JP2000321223A - Multilayer thin-film composition measuring method - Google Patents

Multilayer thin-film composition measuring method

Info

Publication number
JP2000321223A
JP2000321223A JP11134466A JP13446699A JP2000321223A JP 2000321223 A JP2000321223 A JP 2000321223A JP 11134466 A JP11134466 A JP 11134466A JP 13446699 A JP13446699 A JP 13446699A JP 2000321223 A JP2000321223 A JP 2000321223A
Authority
JP
Japan
Prior art keywords
fluorescent
rays
film
intensity
common element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11134466A
Other languages
Japanese (ja)
Other versions
JP3545966B2 (en
Inventor
Shinichi Terada
慎一 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNOS KENKYUSHO KK
Original Assignee
TECHNOS KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNOS KENKYUSHO KK filed Critical TECHNOS KENKYUSHO KK
Priority to JP13446699A priority Critical patent/JP3545966B2/en
Publication of JP2000321223A publication Critical patent/JP2000321223A/en
Application granted granted Critical
Publication of JP3545966B2 publication Critical patent/JP3545966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately measure composition even if a common element exists in a multilayer film by detecting each fluorescent X-ray intensity of a common element MB and non-common elements MA and MC and calculating the MB intensity of an upper-layer film according to the intensity ratio of MB and MC being calculated from the specific known lower-layer thin-film composition ratio. SOLUTION: In a sample SP, a multilayer thin film consisting of an upper-layer film containing a non-common element MA and a common element MB and a lower-layer film containing the common element MB and the non-common element MC is formed on a substrate. The intensity of fluorescent X rays where the elements MA, MB, and MC are generated is detected by an X-ray detector 4 from a part where an excitation light source X1 of a low incidence angle is applied from an X-ray source 1 to the sample SP. Then, the fluorescent X-ray intensity ration of both the elements originating from the lower-layer film is obtained from the composition ratio of the common element MB and the non-common element MC of the specific known lower-layer film. The fluorescent X-ray intensity of the common element MB originating from the upper-layer film is calculated from the intensity ratio, and the composition ratio between both the elements MA and MB on the upper-layer film is calculated based on the fluorescent X-ray intensity ratio of the common element MB and the non-common element MA of the upper-layer film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、励起X線を試料に
照射して、多層薄膜から発生する蛍光X線を検出するこ
とによって、多層薄膜の組成を測定するための多層薄膜
組成測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the composition of a multilayer thin film by irradiating a sample with excitation X-rays and detecting the fluorescent X-rays generated from the multilayer thin film to measure the composition of the multilayer thin film. .

【0002】[0002]

【従来の技術】最近、ペロブスカイト系の金属酸化物を
シリコンウエハ上に形成して、たとえばDRAM(ダイ
ナミックランダムアクセスメモリ)のキャパシタ用誘電
体として利用する技術が実用化されつつある。金属酸化
物の中でもBST{(Ba,Sr)TiO3 }は高い誘
電率を示すため、小型で大きな静電容量を形成でき、ギ
ガビット級のDRAMへの適用が検討されている。こう
したペロブスカイト系誘電体と整合性に優れた電極材料
として、同じペロブスカイト系の金属酸化物の中で導電
性を示すSRO(SrRuO3)の採用が検討されてい
る。
2. Description of the Related Art Recently, a technique in which a perovskite-based metal oxide is formed on a silicon wafer and used as a dielectric for a capacitor of, for example, a DRAM (Dynamic Random Access Memory) has been put into practical use. Among metal oxides, BST {(Ba, Sr) TiO 3 } has a high dielectric constant, so that it can be formed small and has a large capacitance, and its application to a gigabit-class DRAM is being studied. The use of SRO (SrRuO 3 ), which exhibits conductivity among the same perovskite-based metal oxides, has been studied as an electrode material having excellent compatibility with such a perovskite-based dielectric.

【0003】これらのBSTおよびSROを薄膜として
半導体ウエハ上に積層した場合、各薄膜の元素組成の変
化が集積回路の特性に大きな影響を与える。また、多成
分系金属酸化物の組成は製膜条件の変動によって変化し
やすい。そのため製品の品質を安定化するには、薄膜の
元素組成を正確に測定することが重要になる。
When these BSTs and SROs are laminated as thin films on a semiconductor wafer, changes in the element composition of each thin film greatly affect the characteristics of the integrated circuit. Further, the composition of the multi-component metal oxide is likely to change due to fluctuations in film forming conditions. Therefore, in order to stabilize product quality, it is important to accurately measure the element composition of a thin film.

【0004】薄膜の組成を測定する方法として、非破壊
的に検査できる蛍光X線法が有力である。蛍光X線法
は、励起X線を試料に照射して、試料から発生する蛍光
X線のスペクトルを解析することによって、特性X線に
対応する元素を特定する方法である。
As a method of measuring the composition of a thin film, a fluorescent X-ray method capable of nondestructively inspecting is effective. The fluorescent X-ray method is a method of irradiating a sample with excitation X-rays and analyzing the spectrum of fluorescent X-rays generated from the sample, thereby specifying an element corresponding to characteristic X-rays.

【0005】[0005]

【発明が解決しようとする課題】試料が基板上に形成さ
れた薄膜である場合、励起X線を照射すると、基板の組
成元素および薄膜の組成元素に固有の特性X線が発生す
る。たとえば、単層のBST膜がSi(シリコン)基板
に形成された場合、Si基板からSi特性X線が発生
し、BST膜からBa(バリウム)特性X線、Sr(ス
トロンチウム)特性X線およびTi(チタン)特性X線
が発生する。この場合、共通した元素が存在しないた
め、各特性X線の分離は容易になる。
When a sample is a thin film formed on a substrate, irradiation with excitation X-rays generates characteristic X-rays specific to the constituent elements of the substrate and the constituent elements of the thin film. For example, when a single-layer BST film is formed on a Si (silicon) substrate, Si characteristic X-rays are generated from the Si substrate, and Ba (barium) characteristic X-rays, Sr (strontium) characteristic X-rays, and Ti (Titanium) Characteristic X-rays are generated. In this case, since there is no common element, separation of each characteristic X-ray becomes easy.

【0006】しかしながら、BST膜およびSRO膜か
ら成る多層薄膜がSi基板に形成された場合、Si基板
からSi特性X線が発生し、BST膜からBa特性X
線、Sr特性X線およびTi特性X線が発生し、SRO
膜からSr特性X線およびRu(ルテニウム)特性X線
が発生する。この場合、Srが両薄膜で共通する元素で
あるため、Sr特性X線がいずれの薄膜に由来するかが
特定できないと、各薄膜の組成を正確に決定できない。
However, when a multilayer thin film composed of a BST film and an SRO film is formed on a Si substrate, Si characteristic X-rays are generated from the Si substrate and Ba characteristic X-rays are generated from the BST film.
X-ray, Sr characteristic X-ray and Ti characteristic X-ray
Sr characteristic X-rays and Ru (ruthenium) characteristic X-rays are generated from the film. In this case, since Sr is an element common to both thin films, the composition of each thin film cannot be accurately determined unless it is possible to specify which thin film the Sr characteristic X-ray originates from.

【0007】本発明の目的は、多層薄膜に共通元素が存
在する場合でも、多層薄膜の組成を正確に測定できる多
層薄膜組成測定方法を提供することである。
An object of the present invention is to provide a method for measuring the composition of a multilayer thin film which can accurately measure the composition of the multilayer thin film even when a common element is present in the multilayer thin film.

【0008】[0008]

【課題を解決するための手段】本発明は、互いに共通す
る元素MBおよび共通しない元素MA、MCがそれぞれ
存在する上層膜および下層膜から成る多層薄膜が表面に
形成された基板に向けて励起X線を照射して、多層薄膜
から発生する蛍光X線を検出することによって多層薄膜
の組成を測定する方法であって、下層膜の共通元素MB
および非共通元素MCの組成比Kbを特定する工程と、
励起X線を入射角θL で照射し、多層薄膜から発生する
共通元素MBおよび非共通元素MA、MCの蛍光X線の
各強度を検出する工程と、前記組成比Kbに基づいて、
入射角θL における下層膜由来の共通元素MBおよび非
共通元素MCの蛍光X線の強度比ILbを算出する工程
と、前記強度比ILbに基づいて、入射角θL における蛍
光X線のうち上層膜由来の共通元素MBの蛍光X線の強
度を算出する工程と、上層膜由来の共通元素MBの蛍光
X線の強度と非共通元素MAの蛍光X線の強度との比I
Ltに基づいて、上層膜の共通元素MBおよび非共通元素
MAの組成比Ktを算出する工程とを含むことを特徴と
する多層薄膜組成測定方法である。
SUMMARY OF THE INVENTION The present invention is directed to a method of exciting X-rays toward a substrate having a multilayer thin film composed of an upper film and a lower film on which a common element MB and non-common elements MA and MC are present, respectively. A method of measuring the composition of the multilayer thin film by irradiating the X-rays and detecting the fluorescent X-rays generated from the multilayer thin film, comprising:
And specifying the composition ratio Kb of the non-common element MC;
Irradiating excitation X-rays at an incident angle θL to detect respective intensities of fluorescent X-rays of the common element MB and non-common elements MA and MC generated from the multilayer thin film, and based on the composition ratio Kb,
Calculating the intensity ratio ILb of the fluorescent X-rays of the common element MB and the non-common element MC derived from the lower layer at the incident angle θL; and, based on the intensity ratio ILb, the fluorescent X-rays at the incident angle θL derived from the upper layer. Calculating the intensity of the fluorescent X-rays of the common element MB, and the ratio I between the intensity of the fluorescent X-rays of the common element MB derived from the upper layer film and the intensity of the fluorescent X-rays of the non-common element MA
Calculating the composition ratio Kt of the common element MB and the non-common element MA of the upper layer film based on Lt.

