JP2000318071A - Frp material and its manufacture - Google Patents

Frp material and its manufacture

Info

Publication number
JP2000318071A
JP2000318071A JP11128168A JP12816899A JP2000318071A JP 2000318071 A JP2000318071 A JP 2000318071A JP 11128168 A JP11128168 A JP 11128168A JP 12816899 A JP12816899 A JP 12816899A JP 2000318071 A JP2000318071 A JP 2000318071A
Authority
JP
Japan
Prior art keywords
frp
fiber
fabric
cured
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11128168A
Other languages
Japanese (ja)
Inventor
Seiichi Tainaka
誠一 田井中
Yasuhiro Nishi
泰博 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11128168A priority Critical patent/JP2000318071A/en
Publication of JP2000318071A publication Critical patent/JP2000318071A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an FRP material having a low facility cost without impairing mechanical characteristics of a molding without dust and noise by forming a folding pattern at least on one side surface of the molding made of a fiber-reinforced composite material. SOLUTION: The FRP material 1 is a lengthy solid flat plate strip-like molding in an entirety, and is used mainly as a reinforcing material of a concrete structure. Here, the material 1 is formed with an interstice pattern made of a layer of a thermosetting resin cured material on a surface of a molding 3 of the FRP material made of reinforcing fibers 3a and a resin cured material 3b. The interstice pattern is formed on a surface of a resin or the like when a woven fabric is press bonded to a resin or the-like having flowability as a casting mold, and, after the resin or the like is cured, the pattern formed on the surface of the resin or the like is formed when the fabric is released. That is, a cloth 2' is laminated and cured on the surface of the molding 3, and the molding 3 is supplied to a job site in this state as it is, then the cloth 2' is released from the molding 3 immediately before execution, and used as the material 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、FRP材とその製
造方法に関し、建造物の補強、特にコンクリートのよう
な構造物の補修/補強においてFRP材とコンクリート
との接着効率を高めるFRP材とそれを比較的容易に製
造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an FRP material and a method of manufacturing the same, and more particularly, to an FRP material for enhancing the bonding efficiency between the FRP material and concrete in reinforcing a building, particularly in repairing / reinforcing a structure such as concrete. Is relatively easily manufactured.

【0002】[0002]

【従来の技術】土木・建築分野において建造物の補強や
コンクリート構造物の補修/補強の施工方法として従来
から炭素繊維,ガラス繊維,あるいはアラミド繊維のよ
うな強化繊維からなる織物に樹脂または接着剤を塗布し
ながら複数枚貼り付ける方法がおこなわれている。この
方法では、補修/補強部に樹脂または接着剤を塗布した
織物を貼り付ける際に自重により接着剤が硬化する前に
織物が垂れ落ちたりして施工が困難であった。また、補
強効果をあげるために複数枚の貼付が必要なことから施
工に長時間を要した。さらに、補修/補強部分が天井部
分のような場合には織物に含浸する樹脂または接着剤が
作業者の身体に滴り落ちたりして安全衛生上も問題があ
った。これらのことから、最近では作業効率を高めるた
めに上述の施工法にかわって取り扱い性のよいFRP材
に高粘度の接着剤を用いて貼付施工する方法が採用され
つつある。このようなFRP材は、長尺の平板帯状成形
体(以下成形体と略す)で使用されるためにその製造方
法としてはプルトルージョン成形法で成形されるのが一
般的である。しかしながら、これらで成形されたFRP
材の表面は、樹脂リッチ層で覆われているため、滑らか
で光沢があるのが一般的である。土木や建築分野の補修
/補強用として使用される成形体は、コンクリートとの
接着効率をあげるために接着面の表面積を増やしアンカ
ー効果を高めるため、成形後サンドブラスト機を用いて
酸化アルミナ等の研掃材を噴射ノズルから圧空と共に成
形体の接着面に噴射して凹凸面を作るブラスト加工法
や、微細な砥粒を噴射ノズルから液体と共に成形体の接
着面に噴射して凹凸面を作る液体ホーニング加工法が一
般的である。サンドブラスト機を用いたブラスト加工法
は、硬化した成形体に研掃材を吹き付けて凹凸面を作る
ため、粉塵の発生が避けられない上、噴射ノズルや集塵
機の騒音が大きく、且つ設備が高価という欠点がある。
また、噴射圧力や成形加工速度が変動した場合には、成
形体そのものが極部的に酷く削られ、厚み精度を保持す
ることができずFRP材の機械的強度を低下さすという
欠点がある。また、研掃材の粒度が細かくなるためほぼ
一定時間毎に新しい研掃材を投入する必要があったり噴
射ノズルや研掃材供給ホース等の寿命が比較的短かく、
定期的に更新する必要があるため、ランニングコストが
高くつくという欠点があった。
2. Description of the Related Art In the field of civil engineering and construction, as a construction method for reinforcing a building or repairing / reinforcing a concrete structure, a resin or an adhesive has conventionally been applied to a fabric made of reinforcing fibers such as carbon fiber, glass fiber, or aramid fiber. A method of applying a plurality of sheets while applying the same is performed. According to this method, when attaching a woven fabric coated with a resin or an adhesive to the repair / reinforcement portion, the woven fabric drips before the adhesive is hardened by its own weight, and thus it is difficult to perform the construction. In addition, since a plurality of sheets are required to be applied to enhance the reinforcing effect, a long time was required for construction. Further, when the repairing / reinforcing portion is a ceiling portion, the resin or adhesive impregnating the woven fabric drips onto the worker's body, causing a problem in health and safety. From these facts, in recent years, in order to enhance the working efficiency, a method of attaching and using a highly viscous adhesive to FRP material having good handleability instead of the above-mentioned application method has been adopted. Since such an FRP material is used in a long flat band-shaped molded product (hereinafter abbreviated as a molded product), it is generally manufactured by a pultrusion molding method. However, FRP molded with these
Since the surface of the material is covered with a resin rich layer, it is generally smooth and glossy. The molded body used for repair / reinforcement in the civil engineering and construction fields is designed to increase the surface area of the bonding surface to increase the bonding efficiency with concrete and enhance the anchoring effect. A blast processing method in which the cleaning material is sprayed from the injection nozzle to the bonding surface of the molded body together with the compressed air to create an uneven surface, or a liquid that forms fine irregularities by injecting fine abrasive grains together with the liquid from the injection nozzle onto the bonding surface of the molded body The honing method is common. In the blasting method using a sand blasting machine, an abrasive material is sprayed on a hardened molded body to form an uneven surface, so that generation of dust is inevitable, noise of an injection nozzle and a dust collector is large, and equipment is expensive. There are drawbacks.
In addition, when the injection pressure or the forming speed is changed, the formed body itself is extremely severely shaved, failing to maintain the thickness accuracy, and lowering the mechanical strength of the FRP material. In addition, because the particle size of the abrasive material becomes fine, it is necessary to introduce a new abrasive material at approximately regular intervals, and the life of the injection nozzle and the abrasive material supply hose is relatively short.
There is a drawback that the running cost is high because it needs to be updated periodically.

