JP2000319090A - Heat insulation cylinder for single crystal pulling-up device and single crystal pulling-up device provided with the same - Google Patents

Heat insulation cylinder for single crystal pulling-up device and single crystal pulling-up device provided with the same

Info

Publication number
JP2000319090A
JP2000319090A JP11127108A JP12710899A JP2000319090A JP 2000319090 A JP2000319090 A JP 2000319090A JP 11127108 A JP11127108 A JP 11127108A JP 12710899 A JP12710899 A JP 12710899A JP 2000319090 A JP2000319090 A JP 2000319090A
Authority
JP
Japan
Prior art keywords
single crystal
crystal pulling
heat
heat retaining
pulling apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11127108A
Other languages
Japanese (ja)
Other versions
JP4673459B2 (en
Inventor
Takashi Takagi
俊 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP12710899A priority Critical patent/JP4673459B2/en
Publication of JP2000319090A publication Critical patent/JP2000319090A/en
Application granted granted Critical
Publication of JP4673459B2 publication Critical patent/JP4673459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulation cylinder for use in a single crystal pulling-up device, which can be produced at a reduced cost and has a long service life and also can easily be replaced. SOLUTION: This heat insulation cylinder 30 is placed in the space between a heater 20 for heating a crucible 10 in a single crystal pulling-up device 100 and a heat insulation material 40 for inhibiting heat from the heater 20 from being transferred to the outside, and used for performing heat insulation within the single crystal pulling-up device 100, wherein the inner constituent material of the cylindrical wall of the heat insulation cylinder 30 is a carbon material having a 2.0-0.1 mm thickness in the radial direction and a coating film consisting of pyrolytic carbon is formed on a part or the whole of the surface of the inner carbon material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単結晶引き上げ装
置及びこれを構成するための部材に関し、特に、単結晶
引き上げ装置を構成するヒータと断熱材との間に配置さ
れて炭素材料を基材とする保温筒及びその保温筒を備え
た単結晶引き上げ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal pulling apparatus and a member for forming the single crystal pulling apparatus, and more particularly, to a single crystal pulling apparatus which is disposed between a heater and a heat insulating material. And a single crystal pulling apparatus provided with the heat retaining cylinder.

【0002】[0002]

【従来の技術】単結晶引き上げ装置には種々あるが、シ
リコンや化合物半導体であるガリュウム−砒素、或いは
ガリュウム−リン等の電子材料の単結晶を引き上げる装
置においては各々共通の課題を有しているため、以下で
は特にシリコン単結晶引き上げ装置を例示して説明す
る。
2. Description of the Related Art There are various types of single crystal pulling apparatuses, but each of them has a common problem in apparatuses for pulling single crystals of electronic materials such as silicon and compound semiconductors such as gallium-arsenic and gallium-phosphorus. Therefore, a silicon single crystal pulling apparatus will be particularly described below as an example.

【0003】シリコン単結晶引き上げ装置は、所謂チョ
クラルスキー法と称される方法により、 雰囲気ガスの
存在下でルツボ内のシリコン融液からシリコン単結晶を
引き上げるもので、例えば、特公昭57−15079号
公報にて示されているような「単結晶引上装置」として
知られている。この公報に示された装置は、図3に示す
ように、「炉体容器1内にその下方より回転軸2が導入
され、その回転軸2の端面上に受け皿3を介してルツボ
4が配される。又該ルツボ4の周りに発熱体5と保温筒
6が配され、ルツボ4内でシリコンが溶融され融液7を
得る。一方炉体容器1の上方には上下に滑動する回転軸
9が設けられている。該回転軸9の遊端にシリコンの種
結晶8を取付け、回転軸9を種結晶8がルツボ4内の融
液7に触れている状態より上方に移動させて、種結晶8
の下に続くシリコン単結晶10を得る。単結晶を育成す
る際、不必要な反応生成ガスが、単結晶10及び融液7
の液面で反応しないように、これを排除する必要があ
る。このためにアルゴン等の不活性ガスを雰囲気ガスと
して、炉体容器1の上方より単結晶及び液面に供給し、
炉体容器下部より排出する」というものである(上記公
報の第2欄)。なお、図3中の符号5を付した部材は、
ヒータであり保温筒6と炉体容器1との間には図1に示
すように断熱材が配置されるものである。
A silicon single crystal pulling apparatus pulls a silicon single crystal from a silicon melt in a crucible in the presence of an atmospheric gas by a so-called Czochralski method, for example, Japanese Patent Publication No. 57-15079. Is known as a "single crystal pulling apparatus" as disclosed in Japanese Patent Application Publication No. As shown in FIG. 3, the apparatus disclosed in this publication is configured such that “a rotary shaft 2 is introduced into a furnace body container 1 from below, and a crucible 4 is disposed on an end surface of the rotary shaft 2 via a tray 3. A heating element 5 and a heat retaining cylinder 6 are arranged around the crucible 4, and silicon is melted in the crucible 4 to obtain a melt 7. On the other hand, a rotating shaft which slides up and down is placed above the furnace vessel 1. A silicon seed crystal 8 is attached to the free end of the rotating shaft 9, and the rotating shaft 9 is moved upward from a state where the seed crystal 8 is in contact with the melt 7 in the crucible 4, Seed crystal 8
To obtain a silicon single crystal 10 continuing below. When growing a single crystal, an unnecessary reaction product gas contains the single crystal 10 and the melt 7.
It is necessary to eliminate this so as not to react at the liquid level. For this purpose, an inert gas such as argon is supplied as an atmospheric gas to the single crystal and the liquid level from above the furnace vessel 1,
It is discharged from the lower part of the furnace body container "(the second column of the above publication). The members denoted by reference numeral 5 in FIG.
As a heater, a heat insulating material is disposed between the heat retaining cylinder 6 and the furnace body container 1 as shown in FIG.