【0009】本発明に従えば、励起X線を多層薄膜に照
射した場合、上層膜の共通元素MBからの蛍光X線、上
層膜の非共通元素MAからの蛍光X線、下層膜の共通元
素MBからの蛍光X線、および下層膜の非共通元素MC
からの蛍光X線が混合して発生する。非共通元素MA、
MCについてはスペクトルが異なるため単独で測定可能
となるが、共通元素MBは両方の薄膜に存在するため、
共通元素MBの蛍光X線はどちらの薄膜に由来するかは
区別できない。
According to the present invention, when the excitation thin film is irradiated with the excitation X-ray, the fluorescent X-ray from the common element MB of the upper film, the fluorescent X-ray from the non-common element MA of the upper film, and the common element of the lower film. X-ray fluorescence from MB and non-common element MC in lower layer film
X-rays are mixed and generated. Non-common element MA,
Since the spectrum of MC is different, it can be measured alone, but since the common element MB is present in both thin films,
It cannot be distinguished from which thin film the fluorescent X-rays of the common element MB originate.

【0010】また、上層膜だけで形成された単膜試料の
場合には、共通元素が存在しないため、上層膜の非共通
元素MAおよび共通元素MBの組成比と各蛍光X線の強
度比との対応関係は正確に決定できる。同様に、下層膜
だけで形成された単膜試料の場合には、共通元素が存在
しないため、下層膜の非共通元素MCおよび共通元素M
Bの組成比と各蛍光X線の強度比との対応関係は正確に
決定できる。
Further, in the case of a single film sample formed only of the upper layer film, since there is no common element, the composition ratio of the non-common element MA and the common element MB in the upper layer film and the intensity ratio of each fluorescent X-ray are different. Can be accurately determined. Similarly, in the case of a single film sample formed only of the lower layer film, since the common element does not exist, the non-common element MC and the common element M of the lower layer film do not exist.
The correspondence between the composition ratio of B and the intensity ratio of each fluorescent X-ray can be accurately determined.

【0011】励起X線を多層薄膜に対して低い入射角θ
L で照射すると、上層膜でのX線吸収が多くなるため、
上層膜に由来する蛍光X線の強度が強くなり、上層膜に
関する組成情報量が多くなる。
[0011] Excited X-rays are incident on a multilayer thin film at a low incident angle θ.
When irradiated with L, the X-ray absorption in the upper layer film increases,
The intensity of the fluorescent X-rays derived from the upper layer film increases, and the amount of composition information on the upper layer film increases.

【0012】そこで、低い入射角θL で照射して、下層
膜の非共通元素MCからの蛍光X線の強度を検出して、
予め特定しておいた下層膜の組成比Kbを用いることに
よって、組成比と蛍光X線強度比との関係が既知である
ことから、下層膜の共通元素MBだけに由来する蛍光X
線の強度を算出できる。この算出強度分を両膜に由来す
る共通元素MBの蛍光X線の強度から引算することによ
って、上層膜の共通元素MBだけに由来する蛍光X線の
強度を算出できる。
Therefore, the intensity of the fluorescent X-rays from the non-common element MC of the lower layer film is detected by irradiating at a low incident angle θL.
Since the relationship between the composition ratio and the fluorescent X-ray intensity ratio is known by using the composition ratio Kb of the underlayer film specified in advance, the fluorescence X derived only from the common element MB of the underlayer film is known.
The intensity of the line can be calculated. By subtracting the calculated intensity from the intensity of the fluorescent X-rays of the common element MB derived from both films, the intensity of the fluorescent X-rays derived only from the common element MB of the upper layer film can be calculated.

【0013】次に、算出した上層膜由来の共通元素MB
の蛍光X線の強度を用いて、予め特定しておいた上層膜
の非共通元素MAおよび共通元素MBの組成比と各蛍光
X線の強度比との対応関係を参照することによって、上
層膜の共通元素MBおよび非共通元素MAの組成比Kt
を算出することが可能になる。
Next, the calculated common element MB derived from the upper layer film
By referring to the correspondence relationship between the composition ratio of the non-common element MA and the common element MB of the upper layer film specified in advance and the intensity ratio of each fluorescent X-ray by using the intensity of the fluorescent X-ray of the upper layer film, Composition ratio Kt of common element MB and non-common element MA
Can be calculated.

【0014】なお、下層膜の組成比Kbを特定する方法
として、a)下層膜を構成する化合物の化学的組成比をそ
のまま利用する、b)下層膜だけで作成した単膜試料を定
量分析した結果を利用する、などが可能である。
As a method of specifying the composition ratio Kb of the lower film, a) the chemical composition ratio of the compound constituting the lower film is used as it is, and b) a single film sample prepared only with the lower film is quantitatively analyzed. It is possible to use the result.

【0015】また、非共通元素MA、MCおよび共通元
素MBがそれぞれ複数存在する場合は、特定の元素に絞
り込むことによって本発明を適用できる。
When a plurality of non-common elements MA and MC and a plurality of common elements MB exist, the present invention can be applied by narrowing down to specific elements.

【0016】また本発明は、励起X線を入射角θH (θH
>θL)で照射し、多層薄膜から発生する共通元素MBお
よび非共通元素MA、MCの蛍光X線の各強度を検出す
る工程と、前記組成比Ktに基づいて、入射角θH にお
ける上層膜由来の共通元素MBおよび非共通元素MAの
蛍光X線の強度比IHtを算出する工程と、前記強度比I
Htに基づいて、入射角θH における蛍光X線のうち下層
膜由来の共通元素MBの蛍光X線の強度を算出する工程
と、下層膜由来の共通元素MBの蛍光X線の強度と非共
通元素MCの蛍光X線の強度との比IHbに基づいて、下
層膜の共通元素MBおよび非共通元素MCの組成比Kb
を新たに算出する工程とを含むことを特徴とする。
Further, according to the present invention, the excited X-rays are incident at an incident angle θH (θH
> ΘL) to detect the intensity of the fluorescent X-rays of the common element MB and the non-common elements MA and MC generated from the multilayer thin film, and, based on the composition ratio Kt, the intensity of the upper layer film at the incident angle θH Calculating the intensity ratio IHt of the fluorescent X-rays of the common element MB and the non-common element MA, and
Calculating the intensity of the fluorescent X-rays of the common element MB derived from the lower layer out of the fluorescent X-rays at the incident angle θH based on Ht; The composition ratio Kb of the common element MB and the non-common element MC in the lower layer film is determined based on the ratio IHb of the intensity of the fluorescent X-rays of the MC to the intensity.
And a step of newly calculating

【0017】本発明に従えば、入射角θL より高い入射
角θH で照射して、多層薄膜から発生する共通元素MB
および非共通元素MA、MCの蛍光X線の各強度を検出
して、入射角θL での照射によって算出した組成比Kt
を用いることによって、組成比と蛍光X線強度比との関
係が既知であることから、上層膜由来の共通元素MBお
よび非共通元素MAの蛍光X線の強度比IHtを算出でき
る。この強度比IHtから下層膜の共通元素MBだけに由
来する蛍光X線の強度を算出できる。
According to the present invention, irradiation is performed at an incident angle θH higher than the incident angle θL, and the common element MB generated from the multilayer thin film is irradiated.
And the intensity of the fluorescent X-rays of the non-common elements MA and MC are detected, and the composition ratio Kt calculated by irradiation at the incident angle θL
Since the relationship between the composition ratio and the fluorescent X-ray intensity ratio is known by using, it is possible to calculate the fluorescent X-ray intensity ratio IHt of the common element MB and the non-common element MA derived from the upper layer film. From the intensity ratio IHt, the intensity of fluorescent X-rays derived only from the common element MB of the lower layer film can be calculated.

【0018】次に、算出した下層膜由来の共通元素MB
の蛍光X線の強度と非共通元素MCの蛍光X線の強度と
の比IHbを用いて、組成比と蛍光X線強度比との関係が
既知であることから、下層膜の共通元素MBおよび非共
通元素MCの組成比Kbを新たに算出できる。
Next, the calculated common element MB derived from the lower layer film
Since the relationship between the composition ratio and the fluorescent X-ray intensity ratio is known using the ratio IHb between the intensity of the fluorescent X-ray and the intensity of the fluorescent X-ray of the non-common element MC, the common elements MB and The composition ratio Kb of the non-common element MC can be newly calculated.

【0019】励起X線を多層薄膜に対して高い入射角θ
H (θH>θL)で照射すると、上層膜でのX線吸収が少な
くなるため、下層膜に由来する蛍光X線の強度が強くな
り、下層膜に関する組成情報量が増加する。そのため、
下層膜の組成比Kbを測定する精度がより向上すること
になる。
Excited X-rays are incident on a multilayer thin film at a high incident angle θ.
When irradiation is performed at H (θH> θL), the X-ray absorption in the upper film is reduced, so that the intensity of the fluorescent X-rays originating from the lower film is increased and the amount of information on the composition of the lower film is increased. for that reason,
The accuracy of measuring the composition ratio Kb of the lower layer film is further improved.

【0020】こうして算出した組成比Kbを新たな既定
値として採用して、上述した各算出工程、すなわち入射
角θL における下層膜由来の蛍光X線の強度比ILbを算
出する工程、上層膜由来の共通元素MBの蛍光X線の強
度を算出する工程、および上層膜の組成比Ktを算出す
る工程を繰り返すことによって、組成比Ktの測定精度
をより向上させることができる。得られた組成比Ktは
新たな既定値として採用して、上述した各算出工程、す
なわち入射角θH における上層膜由来の蛍光X線の強度
比IHtを算出する工程、入射角θH における下層膜由来
の共通元素MBの蛍光X線の強度を算出する工程、およ
び下層膜の組成比Kbを算出する工程を繰り返すことに
よって、組成比Kbの測定精度をより向上させることが
できる。また、こうした回帰計算による精度向上が可能
になるため、初期値としての組成比Kbの精度を緩和す
ることができる。
The composition ratio Kb thus calculated is adopted as a new predetermined value, and the above-described calculation steps, ie, the step of calculating the intensity ratio ILb of the fluorescent X-rays originating from the lower layer at the incident angle θL, By repeating the process of calculating the intensity of the fluorescent X-ray of the common element MB and the process of calculating the composition ratio Kt of the upper layer film, the measurement accuracy of the composition ratio Kt can be further improved. The obtained composition ratio Kt is adopted as a new default value, and the above-described calculation steps, that is, the step of calculating the intensity ratio IHt of the fluorescent X-rays derived from the upper layer film at the incident angle θH, and the step of calculating the lower layer film at the incident angle θH By repeating the step of calculating the intensity of the fluorescent X-ray of the common element MB and the step of calculating the composition ratio Kb of the lower layer film, the measurement accuracy of the composition ratio Kb can be further improved. In addition, since the accuracy can be improved by such regression calculation, the accuracy of the composition ratio Kb as an initial value can be relaxed.