【0003】また、液体ホーニング加工法も、硬化した
成形体に微細な砥粒を吹き付けて凹凸面を作るため、液
体に混ざった切り粉を絶えず分離処理しなければなら
ず、噴射ノズルの騒音も結構大きく、設備が高価という
欠点がある。また、微細な砥粒の粒度が小さくなるた
め、絶えず新しい砥粒を一定量液体に混入しなければな
らず、更に液体に混ざった切り粉を分離処理する必要が
あるため、結構ランニングコストが高いという欠点があ
る。
Also, in the liquid honing method, since fine abrasive grains are sprayed on a hardened molded product to form an uneven surface, chips mixed with the liquid must be continuously separated, and the noise of the injection nozzle is also reduced. It is rather large and has the disadvantage of expensive equipment. Also, since the particle size of the fine abrasive particles is small, a certain amount of new abrasive particles must be constantly mixed into the liquid, and furthermore, it is necessary to separate the chips mixed with the liquid, so that the running cost is considerably high. There is a disadvantage that.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上述
した問題点に鑑みてなされたもので、粉塵や騒音の発生
がなく、成形品の機械的特性を損なうことなく、しかも
設備費が安価でランニングコストが不要な製造方法を用
いた凹凸面を有するFRP材と同材を比較的簡単に製造
する製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention has been made in view of the above-mentioned problems, and does not generate dust or noise, does not impair the mechanical properties of a molded product, and reduces equipment costs. An object of the present invention is to provide an FRP material having an uneven surface using a manufacturing method that is inexpensive and does not require running costs, and a manufacturing method for manufacturing the same material relatively easily.

【0005】[0005]

【課題を解決するための手段】上記した目的を達成する
ために本発明においては、繊維強化複合材料からなる成
形体の少なくとも片面に織り目模様が形成されているこ
とを特徴とするFRP材とさらに繊維強化複合材料から
なる成形体の少なくとも片面に布帛が被覆されていて施
工時に布帛を剥ぎ取って使用することを特徴とするFR
P材が提供される。さらに、このようなFRP材は、特
に建築構造物の補修/補強用建築部材として提供され
る。また、このFRP材を製造する方法として本発明に
おいては、連続的に給糸される複数の強化繊維束に熱硬
化性樹脂を含浸し少なくとも片面に布帛を貼り合わせて
金型内で加熱硬化または半硬化したのち、前記布帛を剥
離して織り目模様をつけること特徴とするFRP材の製
造方法(以下製造法1とする)や繊維強化複合材料から
なる成形体の少なくとも片面に未硬化の熱硬化性樹脂を
塗布し、前記布帛を貼り合わせて加熱硬化または半硬化
したのち前記布帛を剥離すること特徴とするFRP材の
製造方法(以下製造法2とする)が提供される。さらに
本発明においては、連続的に給糸される複数の強化繊維
束に熱硬化性樹脂を含浸し少なくとも片面に布帛を張り
合わせて金型内で加熱硬化または半硬化を施してなる成
形体の表面が布帛で被覆されていることを特徴とするF
RP材の製造方法(以下製造法3とする)や繊維強化複
合材料からなる成形体の少なくとも片面に未硬化の熱硬
化性樹脂を含浸し、前記布帛を貼り合わせて加熱硬化ま
たは半硬化してなる成形体の表面が布帛で被覆されてい
ることを特徴とするFRP補強材の製造方法(以下製造
法4とする)が提供される。
According to the present invention, there is provided an FRP material characterized in that a textured pattern is formed on at least one surface of a molded article made of a fiber-reinforced composite material. FR wherein a fabric is coated on at least one surface of a molded body made of a fiber-reinforced composite material, and the fabric is peeled off at the time of construction and used.
P material is provided. Further, such FRP materials are particularly provided as repair / reinforcement building members for building structures. According to the present invention, as a method for producing the FRP material, a plurality of continuously reinforced fiber bundles are impregnated with a thermosetting resin, and a fabric is stuck on at least one side and heat-cured or cured in a mold. After the fabric is semi-cured, the fabric is peeled off to form a textured pattern (hereinafter referred to as "manufacturing method 1"), or at least one surface of a molded body made of a fiber-reinforced composite material is uncured. A method for producing an FRP material (hereinafter referred to as production method 2), which comprises applying a conductive resin, laminating the cloth and heat-curing or semi-curing and then peeling the cloth. Further, in the present invention, the surface of a molded body obtained by impregnating a plurality of continuously reinforced fiber bundles with a thermosetting resin, laminating a cloth on at least one surface, and performing heat curing or semi-curing in a mold. Characterized by being coated with a fabric
An uncured thermosetting resin is impregnated on at least one surface of a molded body made of a RP material manufacturing method (hereinafter referred to as manufacturing method 3) or a fiber-reinforced composite material, and the cloth is bonded and heat-cured or semi-cured. A method for producing an FRP reinforcing material, characterized in that the surface of a molded article is covered with a cloth (hereinafter referred to as production method 4).