【0004】ところで、以上の様な保温筒を構成するた
めの材料としては、黒鉛や炭素結合炭素繊維複合材料
(以下、単にC/Cコンポジットという)がある。黒鉛
から成る保温筒は、円柱状もしくは角形状のブロック材
料を旋盤加工して製作するものである。またC/Cコン
ポジットから成る保温筒は、あらかじめ用意した金型に
炭素繊維を円筒状に多層に巻き付けたものを樹脂やピッ
チで硬化し、炭素化、含浸等を繰り返して製作するもの
である。上記の様に保温筒の製作には、多大な時間と費
用を必要とし、シリコン単結晶の生産コストに占める割
合が大きくなっている。
[0004] By the way, as a material for forming the above-mentioned heat retaining cylinder, there are graphite and a carbon-bonded carbon fiber composite material (hereinafter, simply referred to as C / C composite). The heat retaining cylinder made of graphite is manufactured by lathe processing of a columnar or square block material. Further, the heat retaining cylinder made of the C / C composite is manufactured by repeatedly winding a carbon fiber in a multilayer shape in a cylindrical shape around a mold prepared in advance, curing with resin or pitch, and repeatedly carbonizing and impregnating. As described above, the production of the heat retaining cylinder requires a great deal of time and cost, and the proportion of the production cost of the silicon single crystal is increasing.

【0005】また、その他に以下のような新たな問題が
派生してきた。即ち、保温筒は高温下で使用されるもの
であり、シリコン単結晶引き上げ作業時に次の様な反応
が生ずると考えられる。 (1) SiO + 2C → SiC + CO つまり、高温に加熱される保温筒は、表層の炭素が珪化
されるのである。このようにして形成された珪化層は、
保温筒の材料とは物性の異なったものであるから、シリ
コン単結晶引き上げ装置を停止し冷却したときに亀裂を
生じさせる原因となり、亀裂が生じれば珪化層等が細片
となって剥離しシリコン融液内に落下することがあり、
引き上げられたSi単結晶に結晶欠陥を生じる原因とな
る。
[0005] In addition, the following new problems have arisen. That is, the heat retaining cylinder is used at a high temperature, and it is considered that the following reaction occurs during the silicon single crystal pulling operation. (1) SiO + 2C → SiC + CO In other words, in the heat retaining cylinder heated to a high temperature, carbon in the surface layer is silicified. The silicide layer thus formed is
Since the material of the heat retaining cylinder is different from the physical properties, it causes cracks when the silicon single crystal pulling apparatus is stopped and cooled, and if cracks occur, the silicide layer etc. peels off as small pieces. May fall into the silicon melt,
This causes crystal defects in the pulled Si single crystal.

【0006】また、板材を円筒形状に湾曲させ構成する
と、所望の曲率を得るためには極力薄くする必要があ
り、薄くなれば珪化による割れが増大し寿命も短くなる
ため、逆にコストダウンにはつながらなかった。
Further, when the plate material is curved into a cylindrical shape, it is necessary to reduce the thickness as much as possible in order to obtain a desired curvature. If the thickness is reduced, cracks due to silicidation increase and the life is shortened. Did not connect.

【0007】一方、保温筒の基材の厚みが必要以上に厚
くなると、その分熱容量が大きくなるため冷めるのに時
間がかかり、また、重量が大きく正確なセッティングの
妨げになるなど、保温筒の交換作業において支障が生じ
てくる。
On the other hand, if the thickness of the base material of the heat insulating cylinder becomes unnecessarily thick, the heat capacity becomes large and it takes time to cool down, and the weight of the heat insulating cylinder hinders accurate setting. A problem occurs in the replacement work.

【0008】そこで本発明者は、この種の単結晶引き上
げ装置用保温筒について、前述した問題を解決するに
は、どうしたらよいかについて種々の検討を重ねてきた
結果、本発明を完成したのである。
The inventor of the present invention has conducted various studies on how to solve the above-mentioned problems with respect to this type of heat retaining cylinder for a single crystal pulling apparatus, and as a result, completed the present invention. is there.

【0009】[0009]

【発明が解決しようとする課題】本発明は、以上のよう
な経緯に基づいてなされたもので、その解決しようとす
る課題は、この種の単結晶引き上げ装置における保温筒
のコストダウンを図り、より長寿命であって交換作業も
容易なものとすることにある。
SUMMARY OF THE INVENTION The present invention has been made on the basis of the above circumstances, and the problem to be solved is to reduce the cost of a heat retaining cylinder in this type of single crystal pulling apparatus. The purpose is to make the replacement work easier and have a longer life.

【0010】すなわち本発明の目的とするところは、S
iOガス等との反応による珪化を防止して割れを生じな
いようにすることが出来て、耐久性が高く安価で作業性
に優れた保温筒を提供することにある。
That is, the object of the present invention is to provide S
An object of the present invention is to provide a heat insulating cylinder which can prevent silicification due to reaction with iO gas or the like so as not to cause cracks, has high durability, is inexpensive, and has excellent workability.

【0011】[0011]

【課題を解決するための手段】以上の課題を解決するた
めに、まず、請求項1に係る発明の採った手段は、以下
の実施形態の説明中において使用する符号を付して説明
すると、「単結晶引き上げ装置100内のルツボ10を
加熱するヒータ20とこのヒータ20からの熱が外部へ
移動しないようにするための断熱材40との間に配置さ
れて、当該単結晶引き上げ装置100内の保温を行う保
温筒30であって、この筒壁内は径方向に厚み2.0m
m〜0.1mmの炭素材料からなり、その表面の一部又
は全部に熱分解炭素からなる被膜32を形成したことを
特徴とする単結晶引き上げ装置用保温筒30」である。
Means for Solving the Problems To solve the above problems, first, means according to the first aspect of the present invention will be described with reference numerals used in the following description of the embodiments. "It is disposed between a heater 20 for heating the crucible 10 in the single crystal pulling apparatus 100 and a heat insulating material 40 for preventing heat from the heater 20 from moving outside. Is a heat insulation cylinder 30 for keeping the heat inside, and the inside of the cylinder wall has a thickness of 2.0 m in the radial direction.
A heat insulating cylinder 30 for a single crystal pulling apparatus, comprising a carbon material of m to 0.1 mm, and a coating 32 made of pyrolytic carbon formed on a part or all of the surface thereof.