【0021】また本発明は、上層のBST膜および下層
のSRO膜から成る多層薄膜が表面に形成されたシリコ
ン基板に向けて励起X線を照射して、多層薄膜から発生
する蛍光X線を検出することによって多層薄膜の組成を
測定する方法であって、SRO膜のSr、Ruの組成比
KSRを特定する工程と、励起X線を低い入射角θL で照
射し、多層薄膜から発生するBa、Sr、Ti、Ruの
蛍光X線XBa、XSr、XTi、XRuの各強度を検出する工
程と、前記組成比KSRに基づいて、入射角θL における
SRO膜由来の蛍光X線XSr、XRuの強度比ILSR を算
出する工程と、前記強度比ILSRに基づいて、入射角θL
における蛍光X線XSrのうちBST膜由来の蛍光X線
XSrの強度を算出する工程と、BST膜由来の蛍光X線
XSrの強度と蛍光X線XBa、XTiとの比ILSBTに基づい
て、BST膜のBa、Sr、Tiの組成比KBST を算出
する工程とを含むことを特徴とする多層薄膜組成測定方
法である。
Further, according to the present invention, a silicon substrate having a multilayer thin film composed of an upper BST film and a lower SRO film formed thereon is irradiated with excitation X-rays to detect fluorescent X-rays generated from the multilayer thin film. A method for determining the composition ratio KSR of Sr and Ru in the SRO film, and irradiating excited X-rays at a low incident angle θL to obtain Ba, Detecting the intensity of each of the fluorescent X-rays XBa, XSr, XTi, and XRu of Sr, Ti, and Ru; and determining the intensity ratio of the fluorescent X-rays XSr, XRu derived from the SRO film at an incident angle θL based on the composition ratio KSR. Calculating the ILSR, and the incident angle θL based on the intensity ratio ILSR.
Calculating the intensity of the fluorescent X-ray XSr derived from the BST film among the fluorescent X-rays XSr in the above, and the BST film based on the ratio ILSBT between the intensity of the fluorescent X-ray XSr derived from the BST film and the fluorescent X-rays XBa and XTi. Calculating the composition ratio KBST of Ba, Sr, and Ti.

【0022】本発明に従えば、励起X線を多層薄膜に照
射した場合、上層のBST膜の共通元素であるSrから
の蛍光X線XSr、BST膜の非共通元素であるBa、T
iからの蛍光X線XBa、XTi、下層のSRO膜の共通元
素であるSrからの蛍光X線XSr、およびSRO膜の非
共通元素であるRuからの蛍光X線XRuが混合して発生
する。非共通元素Ba、Ti、Ruについてはスペクト
ルが異なるため単独で測定可能となるが、共通元素Sr
は両方の薄膜に存在するため、蛍光X線XSrはどちらの
薄膜に由来するかは区別できない。
According to the present invention, when the excitation X-ray is irradiated on the multilayer thin film, the fluorescent X-ray XSr from Sr, which is a common element of the upper BST film, and Ba, T, which are non-common elements of the BST film,
The fluorescent X-rays XBa and XTi from i, the fluorescent X-ray XSr from Sr which is a common element of the lower SRO film, and the fluorescent X-ray XRu from Ru which is a non-common element of the SRO film are mixed and generated. Since the non-common elements Ba, Ti, and Ru have different spectra, they can be measured independently, but the common elements Sr
Cannot be distinguished from which thin film the fluorescent X-ray XSr originates from.

【0023】また、BST膜だけで形成された単膜試料
の場合には、共通元素が存在しないため、BST膜のB
a、Sr、Tiの組成比と各蛍光X線XBa、XSr、XTi
の強度比との対応関係は正確に決定できる。同様に、S
RO膜だけで形成された単膜試料の場合には、共通元素
が存在しないため、SRO膜のSr、Ruの組成比と各
蛍光X線XSr、XRuの強度比との対応関係は正確に決定
できる。
In the case of a single film sample formed only of the BST film, since no common element exists, the BST film
a, Sr, Ti composition ratio and each fluorescent X-ray XBa, XSr, XTi
Can be accurately determined. Similarly, S
In the case of a single film sample formed only of the RO film, since there is no common element, the correspondence between the composition ratio of Sr and Ru in the SRO film and the intensity ratio of each of the fluorescent X-rays XSr and XRu is accurately determined. it can.

【0024】励起X線を多層薄膜に対して低い入射角θ
L で照射すると、上層のBST膜でのX線吸収が多くな
るため、BST膜に由来する蛍光X線の強度が強くな
り、BST膜に関する組成情報量が多くなる。
Excited X-rays are incident on a multilayer thin film at a low incident angle θ.
When irradiated with L 2, the X-ray absorption in the upper BST film increases, so that the intensity of the fluorescent X-rays derived from the BST film increases, and the amount of composition information on the BST film increases.

【0025】そこで、低い入射角θL で照射して、SR
O膜のRuからの蛍光X線XRuの強度を検出して、予め
特定しておいたSRO膜の組成比KSRを用いることによ
って、組成比と蛍光X線強度比との関係が既知であるこ
とから、SRO膜のSrだけに由来する蛍光X線XSrの
強度を算出できる。この算出強度分を両膜に由来する蛍
光X線XSrの強度から引算することによって、BST膜
のSrだけに由来する蛍光X線XSrの強度を算出でき
る。
Therefore, irradiation at a low incident angle θL is performed to
The relationship between the composition ratio and the fluorescent X-ray intensity ratio is known by detecting the intensity of the fluorescent X-ray XRu from the Ru of the O film and using the previously specified composition ratio KSR of the SRO film. Thus, the intensity of the fluorescent X-ray XSr derived only from Sr of the SRO film can be calculated. By subtracting the calculated intensity from the intensity of the fluorescent X-ray XSr derived from both films, the intensity of the fluorescent X-ray XSr derived only from the Sr of the BST film can be calculated.

【0026】次に、算出したBST膜由来の蛍光X線X
Srの強度を用いて、予め特定しておいたBST膜のB
a、Sr、Tiの組成比と各蛍光X線XBa、XSr、XTi
の強度比との対応関係を参照することによって、BST
膜の組成比KBST を算出することが可能になる。
Next, the calculated fluorescent X-rays X
Using the intensity of Sr, the BST film B
a, Sr, Ti composition ratio and each fluorescent X-ray XBa, XSr, XTi
By referring to the correspondence with the intensity ratio of
The composition ratio KBST of the film can be calculated.

【0027】なお、SRO膜の組成比KSRを特定する方
法として、a)SRO化合物のSr、Ruの化学的組成比
1:1をそのまま利用する、b)SRO膜だけで作成した
単膜試料を定量分析した結果を利用する、などが可能で
ある。
As a method of specifying the composition ratio KSR of the SRO film, a) a chemical composition ratio of Sr and Ru of the SRO compound of 1: 1 is used as it is, and b) a single film sample prepared only with the SRO film. It is possible to use the results of quantitative analysis.

【0028】また本発明は、励起X線を入射角θH (θH
>θL)で照射し、多層薄膜から発生するBa、Sr、T
i、Ruの蛍光X線XBa、XSr、XTi、XRuの各強度を
検出する工程と、前記組成比KBST に基づいて、入射角
θH におけるBST膜由来の蛍光X線XBa、XSr、XTi
の強度比IHBSTを算出する工程と、前記強度比IHBSTに
基づいて、入射角θH における蛍光X線のうちSRO膜
由来の蛍光X線XSrの強度を算出する工程と、SRO膜
由来の蛍光X線XSrの強度と蛍光X線XRuの強度との比
IHSR に基づいて、SRO膜のSr、Ruの組成比KSR
を新たに算出する工程とを含むことを特徴とする。
Further, according to the present invention, the excited X-rays are incident at an incident angle θH (θH
> ΘL), Ba, Sr, T generated from the multilayer thin film
i, the step of detecting the intensity of each of the fluorescent X-rays XBa, XSr, XTi, and XRu, and the fluorescent X-rays XBa, XSr, and XTi derived from the BST film at an incident angle θH based on the composition ratio KBST.
Calculating the intensity ratio of the fluorescent X-rays XSr derived from the SRO film among the fluorescent X-rays at the incident angle θH based on the intensity ratio IHBST; Based on the ratio IHSR between the intensity of XSr and the intensity of the fluorescent X-ray XRu, the composition ratio KSR of Sr and Ru of the SRO film is determined.
And a step of newly calculating

【0029】本発明に従えば、入射角θL より高い入射
角θH で照射して、多層薄膜から発生するBa、Sr、
Ti、Ruの蛍光X線XBa、XSr、XTi、XRuの各強度
を検出して、入射角θL での照射によって算出した組成
比KBST を用いることによって、組成比と蛍光X線強度
比との関係が既知であることから、BST膜由来の蛍光
X線XBa、XSr、XTiの強度比IHBSTを算出できる。こ
の強度比IHBSTからSRO膜由来の蛍光X線XSrの強度
を算出できる。
According to the present invention, irradiation is performed at an incident angle θH higher than the incident angle θL so that Ba, Sr,
The relationship between the composition ratio and the fluorescent X-ray intensity ratio is obtained by detecting the intensity of each of the fluorescent X-rays XBa, XSr, XTi and XRu of Ti and Ru and using the composition ratio KBST calculated by irradiation at the incident angle θL. Is known, the intensity ratio IHBST of the fluorescent X-rays XBa, XSr, and XTi derived from the BST film can be calculated. From the intensity ratio IHBST, the intensity of the fluorescent X-ray XSr derived from the SRO film can be calculated.