【0006】[0006]

【発明の実施の形態】以下、本発明の好ましい実施の形
態を図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0007】図1、図2は、本発明のFRP材1の1例
を示す。このFRP材1は、全体が長尺で中実の平板状
帯状成形体であって土木、主にコンクリート構造物の補
修/補強用の補強材として使用されるものである。この
FRP材1は、補強繊維3aおよび樹脂硬化物3bから
なるFRP材料の成形体3とこの成形体の表面に熱硬化
性樹脂硬化物の層からなる織り目模様4とで構成されて
いる。本発明における織り目模様とは、織物を鋳型とし
て流動性を有している樹脂などに圧着等を行い、樹脂が
硬化乃至は半硬化状態になったときに前記織物を剥離し
たときに前記樹脂表面に形成され得る模様である。つま
り、前記工程は、本発明の織り目模様の形状を定義する
ために便宜的に挙げたに過ぎず、結果的に形状さえ本質
的に同一ならば、本発明の織り目模様の形成方法は、前
記工程に限定されるものではない。なお、議論を簡単に
するため、、本発明の織り目模様について、元の鋳型と
なる織物を仮想して、その形状がそっくり成形体に転写
されると仮定して、その仮想の織物形状について述べる
ことにより、本発明の織り目模様の形状を詳述すること
とする。従って、例えば、経糸又は緯糸とは、成形体表
面の縦又は横方向の溝に該当し、繊維径とはその溝の直
径に相当する。この織り目模様4は、コンクリート構造
物の補強材として使用したときにコンクリートとの接着
力をより効果的にするために表面粗さ(Ra)が10〜
120μmの範囲でより好ましくは30〜70μmであ
る。同様の理由で、経糸及び/又は緯糸の織り密度が1
cm当たり10本〜50本が好ましく、20〜50本が
より好ましい。また、繊維径は10〜100μmが好ま
しい。なぜならば、この範囲の下限値を下回ると表面粗
さが小さくとなり、上限値を上回ると大きくなりすぎて
成形品表面の繊維が屈曲するとなるからである。より好
ましくは30〜70μmである。尚、繊維径は断面が楕
円等の非円形形状である場合、真円に換算して繊維径と
する。また、この時、織り密度との関係で、目が詰まり
すぎず、空きすぎないように織り密度(本/cm)と繊
維径(cm)との積は0.2〜0.6であることが好ま
しい。
FIGS. 1 and 2 show an example of the FRP material 1 of the present invention. The FRP material 1 is a long, solid, plate-like band-shaped molded body which is used as a reinforcing material for repair / reinforcement of civil engineering, mainly concrete structures. The FRP material 1 is composed of a molded body 3 of an FRP material composed of a reinforcing fiber 3a and a cured resin 3b, and a texture pattern 4 formed of a layer of a cured thermosetting resin on the surface of the molded body. The weave pattern in the present invention means that the woven fabric is used as a mold to perform pressure bonding or the like on a resin having fluidity, and the resin surface is removed when the woven fabric is peeled off when the resin is in a cured or semi-cured state. It is a pattern that can be formed in That is, the above steps are only given for convenience in defining the shape of the texture pattern of the present invention, and as a result, even if the shape is essentially the same, the method of forming the texture pattern of the present invention is as follows. It is not limited to a process. For the sake of simplicity, for the texture pattern of the present invention, the virtual fabric shape will be described assuming that the shape of the original fabric is supposed to be completely transferred to a molded body. Accordingly, the shape of the texture pattern of the present invention will be described in detail. Therefore, for example, a warp or a weft corresponds to a vertical or horizontal groove on the surface of a molded product, and the fiber diameter corresponds to the diameter of the groove. The texture pattern 4 has a surface roughness (Ra) of 10 to improve the adhesive strength with concrete when used as a reinforcing material for a concrete structure.
It is more preferably in the range of 120 μm and 30 to 70 μm. For the same reason, the warp and / or weft weave density is 1
The number is preferably 10 to 50 per cm, more preferably 20 to 50 per cm. Further, the fiber diameter is preferably 10 to 100 μm. This is because if the value is below the lower limit of this range, the surface roughness becomes small, and if the value exceeds the upper limit, the surface roughness becomes too large and the fiber on the surface of the molded product is bent. More preferably, it is 30 to 70 μm. When the cross section is a non-circular shape such as an ellipse, the fiber diameter is converted to a perfect circle to obtain the fiber diameter. At this time, the product of the weaving density (book / cm) and the fiber diameter (cm) should be 0.2 to 0.6 so as not to be too clogged and not too empty in relation to the weaving density. Is preferred.

【0008】FRP材1の別な供給形態としては、図2
に示したような成形体3の表面に布帛2を貼り合わせて
硬化した状態のままで供給し現場での施工直前に該布帛
2’を成形体3から剥離して同様にFRP材1として使
用する物である。
[0008] As another supply form of the FRP material 1, FIG.
The cloth 2 'is bonded to the surface of the molded body 3 as shown in FIG. 1 and supplied in a hardened state, and the cloth 2' is peeled off from the molded body 3 immediately before construction at the site and used similarly as the FRP material 1. Is what you do.