【0012】すなわち、本発明に係る保温筒30は、図
1に示すように密閉本体50内のルツボ10を加熱する
ためのヒータ20と、密閉本体50からの熱の外方への
移動を規制する断熱材40との間に介装されるものであ
る。
That is, as shown in FIG. 1, the heat retaining cylinder 30 according to the present invention controls the heater 20 for heating the crucible 10 in the sealed main body 50 and restricts the outward movement of heat from the sealed main body 50. It is interposed between the heat insulating material 40 to be used.

【0013】そして、この請求項1の発明に係る保温筒
30は、その基材31である炭素材料の一部又は全部の
表面に熱分解炭素からなる被膜32を形成する必要があ
る。その理由は、この熱分解炭素被膜32によって基材
31とSiOガスとの接触を阻止して、前述した式
(1)に示した反応が生じないようにする必要があるか
らである。
In the heat insulation cylinder 30 according to the first aspect of the present invention, it is necessary to form a coating 32 made of pyrolytic carbon on a part or all of the surface of the carbon material as the base material 31. The reason is that it is necessary to prevent the contact between the base material 31 and the SiO gas by the pyrolytic carbon film 32 so that the reaction shown in the above-mentioned formula (1) does not occur.

【0014】なお、熱分解炭素被膜32の厚みは10μ
m〜200μmであることが好ましい。その理由は、1
0μm未満であると、被膜32に連続気孔の存在する割
合が増えてシール性が急激に悪くなるのと、200μm
を越えると、下の炭素材料との熱膨張係数のミスマッチ
の影響が急激に拡大するからである。そして、炭素材料
表面全体、或いはヒーターに面している面は活性化して
いるので、その面のみというように被覆していく。
The thickness of the pyrolytic carbon coating 32 is 10 μm.
It is preferably from m to 200 μm. The reason is 1
When the thickness is less than 0 μm, the ratio of continuous pores in the coating 32 increases, and the sealing property rapidly deteriorates.
Is exceeded, the effect of the mismatch of the thermal expansion coefficient with the underlying carbon material sharply increases. Since the entire surface of the carbon material or the surface facing the heater is activated, the surface is coated only on that surface.

【0015】またこの請求項1に係る保温筒30は、そ
の厚みを2.0mm〜0.1mmとしなければならな
い。その理由は、2.0mm以上にすると熱容量が大き
くなるため冷めるのに時間がかかり、また重量が大きく
正確なセッティングの妨げになるからである。一方、
0.1mm以上にしなければならないのは、多孔性の部
分の割合が減少して、設計通りの断熱効果が発揮されな
いからである。
The thickness of the heat retaining cylinder 30 according to the first aspect must be 2.0 mm to 0.1 mm. The reason for this is that if the thickness is 2.0 mm or more, the heat capacity increases, so that it takes time to cool down, and the weight is large, which hinders accurate setting. on the other hand,
The reason why the thickness must be 0.1 mm or more is that the ratio of the porous portion is reduced and the heat insulating effect as designed is not exhibited.

【0016】次に、請求項2に係る発明にあっては、保
温筒30を炭素材料からなる板材31を湾曲させて構成
したものであるが、保温筒30の曲率に対し無理なく板
材31を湾曲させる必要性からすると、その厚みが1.
0mm〜0.5mmであることがより好ましい。
Next, in the invention according to claim 2, the heat retaining cylinder 30 is formed by curving a plate material 31 made of a carbon material. In view of the need to bend, its thickness is 1.
More preferably, it is 0 mm to 0.5 mm.

【0017】以上のように構成した本発明に係る保温筒
30によれば、次のような作用を発揮することになる。
すなわち本発明に係る保温筒30では、図2に示したよ
うな緻密質の熱分解炭素被膜32が形成してあるため、
ここに飛散してきたSiOガスやSiガスは、この熱分
解炭素被膜32によって炭素材料からなる板材31に接
触することはなく、従って板材31中の炭素と反応する
ことはない。
According to the heat retaining cylinder 30 of the present invention configured as described above, the following effects are exhibited.
That is, in the heat retaining cylinder 30 according to the present invention, since the dense pyrolytic carbon film 32 as shown in FIG. 2 is formed,
The SiO gas and the Si gas scattered here do not come into contact with the plate 31 made of the carbon material by the pyrolytic carbon coating 32, and therefore do not react with the carbon in the plate 31.

【0018】そして、この保温筒30は、厚み2.0m
m以下の炭素材料から構成されており、熱容量が低く重
量も軽いため保温筒30の交換作業が容易である。さら
に板材31を湾曲させて構成することができ、非常にコ
ストの安いものとなっておりかつ耐久性の非常に高いも
のとなっているのである。
The heat insulation cylinder 30 has a thickness of 2.0 m.
m, and has a low heat capacity and a light weight, so that the work of replacing the heat retaining cylinder 30 is easy. Further, the plate member 31 can be configured by being curved, so that the cost is very low and the durability is very high.

【0019】次に、前述した課題を解決するために、請
求項4に係る発明の採った手段は、請求項1乃至3に係
る保温筒30において「炭素材料がC/Cコンポジッ
ト」であるものとしたことである。
Next, in order to solve the above-mentioned problem, a means adopted by the invention according to claim 4 is that the carbon material is a C / C composite in the heat retaining cylinder 30 according to claims 1 to 3. It was that.

【0020】すなわち、この保温筒30を厚み2.0m
m〜0.1mmのC/Cコンポジットで構成する必要が
ある。その理由は、C/Cコンポジットは高強度であり
割れ防止をより確実に行うためである。
That is, the heat insulation cylinder 30 is set to a thickness of 2.0 m.
It must be composed of a m / 0.1 mm C / C composite. The reason is that the C / C composite has high strength and more reliably prevents cracking.