【0030】次に、算出したSRO膜由来の蛍光X線X
Srの強度と蛍光X線XRuの強度との比IHSR を用いて、
組成比と蛍光X線強度比との関係が既知であることか
ら、SRO膜の組成比KSRを新たに算出できる。
Next, the calculated fluorescent X-rays X
Using the ratio IHSR between the intensity of Sr and the intensity of the fluorescent X-ray XRu,
Since the relationship between the composition ratio and the fluorescent X-ray intensity ratio is known, the composition ratio KSR of the SRO film can be newly calculated.

【0031】励起X線を多層薄膜に対して高い入射角θ
H (θH>θL)で照射すると、上層のBST膜でのX線吸
収が少なくなるため、下層のSRO膜に由来する蛍光X
線の強度が強くなり、SRO膜に関する組成情報量が増
加する。そのため、SRO膜の組成比KSRを測定する精
度がより向上することになる。
Excited X-rays are incident on a multilayer thin film at a high incident angle θ.
Irradiation at H (θH> θL) reduces the X-ray absorption in the upper BST film, so the fluorescent X originating from the lower SRO film
The intensity of the line increases, and the amount of composition information on the SRO film increases. Therefore, the accuracy of measuring the composition ratio KSR of the SRO film is further improved.

【0032】こうして算出した組成比KSRを新たな既定
値として採用して、上述した各算出工程、すなわち入射
角θL におけるSRO膜由来の蛍光X線の強度比ILSR
を算出する工程、BST膜由来の蛍光X線XSrの強度を
算出する工程、およびBST膜の組成比KBST を算出す
る工程を繰り返すことによって、組成比KBST の測定精
度をより向上させることができる。得られた組成比KBS
T は新たな既定値として採用して、上述した各算出工
程、すなわち入射角θH におけるBST膜由来の蛍光X
線の強度比IHBSTを算出する工程、入射角θH における
SRO膜由来の蛍光X線XSrの強度を算出する工程、お
よびSRO膜の組成比KSRを算出する工程を繰り返すこ
とによって、組成比KSRの測定精度をより向上させるこ
とができる。また、こうした回帰計算による精度向上が
可能になるため、初期値としての組成比KSRの精度を緩
和することができる。
The composition ratio KSR calculated in this manner is adopted as a new predetermined value, and the intensity ratio ILSR of the fluorescent X-rays derived from the SRO film at the incident angle θL is calculated by using the above-described calculation steps.
, The step of calculating the intensity of the fluorescent X-ray XSr derived from the BST film, and the step of calculating the composition ratio KBST of the BST film can be further improved in the measurement accuracy of the composition ratio KBST. Obtained composition ratio KBS
T is adopted as a new default value, and the fluorescence X derived from the BST film at the incident angle θH
Measuring the composition ratio KSR by repeating the steps of calculating the intensity ratio IHBST of the X-ray, the step of calculating the intensity of the fluorescent X-ray XSr derived from the SRO film at the incident angle θH, and the step of calculating the composition ratio KSR of the SRO film. Accuracy can be further improved. Further, since the accuracy can be improved by such regression calculation, the accuracy of the composition ratio KSR as an initial value can be relaxed.

【0033】また本発明は、励起X線として単色化され
たX線を使用することを特徴とする。
Further, the present invention is characterized in that monochromatic X-rays are used as excitation X-rays.

【0034】本発明に従えば、励起X線の入射角度が低
くなるほど、上層膜におけるX線通過距離が長くなる。
励起X線が通過して元の強度が一定値まで減衰するまで
の距離を規定した実効消衰長さは、X線エネルギ(波
長)および媒体を構成する元素によって変化する。その
ため上層膜におけるX線通過距離が長くなるほど、励起
X線のエネルギ分布の影響が測定誤差として現われるた
め、この対策として励起X線を単色化することが好まし
い。
According to the present invention, the lower the incident angle of the excited X-ray, the longer the X-ray passage distance in the upper layer film.
The effective extinction length, which defines the distance until the original intensity attenuates to a certain value after the excitation X-rays pass, varies depending on the X-ray energy (wavelength) and the elements constituting the medium. Therefore, as the X-ray passing distance in the upper layer becomes longer, the influence of the energy distribution of the excited X-rays appears as a measurement error. Therefore, it is preferable to make the excited X-rays monochromatic as a countermeasure.

【0035】[0035]

【発明の実施の形態】図1は、本発明に係る蛍光X線分
析装置を示す構成図である。蛍光X線分析装置は、ビー
ム状のX線を発生するX線源1と、X線源1からのX線
の中から単一の特性X線を分離して単色化するための分
光結晶2と、分光結晶2によって所定方向に回折したX
線を取出すためのスリット部材3と、試料SPのうち励
起X線X1が照射された部分から発生する蛍光X線を検
出するためのX線検出器4と、試料SPを保持するため
の試料保持機構5などで構成される。試料保持機構5
は、試料SPの角度および3次元位置を調整することが
でき、これによって励起X線の入射角θおよび照射領域
を変化できる。X線検出器4は、エネルギー分散型また
は波長分散型の検出器が用いられる。
FIG. 1 is a block diagram showing an X-ray fluorescence analyzer according to the present invention. An X-ray fluorescence analyzer includes an X-ray source 1 for generating beam-like X-rays, and a spectral crystal 2 for separating a single characteristic X-ray from the X-rays from the X-ray source 1 to monochromatic. And X diffracted in a predetermined direction by the spectral crystal 2
A slit member 3 for extracting a line, an X-ray detector 4 for detecting fluorescent X-rays generated from a portion of the sample SP irradiated with the excitation X-ray X1, and a sample holding unit for holding the sample SP It is composed of a mechanism 5 and the like. Sample holding mechanism 5
Can adjust the angle and the three-dimensional position of the sample SP, thereby changing the incident angle θ and the irradiation area of the excitation X-ray. As the X-ray detector 4, an energy dispersion type or wavelength dispersion type detector is used.

【0036】本発明が適用される試料SPは、非共通元
素MAおよび共通元素MBを含む上層膜と共通元素MB
および非共通元素MCを含む下層膜とから成る多層薄膜
が基板の上に形成されたもので、ここでは上層のBST
膜および下層のSRO膜から成る多層薄膜が形成された
シリコンウエハを例示する。
The sample SP to which the present invention is applied is composed of an upper layer containing the non-common element MA and the common element MB and the common element MB.
And a lower layer film including a non-common element MC formed on a substrate.
A silicon wafer on which a multilayer thin film composed of a film and a lower SRO film is formed is illustrated.

【0037】次に本発明の原理について説明する。まず
単層膜の組成を測定する方法について説明する。励起X
線を高い入射角θで照射する場合、単層膜の各元素の蛍
光X線強度は次式(1)で表される。ここで、Iz は元
素Zの蛍光X線強度、kz は元素Zの装置感度係数、C
z は元素Zの含有率(質量比)、ρは膜の密度、tは膜
の厚さである。 Iz = kz・Cz・ρ・t …(1)
Next, the principle of the present invention will be described. First, a method for measuring the composition of the single-layer film will be described. Excitation X
When a line is irradiated at a high incident angle θ, the fluorescent X-ray intensity of each element of the single-layer film is expressed by the following equation (1). Here, Iz is the fluorescent X-ray intensity of element Z, kz is the device sensitivity coefficient of element Z, Cz
z is the content (mass ratio) of the element Z, ρ is the density of the film, and t is the thickness of the film. Iz = kz · Cz · ρ · t (1)

【0038】このとき単層膜が充分に薄い膜である場
合、膜による励起X線の吸収および蛍光X線の吸収は無
視できる。組成分析だけを目的とする場合には、他の任
意の元素ZO との相対比較によって、次式(2)のよう
にパラメータを減らすことができる。 Iz /Izo = (kz・Cz)/(kzo・Czo) …(2)
At this time, if the single-layer film is sufficiently thin, the absorption of the excitation X-rays and the absorption of the fluorescent X-rays by the film can be ignored. When the purpose is only the composition analysis, the parameter can be reduced as in the following equation (2) by relative comparison with another arbitrary element ZO. Iz / Izo = (kz.Cz) / (kzo.Czo) (2)

【0039】ここで、組成Cz が全ての元素について既
知である参照試料を用意し、全ての元素の蛍光X線強度
Iz を測定すれば、相対的な装置感度係数を次式(3)
のように求められる。ここで、Iz,R は参照試料中の元
素Zの蛍光X線強度、Cz,Rは参照試料中の元素Zの
含有率(質量比)である。 kz /kzo = (Iz,R・Czo,R)/(Izo,R・Cz,R) …(3)
Here, a reference sample whose composition Cz is known for all the elements is prepared, and the fluorescent X-ray intensities Iz of all the elements are measured.
Is required. Here, Iz, R is the fluorescent X-ray intensity of the element Z in the reference sample, and Cz, R is the content (mass ratio) of the element Z in the reference sample. kz / kzo = (Iz, R · Cz, R) / (Izo, R · Cz, R) (3)

【0040】こうして装置感度係数を求めておけば、未
知試料についても蛍光X線強度を測定することによっ
て、組成Cz は次の連立方程式(4)(5)を解くこと
によって求められる。 Czo /Cz = (kz・Izo)/(kzo・Iz) …(4) ΣCz = 1 (元素Zに関する総和=1) …(5)
If the apparatus sensitivity coefficient is determined in this way, the composition Cz can be determined by solving the following simultaneous equations (4) and (5) by measuring the fluorescent X-ray intensity even for an unknown sample. Czo / Cz = (kz · Izo) / (kzo · Iz) (4) ΣCz = 1 (total for element Z = 1) (5)

【0041】次に斜入射法を用いた場合には一般的に次
式(6)(7)が成立する。ここで、dz、dzo は元素
Z、ZO に対応する励起X線の実効消衰長さである。 Iz = kz・Cz・ρ・dz …(6) Izo = kzo・Czo・ρ・dzo …(7)
Next, when the oblique incidence method is used, the following equations (6) and (7) generally hold. Here, dz and dzo are the effective extinction lengths of the excited X-rays corresponding to the elements Z and ZO. Iz = kz · Cz · ρ · dz (6) Izo = kzo · Czo · ρ · dzo (7)

【0042】dz、dzo は膜による励起X線の吸収によ
って決定される。なお、膜による蛍光X線の吸収は無視
している。上述した高角度入射法の式(2)と同様に元
素Z、ZO の蛍光X線強度比は次式(8)のように求め
られる。 Iz /Izo = (kz・Cz・dz)/(kzo・Czo・dzo) …(8)
Dz and dzo are determined by the absorption of excited X-rays by the film. Note that the absorption of fluorescent X-rays by the film is ignored. Similarly to the above-mentioned formula (2) of the high-angle incidence method, the fluorescent X-ray intensity ratio of the elements Z and ZO can be obtained as in the following formula (8). Iz / Izo = (kz.Cz.dz) / (kzo.Czo.dzo) (8)

【0043】そこで、dz/dzoの要素だけが高角度入
射法と相違するが、励起X線を単色化することによっ
て、dz/dzo=1となって式(2)と一致する。した
がって、単色化された励起X線を使用すれば、斜入射法
でも高角度入射法と同様な計算式を使用することがで
き、算出工程の簡素化が図られる。
Therefore, only the element of dz / dzo differs from the high-angle incidence method, but by making the excitation X-ray monochromatic, dz / dzo = 1, which agrees with the equation (2). Therefore, if monochromatic excitation X-rays are used, the same calculation formula as in the high-angle incidence method can be used in the oblique incidence method, and the calculation process can be simplified.