【0009】この2種類のFRP材1,1’の特徴は、
通常コンクリートの補修/補強を施工する場合は補強効
果を得るために施工時にグラインダーなどでコンクリー
トの補修/補強部を研磨するために砂埃りが発生し、そ
の砂埃りがFRP材に付着することから、前者のFRP
材1は施工時にFRP材1の接着面を清拭して砂埃りを
除去する必要があるが、後者のFRP材1’は使用直前
に該布帛2を剥離して使用するために該布帛がカバーリ
ング材となり清拭工程を省くことが可能となり有効であ
る。図1〜図2に示したFRP材1,1’は、前記製造
法1と製造法2によって製造することができる。まず図
3にて製造法1から説明する。図3で示した製造ライン
においては、ストランド状の補強繊維が巻かれているボ
ビン5a,5b、5cと未硬化で液状の熱硬化性樹脂7
を収容する樹脂槽8とガイド9と布帛2を送り出す送り
出しボビン11と加熱ダイ12と熱硬化性樹脂が硬化し
たのちの布帛2’を剥離し巻き取るボビン13と引取り
装置14と巻き取りロール15がこの順序に直列に配置
され繊維束6は、このラインを連続的に走行するように
なっている。まず、ボビン5a,5b,5cから巻き出
された複数本の補強繊維束は集束され、より太い繊維束
6となって樹脂槽8の熱硬化性樹脂7に浸漬される。含
浸された繊維束6は、次にガイド9を通過して表面に付
着している余分な樹脂などが除去され所望の断面形状に
整形されたのち、その表面全体に送り出しボビン11か
ら送り出された布帛2が隙間なく貼り合わされて引取り
装置14で引取りながら加熱ダイ12へと導かれダイ内
を通過中に硬化する。その後、ダイ12から出た直後に
硬化した布帛2’を剥離し巻き取りボビン13に巻き取
ることによりFRP材の表面に織り目模様4として形成
される。この布帛2に用いる繊維としてはポリエステル
繊維、ポリアミド繊維、アラミド繊維、ビニロン繊維の
ような有機繊維やガラス繊維、ボロン繊維のような無機
繊維をあげることができる。有機繊維を用いる場合は使
用する熱硬化性樹脂の硬化温度よりも高い温度の耐熱性
をそなえていることが必要である。これは、樹脂の硬化
時に有機繊維が軟化してしまいFRP材の表面に織り目
模様が出来ないためである。さらに該布帛の種類につい
ては織物,編物,網物などのいずれでもよいが成形面か
らは織物が好ましい。織り組織については平織り、朱子
織り、綾織りのいずれでもよく成形安定性から平織りが
好ましい。また、成形中の織物の目ズレ防止の面から目
止加工した織物も有効であり、さらに接着性に阻害を起
こさないものであれば予め織物に離型処理をしておくと
離型が容易になり織り目模様の損傷を防ぐことからも有
効である。
The features of these two types of FRP materials 1 and 1 'are as follows.
Normally, when repairing / reinforcing concrete, dust is generated to grind the repair / reinforcement part of the concrete with a grinder etc. at the time of construction to obtain the reinforcing effect, and the dust adheres to the FRP material , The former FRP
The material 1 needs to be cleaned at the time of construction to remove the dust and dirt from the adhesive surface of the FRP material 1. However, the latter FRP material 1 ' This is effective because it becomes a covering material and the wiping step can be omitted. The FRP materials 1 and 1 ′ shown in FIGS. 1 and 2 can be manufactured by the manufacturing method 1 and the manufacturing method 2. First, the manufacturing method 1 will be described with reference to FIG. In the production line shown in FIG. 3, the uncured liquid thermosetting resin 7 and the bobbins 5a, 5b, 5c around which the strand-shaped reinforcing fibers are wound.
Tank 8 for accommodating the resin, a guide 9, a delivery bobbin 11 for delivering the fabric 2, a heating die 12, a bobbin 13 for peeling and winding the fabric 2 ′ after the thermosetting resin is cured, a take-up device 14, and a winding roll 15 are arranged in series in this order, so that the fiber bundle 6 runs continuously on this line. First, a plurality of reinforcing fiber bundles unwound from the bobbins 5a, 5b, 5c are bundled to be a thicker fiber bundle 6 and immersed in the thermosetting resin 7 of the resin tank 8. The impregnated fiber bundle 6 was then passed through a guide 9 to remove excess resin and the like adhering to the surface and shaped into a desired cross-sectional shape, and then sent out from the entire surface to a bobbin 11. The cloth 2 is bonded to the heating die 12 while being adhered to the heating die 12 while being taken up by the take-up device 14 and hardened while passing through the die. Thereafter, the cured fabric 2 ′ is peeled immediately after leaving the die 12 and wound up on a winding bobbin 13 to form a texture pattern 4 on the surface of the FRP material. Examples of the fibers used for the fabric 2 include organic fibers such as polyester fibers, polyamide fibers, aramid fibers, and vinylon fibers, and inorganic fibers such as glass fibers and boron fibers. When an organic fiber is used, it is necessary to have heat resistance at a temperature higher than the curing temperature of the thermosetting resin to be used. This is because the organic fibers are softened when the resin is cured, and a texture pattern cannot be formed on the surface of the FRP material. Further, the kind of the cloth may be any of a woven cloth, a knitted cloth, a net cloth and the like, but a woven cloth is preferable from the molding surface. The weave structure may be any of plain weave, satin weave, and twill weave, and plain weave is preferred from the viewpoint of molding stability. It is also effective to use a woven fabric that has been perforated in order to prevent misalignment of the woven fabric being formed. It is also effective in preventing damage to the texture pattern.

【0010】また、織物の表面粗さ(Ra)は10〜1
20μmの範囲でより好ましくは30〜70μmであ
る。10μm以下になると織り目模様が小さくなりす
ぎ、また120μm以上になると織り目模様が大きくな
りすぎてともに十分な接着力が得られない。
The surface roughness (Ra) of the woven fabric is 10 to 1
It is more preferably in the range of 20 μm and 30 to 70 μm. When the thickness is less than 10 μm, the texture is too small, and when it is more than 120 μm, the texture is too large to obtain a sufficient adhesive strength.

【0011】さらに織物の織り密度は、上述のように経
糸及び/又は緯糸の打ち込み本数(本/cm)が10〜
50の範囲であることが好ましいが成形時の織物の強
度、成形安定性や接着効率などから20〜50がより好
ましい。経糸の密度が10本/cmより小さい織物を用
いると織物自体の強度が小さくなり離型時に破断する恐
れがあり、またFRP材の表面に形成された織り目模様
4の分布密度も小さくなり接着効率の面からも好ましく
ない。さらに50本/cm以上になるとFRP材1の表
面に形成された織り目模様4が大きくなりすぎて接着強
度が低下ようになる。また、繊維径は30〜70μmが
好ましい。なぜならば、この範囲の下限値を下回ると表
面粗さが小さくとなり、上限値を上回ると表面粗さが大
きくなりすぎるとなるからである。より好ましくは30
〜70μmである。尚、繊維径は断面が楕円等の非円形
形状である場合、真円に換算して繊維径とする。また、
この時、織り密度との関係で、目が詰まりすぎず、空き
すぎないように織り密度(本/cm)と繊維径(cm)
との積は0.2〜0.6であることが好ましい。
Further, as described above, the weaving density of the woven fabric is such that the number of warp yarns and / or weft yarns is 10 to 10 yarns / cm.
It is preferably in the range of 50, but more preferably from 20 to 50 in view of the strength of the woven fabric at the time of molding, molding stability, adhesion efficiency and the like. If a woven fabric having a warp density of less than 10 yarns / cm is used, the strength of the woven fabric itself may be reduced and the woven fabric may be broken at the time of release, and the distribution density of the weave pattern 4 formed on the surface of the FRP material may be reduced, and the bonding efficiency may be reduced. This is not preferred from the viewpoint of Further, when the number is 50 / cm or more, the texture pattern 4 formed on the surface of the FRP material 1 becomes too large, and the adhesive strength is reduced. Further, the fiber diameter is preferably 30 to 70 μm. The reason is that if the value is below the lower limit of this range, the surface roughness becomes small, and if the value exceeds the upper limit, the surface roughness becomes too large. More preferably 30
7070 μm. When the cross section is a non-circular shape such as an ellipse, the fiber diameter is converted to a perfect circle to obtain the fiber diameter. Also,
At this time, in relation to the weaving density, the weaving density (books / cm) and the fiber diameter (cm) so that the eyes are not too clogged or too empty.
Is preferably 0.2 to 0.6.

