnation.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体発熱素子との接触面と、この接触
面近傍に設けられた要部が略円弧形状である冷媒の流路
と、当該流路に通じる冷媒の入口及び出口とを備え、 上記流路は、上記接触面における冷却能力が該接触面内
の位置により不均等となるように配置されていることを
特徴とするヒートシンク。
A contact surface with the semiconductor heating element, a coolant flow path provided in the vicinity of the contact surface and having a substantially circular arc shape, and an inlet and an outlet for the coolant communicating with the flow passage; The heat sink, wherein the flow path is arranged such that a cooling capacity at the contact surface becomes uneven depending on a position within the contact surface.
【請求項2】 流路は、要部より小さい曲率半径の略円
弧形状であって冷媒の流れを逆方向に折り返す部分を有
する、ことを特徴とする請求項1記載のヒートシンク。
2. The heat sink according to claim 1, wherein the flow path has a substantially arc shape having a smaller radius of curvature than the main part, and has a portion that folds the flow of the refrigerant in the opposite direction.
【請求項3】 流路のうち冷媒の入口に近い部分が接触
面の外縁近傍に、冷媒の出口に近い部分が接触面の中心
付近に設けられていることを特徴とする請求項1記載の
ヒートシンク。
3. The flow path according to claim 1, wherein a portion near the inlet of the coolant is provided near the outer edge of the contact surface, and a portion near the outlet of the coolant is provided near the center of the contact surface. heatsink.
【請求項4】 流路のうち冷媒の入口に近い部分が、接
触面の外縁の外側に設けられていることを特徴とする請
求項1記載のヒートシンク。
4. The heat sink according to claim 1, wherein a portion of the flow path close to the inlet of the refrigerant is provided outside an outer edge of the contact surface.
【請求項5】 流路は、冷媒の流れを逆方向に折り返す
部分の幅をその他の部分の幅よりも拡げたことを特徴と
する請求項2乃至4のいずれか1項に記載のヒートシン
ク。
5. The heat sink according to claim 2, wherein a width of a portion of the flow path in which the flow of the refrigerant is turned in a reverse direction is wider than widths of other portions.
JP11127971A 1999-05-10 1999-05-10 Heat sink Pending JP2000323636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11127971A JP2000323636A (en) 1999-05-10 1999-05-10 Heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11127971A JP2000323636A (en) 1999-05-10 1999-05-10 Heat sink

Publications (1)

Publication Number Publication Date
JP2000323636A true JP2000323636A (en) 2000-11-24

Family

ID=14973230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11127971A Pending JP2000323636A (en) 1999-05-10 1999-05-10 Heat sink

Country Status (1)

Country Link
JP (1) JP2000323636A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10125636A1 (en) * 2001-05-25 2002-12-12 Agilent Technologies Inc Cooler for electrical and/or electronic components has cooling body with 2 cooling surfaces, hollow spaces in body forming cooling channel entirely within body joining coolant inlet and outlet
US7117931B2 (en) * 2004-12-31 2006-10-10 Intel Corporation Systems for low cost liquid cooling
KR102530398B1 (en) * 2022-11-16 2023-05-15 (주)구수중전기 Water cooling machine and water cooling stack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10125636A1 (en) * 2001-05-25 2002-12-12 Agilent Technologies Inc Cooler for electrical and/or electronic components has cooling body with 2 cooling surfaces, hollow spaces in body forming cooling channel entirely within body joining coolant inlet and outlet
DE10125636B4 (en) * 2001-05-25 2004-03-25 Agilent Technologies, Inc. (n.d.Ges.d.Staates Delaware), Palo Alto Cooler for electrical and / or electronic components
US6935412B2 (en) * 2001-05-25 2005-08-30 Agilent Technologies, Inc. Cooler for electrical and/ or electronic components, linked to present cooling needs
US7117931B2 (en) * 2004-12-31 2006-10-10 Intel Corporation Systems for low cost liquid cooling
KR102530398B1 (en) * 2022-11-16 2023-05-15 (주)구수중전기 Water cooling machine and water cooling stack

Similar Documents

Publication Publication Date Title
US7836943B2 (en) Normal-flow heat exchanger
US8958208B2 (en) Semiconductor device
US7302998B2 (en) Normal-flow heat exchanger
JP2006506603A (en) Method and apparatus for efficient vertical fluid transport for cooling a heat generating device
JP2006086503A (en) Method and equipment for efficient perpendicular fluid transfer for cooling exoergic device
CN111052360A (en) Heat sink
JP2001035981A (en) Cooler for semiconductor element and power-converting device using it
JP5129942B2 (en) Semiconductor device
JP2011233688A (en) Semiconductor cooling device
JP2000323636A (en) Heat sink
JP2008530482A (en) Heat exchanger manufacturing method, micro heat exchanger manufacturing method, and micro heat exchanger
JP2001358270A (en) Cooling apparatus
JP2004095599A (en) Stacked cooler
JPS59149056A (en) Vertical metal oxide semiconductor transistor
JP2018032744A (en) Semiconductor device
KR102080148B1 (en) Liquid cooled type heat dissipating apparatus
WO2020240777A1 (en) Semiconductor device
JP2023126992A (en) cooling member
JPH08241943A (en) Liquid-cooled heat sink for power semiconductor element
WO2023063192A1 (en) Heat dissipation member
JP2019160849A (en) Liquid-cooled heat sink
US11740028B2 (en) Two-pass heat exchanger with calibrated bypass
JP7294126B2 (en) Cooler
US20210210411A1 (en) Power module
US20230145779A1 (en) Cooling Device