【0044】次に多層膜の組成を測定する方法について
説明する。図2は励起X線X1を低い入射角θL で入射
したときの説明図であり、図3は励起X線X1を高い入
射角θH(θH>θL) で入射したときの説明図である。測
定試料は上層のBST膜および下層のSRO膜から成る
多層薄膜が形成されたシリコンウエハである。
Next, a method for measuring the composition of the multilayer film will be described. FIG. 2 is an explanatory diagram when the excitation X-ray X1 is incident at a low incident angle θL, and FIG. 3 is an explanatory diagram when the excitation X-ray X1 is incident at a high incident angle θH (θH> θL). The measurement sample is a silicon wafer on which a multilayer thin film including an upper BST film and a lower SRO film is formed.

【0045】まず図2のように、励起X線X1の入射角
θL を充分に低い角度、たとえば0.1度に設定して照
射すると、上層のBST膜からBa、Sr、Tiの蛍光
X線XBa、XSr、XTiが比較的強く発生し、下層のSR
O膜からSr、Ruの蛍光X線XSr、XRuが弱く発生す
る。このとき、SrがBST膜およびSRO膜の両方に
存在するため、検出した蛍光X線XSrがどちらの膜に由
来するかは区別できない。
First, as shown in FIG. 2, when the incident angle .theta.L of the excitation X-ray X1 is set to a sufficiently low angle, for example, 0.1 degree, the X-rays of Ba, Sr and Ti are emitted from the upper BST film. XBa, XSr and XTi are generated relatively strongly, and the SR
The fluorescent X-rays XSr and XRu of Sr and Ru are weakly generated from the O film. At this time, since Sr exists in both the BST film and the SRO film, it cannot be distinguished from which film the detected fluorescent X-ray XSr is derived.

【0046】一般に、2層構成の薄膜にX線を斜入射さ
せた場合、検出される蛍光X線強度は次式(9)〜(1
1)のように記述できる。ここで、I1,z、I2,zは第1
層、第2層からの元素Zの蛍光X線強度、C1,z、C2,z
は第1層、第2層の元素Zの含有率(質量比)、ρ1、
ρ2は第1層、第2層の膜の密度、d1、d2は第1層、
第2層での励起X線の実効消衰長さ、 T1 は第1層の
励起X線の透過率である。 Iz = I1,z + I2,z …(9) I1,z = kz・C1,z・ρ1・d1 …(10) I2,z = T1・kz・C2,z・ρ2・d2 …(11)
In general, when X-rays are obliquely incident on a thin film having a two-layer structure, the intensity of the detected fluorescent X-rays is expressed by the following equations (9) to (1).
It can be described as 1). Here, I1, z and I2, z are the first
X-ray intensity of element Z from layer and second layer, C1, z, C2, z
Is the content (mass ratio) of the element Z in the first and second layers, ρ1,
ρ2 is the density of the first and second layers, d1 and d2 are the first layers,
The effective extinction length of excited X-rays in the second layer, T1, is the transmittance of the first layer for excited X-rays. Iz = I1, z + I2, z (9) I1, z = kz · C1, z · ρ1 · d1 (10) I2, z = T1 · kz · C2, z · ρ2 · d2 (11)

【0047】単層膜の場合と同様に、蛍光X線量につい
てある元素の蛍光X線量を基準とした相対比較によっ
て、式(10)(11)は次式(12)(13)のように簡略化
できる。 I1,z /I1,z1 = (kz・C1,z)/(kzo・C1,zo) …(12) I2,z /I2,z2 = (kz・C2,z)/(kzo・C2,zo) …(13)
As in the case of the single layer film, the expressions (10) and (11) are simplified to the following expressions (12) and (13) by relative comparison of the fluorescent X-ray dose with the fluorescent X-ray dose of a certain element. Can be I1, z / I1, z1 = (kz.C1, z) / (kzo.C1, zo) (12) I2, z / I2, z2 = (kz.C2, z) / (kzo.C2, zo) …(13)

【0048】次に上記式をBST膜およびSRO膜から
成る多層薄膜に適用する。 IBa = I1,Ba …(14) ISr = I1,Sr + I2,Sr …(15) ITi = I1,Ti …(16) IRu = I2,Ru …(17) I1,Ba /I1,Sr = (kBa・C1,Ba)/(kSr・C1,Sr) …(18) I1,Ti /I1,Sr = (kTi・C1,Ti)/(kSr・C1,Sr) …(19) I2,Sr /I2,Ru = (kSr・C2,Sr)/(kRu・C2,Ru) …(20)
Next, the above equation is applied to a multilayer thin film composed of a BST film and an SRO film. IBa = I1, Ba ... (14) ISr = I1, Sr + I2, Sr ... (15) ITi = I1, Ti ... (16) IRu = I2, Ru ... (17) I1, Ba / I1, Sr = (kBa・ C1, Ba) / (kSr ・ C1, Sr) (18) I1, Ti / I1, Sr = (kTi ・ C1, Ti) / (kSr ・ C1, Sr) (19) I2, Sr / I2, Ru = (kSr · C2, Sr) / (kRu · C2, Ru) (20)

【0049】式(15)(17)(20)からBST膜由来の
蛍光X線XSrの強度I1,Srが求まる。 I1,Sr = ISr − I2,Sr = ISr − I2,Ru・(kSr・C2,Sr)/(kRu・C2,Ru) = ISr − IRu ・(kSr・C2,Sr)/(kRu・C2,Ru) …(21)
From the equations (15), (17) and (20), the intensity I1, Sr of the fluorescent X-ray XSr derived from the BST film is obtained. I1, Sr = ISr-I2, Sr = ISr-I2, Ru (kSr.C2, Sr) / (kRu.C2, Ru) = ISr-IRu. (KSr.C2, Sr) / (kRu.C2, Ru) ) …(twenty one)

【0050】ここで、ISr、IRuが観測量であり、kSr
/kRuはSRO膜の単層膜試料を測定することによって
決定できる。したがって、SRO膜の組成比C2,Sr/C
2,Ruが判れば、SRO膜由来の蛍光X線XSrの強度I2,
Srが決定され、最終的にBST膜由来の蛍光X線XSrの
強度I1,Srを求めることができる。
Here, ISr and IRu are observation quantities, and kSr
/ KRu can be determined by measuring a single-layer film sample of the SRO film. Therefore, the composition ratio of the SRO film C2, Sr / C
2, if Ru is known, the intensity I2 of the fluorescent X-ray XSr derived from the SRO film
Sr is determined, and finally the intensity I1, Sr of the fluorescent X-ray XSr derived from the BST film can be obtained.

【0051】この計算で使用するSRO膜の組成比C2,
Sr/C2,Ruとして、標準的な化学的組成比1:1を採用
できる。その理由として、励起X線を低角度で入射した
場合、励起X線は上層のBST膜でほとんど吸収され、
BST膜の励起X線の透過率T1 は極めて小さな値とな
り、BST膜由来の蛍光X線強度I1,Srに比べてSRO
膜由来の蛍光X線強度I2,Srは100分の1程度しかな
い。したがって、組成比C2,Sr/C2,Ruの設定値に、た
とえば10分の1の誤差が含まれていても強度I1,Srの
計算結果に1000分の1程度の誤差を及ぼすだけに過
ぎない。さらに、後述するようにSRO膜の測定結果を
用いて逐次的に精密化することも可能である。
The SRO film composition ratio C 2,
A standard chemical composition ratio of 1: 1 can be adopted as Sr / C2, Ru. The reason is that when the excited X-ray is incident at a low angle, the excited X-ray is almost absorbed by the upper BST film,
The transmittance T1 of the excited X-rays of the BST film becomes extremely small, and the SRO is lower than the fluorescent X-ray intensity I1, Sr derived from the BST film.
The fluorescent X-ray intensity I2, Sr derived from the film is only about 1/100. Therefore, even if the set value of the composition ratio C2, Sr / C2, Ru contains, for example, an error of 1/10, it only affects the calculation result of the intensity I1, Sr by about 1/1000. . Further, as will be described later, it is also possible to sequentially refine using the measurement results of the SRO film.

【0052】こうして上層のBST膜から発生する蛍光
X線XBa、XSr、XTiの発生量が判れば、単層膜の場合
と同様にBST膜の組成を算出できる。このとき使用す
るkBa/kSrおよびkTi/kSrはBST膜の単層膜試料
を測定することによって決定できる。
When the amount of the generated fluorescent X-rays XBa, XSr, and XTi generated from the upper BST film is known, the composition of the BST film can be calculated as in the case of the single-layer film. The kBa / kSr and kTi / kSr used at this time can be determined by measuring a single-layer film sample of the BST film.