【0012】なお、これらの織り目特性は成形体を被覆
する側の面さえ、満足していれば十分である。従って、
布帛にもう一方の面の織り目が異なっていても良い。
It is sufficient that these weave characteristics are satisfied even on the side on which the molded body is coated. Therefore,
The texture of the other side of the fabric may be different.

【0013】また、ここで用いる繊維束である強化繊維
には、たとえば炭素繊維、ガラス繊維、アルミナ繊維、
ボロン繊維のような無機繊維、アラミド繊維のような有
機繊維などの高強度/高弾性率の繊維を一方向に引き揃
えたものをあげることができる。これらの中で、比強
度,比弾性率が高いなので、炭素繊維が最も好ましい。
また、繊維束6に含浸する熱硬化性樹脂としては、たと
えばエポキシ樹脂、不飽和ポリエステル樹脂、ビニルエ
ステル樹脂、フェノール樹脂などをあげることができ
る。これらの中で、耐候性や接着性能の面でなので、ビ
ニルエステル樹脂やエポキシ樹脂が最も好ましい。もち
ろん使用環境においては、熱硬化性樹脂以外に熱可塑性
樹脂などをもちいてもよい。このようにして製造したF
RP材1’の補強繊維の繊維体積含有率は40〜80%
にすることが好ましい。この含有率が40%以下では補
強繊維の材料強度を有効に発現できなく、また80%以
上になると強化繊維がダイ内を通過中に上下に移動して
屈曲することから得られるFRP材自体の引張強度が小
さくなるからである。
The reinforcing fibers used as the fiber bundle here include, for example, carbon fiber, glass fiber, alumina fiber,
Fibers having high strength / high elastic modulus, such as inorganic fibers such as boron fibers and organic fibers such as aramid fibers, are arranged in one direction. Among them, carbon fiber is most preferable because of its high specific strength and specific elastic modulus.
Examples of the thermosetting resin impregnated in the fiber bundle 6 include an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, and a phenol resin. Among them, vinyl ester resins and epoxy resins are most preferable because of weather resistance and adhesive performance. Of course, in a use environment, a thermoplastic resin or the like may be used in addition to the thermosetting resin. The F thus manufactured
Fiber volume content of reinforcing fiber of RP material 1 'is 40 to 80%
Is preferable. When the content is 40% or less, the material strength of the reinforcing fiber cannot be effectively exhibited. When the content is 80% or more, the reinforcing fiber moves up and down while passing through the die and bends. This is because the tensile strength decreases.

【0014】次に図4にて製造法2について説明する。
この製造法は、上述の製造法1を2段階に分けて実施す
るもので最初に強化繊維と樹脂からなる繊維強化複合材
料3を製造法1とほぼ同様の方法(図3の製造ラインで
布帛2を除いた物)で成形した後、上記繊維強化複合材
料3の表面に硬化剤を添加した未硬化の熱硬化性樹脂1
6を塗布して布帛2を貼付、再度硬化炉17に通して加
圧しながら硬化した後に布帛2’を剥離して繊維強化複
合材料3の表面に織り目模様4を形成する方法である。
製造法1では、繊維束6と布帛2を加熱ダイ中で同時に
硬化するために最外層の強化繊維が布帛の織り目模様に
沿って屈曲したりする(大凡、織物繊維径の半分程度の
屈曲)ためにFRP材1の機械特性が低下するが、製造
法2では第1段階で強化繊維が複合材料を形成している
ことから強化繊維の屈曲の恐れが無く機械的特性の優れ
たFRP材1を製造することができる。次に製造法3と
製造法4について説明する。この製造法の製造ライン
は、図3と図4に示した製造法1および製造法2の製造
ラインの巻き取りボビン13を取り除いたもので加熱ダ
イを通過中に硬化後、布帛2’を剥離せずに被覆した状
態で製造するものである。このようにして製造したFR
P材1’は、布帛2が繊維強化複合材料3に貼り付けら
れた状態のままで施工現場まで輸送されることから輸送
中に織り目模様が削り取られる恐れや油分などの接着阻
害物が付着する恐れがなく、また施工直前まで布帛2’
で被覆されているために接着面に砂塵等が付着せず施工
前の清拭工程が省ける利点がある。
Next, a manufacturing method 2 will be described with reference to FIG.
In this production method, the above-mentioned production method 1 is carried out in two stages. First, a fiber-reinforced composite material 3 composed of a reinforcing fiber and a resin is produced in substantially the same manner as production method 1 (a fabric line is produced by a production line in FIG. 3). 2), and then the uncured thermosetting resin 1 obtained by adding a curing agent to the surface of the fiber-reinforced composite material 3
In this method, the cloth 2 ′ is applied to the fiber reinforced composite material 3 by peeling the cloth 2 ′ after applying the cloth 2 and curing it while passing it through the curing furnace 17 again while applying pressure.
In the manufacturing method 1, since the fiber bundle 6 and the fabric 2 are simultaneously cured in the heating die, the reinforcing fibers of the outermost layer bend along the texture pattern of the fabric (roughly, approximately half the diameter of the woven fiber). Therefore, the mechanical properties of the FRP material 1 decrease, but in the manufacturing method 2, since the reinforcing fibers form a composite material in the first stage, the FRP materials 1 having excellent mechanical properties without fear of bending of the reinforcing fibers. Can be manufactured. Next, Production Method 3 and Production Method 4 will be described. The production line of this production method is obtained by removing the winding bobbin 13 from the production lines of production methods 1 and 2 shown in FIGS. 3 and 4, and after being cured while passing through a heating die, the fabric 2 'is peeled off. It is manufactured without coating. FR manufactured in this manner
The P material 1 ′ is transported to the construction site while the fabric 2 is attached to the fiber-reinforced composite material 3, so that the texture pattern may be scraped off during transportation and adhesion inhibitors such as oil adhere to the P material 1 ′. There is no fear, and cloth 2 'until just before construction
Since it is covered with, there is an advantage that dust and the like do not adhere to the bonding surface and the wiping step before construction can be omitted.

【0015】[0015]

【実施例】[実施例1]図3に示す製造法1の製造ライ
ンにおいて炭素繊維(”トレカ”T700SC-24K-60E;東レ
製)38本からなる繊維束6を硬化剤および硬化促進剤
を含むエポキシ樹脂(油化シェルエポキシ(株)製)に
内部離型剤を添加した熱硬化性樹脂7に連続して浸漬し
た後にこの上面に厚さ0.1mm,幅50mm,織り密
度が1cm当たり縦/横=40本/40本のポリエステ
ル織物を貼付け180℃に加熱したダイ12の中へ引取
り装置14で0.6m/分の速度で導入して硬化後、ダ
イ12から出た直後にポリエステル織物を剥ぎ取り繊維
含有率が67%の中実のFRP材を成形した。成形した
FRP材の表面粗度を表面粗さ計で測定した。表面粗さ
(Ra)は、縦方向(長さ方向)横方向(幅方向)とも
6〜7μmであった。また、このFRP材を用いて接着
強度を測定した。用いた接着剤は、コンクリートの貼付
施工用に用いられる2液性のエポキシ系接着剤を使用
し、加圧プレスにて温度15〜18℃,面圧5Kgf/
cm2で接着した。このようにして作成した試験片を室
温下で3日間養生後引張試験機にて測定した。接着強度
は210〜220Kgf/cm2で、破壊状態はFRP
材と接着剤の混合破壊であった。成形したFRP材の材
料強度を評価した結果、FRP材の引張強度は265k
gf/mm2であった。 [比較例1]この比較例は、本発明の織物2を用いない
で製造した例で図3の織物2と送り出しガイド11,巻
き取りガイド13を取り除いた他は全て同一機器,同一
条件で成形した。成形したFRP材の表面は、樹脂リッ
チ層で覆われていて滑らかで光沢を呈していた。表面粗
さ(Ra)を測定した結果、縦方向横方向とも0.9〜
1μmであった。また、接着強度を実施例1と同一条件
で評価した結果120〜160Kgf/cm2と低く、
破壊状態は接着剤とFRP材の界面破壊であった。 [実施例2]図4に示す製造法2で製造したFRP材の
材料強度を測定した。この製造法は織り目模様を形成す
るためのポリエステル織物の貼付方法を製造法2に変更
した以外、成形に供した樹脂組成や成形時の製造条件は
実施例1と同一で実施した。なお、未硬化樹脂として実
施例と同様のエポキシ樹脂を用いて、塗布量は70g/
2に設定した。成形したFRP材の材料強度を評価し
た結果、FRP材の引張強度は278kgf/mm2
あった。 [実施例3]実施例1と同様のポリエステル織物と樹脂
を用いて同一製造条件下で硬化した後、加熱ダイの出口
の高温時にポリエステル織物を剥ぎ取らずに成形した。
成形したFRP材1’を室温下で10日間放置後、常温
状態で剥離した結果、織物基材の破壊もなく規則的な”
織り目模様”がFRP材の表面に得られた。。さらに、
ポリエステル織物に予めシリコーン溶液に浸して離型処
理した織物基材を用いて成形した結果、未処理の基材に
くらべて離型処理を施したものの離型性は良好であっ
た。
Example 1 In a production line of production method 1 shown in FIG. 3, a fiber bundle 6 composed of 38 carbon fibers ("Treca"T700SC-24K-60E; manufactured by Toray Industries, Ltd.) was treated with a curing agent and a curing accelerator. After immersing continuously in a thermosetting resin 7 containing an internal release agent added to an epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd.), a thickness of 0.1 mm, a width of 50 mm and a weaving density of 1 cm Length / width = 40 pieces / 40 pieces of polyester woven fabric was stuck into the die 12 heated to 180 ° C. and introduced at a speed of 0.6 m / min with the take-off device 14, and after curing, immediately after leaving the die 12. The polyester fabric was peeled off to form a solid FRP material having a fiber content of 67%. The surface roughness of the formed FRP material was measured with a surface roughness meter. The surface roughness (Ra) was 6 to 7 μm in both the vertical direction (length direction) and the horizontal direction (width direction). The adhesive strength was measured using this FRP material. The adhesive used was a two-part epoxy adhesive used for concrete application, and was pressed at a temperature of 15 to 18 ° C. and a surface pressure of 5 kgf /
Bonded in cm 2 . The test pieces thus prepared were cured at room temperature for 3 days and then measured with a tensile tester. The adhesive strength is 210-220 Kgf / cm 2 , and the fracture state is FRP
It was a mixed failure of the material and the adhesive. As a result of evaluating the material strength of the molded FRP material, the tensile strength of the FRP material was 265 k.
gf / mm 2 . [Comparative Example 1] This comparative example is an example manufactured without using the fabric 2 of the present invention, except that the fabric 2 and the delivery guide 11 and the winding guide 13 in FIG. did. The surface of the molded FRP material was covered with a resin-rich layer and had a smooth and glossy appearance. As a result of measuring the surface roughness (Ra), it was 0.9 to 0.9 in both the vertical and horizontal directions.
It was 1 μm. In addition, as a result of evaluating the adhesive strength under the same conditions as in Example 1, the adhesive strength was as low as 120 to 160 kgf / cm 2 ,
The breaking state was an interface breaking between the adhesive and the FRP material. Example 2 The material strength of the FRP material manufactured by the manufacturing method 2 shown in FIG. 4 was measured. This production method was the same as Example 1 except that the resin composition used for molding and the production conditions at the time of molding were changed, except that the method of attaching the polyester fabric for forming the texture pattern was changed to Production Method 2. The same amount of epoxy resin as in the example was used as the uncured resin, and the coating amount was 70 g /
m 2 . As a result of evaluating the material strength of the formed FRP material, the tensile strength of the FRP material was 278 kgf / mm 2 . Example 3 After curing under the same manufacturing conditions using the same polyester fabric and resin as in Example 1, the polyester fabric was molded without peeling at the high temperature at the exit of the heating die.
After leaving the molded FRP material 1 'at room temperature for 10 days and peeling it off at room temperature, the fabric base material is not broken and regular.
A "textured pattern" was obtained on the surface of the FRP material.
As a result of molding using a woven fabric substrate which had been preliminarily immersed in a silicone solution and released from a silicone solution, the releasability of the untreated substrate was better than that of the untreated substrate.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
FRP材の少なくとも片面に織り目模様を付ける際、成
形時に布帛を貼り合わせて同時に成形した後、該布帛を
剥離して織り目模様を付けたり、また繊維強化複合材料
の表面に布帛を貼り合わせた状態で成形するので成形中
に粉塵や騒音も出ず、さらに接着効率に影響する表面粗
さの変動もなくしかも成形コストも安価で製造すること
ができる。
As described above, according to the present invention,
When a texture pattern is applied to at least one surface of the FRP material, the fabric is attached and molded simultaneously at the time of molding, and then the fabric is peeled off and a texture pattern is applied, or the fabric is attached to the surface of the fiber-reinforced composite material. Therefore, no dust or noise is produced during molding, and there is no change in surface roughness which affects the adhesion efficiency, and the molding cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の織り目模様を付けたFRP材の概略斜
視図である。
FIG. 1 is a schematic perspective view of a textured FRP material of the present invention.

【図2】本発明の布帛を貼り付けたFRP材の概略斜視
図である。
FIG. 2 is a schematic perspective view of an FRP material to which the cloth of the present invention is attached.

【図3】本発明を実施する製造ラインの一例を示す概略
図である。
FIG. 3 is a schematic diagram showing an example of a production line for implementing the present invention.

【図4】本発明を実施する別の製造ラインの一例を示す
概略図である。
FIG. 4 is a schematic diagram showing an example of another production line for implementing the present invention.

【符号の説明】[Explanation of symbols]

1、1’:FRP材 2、2’:布帛 3:繊維強化複合材料 3a:補強繊維 3b:硬化樹脂 4:織り目模様 5a:ボビン 5b:ボビン 5c:ボビン 6:繊維束 7:熱硬化性樹脂 8:含浸漕 9:ガイド 11:巻き出しボビン 12:加熱ダイ 13:巻き取りボビン 14:引き取り機 15:巻き取りロール 16:未硬化樹脂 17:硬化炉 1, 1 ': FRP material 2, 2': cloth 3: fiber reinforced composite material 3a: reinforcing fiber 3b: cured resin 4: weave pattern 5a: bobbin 5b: bobbin 5c: bobbin 6: fiber bundle 7: thermosetting resin 8: Impregnation tank 9: Guide 11: Unwinding bobbin 12: Heating die 13: Winding bobbin 14: Take-up machine 15: Winding roll 16: Uncured resin 17: Curing furnace

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F100 AA37A AG00A AK01A AK41 AK47A AK53 BA01 BA02 BA03 BA06 BA10B BA10C BA13 CA02 DD07A DD07B DD07C DG01A DG11B DG11C DH02A EA02 EH012 EH462 EJ082 EJ422 EJ821 GB07 GB90 HB00A JB12A JK06 JL02 YY00A YY00B YY00C ──────────────────────────────────────────────────の Continuing on the front page F term (reference) 4F100 AA37A AG00A AK01A AK41 AK47A AK53 BA01 BA02 BA03 BA06 BA10B BA10C BA13 CA02 DD07A DD07B DD07C DG01A DG11B DG11C DH02A EA02 EH012 EH462 JEJB00JJB00A

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】繊維強化複合材料からなる長尺成形体の少
なくとも片面に織り目模様が形成されていることを特徴
とするFRP材。
An FRP material characterized in that a textured pattern is formed on at least one surface of a long molded body made of a fiber reinforced composite material.
【請求項2】繊維強化複合材料からなる長尺成形体の少
なくとも片面に布帛が被覆されていることを特徴とする
FRP材。
2. An FRP material characterized in that at least one surface of a long molded body made of a fiber-reinforced composite material is covered with a fabric.
【請求項3】前記FRPの織り目模様または前記布帛の
被覆側の面の表面粗さ(Ra)が10〜100μmであ
ることを特徴とする請求項1または2に記載のFRP
材。
3. The FRP according to claim 1, wherein the textured pattern of the FRP or the surface roughness (Ra) of the surface on the coating side of the fabric is 10 to 100 μm.
Wood.
【請求項4】前記FRPの織り目模様または前記布帛の
被覆側の面の、経糸及び/又は緯糸の織り密度が1cm
当たり10本〜50本の範囲にあることを特徴とする請
求項1〜3のいずれかに記載のFRP材。
4. A warp and / or weft weave density of 1 cm on the textured pattern of the FRP or the surface on the coated side of the fabric.
The FRP material according to any one of claims 1 to 3, wherein the FRP material is in a range of 10 to 50 pieces.
【請求項5】前記強化複合材料に用いる繊維が炭素繊
維、ガラス繊維またはアラミド繊維からなることを特徴
とする請求項1〜4項のいずれかに記載のFRP材。
5. The FRP material according to claim 1, wherein the fiber used for the reinforced composite material is made of carbon fiber, glass fiber or aramid fiber.
【請求項6】前記強化複合材料の繊維体積含有率が40
〜80%であることを特徴とする請求項1〜5のいずれ
かに記載のFRP材。
6. The fiber volume content of the reinforced composite material is 40.
The FRP material according to any one of claims 1 to 5, wherein the FRP material is 80% to 80%.
【請求項7】建築用補強部材として、建築構造物に貼付
されることを特徴とする請求項1〜6のいずれかに記載
のFRP材。
7. The FRP material according to claim 1, wherein the FRP material is attached to a building structure as a building reinforcing member.
【請求項8】連続的に給糸される複数の強化繊維束に熱
硬化性樹脂を含浸し少なくとも片面に布帛を貼り合わせ
て金型内で加熱硬化または半硬化したのち、前記布帛を
剥離すること特徴とするFRP材の製造方法。
8. A plurality of reinforcing fiber bundles which are continuously fed are impregnated with a thermosetting resin, and a fabric is stuck on at least one surface and cured or semi-cured in a mold, and then the fabric is peeled. A method for producing an FRP material.
【請求項9】繊維強化複合材料からなる長尺成形体の少
なくとも片面に未硬化の熱硬化性樹脂を塗布し、前記布
帛を貼り合わせて加熱硬化または半硬化したのち前記布
帛を剥離すること特徴とするFRP材の製造方法。
9. An uncured thermosetting resin is applied to at least one surface of a long molded body made of a fiber-reinforced composite material, and the fabric is bonded and heat-cured or semi-cured, and then the fabric is peeled off. A method for producing an FRP material.
【請求項10】連続的に給糸される複数の強化繊維束に
熱硬化性樹脂を含浸し少なくとも片面に布帛を貼り合わ
せて金型内で加熱硬化または半硬化を施してなることを
特徴とするFRP材の製造方法。
10. A method comprising impregnating a plurality of reinforced fiber bundles continuously fed with a thermosetting resin, laminating a cloth on at least one side, and heat-curing or semi-curing in a mold. Manufacturing method of FRP material.
【請求項11】繊維強化複合材料からなる長尺成形体の
少なくとも片面に未硬化の熱硬化性樹脂を塗布し、前記
布帛を貼り合わせて加熱硬化または半硬化してなること
を特徴とするFRP材の製造方法。
11. An FRP, wherein an uncured thermosetting resin is applied to at least one surface of a long molded body made of a fiber-reinforced composite material, and the cloth is bonded and heat-cured or semi-cured. The method of manufacturing the material.
JP11128168A 1999-05-10 1999-05-10 Frp material and its manufacture Pending JP2000318071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11128168A JP2000318071A (en) 1999-05-10 1999-05-10 Frp material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11128168A JP2000318071A (en) 1999-05-10 1999-05-10 Frp material and its manufacture

Publications (1)

Publication Number Publication Date
JP2000318071A true JP2000318071A (en) 2000-11-21

Family

ID=14978093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11128168A Pending JP2000318071A (en) 1999-05-10 1999-05-10 Frp material and its manufacture

Country Status (1)

Country Link
JP (1) JP2000318071A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246771A (en) * 2004-03-04 2005-09-15 Toray Ind Inc Method of manufacturing frp structure
JP2008149604A (en) * 2006-12-19 2008-07-03 Yamaha Corp Decoratively shaped object, decoratively shaped object for molding base material, decoratively molded object and manufacturing method of them
JP2009179065A (en) * 2009-05-18 2009-08-13 Toray Ind Inc Method of manufacturing frp structure
JP2018058541A (en) * 2016-10-07 2018-04-12 東洋ゴム工業株式会社 Non-pneumatic tire and manufacturing method of the same
WO2022030026A1 (en) 2020-08-03 2022-02-10 Each DreaM株式会社 Composite material and method for producing composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246771A (en) * 2004-03-04 2005-09-15 Toray Ind Inc Method of manufacturing frp structure
JP2008149604A (en) * 2006-12-19 2008-07-03 Yamaha Corp Decoratively shaped object, decoratively shaped object for molding base material, decoratively molded object and manufacturing method of them
JP2009179065A (en) * 2009-05-18 2009-08-13 Toray Ind Inc Method of manufacturing frp structure
JP2018058541A (en) * 2016-10-07 2018-04-12 東洋ゴム工業株式会社 Non-pneumatic tire and manufacturing method of the same
WO2022030026A1 (en) 2020-08-03 2022-02-10 Each DreaM株式会社 Composite material and method for producing composite material
KR20230045036A (en) 2020-08-03 2023-04-04 이치 드림 컴퍼니 리미티드 Composite materials and methods of manufacturing composite materials

Similar Documents

Publication Publication Date Title
JP4561081B2 (en) Reinforcing fiber substrate, composite material, and production method thereof
JP3286270B2 (en) Reinforcement mesh fabric and method of material reinforcement
JP5572947B2 (en) Molding material, fiber reinforced plastic, and production method thereof
JP5416341B2 (en) Method for producing round fiber reinforced plastic wire
CN110691689B (en) Pultrusion type strap
JP2013234569A (en) Structural steelwork reinforcing method and elastic layer forming material for the structural steelwork reinforcement
JP2010084372A (en) Woven fiber-reinforced sheet and method of manufacturing the same
CN111788069B (en) Laminate for reinforcing structure, reinforcing method, and reinforced structure
JP5645440B2 (en) Structure reinforcement method
JP3415107B2 (en) Method for reinforcing concrete structure and reinforcing structure
JP2000318071A (en) Frp material and its manufacture
JPH0797465A (en) Prepreg and laminated structure
JP4341419B2 (en) Preform manufacturing method and composite material manufacturing method
US6468625B1 (en) Laminate configuration for reinforcing glulam beams
JPH1199580A (en) Material for one-directionally fiber-reinforced composite material and its production
JP3405497B2 (en) Reinforced fiber sheet for structural reinforcement
JP2005262818A (en) Reinforcing fiber substrate, preform and reinforcing fiber substrate manufacturing method
JP4252778B2 (en) Method for continuously producing molded body and molded body
JP2002248693A (en) Frp long molded object and method for manufacturing the same
JP2001123579A (en) Sheet for reinforcing concrete
JP6620255B1 (en) Prepreg and manufacturing method thereof
JP2000220302A (en) Repairing and reinforcing method for structure
JP3174358B2 (en) Unidirectional array reinforced fiber sheet and method of reinforcing structure
JP2002194640A (en) Reinforcing mesh fabric and method for reinforcing material
JP2010106641A (en) Woven fiber reinforced sheet and method of manufacturing the same