【0021】そして、上記課題を解決するために、請求
項5に係る発明の採った手段は、上記請求項1乃至4に
係る保温筒30について、「炭素材料の室温から100
0℃における平均熱膨張係数が2.5〜5.0×10-6
/℃」となるものにしたことである。
[0021] In order to solve the above-mentioned problem, a means adopted by the invention according to claim 5 is that the heat retaining cylinder 30 according to claims 1 to 4 is described as “from room temperature of carbon material to 100 ° C.
The average coefficient of thermal expansion at 0 ° C. is 2.5 to 5.0 × 10 −6.
/ ° C ”.

【0022】この様に保温筒30の基体である炭素材料
のその室温から1000℃における平均熱膨張係数が
2.5〜5.0×10-6/℃である必要がある。その理
由は、この種の保温筒30は、ヒータ20による加熱
と、シリコン単結晶引き上げ装置100自体の停止を行
う場合の冷却とにより熱応力を受けるものであるから、
もし、この炭素材料の平均熱膨張係数が上記範囲外のも
のであると、その加熱,冷却の繰り返しによって熱分解
炭素被膜32が、炭素材料の表面から頻繁に剥離してし
まうようになるからである。
As described above, the average thermal expansion coefficient of the carbon material as the base of the heat retaining cylinder 30 from room temperature to 1000 ° C. needs to be 2.5 to 5.0 × 10 −6 / ° C. The reason is that this kind of heat retaining cylinder 30 receives thermal stress due to heating by the heater 20 and cooling when stopping the silicon single crystal pulling apparatus 100 itself.
If the average thermal expansion coefficient of the carbon material is out of the above range, the pyrolytic carbon coating 32 will frequently peel off from the surface of the carbon material due to repeated heating and cooling. is there.

【0023】そして、上記課題を解決するために請求項
6に係る発明の採った手段は、上記請求項1乃至5に係
る保温筒30について、「炭素材料のヤング率が室温に
て1400kg/mm2 以下」となるものにしたことで
ある。
In order to solve the above-mentioned problem, the means adopted by the invention according to claim 6 is that the heat insulation cylinder 30 according to claims 1 to 5 is described as follows: "The Young's modulus of the carbon material is 1400 kg / mm at room temperature. 2 or less ".

【0024】このように保温筒30の基体である炭素材
料のヤング率が室温にて1400kg/mm2 以下であ
る理由は、上記範囲外のものであると炭素材料からなる
板材31を湾曲させて保温筒30を構成する段階におい
て割れが発生したり無理がかかるためである。
The reason why the Young's modulus of the carbon material as the base of the heat retaining cylinder 30 is 1400 kg / mm 2 or less at room temperature is that if the material is outside the above range, the plate material 31 made of the carbon material is bent. This is because cracks are generated or excessive force is required at the stage of forming the heat retaining cylinder 30.

【0025】また、保温筒30に振動などが加わり、そ
の影響を機械的に受けることが長期間に及ぶことがある
が、その影響を不具合なく持ちこたえるためには、上記
ヤング率の値は、300kg/mm2〜1200kg/
mm2が好ましい。
Further, vibration or the like may be applied to the heat retaining cylinder 30 and mechanically affected by the vibration for a long period of time. In order to withstand the effect without any trouble, the value of the Young's modulus must be: 300 kg / mm 2 to 1200 kg /
mm 2 is preferred.

【0026】そして上記課題を解決するために請求項7
に係る発明の採った手段は、上記請求項4に係る保温筒
30について、「C/Cコンポジットの炭素繊維束の繊
維本数が6000〜100本」となるようにしたことで
ある。
[0026] In order to solve the above-mentioned problem, a seventh aspect is provided.
The means adopted by the invention according to (1) is that the number of fibers of the carbon fiber bundle of the C / C composite is 6000 to 100 in the heat retaining cylinder 30 according to claim 4.

【0027】このように保温筒30の基体であるC/C
コンポジットを構成する炭素繊維束が繊維本数が600
0本以下である理由は、6000本よりも大きいと表面
の凹凸が大きくなり熱分解炭素被膜32によるSiOガ
ス、Siガスとの反応素子作用を十分に発揮させること
が出来なくなるからである。一方、100本以上にしな
ければならないのは、炭素繊維束の強度が織機で一定の
生産量を確保するための速度に十分耐えられないからで
ある。
As described above, the C / C,
The carbon fiber bundle constituting the composite has 600 fibers.
The reason why the number is not more than 0 is that if the number is more than 6000, the unevenness of the surface becomes large, and the effect of the pyrolytic carbon coating 32 as a reaction element with SiO gas and Si gas cannot be sufficiently exhibited. On the other hand, the reason for setting the number to 100 or more is that the strength of the carbon fiber bundle cannot sufficiently withstand the speed for securing a constant production amount in the loom.

【0028】[0028]

【発明の実施の形態】次に本発明を、図面に示した実施
の形態について説明すると、図1には、本発明に係る保
温筒30が適用されるシリコン単結晶引き上げ装置10
0の縦断面図が示してある。このシリコン単結晶引き上
げ装置100は、その密閉本体50内に、シリコンを溶
融させるためのルツボ10を回転軸55にて回転可能に
収納したものであり、このルツボ10の周囲にはこれを
加熱するためのヒータ20が配置してある。このヒータ
20の外側には、本発明に係る保温筒30が配置してあ
り、この保温筒30と密閉本体50との間には、断熱材
40が収納してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the embodiment shown in the drawings. FIG. 1 shows a silicon single crystal pulling apparatus 10 to which a heat retaining cylinder 30 according to the present invention is applied.
0 is shown in the longitudinal section. In the silicon single crystal pulling apparatus 100, a crucible 10 for melting silicon is rotatably housed in a sealed main body 50 around a rotation shaft 55. The crucible 10 is heated around the crucible 10. Heater 20 is arranged. Outside the heater 20, a heat retaining cylinder 30 according to the present invention is arranged, and a heat insulating material 40 is housed between the heat retaining cylinder 30 and the sealed main body 50.

【0029】ルツボ10は、溶融したシリコンと直接接
触する部分を石英ルツボ11とした二重構造のものであ
り、ヒータ20は一般的には所謂黒鉛ヒータが採用され
るものである。このルツボ10内の溶融を完全かつ十分
なものとしなければならないし、この溶融シリコンの液
面は引き上げによって下がっていくものであるから、そ
れに伴いルツボ10を上方向に移動させ、ヒータ20の
発熱中心とルツボ10内の溶融シリコンの液面を一定の
関係となる様にしている。
The crucible 10 has a double structure in which the portion directly in contact with the molten silicon is a quartz crucible 11, and the heater 20 is generally a so-called graphite heater. The melting in the crucible 10 must be complete and sufficient. Since the liquid level of the molten silicon is lowered by the lifting, the crucible 10 is moved upward and the heat generated by the heater 20 is generated. The center and the liquid level of the molten silicon in the crucible 10 have a fixed relationship.

【0030】保温筒30は、炭素材料の内、結晶の発達
した黒鉛より形成したものであり、この黒鉛基材31に
は図2に示したように熱分解炭素被膜32が形成してあ
る。これらの熱分解炭素被膜32及び黒鉛基材31は、
以下の実施例にて示すように製造または、形成されるも
のであるが、特に黒鉛基材31は、その室温から100
0℃における平均熱膨張係数が2.5〜5.0x10-6
/℃のもの、ヤング率が1200kg/mm2以下のも
のである。
The heat retaining cylinder 30 is made of graphite with developed crystal among carbon materials, and a pyrolytic carbon film 32 is formed on the graphite substrate 31 as shown in FIG. These pyrolytic carbon coating 32 and graphite substrate 31
It is manufactured or formed as shown in the following examples.
The average coefficient of thermal expansion at 0 ° C. is 2.5 to 5.0 × 10 −6.
/ ° C and a Young's modulus of 1200 kg / mm 2 or less.

【0031】また、本発明に係る保温筒30において
は、この黒鉛基材31がC/Cコンポジットであり、こ
の基材を構成する炭素繊維束が繊維本数6000本以下
のものである。
Further, in the heat retaining cylinder 30 according to the present invention, the graphite substrate 31 is a C / C composite, and the carbon fiber bundles constituting the substrate are those having 6,000 or less fibers.

【0032】さて、本発明に係る保温筒30をその製造
方法を含んだ実施例とともにさらに詳述すると次の通り
である。
Now, the insulated cylinder 30 according to the present invention will be described in more detail with reference to an embodiment including a method of manufacturing the same.

【0033】[0033]

【実施例】平均粒直径20μmに粉砕した骨材コークス
70重量部と、結合材となるコールタールピッチ30重
量部とを加熱混練した後、この混練物を30〜200μ
mに粉砕し炭素材原料を形成した。
EXAMPLE After heating and kneading 70 parts by weight of aggregate coke pulverized to an average particle diameter of 20 μm and 30 parts by weight of coal tar pitch as a binder, the kneaded product was mixed with 30 to 200 μm.
m to form a carbon material raw material.

【0034】この炭素材原料を用いてラバープレス法に
より所望成形体を形成し、この成形体を焼成・黒鉛化し
て黒鉛材を形成した。得られた黒鉛材の平均熱膨張係数
は、4.8×10-6/℃であった。また、この黒鉛材の
ヤング率は1120kg/mm2 であった。
Using the carbon material, a desired compact was formed by a rubber press method, and the compact was fired and graphitized to form a graphite material. The average thermal expansion coefficient of the obtained graphite material was 4.8 × 10 −6 / ° C. The Young's modulus of the graphite material was 1120 kg / mm 2 .

【0035】この黒鉛材に加工を施し、幅550mm長
さ1300mm厚さ1mmの黒鉛基材31を得た。
The graphite material was processed to obtain a graphite substrate 31 having a width of 550 mm, a length of 1300 mm and a thickness of 1 mm.

【0036】得られた基材をCVD炉に入れて1400
℃に加熱するとともに、水素ガスをキャリアとしてメタ
ンガスを炉内に連続的に供給した。これにより基材の表
面全体に厚さ約50μmの熱分解被膜32を形成した。
The obtained base material was placed in a CVD furnace,
C., and methane gas was continuously supplied into the furnace using hydrogen gas as a carrier. Thus, a pyrolytic film 32 having a thickness of about 50 μm was formed on the entire surface of the substrate.

【0037】[0037]

【実施例】炭素繊維束(ストランド)が繊維本数600
0本の炭素繊維で編んだクロスを用いてこれを積層し、
フェノール樹脂を含浸して、硬化後に900℃で焼成し
た。さらにフェノール樹脂含浸、硬化、焼成を2回繰り
返し、これを黒鉛化して厚み550mm長さ1300m
m厚み1mmのC/Cコンポジットから成る黒鉛基材3
1を得た。この基材31に実施例1と同様な方法によっ
て熱分解炭素被膜32を形成した。
Example: A carbon fiber bundle (strand) has 600 fibers.
This is laminated using a cloth knitted with 0 carbon fibers,
It was impregnated with a phenol resin and fired at 900 ° C. after curing. Further, phenol resin impregnation, curing and firing were repeated twice, and this was graphitized to a thickness of 550 mm and a length of 1300 m.
Graphite substrate 3 made of C / C composite having a thickness of 1 mm
1 was obtained. A pyrolytic carbon film 32 was formed on the substrate 31 by the same method as in Example 1.

【0038】[0038]

【比較例1】実施例1の黒鉛材に加工を施し、実施例1
と同形状の黒鉛基材31を得た。
Comparative Example 1 The graphite material of Example 1 was processed, and
A graphite base material 31 having the same shape as that of the above was obtained.

【0039】[0039]

【比較例2】平均粒径10μmに粉砕した骨材コークス
70重量部と結合材となるコールタールピッチ30重量
部とを加熱し混練した後この混練物を30〜150μm
に粉砕し炭素材原料を形成した。
Comparative Example 2 After heating and kneading 70 parts by weight of aggregate coke pulverized to an average particle size of 10 μm and 30 parts by weight of coal tar pitch serving as a binder, the kneaded product was heated to 30 to 150 μm.
To form a carbon material.

【0040】この炭素材原料を用いてラバープレス法に
より所望成形体を形成し、この成形体を焼成・黒鉛化し
て黒鉛材を形成した。得られた黒鉛材の平均熱膨張係数
は、5.5×10-6/℃であり、ヤング率は1250k
g/mm2 であった。
Using the carbon material, a desired compact was formed by a rubber press method, and the compact was fired and graphitized to form a graphite material. The average thermal expansion coefficient of the obtained graphite material is 5.5 × 10 −6 / ° C., and the Young's modulus is 1250 k.
g / mm 2 .

【0041】この黒鉛材に加工を施し、実施例1と同形
状の黒鉛基材31を得て、この基材31に実施例1と同
様な方法によって熱分解炭素被膜32を形成した。
This graphite material was processed to obtain a graphite substrate 31 having the same shape as in Example 1, and a pyrolytic carbon film 32 was formed on the substrate 31 in the same manner as in Example 1.

【0042】[0042]

【比較例3】実施例1の黒鉛材に加工を施し、幅550
mm長さ1300mm厚み2.5mmの黒鉛基材31を
得た。この基材31に実施例と同様な方法によって熱分
解炭素被膜32を形成した。
Comparative Example 3 The graphite material of Example 1 was processed to have a width of 550.
A graphite substrate 31 having a length of 1300 mm and a thickness of 2.5 mm was obtained. A pyrolytic carbon film 32 was formed on the substrate 31 in the same manner as in the example.

【0043】[0043]

【比較例4】炭素繊維束が繊維本数12000本の炭素
繊維で編んだクロスを用いてこれを積層し、フェノール
樹脂を含浸して、硬化後に900℃で焼成した。更にフ
ェノール樹脂含浸、硬化、焼成を2回繰り返し、これを
黒鉛化して幅550mm長さ1300mm厚み1mmの
C/Cコンポジットからなる黒鉛基材を得た。この基材
31に実施例1と同様な方法によって熱分解炭素被膜3
2を形成した。
Comparative Example 4 A cloth woven from carbon fibers bundled with carbon fibers of 12,000 fibers was laminated, impregnated with a phenol resin, cured and baked at 900 ° C. Further, phenol resin impregnation, curing, and firing were repeated twice, and this was graphitized to obtain a graphite substrate made of a C / C composite having a width of 550 mm, a length of 1300 mm, and a thickness of 1 mm. The pyrolytic carbon coating 3 is applied to the substrate 31 in the same manner as in the first embodiment.
2 was formed.

【0044】この様にして得られた黒鉛基材31を断熱
材40の中に湾曲させて保温筒30を得た。この時の状
況を表1に示す。
The graphite substrate 31 obtained in this manner was bent into a heat insulating material 40 to obtain a heat retaining cylinder 30. Table 1 shows the situation at this time.

【0045】[0045]

【表1】 また、各保温筒のライフの比較を実施したところ、次の
表2に示す結果が得られた。
[Table 1] In addition, when the life of each of the heat retaining cylinders was compared, the results shown in the following Table 2 were obtained.

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【発明の効果】以上詳述した通り、本発明においては、
上記実施形態において例示した如く、「単結晶引き上げ
装置100を内のルツボ10を加熱するヒータ20とこ
のヒータ20からの熱が外部へ移動しないようにするた
めの断熱材40との間に配置されて、当該単結晶引き上
げ装置100内の保温を行う保温筒30であって、この
筒壁内は径方向に厚み2.0mm〜0.1mmの炭素材
料からなり、その表面の一部又は全部に熱分解炭素から
なる被膜32を形成してなること」に構成上の特徴があ
り、耐久性が高く、その交換作業が容易な保温筒を提供
することが出来るのである。
As described in detail above, in the present invention,
As exemplified in the above embodiment, “the single crystal pulling apparatus 100 is disposed between the heater 20 for heating the crucible 10 inside and the heat insulating material 40 for preventing heat from the heater 20 from moving to the outside. In addition, it is a heat retaining cylinder 30 for keeping the temperature in the single crystal pulling apparatus 100, and the inside of the cylindrical wall is made of a carbon material having a thickness of 2.0 mm to 0.1 mm in a radial direction, and a part or all of the surface thereof is provided. The formation of the coating 32 made of pyrolytic carbon "has a structural feature, and it is possible to provide a heat insulating cylinder having high durability and easy replacement operation.

【0048】また、請求項2に係る発明においては、上
記請求項1に係る保温筒30について、炭素材料からな
る板材を湾曲させて構成したものであり、大幅なコスト
ダウンが可能な保温筒を提供することが出来るのであ
る。
Further, in the invention according to claim 2, the heat retaining cylinder 30 according to claim 1 is formed by curving a plate material made of a carbon material. It can be provided.

【0049】請求項3に係る発明においては、上記請求
項1又は2に係る保温筒30について、熱分解炭素被膜
の厚みを10μm〜200μmとしたものであり、耐久
性の大幅な向上を図ることが可能な保温筒を提供するこ
とが出来るのである。
According to the third aspect of the present invention, in the heat retaining cylinder 30 according to the first or second aspect, the thickness of the pyrolytic carbon film is set to 10 μm to 200 μm, and the durability is greatly improved. It is possible to provide a heat retaining cylinder capable of performing the above.

【0050】請求項4に係る発明においては、上記請求
項1乃至3に係る保温筒30について、炭素材料がC/
Cコンポジットであり、割れ防止を確実に行うことが出
来る保温筒を提供することが出来るのである。
In the invention according to claim 4, in the heat retaining cylinder 30 according to any one of claims 1 to 3, the carbon material is C / C.
It is possible to provide a heat insulating cylinder which is a C composite and can surely prevent cracking.

【0051】また請求項5に係る発明によれば、上記請
求項1乃至3に係る保温筒30について、炭素材料の室
温から1000℃における平均熱膨張係数が2.5〜
5.0×10-6/℃であるものにしたことにその特徴が
あり、加熱・冷却の繰り返しにより黒鉛基材表面から熱
分解炭素被膜の剥離が無い保温筒を提供することができ
るのである。
According to the fifth aspect of the present invention, in the heat retaining cylinder 30 according to any one of the first to third aspects, the average thermal expansion coefficient of the carbon material from room temperature to 1000 ° C. is 2.5 to 1,000.
It is characterized in that it is 5.0 × 10 −6 / ° C., and it is possible to provide a heat insulation cylinder in which the pyrolytic carbon film does not peel off from the graphite substrate surface by repeating heating and cooling. .

【0052】さらに、請求項6に係る発明によれば、上
記請求項2乃至6に係る保温筒30について、炭素材料
のヤング率が室温にて1400kg/mm2 以下とした
ことに構成上の特徴があり、保温筒30を構成する段階
において割れが発生したり無理のかからない保温筒を提
供することができるのである。
Further, according to the invention of claim 6, in the heat retaining cylinder 30 according to any of claims 2 to 6, the Young's modulus of the carbon material is 1400 kg / mm 2 or less at room temperature. Therefore, it is possible to provide a heat retaining cylinder in which cracks are not generated or a force is not exerted at the stage of configuring the heat retaining cylinder 30.

【0053】そして、請求項7に係る発明によれば、上
記請求項4に係る保温筒30について、C/Cコンポジ
ットを構成する炭素繊維束の繊維本数が6000〜10
0本であることに構成上の特徴があり、熱分解炭素被膜
32によるSiOガス、Siガスとの反応阻止作用を十
分に発揮させることの出来る保温筒を提供することがで
きるのである。
According to the seventh aspect of the present invention, in the heat retaining cylinder 30 according to the fourth aspect, the number of carbon fiber bundles constituting the C / C composite is 6000 to 10
There is a structural feature in that the number is zero, and it is possible to provide a heat retaining cylinder capable of sufficiently exhibiting an action of preventing the pyrolytic carbon coating 32 from reacting with SiO gas and Si gas.

【0054】最後に、請求項8に係る発明によれば、耐
久性が高く安価であって、その交換作業が容易な保温筒
を備えた単結晶引き上げ装置を提供することが出来るの
である。
Finally, according to the invention of claim 8, it is possible to provide a single crystal pulling apparatus provided with a heat retaining cylinder which is durable and inexpensive and which can be easily replaced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る保温筒を採用したシリコン単結晶
引き上げ装置の縦略断面図である。
FIG. 1 is a schematic vertical sectional view of a silicon single crystal pulling apparatus employing a heat retaining cylinder according to the present invention.

【図2】同保温筒の熱分解炭素被膜を中心にして見た部
分拡大断面図である。
FIG. 2 is a partially enlarged cross-sectional view of the thermal insulation cylinder, with a focus on a pyrolytic carbon coating.

【図3】従来のシリコン単結晶引き上げ装置を示す断面
図である。
FIG. 3 is a cross-sectional view showing a conventional silicon single crystal pulling apparatus.

【符号の説明】[Explanation of symbols]

100 シリコン単結晶引き上げ装置 10 ルツボ 11 石英ルツボ 20 ヒータ 30 保温筒 31 黒鉛基材 32 熱分解炭素 40 断熱材 50 密閉本体 REFERENCE SIGNS LIST 100 silicon single crystal pulling apparatus 10 crucible 11 quartz crucible 20 heater 30 heat retaining cylinder 31 graphite base material 32 pyrolytic carbon 40 heat insulating material 50 closed body

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 単結晶引き上げ装置内のルツボを加熱す
るヒータとこのヒータからの熱が外部へ移動しないよう
にするための断熱材との間に配置されて、当該単結晶引
き上げ装置内の保温を行う保温筒であって、この筒壁内
は径方向に厚み2.0mm〜0.1mmの炭素材料から
なり、その表面の一部又は全部に熱分解炭素からなる被
膜を形成したことを特徴とする単結晶引き上げ装置用保
温筒。
1. A heater for heating a crucible in a single crystal pulling apparatus and a heat insulating material for preventing heat from the heater from moving to the outside, and keeping heat in the single crystal pulling apparatus. The inside of the cylinder wall is made of a carbon material having a thickness of 2.0 mm to 0.1 mm in a radial direction, and a coating made of pyrolytic carbon is formed on part or all of the surface thereof. Heating cylinder for single crystal pulling device.
【請求項2】 炭素材料からなる板材を湾曲させて構成
したことを特徴とする請求項1記載の単結晶引き上げ装
置用保温筒。
2. A heat retaining cylinder for a single crystal pulling apparatus according to claim 1, wherein a plate material made of a carbon material is curved.
【請求項3】 熱分解炭素からなる被膜の厚みが10μ
m〜200μmであることを特徴とする請求項1又は2
記載の単結晶引き上げ装置用保温筒。
3. The thickness of a coating made of pyrolytic carbon is 10 μm.
3. The method according to claim 1, wherein the diameter is from m to 200 μm.
A heat retaining cylinder for a single crystal pulling apparatus as described in the above.
【請求項4】 炭素材料がC/Cコンポジットであるこ
とを特徴とする請求項1乃至3記載の単結晶引き上げ装
置用保温筒。
4. The heat retaining cylinder for a single crystal pulling apparatus according to claim 1, wherein the carbon material is a C / C composite.
【請求項5】 炭素材料の室温から1000℃における
平均熱膨張係数が2.5〜5.0×10-6/℃であるこ
とを特徴とする請求項1乃至4記載の単結晶引き上げ装
置用保温筒。
5. The single crystal pulling apparatus according to claim 1, wherein the average thermal expansion coefficient of the carbon material from room temperature to 1000 ° C. is 2.5 to 5.0 × 10 −6 / ° C. Heat insulation tube.
【請求項6】 炭素材料のヤング率が室温にて1400
kg/mm2 以下であることを特徴とする請求項1乃至
5記載の単結晶引き上げ装置用保温筒。
6. The carbon material has a Young's modulus of 1400 at room temperature.
6. The heat retaining cylinder for a single crystal pulling apparatus according to claim 1, wherein the temperature is not more than kg / mm 2 .
【請求項7】 C/Cコンポジットの炭素繊維束が繊維
本数6000〜100本であることを特徴とする請求項
4記載の単結晶引き上げ装置用保温筒。
7. The heat retaining cylinder for a single crystal pulling apparatus according to claim 4, wherein the carbon fiber bundle of the C / C composite has 6,000 to 100 fibers.
【請求項8】 ルツボを加熱するヒータとこのヒータか
らの熱が外部へ移動しないようにするための断熱材との
間に配置された保温筒を備えた単結晶引き上げ装置であ
って、前記保温筒が請求項1〜7のいずれかに記載の保
温筒であることを特徴とする単結晶引き上げ装置。
8. A single crystal pulling apparatus comprising a heat retaining cylinder disposed between a heater for heating a crucible and a heat insulating material for preventing heat from the heater from moving to the outside. A single crystal pulling apparatus, wherein the cylinder is the heat retaining cylinder according to any one of claims 1 to 7.
JP12710899A 1999-05-07 1999-05-07 Thermal insulation cylinder for single crystal pulling apparatus and single crystal pulling apparatus Expired - Lifetime JP4673459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12710899A JP4673459B2 (en) 1999-05-07 1999-05-07 Thermal insulation cylinder for single crystal pulling apparatus and single crystal pulling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12710899A JP4673459B2 (en) 1999-05-07 1999-05-07 Thermal insulation cylinder for single crystal pulling apparatus and single crystal pulling apparatus

Publications (2)

Publication Number Publication Date
JP2000319090A true JP2000319090A (en) 2000-11-21
JP4673459B2 JP4673459B2 (en) 2011-04-20

Family

ID=14951811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12710899A Expired - Lifetime JP4673459B2 (en) 1999-05-07 1999-05-07 Thermal insulation cylinder for single crystal pulling apparatus and single crystal pulling apparatus

Country Status (1)

Country Link
JP (1) JP4673459B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001489A (en) * 2008-08-28 2009-01-08 Sumco Techxiv株式会社 Apparatus and method for producing single crystal
JP2014084264A (en) * 2012-10-26 2014-05-12 Shin Etsu Chem Co Ltd Member for silicon oxide production device, silicon oxide production device and method of forming coat

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103225106B (en) * 2013-01-06 2015-07-29 奥特斯维能源(太仓)有限公司 A kind of thermal field casting high-efficiency polycrystalline

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3190207B2 (en) * 1994-07-19 2001-07-23 東芝電興株式会社 Silicon single crystal pulling equipment
JPH1045491A (en) * 1996-07-31 1998-02-17 Ibiden Co Ltd Heat insulation cylinder for silicon single crystal pulling device
JPH1072292A (en) * 1996-08-30 1998-03-17 Ibiden Co Ltd Heat insulation cylinder for silicon single crystal pulling-up device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001489A (en) * 2008-08-28 2009-01-08 Sumco Techxiv株式会社 Apparatus and method for producing single crystal
JP2014084264A (en) * 2012-10-26 2014-05-12 Shin Etsu Chem Co Ltd Member for silicon oxide production device, silicon oxide production device and method of forming coat

Also Published As

Publication number Publication date
JP4673459B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
US5954875A (en) Apparatus for pulling silicon single crystal
KR100571609B1 (en) Crucible made of carbon fiber-reinforced carbon composite material for single crystal pulling apparatus
JP5434922B2 (en) Method for producing SiC fiber bonded ceramics
Ishikawa et al. Structural control aiming for high-performance SiC polycrystalline fiber
JPH1059795A (en) Carbon fiber reinforced carbon composite material crucible for pulling up semiconductor single crystal
JP4077601B2 (en) Method for producing C / C crucible for pulling single crystal
JP2000319090A (en) Heat insulation cylinder for single crystal pulling-up device and single crystal pulling-up device provided with the same
JP3198914B2 (en) Graphite crucible for pulling single crystal and method for producing the same
JPH1072292A (en) Heat insulation cylinder for silicon single crystal pulling-up device
WO2023008392A1 (en) Thermal insulation material and method for producing thermal insulation material
JPH10139581A (en) High-temperature member for device for pulling up single crystal
JP4018503B2 (en) Single crystal pulling crucible
JP4358313B2 (en) Seed chuck for semiconductor single crystal pulling equipment
JP3189037B2 (en) Carbon saucer for silicon single crystal puller
JPH1072291A (en) Crucible for silicon single crystal pulling-up device
JP2787164B2 (en) High oxidation resistant carbonaceous insulation
JPH10158090A (en) Manufacture of c/c material (carbon fiber-carbon composite material) crucible for pulling up semiconductor single crystal
JP3637435B2 (en) Gas rectifier for single crystal pulling device
JP2000239079A (en) Carbon material having denified surface
JP4170426B2 (en) High temperature member for single crystal pulling apparatus and manufacturing method thereof
JP4198806B2 (en) Rotating shaft for silicon single crystal pulling device
JPH0225686A (en) Heat insulating material for heating furnace
JP4823406B2 (en) Carbon fiber reinforced carbon composite material for single crystal pulling equipment
JP4140601B2 (en) Gas rectifying member for single crystal pulling apparatus and manufacturing method thereof
JPH11228281A (en) Heat insulating material for single crystal-pulling apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term