【0053】次に下層のSRO膜の組成測定について説
明する。図3のように、励起X線X1の入射角θH を充
分に高い角度、たとえば2度に設定して照射すると、上
層のBST膜からBa、Sr、Tiの蛍光X線XBa、X
Sr、XTiが発生し、下層のSRO膜からSr、Ruの蛍
光X線XSr、XRuが入射角θL より強く発生する。この
とき、SrがBST膜およびSRO膜の両方に存在する
ため、検出した蛍光X線XSrがどちらの膜に由来するか
は区別できない。
Next, the measurement of the composition of the lower SRO film will be described. As shown in FIG. 3, when the incident angle θH of the excitation X-ray X1 is set to a sufficiently high angle, for example, 2 degrees, the X-rays Ba, Sr, and Ti fluorescent X-rays XBa, X
Sr and XTi are generated, and fluorescent X-rays XSr and XRu of Sr and Ru are generated from the lower SRO film more strongly than the incident angle θL. At this time, since Sr exists in both the BST film and the SRO film, it cannot be distinguished from which film the detected fluorescent X-ray XSr is derived.

【0054】一般に、2層構成の薄膜にX線を高角度で
入射させた場合、検出される蛍光X線強度は式(9)〜
(11)と同様に次式(22)〜(24)のように記述でき
る。ここで、t1、t2は第1層、第2層の膜厚である。
また、第1層、第2層での励起X線および蛍光X線の吸
収は通過距離が短いため無視できる。 Iz = I1,z + I2,z …(22) I1,z = kz・C1,z・ρ1・t1 …(23) I2,z = kz・C2,z・ρ2・t2 …(24)
In general, when X-rays are incident on a two-layered thin film at a high angle, the intensity of the fluorescent X-rays detected is expressed by the following equations (9) to (9).
Similar to (11), it can be described as in the following equations (22) to (24). Here, t1 and t2 are the thicknesses of the first layer and the second layer.
Further, the absorption of the excited X-rays and the fluorescent X-rays in the first layer and the second layer can be ignored because the passing distance is short. Iz = I1, z + I2, z (22) I1, z = kz · C1, z · ρ1 · t1 (23) I2, z = kz · C2, z · ρ2 · t2 (24)

【0055】単層膜の場合と同様に、蛍光X線量につい
てある元素の蛍光X線量を基準とした相対比較によっ
て、式(23)(24)は次式(25)(26)のように簡略化
できる。 I1,z /I1,z1 = (kz・C1,z)/(kzo・C1,zo) …(25) I2,z /I2,z2 = (kz・C2,z)/(kzo・C2,zo) …(26)
As in the case of the single-layer film, the expressions (23) and (24) are simplified to the following expressions (25) and (26) by relative comparison of the fluorescent X-ray dose with the fluorescent X-ray dose of a certain element. Can be I1, z / I1, z1 = (kz.C1, z) / (kzo.C1, zo) (25) I2, z / I2, z2 = (kz.C2, z) / (kzo.C2, zo) … (26)

【0056】次に上記式をBST膜およびSRO膜から
成る多層薄膜に適用する。 IBa = I1,Ba …(27) ISr = I1,Sr + I2,Sr …(28) ITi = I1,Ti …(29) IRu = I2,Ru …(30) I1,Ba /I1,Sr = (kBa・C1,Ba)/(kSr・C1,Sr) …(31) I1,Ti /I1,Sr = (kTi・C1,Ti)/(kSr・C1,Sr) …(32) I2,Sr /I2,Ru = (kSr・C2,Sr)/(kRu・C2,Ru) …(33)
Next, the above equation is applied to a multilayer thin film composed of a BST film and an SRO film. IBa = I1, Ba ... (27) ISr = I1, Sr + I2, Sr ... (28) ITi = I1, Ti ... (29) IRu = I2, Ru ... (30) I1, Ba / I1, Sr = (kBa・ C1, Ba) / (kSr ・ C1, Sr) (31) I1, Ti / I1, Sr = (kTi ・ C1, Ti) / (kSr ・ C1, Sr) (32) I2, Sr / I2, Ru = (kSr · C2, Sr) / (kRu · C2, Ru) (33)

【0057】式(31)(32)を変形するとBST膜由来
の蛍光X線XSrの強度I1,Srが求まる。
By transforming equations (31) and (32), the intensity I1, Sr of the fluorescent X-ray XSr derived from the BST film can be obtained.

【0058】[0058]

【数1】 (Equation 1)

【0059】このような計算方法の他に、たとえば式
(31)を用いて次式(36)(37)のように強度I1,Srを
求めることも可能である。 I1,Ba /I1,Sr = (kBa・C1,Ba)/(kSr・C1,Sr) …(36) I1,Sr = (I1,Ba・kSr・C1,Sr)/(kBa・C1,Ba) …(37)
In addition to such a calculation method, it is also possible to obtain the intensities I1 and Sr as shown in the following equations (36) and (37) using, for example, equation (31). I1, Ba / I1, Sr = (kBa.C1, Ba) / (kSr.C1, Sr) (36) I1, Sr = (I1, Ba.kSr.C1, Sr) / (kBa.C1, Ba) … (37)

【0060】測定精度に関して、測定する蛍光X線強度
の強い方が高いS/N比を確保できる。また蛍光X線X
Ba、XTiの強度を測定する際、たとえばBa−L特性X
線とTi−K特性X線を用いた場合は両者のピークが近
接しているという事情がある。これらの蛍光X線強度の
和をピーク分離せずに求めた場合は、どちらか一方をピ
ーク分離して求める場合よりも格段に安定した測定が可
能になる。こうした事情がある場合には、式(35)を用
いる方法が好ましいことになる。
Regarding the measurement accuracy, the higher the intensity of the fluorescent X-ray to be measured, the higher the S / N ratio can be secured. X-ray fluorescence
When measuring the strength of Ba and XTi, for example, the Ba-L characteristic X
When the X-ray and the Ti-K characteristic X-ray are used, there is a situation that both peaks are close to each other. When the sum of these fluorescent X-ray intensities is obtained without separating the peaks, much more stable measurement can be performed than when either one is obtained by separating the peaks. In such a situation, the method using equation (35) is preferable.

【0061】そこで、式(28)(35)を用いて、SRO
膜由来の蛍光X線XSrの強度I2,Srが求まる。
Then, using equations (28) and (35), SRO
The intensity I2, Sr of the fluorescent X-ray XSr derived from the film is determined.

【0062】[0062]

【数2】 (Equation 2)

【0063】ここで、ISr、IBa、ITiが観測量であ
り、kBa/kSr、kTi/kSrはBST膜の単層膜試料を
測定することによって決定できる。したがって、BST
膜の組成比C1,Ba:C1,Sr:C1,Tiが判れば、BST膜
由来の蛍光X線XSrの強度I1,Srが決定され、最終的に
SRO膜由来の蛍光X線XSrの強度I2,Srを求めること
ができる。
Here, ISr, IBa, and ITi are observation quantities, and kBa / kSr and kTi / kSr can be determined by measuring a single-layer BST film sample. Therefore, BST
If the composition ratio C1, Ba: C1, Sr: C1, Ti of the film is known, the intensity I1, Sr of the fluorescent X-ray XSr derived from the BST film is finally determined, and finally the intensity I2 of the fluorescent X-ray XSr derived from the SRO film. , Sr.

【0064】この計算で使用するBST膜の組成比C1,
Ba:C1,Sr:C1,Tiを特定する場合、斜入射における下
層のSRO膜が寄与する割合と高角度入射における上層
のBST膜が寄与する割合とを比べると、後者の方が前
者より格段に大きい。したがって、BST膜の組成比
は、信頼性の高い数値を採用するために、励起X線X1
を入射角θL で照射した斜入射法による測定データを使
用して算出することが好ましい。
The composition ratio C1, of the BST film used in this calculation
When specifying Ba: C1, Sr: C1, Ti, when comparing the ratio of the lower SRO film at oblique incidence to the ratio of the upper BST film at high angle incidence, the latter is much more pronounced than the former. Big. Therefore, the composition ratio of the BST film is set to the excitation X-ray X1
Is preferably calculated using measurement data obtained by the oblique incidence method in which the light is irradiated at an incident angle θL.

【0065】こうして下層のSRO膜から発生する蛍光
X線XSr、XRuの発生量が判れば、単層膜の場合と同様
にSRO膜の組成を算出できる。このとき使用するkSr
/kRuはSRO膜の単層膜試料を測定することによって
決定できる。
If the amount of the fluorescent X-rays XSr and XRu generated from the lower SRO film is known, the composition of the SRO film can be calculated as in the case of the single-layer film. KSr used at this time
/ KRu can be determined by measuring a single-layer film sample of the SRO film.

【0066】次に算出結果の回帰計算について説明す
る。BST膜の組成を算出する際に、SRO膜の組成比
として標準的な化学的組成比を使用しても大きな誤差に
ならないことは上述したが、誤差は少ない方が好まし
い。そのため次のような手順で回帰計算を実行すること
によって、BST膜およびSRO膜の組成の測定精度を
向上できる。
Next, the regression calculation of the calculation result will be described. As described above, when calculating the composition of the BST film, a large error does not occur even if a standard chemical composition ratio is used as the composition ratio of the SRO film. However, it is preferable that the error be small. Therefore, by executing the regression calculation in the following procedure, the measurement accuracy of the composition of the BST film and the SRO film can be improved.

【0067】1)SRO膜の組成C2,z として標準的な
化学的組成比を採用する。2)斜入射蛍光X線の強度測
定結果とSRO膜の組成C2,z とからBST膜の組成C
1,zを算出する。3)高角度入射蛍光X線の強度測定結
果とBST膜の組成C1,z とからSRO膜の組成C2,z
を新たに算出して修正する。4)修正したSRO膜の組
成C2,z を用いて手順2)を行ない、新たに算出したB
ST膜の組成C1,z を用いて手順3)を行ない、必要に
応じて手順2)、3)を繰り返す。
1) A standard chemical composition ratio is adopted as the composition C2, z of the SRO film. 2) The composition C of the BST film from the intensity measurement result of the obliquely incident X-ray fluorescence and the composition C2, z of the SRO film
Calculate 1, z. 3) The composition C2, z of the SRO film from the intensity measurement result of the high-angle incident fluorescent X-ray and the composition C1, z of the BST film.
Is newly calculated and corrected. 4) Procedure 2) is performed using the corrected composition of the SRO film C2, z, and the newly calculated B
The procedure 3) is performed using the composition C1, z of the ST film, and the procedures 2) and 3) are repeated as necessary.

【0068】次に実際の測定例について説明する。下記
の表は、励起X線として使用するX線エネルギーと、B
ST膜およびSRO膜の構成元素が発生する蛍光X線の
うち測定対象になる特性X線との関係を示す。
Next, an actual measurement example will be described. The table below shows the X-ray energies used as excited X-rays and B
The relationship between the characteristic X-rays to be measured among the fluorescent X-rays generated by the constituent elements of the ST film and the SRO film is shown.

【0069】[0069]

【表1】 [Table 1]

【0070】グループ1はBaのLI 吸収端(5996eV)よ
り大きく、SrのK吸収端(16108eV) より小さい励起X
線である。この場合、Ba−L線(4465eV,4827eV,5156e
V)、Sr−L線(1806eV)、Ti−K線(4508eV,4931eV)
、Ru−L線(2558eV,2683eV) という特性X線が測定
対象になる。
Group 1 has an excitation X larger than the LI absorption edge of Ba (5996 eV) and smaller than the K absorption edge of Sr (16108 eV).
Line. In this case, the Ba-L line (4465 eV, 4827 eV, 5156 eV
V), Sr-L line (1806 eV), Ti-K line (4508 eV, 4931 eV)
, Ru-L lines (2558 eV, 2683 eV) are measured.

【0071】グループ2はSrのK吸収端より大きく、
RuのK吸収端(22120eV) より小さい励起X線である。
この場合、Ba−L線、Sr−K線(14140eV,15830eV)
、Ti−K線、Ru−L線という特性X線が測定対象
になる。
Group 2 is larger than the K absorption edge of Sr,
This is an excited X-ray smaller than the K absorption edge of Ru (22120 eV).
In this case, Ba-L line, Sr-K line (14140 eV, 15830 eV)
, Ti-K line and Ru-L line are measured.

【0072】グループ3はRuのK吸収端より大きい励
起X線である。この場合、Ba−L線、Sr−K線、T
i−K線、Ru−K線(19233eV,21646eV) という特性X
線が測定対象になる。
Group 3 is an excited X-ray that is larger than the K absorption edge of Ru. In this case, Ba-L line, Sr-K line, T
Characteristic X of i-K line and Ru-K line (19233 eV, 21646 eV)
The line is measured.

【0073】上層のBST膜を主に測定する斜入射の場
合は、Ba−L線およびTi−K線をなるべく精度良く
測定する必要があるため、励起X線エネルギーが高いグ
ループ2、グループ3と比べて蛍光X線の強度が大きく
なるグループ1の測定系が好ましいことになる。
In the case of oblique incidence where the upper BST film is mainly measured, it is necessary to measure the Ba-L line and the Ti-K line as accurately as possible. The measurement system of Group 1 in which the intensity of the fluorescent X-rays is larger than that of the first embodiment is preferable.

【0074】下層のSRO膜を主に測定する高角度入射
の場合は、基板のSi−K(1739eV)が非常に強く検出さ
れてしまい、エネルギー分散式のX線検出器4を使用し
ている場合、Sr−L線(1806eV)の検出が困難になる。
その対策として、Sr−L線とは別のSr−K線を測定
対象としたグループ2、グループ3の測定系が好ましい
ことになる。
In the case of high-angle incidence where the lower SRO film is mainly measured, Si-K (1739 eV) of the substrate is detected very strongly, and the energy dispersive X-ray detector 4 is used. In this case, it is difficult to detect the Sr-L line (1806 eV).
As a countermeasure, it is preferable to use the measurement systems of Group 2 and Group 3 in which an Sr-K line different from the Sr-L line is to be measured.

【0075】したがって、図1に示すような蛍光X線分
析装置において、斜入射用と高角度入射用とで別々のX
線源1を切替える構成を採用する場合、グループ1とグ
ループ3(またはグループ2)との組合せが好ましい。
一方、斜入射用と高角度入射用とで同じX線源1を共用
する場合は、グループ2の測定系が好ましい。
Therefore, in the X-ray fluorescence analyzer as shown in FIG. 1, separate X-rays are used for oblique incidence and for high-angle incidence.
When employing a configuration in which the source 1 is switched, a combination of the group 1 and the group 3 (or the group 2) is preferable.
On the other hand, when the same X-ray source 1 is shared for oblique incidence and high-angle incidence, the measurement system of group 2 is preferable.

【0076】図4は、Ba蛍光X線とTi蛍光X線のエ
ネルギー分布を示すグラフである。Ba−L線(4465e
V,4827eV,5156eV)とTi−K線(4508eV,4931eV)とは
互いに接近している。そのため両者が同時に発生する
と、図4の実線グラフのようにピーク位置情報が埋もれ
てしまう可能性がある。この場合、1)高度なグラフ解析
計算を用いて測定データを2つのカーブに分離する、2)
Ba蛍光X線とTi蛍光X線との合成量をそのまま1つ
のパラメータとして取扱う、などの手法によってSr蛍
光X線との相対比較を行なうことができる。
FIG. 4 is a graph showing the energy distribution of Ba fluorescent X-rays and Ti fluorescent X-rays. Ba-L line (4465e
V, 4827 eV, 5156 eV) and the Ti-K line (4508 eV, 4931 eV) are close to each other. Therefore, if both occur at the same time, the peak position information may be buried as shown by the solid line graph in FIG. In this case, 1) Separate the measured data into two curves using advanced graph analysis calculations, 2)
Relative comparison with Sr fluorescent X-rays can be performed by a technique such as treating the combined amount of Ba fluorescent X-rays and Ti fluorescent X-rays as one parameter as it is.

【0077】[0077]

【発明の効果】以上詳説したように本発明によれば、励
起X線を入射角θL で照射したときの共通元素MBおよ
び非共通元素MA、MCの蛍光X線の各強度を検出し、
予め設定された下層膜の組成比Kbに基づいて、入射角
θL における下層膜由来の共通元素MBおよび非共通元
素MCの蛍光X線の強度比ILbを算出でき、さらに強度
比ILbに基づいて、入射角θL における蛍光X線のうち
上層膜由来の共通元素MBの蛍光X線の強度を算出する
ことによって、上層膜の組成比Ktを算出できる。した
がって、多層薄膜に共通元素が存在する場合でも、多層
薄膜の組成を正確に測定できる。
As explained in detail above, according to the present invention, the intensity of the fluorescent X-rays of the common element MB and the non-common elements MA and MC when the excitation X-ray is irradiated at the incident angle θL is detected.
Based on a predetermined composition ratio Kb of the lower film, the intensity ratio ILb of the fluorescent X-rays of the common element MB and the non-common element MC derived from the lower film at the incident angle θL can be calculated, and further, based on the intensity ratio ILb, The composition ratio Kt of the upper layer film can be calculated by calculating the intensity of the fluorescent X-ray of the common element MB derived from the upper layer film among the fluorescent X-rays at the incident angle θL. Therefore, even when the common element exists in the multilayer thin film, the composition of the multilayer thin film can be accurately measured.

【0078】また本発明によれば、上層のBST膜およ
び下層のSRO膜から成る多層薄膜が表面に形成された
シリコン基板についても、同様な手法によって、多層薄
膜の組成を正確に測定できる。
Further, according to the present invention, the composition of a multilayer thin film can be accurately measured by a similar method on a silicon substrate having a multilayer thin film composed of an upper BST film and a lower SRO film formed on the surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る蛍光X線分析装置を示す構成図で
ある。
FIG. 1 is a configuration diagram showing a fluorescent X-ray analyzer according to the present invention.

【図2】励起X線X1を低い入射角θL で入射したとき
の説明図である。
FIG. 2 is an explanatory diagram when an excitation X-ray X1 is incident at a low incident angle θL.

【図3】励起X線X1を高い入射角θH(θH>θL) で入
射したときの説明図である。
FIG. 3 is an explanatory diagram when an excitation X-ray X1 is incident at a high incident angle θH (θH> θL).

【図4】Ba蛍光X線とTi蛍光X線のエネルギー分布
を示すグラフである。
FIG. 4 is a graph showing the energy distribution of Ba fluorescent X-rays and Ti fluorescent X-rays.

【符号の説明】[Explanation of symbols]

1 X線源 2 分光結晶 3 スリット部材 4 X線検出器 5 試料保持機構 DESCRIPTION OF SYMBOLS 1 X-ray source 2 Dispersion crystal 3 Slit member 4 X-ray detector 5 Sample holding mechanism

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 互いに共通する元素MBおよび共通しな
い元素MA、MCがそれぞれ存在する上層膜および下層
膜から成る多層薄膜が表面に形成された基板に向けて励
起X線を照射して、多層薄膜から発生する蛍光X線を検
出することによって多層薄膜の組成を測定する方法であ
って、 下層膜の共通元素MBおよび非共通元素MCの組成比K
bを特定する工程と、励起X線を入射角θL で照射し、
多層薄膜から発生する共通元素MBおよび非共通元素M
A、MCの蛍光X線の各強度を検出する工程と、 前記組成比Kbに基づいて、入射角θL における下層膜
由来の共通元素MBおよび非共通元素MCの蛍光X線の
強度比ILbを算出する工程と、 前記強度比ILbに基づいて、入射角θL における蛍光X
線のうち上層膜由来の共通元素MBの蛍光X線の強度を
算出する工程と、 上層膜由来の共通元素MBの蛍光X線の強度と非共通元
素MAの蛍光X線の強度との比ILtに基づいて、上層膜
の共通元素MBおよび非共通元素MAの組成比Ktを算
出する工程とを含むことを特徴とする多層薄膜組成測定
方法。
1. Excited X-rays are irradiated to a substrate on which a multilayer thin film composed of an upper layer film and a lower layer film each having an element MB common to each other and elements MA and MC not present respectively is formed. A method for measuring the composition of a multilayer thin film by detecting fluorescent X-rays generated from a substrate, comprising: a composition ratio K of a common element MB and a non-common element MC in a lower film.
b) irradiating excited X-rays at an incident angle θL;
Common element MB and non-common element M generated from multilayer thin film
Detecting the intensity of each of the fluorescent X-rays of A and MC, and calculating the intensity ratio ILb of the fluorescent X-rays of the common element MB and the non-common element MC derived from the lower layer at the incident angle θL based on the composition ratio Kb. The fluorescence X at the incident angle θL based on the intensity ratio ILb.
Calculating the intensity of the fluorescent X-rays of the common element MB derived from the upper layer film among the lines; and the ratio ILt between the intensity of the fluorescent X-rays of the common element MB derived from the upper layer film and the intensity of the fluorescent X-rays of the non-common element MA Calculating the composition ratio Kt of the common element MB and the non-common element MA of the upper layer film based on the above formula.
【請求項2】 励起X線を入射角θH (θH>θL)で照射
し、多層薄膜から発生する共通元素MBおよび非共通元
素MA、MCの蛍光X線の各強度を検出する工程と、 前記組成比Ktに基づいて、入射角θH における上層膜
由来の共通元素MBおよび非共通元素MAの蛍光X線の
強度比IHtを算出する工程と、 前記強度比IHtに基づいて、入射角θH における蛍光X
線のうち下層膜由来の共通元素MBの蛍光X線の強度を
算出する工程と、 下層膜由来の共通元素MBの蛍光X線の強度と非共通元
素MCの蛍光X線の強度との比IHbに基づいて、下層膜
の共通元素MBおよび非共通元素MCの組成比Kbを新
たに算出する工程とを含むことを特徴とする請求項1記
載の多層薄膜組成測定方法。
2. a step of irradiating excitation X-rays at an incident angle θH (θH> θL) to detect respective intensities of fluorescent X-rays of a common element MB and non-common elements MA and MC generated from the multilayer thin film; Calculating the intensity ratio IHt of the fluorescent X-rays of the common element MB and the non-common element MA derived from the upper layer film at the incident angle θH based on the composition ratio Kt; and the fluorescence at the incident angle θH based on the intensity ratio IHt. X
Calculating the intensity of the fluorescent X-rays of the common element MB derived from the lower film among the lines, and the ratio IHb between the intensity of the fluorescent X-rays of the common element MB derived from the lower film and the intensity of the fluorescent X-rays of the non-common element MC Calculating the composition ratio Kb of the common element MB and the non-common element MC of the lower layer film based on the following formula:
【請求項3】 上層のBST膜および下層のSRO膜か
ら成る多層薄膜が表面に形成されたシリコン基板に向け
て励起X線を照射して、多層薄膜から発生する蛍光X線
を検出することによって多層薄膜の組成を測定する方法
であって、 SRO膜のSr、Ruの組成比KSRを特定する工程と、 励起X線を低い入射角θL で照射し、多層薄膜から発生
するBa、Sr、Ti、Ruの蛍光X線XBa、XSr、X
Ti、XRuの各強度を検出する工程と、 前記組成比KSRに基づいて、入射角θL におけるSRO
膜由来の蛍光X線XSr、XRuの強度比ILSR を算出する
工程と、 前記強度比ILSRに基づいて、入射角θL における蛍光
X線XSrのうちBST膜由来の蛍光X線XSrの強度を算
出する工程と、 BST膜由来の蛍光X線XSrの強度と蛍光X線XBa、X
Tiとの比ILSBTに基づいて、BST膜のBa、Sr、T
iの組成比KBST を算出する工程とを含むことを特徴と
する多層薄膜組成測定方法。
3. A silicon substrate having a multilayer thin film comprising an upper BST film and a lower SRO film formed thereon is irradiated with excitation X-rays toward a silicon substrate formed on the surface thereof to detect fluorescent X-rays generated from the multilayer thin film. A method for measuring the composition of a multilayer thin film, comprising the steps of specifying the composition ratio KSR of Sr and Ru in an SRO film, irradiating excited X-rays at a low incident angle θL, and generating Ba, Sr, and Ti generated from the multilayer thin film. , Ru fluorescent X-rays XBa, XSr, X
Detecting the intensity of each of Ti and XRu; and determining the SRO at an incident angle θL based on the composition ratio KSR.
Calculating the intensity ratio ILSR of the fluorescent X-rays XSr and XRu derived from the film; and calculating the intensity of the fluorescent X-ray XSr derived from the BST film among the fluorescent X-rays XSr at the incident angle θL based on the intensity ratio ILSR. Step, intensity of fluorescent X-ray XSr derived from BST film and fluorescent X-ray XBa, X
Based on the ratio ILSBT to Ti, Ba, Sr, T
calculating the composition ratio KBST of i.
【請求項4】 励起X線を入射角θH (θH>θL)で照射
し、多層薄膜から発生するBa、Sr、Ti、Ruの蛍
光X線XBa、XSr、XTi、XRuの各強度を検出する工程
と、 前記組成比KBST に基づいて、入射角θH におけるBS
T膜由来の蛍光X線XBa、XSr、XTiの強度比IHBSTを
算出する工程と、 前記強度比IHBSTに基づいて、入射角θH における蛍光
X線のうちSRO膜由来の蛍光X線XSrの強度を算出す
る工程と、 SRO膜由来の蛍光X線XSrの強度と蛍光X線XRuの強
度との比IHSR に基づいて、SRO膜のSr、Ruの組
成比KSRを新たに算出する工程とを含むことを特徴とす
る請求項3記載の多層薄膜組成測定方法。
4. Irradiation with excitation X-rays at an incident angle θH (θH> θL) to detect the respective intensities of fluorescent X-rays XBa, XSr, XTi and XRu of Ba, Sr, Ti and Ru generated from the multilayer thin film. Based on the composition ratio KBST, the BS at the incident angle θH
Calculating the intensity ratio IHBST of the fluorescent X-rays XBa, XSr, and XTi derived from the T film; and, based on the intensity ratio IHBST, the intensity of the fluorescent X-ray XSr derived from the SRO film among the fluorescent X-rays at the incident angle θH. Calculating, and based on the ratio IHSR between the intensity of the fluorescent X-ray XSr and the intensity of the fluorescent X-ray XRu derived from the SRO film, newly calculating the composition ratio KSR of Sr and Ru of the SRO film. 4. The method for measuring the composition of a multilayer thin film according to claim 3, wherein:
【請求項5】 励起X線として単色化されたX線を使用
することを特徴とする請求項1または3記載の多層薄膜
組成測定方法。
5. The method for measuring the composition of a multilayer thin film according to claim 1, wherein monochromatic X-rays are used as the excitation X-rays.
JP13446699A 1999-05-14 1999-05-14 Multilayer thin film composition measurement method Expired - Fee Related JP3545966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13446699A JP3545966B2 (en) 1999-05-14 1999-05-14 Multilayer thin film composition measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13446699A JP3545966B2 (en) 1999-05-14 1999-05-14 Multilayer thin film composition measurement method

Publications (2)

Publication Number Publication Date
JP2000321223A true JP2000321223A (en) 2000-11-24
JP3545966B2 JP3545966B2 (en) 2004-07-21

Family

ID=15128991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13446699A Expired - Fee Related JP3545966B2 (en) 1999-05-14 1999-05-14 Multilayer thin film composition measurement method

Country Status (1)

Country Link
JP (1) JP3545966B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153438A (en) * 2006-12-18 2008-07-03 Honda Motor Co Ltd Method for measuring buffer layer film thickness
WO2012008513A1 (en) * 2010-07-15 2012-01-19 株式会社堀場製作所 Fluorescent x-ray detection method and fluorescent x-ray detection device
JP2017138104A (en) * 2016-02-01 2017-08-10 スタンレー電気株式会社 Calculation method for element ratio constituting laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153438A (en) * 2006-12-18 2008-07-03 Honda Motor Co Ltd Method for measuring buffer layer film thickness
JP4734224B2 (en) * 2006-12-18 2011-07-27 本田技研工業株式会社 Buffer layer thickness measurement method
WO2012008513A1 (en) * 2010-07-15 2012-01-19 株式会社堀場製作所 Fluorescent x-ray detection method and fluorescent x-ray detection device
JP2017138104A (en) * 2016-02-01 2017-08-10 スタンレー電気株式会社 Calculation method for element ratio constituting laminate

Also Published As

Publication number Publication date
JP3545966B2 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
US10030971B2 (en) Measurement system and method for measuring in thin films
EP3134712B1 (en) Silicon germanium thickness and composition determination using combined xps and xrf technologies
US11733035B2 (en) Feed-forward of multi-layer and multi-process information using XPS and XRF technologies
US11549895B2 (en) System and method using x-rays for depth-resolving metrology and analysis
JP2005062188A (en) Thickness measuring apparatus and thickness measuring method
JP3908472B2 (en) Film thickness measuring method and level difference measuring method
US11287253B2 (en) Device and method applicable for measuring ultrathin thickness of film on substrate
JP2004045369A (en) Method for evaluating orientation of polycrystalline material
WO2012153462A1 (en) Method for determining film thickness of soi layer of soi wafer
JP3545966B2 (en) Multilayer thin film composition measurement method
TWI329736B (en) X-ray scattering with a polychromatic source
US11852467B2 (en) Method and system for monitoring deposition process
JP2004157120A (en) Method of measuring concentration, and method of measuring impurity concentration of semiconductor element using the same
US10801978B2 (en) XPS metrology for process control in selective deposition
JPH06222019A (en) Nondestructive quantitative analysis of multilayer thin film
Gostein et al. Thin-Film Metrology Using Impulsive Stimulated Thermal Scattering (ISTS)
JPH1140635A (en) Method for evaluating layer thickness of semiconductor multilayered film
JP2006053012A (en) Fluorescent x-ray analyzer
JPH05209847A (en) Fluorescent x-ray spectroscopy method and apparatus
JPH1048160A (en) Substrate for total reflection x-ray fluorescence analysis and analyzing method using the same
JPH0682400A (en) Total reflection x-ray fluorescence analyser
JP2000077494A (en) Manufacture of semiconductor integrated circuit device
JPH083475B2 (en) Sample holder for X-ray fluorescence analyzer
JP2008215985A (en) Method and apparatus for evaluating ferroelectric object
JPH09229856A (en) Measuring method for amount of crystal defect, measuring method for injecting amount of ion, and measuring apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees