JPH0797465A - Prepreg and laminated structure - Google Patents

Prepreg and laminated structure

Info

Publication number
JPH0797465A
JPH0797465A JP6165613A JP16561394A JPH0797465A JP H0797465 A JPH0797465 A JP H0797465A JP 6165613 A JP6165613 A JP 6165613A JP 16561394 A JP16561394 A JP 16561394A JP H0797465 A JPH0797465 A JP H0797465A
Authority
JP
Japan
Prior art keywords
prepreg
fiber
laminated structure
reinforcing sheet
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6165613A
Other languages
Japanese (ja)
Inventor
Hideo Sakai
英男 坂井
Misao Masuda
操 益田
Chiaki Maruko
千明 丸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP6165613A priority Critical patent/JPH0797465A/en
Publication of JPH0797465A publication Critical patent/JPH0797465A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a prepreg which exhibits no variation in strengths, can be molded into a three-dimensional shape without detriment of the strengths, and can be easily adhesive-bonded to other materials by laminating a specific fiber-reinforced sheet and a specific reinforcing sheet. CONSTITUTION:A prepreg 5 is produced by laminating at least one fiber- reinforced sheet and at least one porous flexible reinforcing sheet 2 with a pressing roll 4. The fiber-reinforced sheet is prepd. by impregnating a thermoplastic resin (e.g. PP) into continuous fibers obtd. by aligning fiber bundles obtd. by aligning 100-20,000 monofilaments (e.g. glass fibers) having a diameter of 3-25mum in one direction on a flat plane. The vol. content of the continuous fibers impregnated in the prepreg is pref. 40-80%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は軽量で、機械的強度に優
れ、かつ成形加工性に優れた、バンパーバックアップビ
ーム、ドアービーム、シートシェル、内装天井材、ドア
トリム等の自動車部品、コンクリート型枠、足場板等の
建築資材、機構部品、カバー等の機械部品等の分野で利
用可能な繊維強化熱可塑性樹脂のプリプレグ、それを用
いて成る積層構造体に関する。
BACKGROUND OF THE INVENTION The present invention is a lightweight, excellent mechanical strength and molding processability, bumper backup beam, door beam, seat shell, interior ceiling material, automobile parts such as door trim, concrete formwork. The present invention relates to a fiber reinforced thermoplastic resin prepreg that can be used in the field of building materials such as scaffolding boards, mechanical parts, mechanical parts such as covers, and a laminated structure using the prepreg.

【0002】[0002]

【従来の技術】従来、このような大型の樹脂製の成形品
は、主に繊維強化された熱硬化性脂を成形して製造され
てきた。然しながら、熱硬化性樹脂は低分子量であるた
め、製造作業時に、その樹脂が不飽和ポリエステル樹脂
の場合にはスチレンモノマー臭、エポキシ樹脂の場合に
はアミン臭といった臭気が発生し、人体に悪影響を及ぼ
すという問題がある。
2. Description of the Related Art Conventionally, such large-sized resin molded articles have been manufactured mainly by molding a fiber-reinforced thermosetting resin. However, since the thermosetting resin has a low molecular weight, odors such as a styrene monomer odor when the resin is an unsaturated polyester resin and an amine odor when the resin is an epoxy resin are generated during the manufacturing work, which adversely affects the human body. There is a problem of exerting.

【0003】また、積層に際しても樹脂層と繊維層とが
完全に一体化されていないため、成形の途中でこれらの
層がずれ易く、皺が寄りやすい。そのため、成形にはか
なりの技術を要し、また、成形品の硬化にもかなりの時
間を要するため、この成形方法は熟練と高度の環境対策
を必要とし、そのため、生産コストも高くなるという問
題がある。そこで、取扱いが比較的容易な熱可塑性樹脂
を使用した成形品の製造が試みられている。
In addition, since the resin layer and the fiber layer are not completely integrated even when laminated, these layers are likely to be displaced during the molding process and wrinkles are likely to occur. Therefore, molding requires a considerable amount of technology, and since it also takes a considerable amount of time to cure the molded product, this molding method requires skill and a high degree of environmental protection, which increases the production cost. There is. Therefore, it has been attempted to manufacture a molded product using a thermoplastic resin which is relatively easy to handle.

【0004】一般的に、熱可塑性樹脂を用いた成形品
は、一平面上に一方向に引き揃えた連続繊維に熱可塑性
樹脂を含浸させて得た繊維強化樹脂シートを複数、その
繊維配向方向を順次変えて積層し、加熱圧着して成る積
層構造体をその熱可塑性樹脂の流動可能温度以上に加熱
し、プレス金型でスタンピング成形して製造される。
In general, a molded article using a thermoplastic resin has a plurality of fiber-reinforced resin sheets obtained by impregnating continuous fibers aligned in one direction on one plane with the thermoplastic resin. The laminated structure is formed by heating the thermoplastic resin at a temperature above the flowable temperature of the thermoplastic resin, and stamping it with a press die.

【0005】しかし、この従来の繊維強化熱可塑性樹脂
製の成形品は、その製造過程において、強化に用いる連
続繊維が溶融した熱可塑性樹脂中で乱れ易いため、成形
品が概ね平板状である場合でも強度に部分的なばらつき
が生じ、さらに、これが三次元形状に成形されたときに
は、補強繊維が連続繊維であるため、曲げ加工に追従で
きず、繊維が乱れて均一性が損なわれる現象が発現す
る。この場合、繊維が乱れた部分の強度は低下するので
三次元形状の成形品に繊維強化熱可塑性樹脂複合材を利
用することができなくなるという問題点がある。そのた
めに、低下した強度を補う手段として、繊維が乱れる箇
所の強度を補強するために、その部分のプリプレグ積層
数を増加することが必要に応じて行われているが、この
ような対策は軽量化に逆行するものであり、好ましくな
い。
However, in this conventional molded article made of fiber-reinforced thermoplastic resin, continuous fibers used for reinforcement are easily disturbed in the molten thermoplastic resin during the manufacturing process, and therefore, when the molded article is generally flat. However, there is a partial variation in strength, and when it is molded into a three-dimensional shape, the reinforcing fiber is a continuous fiber, so it is not possible to follow the bending process, and the fiber is disturbed and the uniformity is impaired. To do. In this case, since the strength of the portion where the fibers are disturbed is reduced, there is a problem that the fiber-reinforced thermoplastic resin composite material cannot be used for a three-dimensional shaped molded product. Therefore, as a means of compensating for the reduced strength, in order to reinforce the strength of the part where the fibers are disturbed, it is necessary to increase the number of laminated prepregs in that part, but such measures are lightweight. However, it is not preferable.

【0006】また、成形品の重量を軽くするため、プリ
プレグの連続繊維を減らし、その間隔を粗くすると、連
続繊維に沿って縦割れが多数発生し使用できなくなると
いう問題が生じ、また、製造条件の変動によりプリプレ
グの連続繊維に沿って縦割れが発生するので、プリプレ
グの収率が低下する等の問題が生じる。
Further, if the number of continuous fibers of the prepreg is reduced and the intervals between them are made coarse in order to reduce the weight of the molded product, there arises a problem that a large number of vertical cracks occur along the continuous fibers and it cannot be used. Fluctuations cause longitudinal cracks along the continuous fibers of the prepreg, which causes a problem such as a decrease in prepreg yield.

【0007】さらに、この成形品に他の材料を接着剤を
用いて接合するとき、これらの表面は平滑であるので、
そのまま接着剤を塗布しても接着剤が成形品の表面に馴
染まないため、それらの表面にサンディングや、エッチ
ング等の表面処理を施して接着剤との密着性を向上させ
る必要があり、コストがかかるという問題がある。
Furthermore, when other materials are bonded to this molded article by using an adhesive, the surfaces of these materials are smooth,
Even if the adhesive is applied as it is, the adhesive does not fit on the surface of the molded product, so it is necessary to perform surface treatment such as sanding or etching on those surfaces to improve the adhesion with the adhesive, which results in cost reduction. There is a problem of this.

【0008】[0008]

【発明が解決しようとする課題】本発明は上述した問題
を解決するためになされたものであり、その目的とする
ところは、部分的な強度のばらつきがなく、三次元形状
に成形しても強度を損わなず、必要に応じて単位面積当
たりの重量を軽くし、特別な表面処理を施さなくても他
材料と容易に接着接合できるプリプレグ及びそれを用い
て成る積層構造体を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its object is to obtain a three-dimensional shape even if it is molded into a three-dimensional shape without partial variation in strength. (EN) Provided are a prepreg that does not impair the strength, can be made lighter in weight per unit area as necessary, and can be easily adhesively bonded to other materials without special surface treatment, and a laminated structure using the prepreg. It is in.

【0009】[0009]

【課題を解決するための手段】上記の目的は、一方向に
引き揃えて配列した連続繊維に熱可塑性樹脂を含侵して
成る少なくとも一層の繊維強化シートと、少なくとも一
層の多孔性の柔軟な補強シートとを積層して成るプリプ
レグと、それを適宜組み合わせて積層し、加熱圧着して
成る積層構造体により達成される。
The above object is to provide at least one fiber-reinforced sheet formed by impregnating a continuous fiber aligned in one direction with a thermoplastic resin, and at least one layer having a porous and flexible reinforcement. This is achieved by a prepreg formed by laminating sheets and a laminated structure formed by laminating and thermocompression-bonding the prepregs appropriately.

【0010】[0010]

【作用】上記の如き構成であると、整列した連続繊維は
補強シートに挟まれているので、相対的な配列が乱れな
いよう保持されることになり、三次元形状に成形しても
繊維はその配列が乱れることなくその形状に追従するも
のである。従って、立体的な成形を強度を損なわずに行
うことができ、かつ、部分的な強度のばらつきを防ぐこ
とができる。また、連続繊維の間隔をあけても、補強シ
ートにより連続繊維が拘束されているので、プリプレグ
としての特性を損なうことがないので単位面積当たりの
重量を軽くすることができ、さらに、補強シートが多孔
性であるために、その補強シートが露出した面には、何
ら特別な表面処理を施さずとも他材料を容易に接着接合
することができる。
With the above construction, the aligned continuous fibers are sandwiched between the reinforcing sheets, so that the relative arrangement is maintained so that the fibers are not disturbed even when formed into a three-dimensional shape. The arrangement follows the shape without being disturbed. Therefore, it is possible to perform three-dimensional molding without impairing the strength, and it is possible to prevent partial variations in strength. Further, even if the continuous fibers are spaced apart, the continuous fibers are constrained by the reinforcing sheet, so the characteristics as a prepreg are not impaired, so the weight per unit area can be reduced, and further, the reinforcing sheet is Due to the porosity, other materials can be easily adhesively bonded to the exposed surface of the reinforcing sheet without any special surface treatment.

【0011】[0011]

【発明を実施するための最良の態様】本発明に用いられ
るプリプレグは、一平面上に一方向に引き揃えて配列し
た連続繊維に熱可塑性樹脂を含侵させて繊維強化樹脂シ
ートを製造し、その繊維強化樹脂シートの少なくとも一
方の面に補強シートを圧着させたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The prepreg used in the present invention is a fiber-reinforced resin sheet produced by impregnating continuous fibers arranged in one direction on one plane with a thermoplastic resin to impregnate a thermoplastic resin, A reinforcing sheet is pressure bonded to at least one surface of the fiber reinforced resin sheet.

【0012】本発明に用いられる熱可塑性樹脂として
は、例えばポリスチレン、ポリプロピレン、ポリエチレ
ン、AS樹脂、ABS樹脂、ASA樹脂(ポリアクリロ
ニトリル、ポリスチレン・ポリアクリル酸エステル)、
ポリメチルメタクリレート、ナイロン、ポリアセター
ル、ポリカーボネート、ポリエチレンテレフタレート、
ポリフェニレンオキシド、ポリエーテルケトン、ポリエ
ーテルエーテルケトン、ポリイミド、ポリアリレート等
がある。
Examples of the thermoplastic resin used in the present invention include polystyrene, polypropylene, polyethylene, AS resin, ABS resin, ASA resin (polyacrylonitrile, polystyrene / polyacrylate),
Polymethylmethacrylate, nylon, polyacetal, polycarbonate, polyethylene terephthalate,
Examples include polyphenylene oxide, polyether ketone, polyether ether ketone, polyimide, polyarylate, and the like.

【0013】連続繊維は単繊維を集束剤により集束した
もので、本発明の連続繊維は、太さ3〜25μm単繊維
を100〜20000本集束して使用される。集束剤
は、熱可塑性樹脂に応じて選択する必要があり、一般的
にはその熱可塑性樹脂の溶融温度で軟化すると共に、連
続繊維中に含浸し易いものにする。そのため、集束剤に
は、その熱可塑性樹脂と同種の樹脂を主成分とするもの
を使用することが多い。
The continuous fibers are obtained by bundling single fibers with a sizing agent, and the continuous fibers of the present invention are used by bundling 100 to 20,000 single fibers having a thickness of 3 to 25 μm. The sizing agent needs to be selected according to the thermoplastic resin, and generally, the sizing agent is softened at the melting temperature of the thermoplastic resin and is easily impregnated into continuous fibers. Therefore, as the sizing agent, a sizing agent whose main component is a resin of the same kind as the thermoplastic resin is often used.

【0014】単繊維の材料としては、例えばガラス、カ
ーボン、アラミド、炭化ケイ素等が代表的なものであ
る。連続繊維中の単繊維にガラス繊維を用いる場合は、
繊維の表面に対し、各種の表面処理を行い、熱可塑性樹
脂との密着性を向上させる。表面処理には、集束剤とカ
ップリング剤とを組み合わせて用いる。
Typical materials for the monofilament are glass, carbon, aramid, silicon carbide and the like. When using glass fiber as the single fiber in the continuous fiber,
The surface of the fiber is subjected to various surface treatments to improve the adhesiveness with the thermoplastic resin. A sizing agent and a coupling agent are used in combination for the surface treatment.

【0015】このカップリング剤には、シラン系、チタ
ネート系、ジルコニウム系のものがあり、熱可塑性樹脂
の種類に応じ、最適のものを選ぶ必要がある。熱可塑性
樹脂がナイロン樹脂又はポリカーボネート樹脂であれ
ば、カップリング剤にはγ−アミノプロピル−トリメト
キシシラン、N−β−(アミノエチル)−γ−アミノプ
ロピル−トリメトキシシラン等が使用できる。
There are silane-based, titanate-based, and zirconium-based coupling agents, and it is necessary to select the optimum one according to the type of thermoplastic resin. If the thermoplastic resin is a nylon resin or a polycarbonate resin, γ-aminopropyl-trimethoxysilane, N-β- (aminoethyl) -γ-aminopropyl-trimethoxysilane or the like can be used as the coupling agent.

【0016】また、熱可塑性樹脂がポリエチレンテレフ
タレートまたは、ポリブチレンテレフタレートであれ
ば、β−(3,4−エポキシシクロヘキシル)エチル−
トリメトキシシラン、γ−グリシドキシ−プロピルトリ
メトキシシラン、γ−アミノプロピル−トリメトキシシ
ラン等が使用できる。
If the thermoplastic resin is polyethylene terephthalate or polybutylene terephthalate, β- (3,4-epoxycyclohexyl) ethyl-
Trimethoxysilane, γ-glycidoxy-propyltrimethoxysilane, γ-aminopropyl-trimethoxysilane and the like can be used.

【0017】また、熱可塑性樹脂がポリスチレンまたは
ポリプロピレンであれば、N−(β−アミノエチル)−
γ−アミノプロピルメチルジメトキシシラン、ビニルト
リメトキシシラン、ビニル−トリス−(2−メトキシエ
トキシ)シラン、γ−メタクリロキシ−プロピルトリメ
トキシシラン等が使用できる。
If the thermoplastic resin is polystyrene or polypropylene, N- (β-aminoethyl)-
γ-aminopropylmethyldimethoxysilane, vinyltrimethoxysilane, vinyl-tris- (2-methoxyethoxy) silane, γ-methacryloxy-propyltrimethoxysilane and the like can be used.

【0018】さらに、熱可塑性樹脂がポリフェニレンオ
キシド、ポリフェニレンスルフィド、ポリスルフォン、
ポリエーテルサルフォン、ポリエーテルケトン、ポリエ
ーテルエーテルケトン、ポリイミド、ポリアリレート、
フッ素樹脂であれば、上述したカップリング剤を使用す
ることができるが、その外に、N−(β−アミノエチ
ル)−γ−アミノプロピルメチルジメトキシシラン、γ
−シクロロプロピルメチルジメトキシシラン、γ−メル
カプトプロピルトリメトキシシラン、P−アミノフェニ
ルトリエトキシシラン等を使用することもできる。
Further, the thermoplastic resin may be polyphenylene oxide, polyphenylene sulfide, polysulfone,
Polyether sulfone, polyether ketone, polyether ether ketone, polyimide, polyarylate,
If it is a fluororesin, the above-mentioned coupling agent can be used, but in addition to that, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ
-Cyclolopropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, P-aminophenyltriethoxysilane and the like can also be used.

【0019】連続繊維中の単繊維にガラス繊維以外のも
のが用いられる場合は、カップリング剤に、アミン硬化
型のエポキシ樹脂が用いられる場合が多く、その具体例
としてはビスフェノール−A−エピクロルヒドリン樹
脂、エポキシノボラック樹脂、脂環式エポキシ樹脂、脂
肪族エポキシ樹脂、グリシジルエステル型樹脂等があ
る。
When a fiber other than glass fiber is used as the single fiber in the continuous fiber, an amine-curable epoxy resin is often used as the coupling agent, and a specific example thereof is bisphenol-A-epichlorohydrin resin. , Epoxy novolac resin, alicyclic epoxy resin, aliphatic epoxy resin, glycidyl ester type resin and the like.

【0020】しかし、溶融温度の高い熱可塑性樹脂を用
いる場合は、カップリング剤が熱分解する場合もあるの
で、連続繊維中の単繊維に表面処理を施さないこともあ
る。カップリング剤を単繊維の表面に施す方法には次の
方法がある。
However, when a thermoplastic resin having a high melting temperature is used, the coupling agent may be thermally decomposed, and thus the single fiber in the continuous fiber may not be surface-treated. There are the following methods for applying the coupling agent to the surface of the single fiber.

【0021】1つは、繊維の材料を溶融し、モノフィラ
メントを引き出す際に、集束剤とカップリング剤に界面
活性剤が添加された水溶液を、引き出されるモノフィラ
メントに噴霧した後、100℃程度の温度で乾燥させる
という方法である。もう1つの方法としては、集束剤及
びカップリング剤を0.1〜3重量%溶解した液を、単
繊維に浸漬、噴霧塗布するなどして完全に含侵させた
後、それを60〜120℃で、溶媒が揮散するのに充分
な時間、具体的には15〜20分間程度乾燥させ、カッ
プリング剤を単繊維表面に反応させる。
[0021] One is to melt the fiber material and to draw out the monofilament. After spraying the drawn monofilament with an aqueous solution containing a surfactant as a sizing agent and a coupling agent, the temperature is about 100 ° C. It is a method of drying. As another method, a liquid in which a sizing agent and a coupling agent are dissolved by 0.1 to 3% by weight is completely impregnated by dipping in single fiber or spray coating, and then 60 to 120 The coupling agent is allowed to react with the surface of the single fiber by drying at a temperature of C for a time sufficient for volatilization of the solvent, specifically about 15 to 20 minutes.

【0022】カップリング剤を溶解する溶媒には、カッ
プリング剤の種類に応じて、pH2.0〜12.0位に
調整された水、及び、エタノール、トルエンアセトン、
キシレン等の有機溶媒が単独又は混合して使用される。
熱可塑性樹脂を連続繊維に効率良く含浸させるために
は、連続繊維が重ならないように配置して、溶融した熱
可塑性樹脂が浸透していく距離を短くする必要がある。
そのためには、連続繊維を一平面上に引き揃えて、連続
繊維同士が、互いに重ならないように、整列させること
が好ましい。
As the solvent for dissolving the coupling agent, water adjusted to a pH of 2.0 to 12.0, ethanol, tolueneacetone, or the like, depending on the type of the coupling agent,
Organic solvents such as xylene are used alone or as a mixture.
In order to efficiently impregnate the continuous fibers with the thermoplastic resin, it is necessary to arrange the continuous fibers so that they do not overlap with each other and shorten the distance that the molten thermoplastic resin penetrates.
For that purpose, it is preferable that the continuous fibers are drawn on one plane and aligned so that the continuous fibers do not overlap each other.

【0023】熱可塑性樹脂を加熱溶融し、連続繊維に含
侵させた後、脱泡して冷却させる場合、樹脂溶融時の樹
脂の粘度が高いとライン速度を遅くしないと十分な含浸
が達成できず、極端に樹脂溶融時の粘度が高いと含浸し
ない。また、溶融時の樹脂の粘度が低いと高速で含浸が
可能となるが、樹脂流動性に富むために繊維が樹脂を保
持できずに繊維含有率が高いプリプレグの製造が困難と
なり高強度プリプレグが得にくくなり、また、分子量が
低く樹脂単体の性能が劣りプリプレグ積層体としての物
性が悪くなるという問題点を有する。従って、溶融時の
樹脂粘度が、剪断速度が1/秒以上100/秒以下の範
囲で1000ポイズ以上5000ポイズ以下であること
が好ましい。
When the thermoplastic resin is melted by heating, impregnated into continuous fibers, and then degassed and cooled, sufficient impregnation can be achieved unless the line speed is slowed if the resin has a high viscosity during melting. If the viscosity of the resin when melted is extremely high, it will not be impregnated. Also, if the viscosity of the resin when melted is low, impregnation can be performed at high speed, but due to the high fluidity of the resin, the fiber cannot hold the resin, making it difficult to produce a prepreg with a high fiber content and obtaining a high strength prepreg. In addition, there is a problem in that the molecular weight is low and the performance of the resin alone is poor and the physical properties of the prepreg laminate are poor. Therefore, the resin viscosity at the time of melting is preferably 1000 poises or more and 5000 poises or less in the range of the shear rate of 1 / sec or more and 100 / sec or less.

【0024】また、熱可塑性樹脂が溶媒に可溶なもので
あれば、その樹脂を溶媒に溶かして溶液化し、それを連
続繊維に含侵させ、その後脱泡しながら溶媒を除去する
こともできるが、この方法は溶剤に可溶な樹脂だけにし
か使用できないので、全ての樹脂に対応できない。繊維
強化シート中の連続繊維の繊維含有率が低いと繊維強化
シート強度が低くなる。また、繊維含有率が高いと、熱
可塑性樹脂と連続繊維との密着性が低下し、やはり繊維
強化シート強度が低くなってしまうので、繊維強化シー
ト中の連続繊維の繊維含有率は、40〜80容量%が好
ましい。
If the thermoplastic resin is soluble in the solvent, the resin can be dissolved in the solvent to form a solution, the continuous fibers can be impregnated, and then the solvent can be removed by defoaming. However, since this method can be used only for a resin soluble in a solvent, it cannot be applied to all resins. If the fiber content of the continuous fibers in the fiber reinforced sheet is low, the strength of the fiber reinforced sheet will be low. Further, when the fiber content is high, the adhesiveness between the thermoplastic resin and the continuous fibers is reduced, and the strength of the fiber reinforced sheet is also reduced. Therefore, the fiber content of the continuous fibers in the fiber reinforced sheet is 40 to 80% by volume is preferred.

【0025】このようにして製造された繊維強化シート
は、連続繊維と熱可塑性樹脂との密着性に優れ、繊維含
有率も40〜80容量%の範囲内で必要に応じて変化さ
せることができ、厚さも0.1mm〜0.6mmと薄く
製造することができる。連続繊維を一方向に整列して熱
可塑性樹脂を含浸させた繊維強化シートは、複数の連続
繊維を平行に並べて溶融した熱可塑性樹脂を含浸させる
ことにより製造される。
The fiber-reinforced sheet thus produced has excellent adhesion between the continuous fibers and the thermoplastic resin, and the fiber content can be changed as required within the range of 40 to 80% by volume. The thickness can be manufactured as thin as 0.1 mm to 0.6 mm. A fiber reinforced sheet in which continuous fibers are aligned in one direction and impregnated with a thermoplastic resin is manufactured by arranging a plurality of continuous fibers in parallel and impregnating a molten thermoplastic resin.

【0026】この時に、製造条件が変動すると整列した
連続繊維の一部の間隔が広がってしまい、その部分に連
続繊維に沿った縦割れが発生することがある。このよう
な縦割れが生じると、製品収率が悪化するという問題が
ある。その対策として、多孔性の補強シートで繊維補強
シート中の連続繊維を拘束することが有効であり、部分
的な縦割れはこれにより補修することが可能となり製品
収率の低下を防ぐ。
At this time, if the manufacturing conditions are changed, the intervals of a part of the aligned continuous fibers may be widened, and vertical cracks may occur along the continuous fibers at that part. When such vertical cracks occur, there is a problem that the product yield deteriorates. As a countermeasure against this, it is effective to restrain the continuous fibers in the fiber-reinforced sheet with a porous reinforcing sheet, and partial vertical cracks can be repaired by this, and a decrease in product yield is prevented.

【0027】また、軽量な繊維補強シートを製造する場
合、連続繊維の本数を減らすか、連続繊維中の単繊維の
集束本数を減らすことで対応することができる。しかし
ながら、繊維の本数が減ると連続繊維に沿った縦割れが
発生し易くなり、収率の低下につながる。この対策とし
ても、多孔性の補強シートで繊維補強シートの連続繊維
を拘束することにより、縦割れによる製品収率の低下を
防ぐことができる。さらに、繊維補強シートは連続繊維
が一方向に配列されているので、その方向に対する強度
は強く、所定本数の連続繊維が成形品の強度を負担する
方向に存在すれば、高強度の成形品を得ることができ
る。
Further, in the case of manufacturing a lightweight fiber-reinforced sheet, it can be dealt with by reducing the number of continuous fibers or the number of bundled single fibers in the continuous fibers. However, if the number of fibers is reduced, longitudinal cracks along the continuous fibers are likely to occur, resulting in a decrease in yield. As a countermeasure against this, by restraining the continuous fibers of the fiber-reinforced sheet with a porous reinforcing sheet, it is possible to prevent a decrease in product yield due to vertical cracking. Further, since the continuous fibers are arranged in one direction in the fiber reinforced sheet, the strength in that direction is high, and if a predetermined number of continuous fibers exist in a direction that bears the strength of the molded product, a high strength molded product is obtained. Obtainable.

【0028】これらのことから、必ずしも繊維補強シー
ト中の隣合う連続繊維が相互に離れずに接して一枚のシ
ート状になっている必要はなく、たとえ隣合う連続繊維
相互が離れていても所定束数の連続繊維が成形品中にあ
れば、高強度化が達成されるので、縦割れのある繊維補
強シートや相互に拘束された連続繊維ごとにバラバラに
なった繊維補強シートでも、取扱い上問題がなければ使
用することが可能となる。
From the above, it is not always necessary that the adjacent continuous fibers in the fiber-reinforced sheet are in contact with each other without being separated from each other to form one sheet, and even if the adjacent continuous fibers are separated from each other. As long as a specified number of continuous fibers are present in the molded product, high strength can be achieved.Therefore, even fiber reinforced sheets with longitudinal cracks or disjointed fiber reinforced sheets are handled separately. If there is no problem, it can be used.

【0029】従って、連続繊維の相互の間隔がないも
の、すなわち、相互に接して一枚のシート状になってい
るものでも、連続繊維の相互間隔がある程度離れている
もの、すなわち、隣合う連続繊維が接触していないもの
でも、整列された状態で束相互の間隔が変動しないよう
に、繊維補強シートを多孔性の補強シートで拘束したプ
リプレグであれば、シート状の形態を保持でき、取扱い
上問題なく通常の繊維補強シートと同等の作業性で成形
が可能であり、成形品の性能に合わせた本数の連続繊維
を含むプリプレグを容易に使用することが可能になる。
Therefore, even if the continuous fibers are not spaced from each other, that is, even if they are in contact with each other to form one sheet, the continuous fibers are spaced from each other to some extent, that is, adjacent continuous fibers. Even if the fibers are not in contact with each other, the prepreg in which the fiber reinforcing sheet is constrained by the porous reinforcing sheet can maintain the sheet shape so that the intervals between the bundles do not change in the aligned state. It can be molded with the same workability as a normal fiber-reinforced sheet without any problems, and it becomes possible to easily use a prepreg containing a number of continuous fibers according to the performance of the molded product.

【0030】よって、多孔性の補強シートを使用するこ
とにより、プリプレグの縦割れによる製品収率の低下の
防止、性能要求に応じたプリプレグの製造が容易になる
等の利点がある。従って、連続繊維相互の間隔は、互い
に接している0mmから、100mmまで離れていても
よく、好ましい間隔は0〜70mmであり、より好まし
い範囲は0〜50mmであり、更に好ましい範囲は0〜
30mmである。
Therefore, the use of the porous reinforcing sheet has advantages such as prevention of a decrease in product yield due to vertical cracking of the prepreg and facilitation of production of the prepreg according to performance requirements. Therefore, the distance between the continuous fibers may be separated from 0 mm which is in contact with each other to 100 mm, the preferable distance is 0 to 70 mm, the more preferable range is 0 to 50 mm, and the further preferable range is 0.
It is 30 mm.

【0031】また、連続繊維相互の間隔を100mm以
下で整列させるときに、連続繊維一つ一つを間隔をあけ
て整列させる場合も考えられるが、複数の連続繊維を隙
間なく引き揃えたものを一単位としてこの単位相互の間
隔を100mm以下になる様に整列させる場合もあり、
また、各単位を構成する連続繊維の本数が異なるものを
間隔をあけて整列させることもできる。また、目的に応
じて、連続繊維の構成、間隔を変えることが可能であ
る。
When aligning the continuous fibers with each other at a distance of 100 mm or less, it may be possible to align the continuous fibers one by one, but a plurality of continuous fibers that are aligned without gaps may be used. In some cases, the distance between these units may be aligned to be 100 mm or less.
Moreover, it is also possible to arrange the continuous fibers constituting each unit having different numbers of fibers at intervals. Further, it is possible to change the constitution and spacing of the continuous fibers depending on the purpose.

【0032】繊維強化樹脂シートの表面に配置される多
孔性の補強シートには、溶融したプリプレグの樹脂が浸
透し得るもの、例えば不織布、織布、マット、ネット、
パンチングフィルム、パンチングメタル等の形態のもの
が挙げられる。この補強シートの材料としては、合成樹
脂繊維、チタン、ボロン、ステンレス、鉄などの金属繊
維、ガラス、炭素、炭化ケイ素などの無機質繊維、紙、
パルプなどの天然物繊維などが挙げられるが、必ずしも
これらに限定されるものではなく、多孔性かつ柔軟で、
十分な強度を有し、安価で大量に入手できるものであれ
ば構わず、補強シートに使用すべき材料は、製品の用途
に応じて選択される。補強シートは、溶融したプリプレ
グの樹脂が浸透し得る厚さであることが望ましく、通常
0.01mm〜1mmである。
The porous reinforcing sheet disposed on the surface of the fiber reinforced resin sheet is one that can penetrate the resin of the melted prepreg, such as non-woven fabric, woven fabric, mat, net,
Examples include punching films and punching metals. Examples of the material for the reinforcing sheet include synthetic resin fibers, metal fibers such as titanium, boron, stainless steel and iron, inorganic fibers such as glass, carbon and silicon carbide, paper,
Examples include natural fibers such as pulp, but are not necessarily limited to these, porous and flexible,
The material to be used for the reinforcing sheet may be selected according to the application of the product, as long as it has sufficient strength, is inexpensive, and can be obtained in large quantities. The reinforcing sheet preferably has a thickness that allows the resin of the molten prepreg to penetrate, and is usually 0.01 mm to 1 mm.

【0033】而して、樹脂が溶融している繊維強化樹脂
シートと補強シートとを積層し圧着すると、溶融した樹
脂が補強シートに浸透し、補強シートは繊維強化樹脂シ
ートと一体化し、本発明に係るプリプレグとなる。この
とき、補強シートが、繊維強化樹脂シートの樹脂の溶融
温度で溶融するものであれば、補強シートの一部も溶融
し、樹脂と混ざり合い、より強固に一体化する。
When the fiber-reinforced resin sheet in which the resin is melted and the reinforcing sheet are laminated and pressure-bonded, the melted resin permeates the reinforcing sheet, and the reinforcing sheet is integrated with the fiber-reinforced resin sheet. It becomes the prepreg related to. At this time, if the reinforcing sheet melts at the melting temperature of the resin of the fiber-reinforced resin sheet, a part of the reinforcing sheet also melts, mixes with the resin, and is more firmly integrated.

【0034】而して、本発明に係る積層構造体を製造す
るときは、本発明に係わる補強シートを密着させたプリ
プレグを連続繊維の繊維配向方向を順次変えて複数枚積
層し、加熱圧着するが、必要に応じて、本発明のプリプ
レグと、従来のプリプレグ、すなわち、一平面上で一方
向に引き揃えられた連続繊維に熱可塑性樹脂を含浸して
成る繊維強化樹脂シート、ここでは以後プリプレグ1と
呼称するが、とを組み合わせて積層し、本発明の効果を
損なわない範囲内で加熱圧着して積層体としてもよい。
When the laminated structure according to the present invention is manufactured, a plurality of prepregs to which the reinforcing sheet according to the present invention is adhered are laminated by sequentially changing the fiber orientation direction of the continuous fibers, and thermocompression bonded. However, if necessary, a prepreg of the present invention and a conventional prepreg, that is, a fiber-reinforced resin sheet obtained by impregnating continuous fibers aligned in one direction on one plane with a thermoplastic resin, here prepreg. Although referred to as No. 1, they may be combined and laminated, and may be thermocompression bonded within a range not impairing the effects of the present invention to form a laminated body.

【0035】また、さらに、一方の面に、溶融した樹脂
と接合一体化し得る素材から成る表面加飾材等の他の材
料を配置して積層し、加熱圧着してもよい。この様な表
面加飾材としては、ポリプロピレン、ポリスチレン等の
樹脂フィルム、樹脂シート又は発泡体、皮革模様を表面
に付加したポリ塩化ビニールのシート又は該ポリ塩化ビ
ニールのシートに発泡軟質ポリウレタンが裏打ちされた
シート、布や不織布、フエルト等表面に繊維が出ている
ものが挙げられるがこれらに限定されるものではない。
Further, another material such as a surface decorating material made of a material that can be joined and integrated with the molten resin may be arranged and laminated on one surface and heat-pressed. As such a surface decorating material, a resin film such as polypropylene or polystyrene, a resin sheet or a foam, a polyvinyl chloride sheet having a leather pattern added to the surface or a soft polyurethane foam lined on the polyvinyl chloride sheet. Examples thereof include sheets, cloths, non-woven fabrics, felts and the like having fibers on the surface, but are not limited thereto.

【0036】本発明に係わるプリプレグは、その繊維方
向を各層ごとに変えて積層して加熱し樹脂を溶融状態に
した後、3kg/cm2 以下の低圧で冷却しながら賦形
成形する。積層板の表面に樹脂層を浮き上がらせて光沢
を出したい場合は、補強シートが表面に出ないように積
層する。また、積層体の表面に他の材料を接着する場合
には、接着剤を保持する層を付与する目的で補強層が積
層体の表面になるように積層する。
The prepreg according to the present invention is formed by shaping while laminating the resin by changing the fiber direction for each layer, heating the resin to melt it, and cooling it at a low pressure of 3 kg / cm 2 or less. If you want to raise the resin layer on the surface of the laminate to give it a luster, laminate so that the reinforcing sheet does not appear on the surface. When another material is adhered to the surface of the laminate, the reinforcing layer is laminated on the surface of the laminate for the purpose of providing a layer for holding the adhesive.

【0037】また、従来プリプレグ1と本発明のプリプ
レグの組み合せによる積層もあり、この場合も、補強層
を積層体の表面に出す場合と、出さない場合を目的に応
じて選択することができる。また、従来の一方向に引き
揃えられた連続繊維に熱可塑性樹脂を含浸してなるプリ
プレグ1と本発明で使用した補強シートを交互に積層し
て、本発明に係わる補強シートが密着されているプリプ
レグの積層体と同様な効果を得ることもできる。
In addition, there is also lamination using a combination of the conventional prepreg 1 and the prepreg of the present invention, and in this case as well, the case where the reinforcing layer is provided on the surface of the laminate and the case where it is not provided can be selected according to the purpose. Further, the reinforcing sheet according to the present invention is closely adhered by alternately laminating the prepreg 1 made by impregnating the continuous fibers aligned in one direction with the thermoplastic resin and the reinforcing sheet used in the present invention. It is possible to obtain the same effect as that of the prepreg laminate.

【0038】上記した方法で積層し成形した積層板は、
一方向に配列された繊維が、補強シートの間に配置され
る場合が多く、この場合、繊維が補強シートで押えられ
るので、繊維の配列が樹脂の流動により乱れにくくなっ
ており、強度むらが少ない積層板を得ることができる。
また、三次元形状の積層体に成形する場合も、一方向に
配列された繊維が補強シートにより、各層に分離されて
いるので、各層ごとに、三次元形状に沿うように繊維が
追従するので、しわ、繊維の部分的な重なり等が発生し
ない。
The laminated plate laminated and molded by the above method is
In many cases, the fibers arranged in one direction are arranged between the reinforcing sheets, and in this case, the fibers are pressed by the reinforcing sheet, so that the arrangement of the fibers is less likely to be disturbed by the flow of the resin, resulting in uneven strength. It is possible to obtain a small number of laminated plates.
Also, when molding into a three-dimensional laminated body, since the fibers arranged in one direction are separated into each layer by the reinforcing sheet, for each layer, the fibers follow along the three-dimensional shape. No wrinkles or partial overlapping of fibers.

【0039】以下、成形方法について説明する。積層構
造体を所望の形状に成形するには、プリプレグ積層体を
オーブン又は熱板中でその樹脂の流動可能温度以上に加
熱した後、その積層体の樹脂のガラス転移温度が30℃
以上であれば、少なくともそのガラス転移温度以下に加
熱された、また、30℃未満であれば常温のプレス金型
中に投入し、金型を短時間で圧締し、賦形、脱泡及び冷
却を同時に行うスタンピング成形を行えばよい。
The molding method will be described below. To form a laminated structure into a desired shape, the prepreg laminate is heated in an oven or a hot plate to a temperature at which the resin cannot flow or more, and then the glass transition temperature of the resin of the laminate is 30 ° C.
If it is above, at least it is heated below its glass transition temperature, and if it is less than 30 ° C., it is put into a press mold at room temperature, and the mold is clamped in a short time to shape, defoam and Stamping molding for simultaneous cooling may be performed.

【0040】また、積層体を成形する他の方法には、積
層体をプレス金型中に投入し、金型内を樹脂の流動可能
温度以上に加熱しながら、成形品の表面積1cm2 当た
り1〜300kg/cm2 の圧力で、10秒〜60分間
加圧した後、金型を冷却し、金型内の温度を樹脂のガラ
ス転移温度以下に下げてから脱型するプレス成形法や、
積層体を金型内に投入し、それを真空下で樹脂流動可能
温度以上に加熱し、20kg/cm2 以下の圧力で賦
形、脱泡した後、金型内の温度を室温まで下げ、脱型す
るオートクレーブ成形法などを採用してもよい。なお、
これらの成形過程で積層体に、必要に応じて一緒に従来
のプリプレグ1や表面加飾材等を密着させ、一体化させ
てもよい。
As another method of molding the laminate, the laminate is put into a press die, and the inside of the die is heated to a temperature at which the resin cannot flow or more, and the surface area of the molded product is 1 cm 2 A press molding method in which after pressing at a pressure of ~ 300 kg / cm 2 for 10 seconds to 60 minutes, the mold is cooled, the temperature inside the mold is lowered to the glass transition temperature of the resin or lower, and then the mold is released.
The laminated body is put into a mold, heated under a vacuum to a temperature at which the resin can flow or higher, shaped at a pressure of 20 kg / cm 2 or less and defoamed, and then the temperature inside the mold is lowered to room temperature, An autoclave molding method for removing the mold may be adopted. In addition,
If necessary, the conventional prepreg 1, the surface decorating material and the like may be closely adhered to the laminate during these molding steps to be integrated.

【0041】また、樹脂の流動可能温度は、例えばポリ
スチレン、ポリプロピレン、ポリエチレン、AS樹脂、
ABS樹脂、ASA樹脂(ポリアクリロニトリル・ポリ
スチレン・ポリアクリル酸エステル)、ポリメチルメタ
クリレートナイロン、ポリアセタールであれば、210
℃、ポリエチレンテレフタレート、フッ素樹脂であれば
230℃、ポリフェニレンオキシドであれば250℃、
ポリカーボネートであれば270℃、ポリフェニレンス
ルフィド、ポリスルフォンであれば230℃、ポリエー
テルサルフォンであれば360℃、ポリエーテルエーテ
ルケトンであれば370℃、ポリエーテルケトンであれ
ば390℃、ポリイミド、ポリアリレートであれば39
0℃である。
The flowable temperature of the resin is, for example, polystyrene, polypropylene, polyethylene, AS resin,
For ABS resin, ASA resin (polyacrylonitrile / polystyrene / polyacrylic acid ester), polymethylmethacrylate nylon, polyacetal, 210
℃, polyethylene terephthalate, fluorine resin 230 ℃, polyphenylene oxide 250 ℃,
270 ° C. for polycarbonate, 230 ° C. for polyphenylene sulfide and polysulfone, 360 ° C. for polyether sulfone, 370 ° C. for polyether ether ketone, 390 ° C. for polyether ketone, polyimide, poly 39 for arilate
It is 0 ° C.

【0042】[0042]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明する。図1は本発明に係るプリプレグの製造
方法の実施例を示す説明図、図2は本発明に係る積層構
造体の成形品の実施例を示す斜視図である。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. FIG. 1 is an explanatory view showing an embodiment of a method for manufacturing a prepreg according to the present invention, and FIG. 2 is a perspective view showing an embodiment of a molded product of a laminated structure according to the present invention.

【0043】また、図中、1は特開昭61−22953
5号に記載されているプリプレグ製造装置で、相対する
3組の熱ロールの間に上下一対の連続ベルトを通し、ベ
ルト間で溶融状態にある熱可塑性樹脂を、一平面上で一
方向に引き揃えられて整列された連続繊維に含浸させる
ものである。2はロールから引き出される補強シート、
3は補強シート2を繊維強化樹脂シートに近接させるガ
イドロール、4は補強シート2を溶融状態にある繊維強
化樹脂シートに圧着させて冷却させる圧着ロール、5は
補強シートが密着されたプリプレグである。図2中の6
は平行な側壁部61とそれらを連絡する連絡部60とか
ら成る断面コの字型に成形された、本発明に係わるプリ
プレグを使用して成形された積層構造体の成形品で、6
2は強度測定用の試験片の切り出し方を示した切断線で
ある。
Further, in the figure, reference numeral 1 designates JP-A-61-22953.
In the prepreg manufacturing apparatus described in No. 5, a pair of upper and lower continuous belts are passed between three sets of opposing heat rolls, and the thermoplastic resin in a molten state between the belts is pulled in one direction on one plane. It impregnates the aligned and aligned continuous fibers. 2 is a reinforcing sheet pulled out from the roll,
Reference numeral 3 is a guide roll for bringing the reinforcing sheet 2 close to the fiber reinforced resin sheet, 4 is a pressure bonding roll for pressing the reinforcing sheet 2 to the fiber reinforced resin sheet in a molten state for cooling, and 5 is a prepreg to which the reinforcing sheet is adhered. . 6 in FIG.
6 is a molded product of a laminated structure molded by using the prepreg according to the present invention, which is molded in a U-shaped cross-section, which includes parallel side wall portions 61 and a connecting portion 60 which connects them.
2 is a cutting line showing how to cut out a test piece for strength measurement.

【0044】また、図1に示された装置は、繊維強化樹
脂シートに補強シート2を一体化させる装置であり、図
1中、プリプレグ製造装置1は、前記したように、数組
みの一対の熱ロールの間を通した上下一対の連続ベルト
の中で含浸させる方法の外に、加熱された上下一対の熱
ロールの間で、溶融状態にある熱可塑性樹脂を、一平面
上で一方向に引き揃えられて整列された連続繊維に含浸
させながら、余分な樹脂をしごき取る方法等が知られて
いる。
The apparatus shown in FIG. 1 is an apparatus in which the reinforcing sheet 2 is integrated with the fiber reinforced resin sheet. In FIG. 1, the prepreg manufacturing apparatus 1 has several pairs of pairs as described above. In addition to the method of impregnating in a pair of upper and lower continuous belts passed through between the heat rolls, the thermoplastic resin in a molten state between the pair of heated upper and lower heat rolls is unidirectional on one plane. A method of squeezing off excess resin while impregnating the aligned and aligned continuous fibers is known.

【0045】この装置は、プリプレグの連続繊維の材料
が、例えばガラスである場合はそのガラスを太さ13μ
のモノフィラメントの表面をγ−メタクリロキシ−プロ
ピルトリメトキシシランで表面処理し、それを1600
本集束してヤーンにし、プリプレグ幅2mm当り1本の
ヤーンを均一な張力で引っ張りながら一方向に引き揃え
て熱溶融した熱可塑性樹脂に接触させて樹脂をヤーンに
絡ませ、その樹脂を対になった熱ロールでしごきながら
ヤーンに含侵させて繊維強化樹脂シートを製造し、その
繊維強化樹脂シートに、その樹脂が溶融している間にガ
イドロール3を介して補強シート2をその両面に張りつ
け得るよう供給し、補強シート2を繊維強化樹脂シート
に圧着ロール4で圧着して冷却し、プリプレグを製造す
る。
In this apparatus, when the material of the continuous fiber of the prepreg is glass, for example, the thickness of the glass is 13 μm.
The surface of the monofilament of 1600 was surface-treated with γ-methacryloxy-propyltrimethoxysilane,
This bundle is bundled into a yarn, and one yarn per 2 mm width of prepreg is pulled in a uniform tension and aligned in one direction to contact the thermoplastic resin melted by heat to entangle the resin with the yarn and form a pair of the resin. A fiber reinforced resin sheet is produced by impregnating the yarn while squeezing it with a hot roll, and the reinforcing sheet 2 is attached to both sides of the fiber reinforced resin sheet via the guide rolls 3 while the resin is molten. The prepreg is manufactured by supplying the reinforcing sheet 2 to the fiber-reinforced resin sheet and pressing the reinforcing sheet 2 onto the fiber-reinforced resin sheet by pressing.

【0046】なお、図1では、補強シートは一方向に整
列された連続繊維の両面に圧着させるようになっている
が、必要に応じて片側だけに圧着させるようにしてもよ
い。また、単繊維が炭素繊維である場合は、太さ7μm
の炭素繊維単繊維が12000本集束されたものを使用
して製造したプリプレグに、上述した方法で補強シート
2を一体化させて製造した。
In FIG. 1, the reinforcing sheet is pressure-bonded to both sides of the continuous fibers arranged in one direction, but it may be pressure-bonded to only one side if necessary. If the single fiber is carbon fiber, the thickness is 7 μm.
The reinforcing sheet 2 was integrated with the prepreg manufactured by using the bundled 12,000 single carbon fibers of the above-mentioned method by the method described above.

【0047】以下、先ず、本発明に係るプリプレグ及び
該プリプレグを用いて成形された積層成形品の性能につ
いて実施例及び比較例に基づいて具体的に説明する。な
お、以下の比較例で使用される一方向に引き揃えられた
連続繊維に熱可塑性樹脂を含浸した繊維強化樹脂シート
は、補強シート2の有無を除けば、実施例のものと同様
のものである。
First, the performance of the prepreg according to the present invention and the laminated molded article molded using the prepreg will be specifically described based on Examples and Comparative Examples. The fiber-reinforced resin sheet used in the following comparative examples, in which continuous fibers aligned in one direction are impregnated with a thermoplastic resin, is the same as that of the example except for the presence or absence of the reinforcing sheet 2. is there.

【0048】〔実施例1〕太さ13μのガラス単繊維の
表面をγ−メタクリロキシ−プロピルトリメトキシシラ
ンで表面処理し、該単繊維が1600本集束されたヤー
ンを所定本数、均一な張力で引っ張りながら、隣同志の
ヤーンが重なり合わずに、互いに接する様に一方向に引
き揃えて240℃で溶融したポリプロピレン樹脂(P
P)を含浸し、プリプレグとし、該プリプレグが溶融状
態にある内に重さ10g/m2のポリエチレンテレフタレ
ート(PET)の不織布を補強シートとして、該プリプ
レグの片側表面に図1に示した装置で密着させ容積繊維
含有率50%で重さ350g/m2のプリプレグAを製造
した。
Example 1 The surface of a glass single fiber having a thickness of 13 μm was surface-treated with γ-methacryloxy-propyltrimethoxysilane, and a predetermined number of yarns having 1600 single fiber bundles were pulled with a uniform tension. However, the polypropylene resins (P) that were melted at 240 ° C were aligned in one direction so that the yarns of adjacent comrades did not overlap and were in contact with each other.
P) is impregnated into a prepreg, and a non-woven fabric of polyethylene terephthalate (PET) having a weight of 10 g / m 2 is used as a reinforcing sheet while the prepreg is in a molten state. A prepreg A having a volume fiber content of 50% and a weight of 350 g / m 2 was produced.

【0049】このプリプレグAを長さ10mに切出し、
繊維に沿った縦割れの有無を検査した。プリプレグAの
構成及び上記検査結果を表1に示したが、このプリプレ
グAには縦割れは認められなかった。
This prepreg A was cut into a length of 10 m,
The fibers were inspected for longitudinal cracks. The structure of prepreg A and the above inspection results are shown in Table 1. No vertical cracks were observed in prepreg A.

【0050】〔実施例2〕実施例1と同じ処理をした、
ガラスヤーンを使用して実施例1と同様な方法で容積繊
維含有率50%の重さ250g/m2のプリプレグBを製
造した。このプリプレグBを、実施例1と同様に繊維に
沿った縦割れの有無を検査した。プリプレグBの構成及
び上記検査結果を表1に示したが、このプリプレグBに
は縦割れは認められなかった。
[Embodiment 2] The same processing as in Embodiment 1 was performed.
A prepreg B having a volume fiber content of 50% and a weight of 250 g / m 2 was produced in the same manner as in Example 1 using a glass yarn. This prepreg B was inspected for vertical cracks along the fiber in the same manner as in Example 1. Table 1 shows the structure of the prepreg B and the above inspection results, but no vertical cracks were observed in this prepreg B.

【0051】〔実施例3〕実施例1と同じ処理をした、
ガラスヤーンを使用して実施例1と同様な方法で容積繊
維含有率50%の重さ200g/m2のプリプレグCを製
造した。このプリプレグCを、実施例1と同様に繊維に
沿った縦割れの有無を検査した。プリプレグCの構成及
び上記検査結果を表1に示したが、このプリプレグCに
は縦割れは認められなかった。
[Third Embodiment] The same processing as in the first embodiment is performed.
Using a glass yarn, a prepreg C having a volume fiber content of 50% and a weight of 200 g / m 2 was produced in the same manner as in Example 1. This prepreg C was inspected for vertical cracks along the fiber in the same manner as in Example 1. Table 1 shows the structure of the prepreg C and the above inspection results, but no vertical cracks were observed in the prepreg C.

【0052】〔実施例4〕実施例1と同じ処理をした、
ガラスヤーンを使用して実施例1と同様な方法で容積繊
維含有率50%の重さ200g/m2のプリプレグDを製
造した。このプリプレグDを、実施例1と同様に繊維に
沿った縦割れの有無を検査した。プリプレグDの構成及
び上記検査結果を表1に示したが、このプリプレグDに
は縦割れは認められなかった。
[Fourth Embodiment] The same processing as in the first embodiment is performed.
Using a glass yarn, a prepreg D having a volume fiber content of 50% and a weight of 200 g / m 2 was produced in the same manner as in Example 1. This prepreg D was inspected for vertical cracks along the fibers as in Example 1. Table 1 shows the structure of the prepreg D and the above inspection results, but no vertical cracks were observed in this prepreg D.

【0053】〔実施例5〕隣合うヤーンを5mmの間隔
を空けて引き揃えて整列させた以外は実施例1と同様に
して、重さ10g/m2のポリエチレンテレフタレート
(PET)の不織布を補強シートとして、該プリプレグ
の片側表面に図1に示した装置で密着させ容積繊維含有
率50%で重さ50g/m2のプリプレグEを製造し、そ
れを長さ10mに切出し、繊維に沿った縦割れの有無を
検査した。プリプレグEの構成及び上記検査結果を表1
に示したが、このプリプレグEには縦割れは認められな
かった。
Example 5 A non-woven fabric of polyethylene terephthalate (PET) having a weight of 10 g / m 2 was reinforced in the same manner as in Example 1 except that adjacent yarns were aligned by aligning them with a space of 5 mm. As a sheet, a prepreg E having a volume fiber content of 50% and a weight of 50 g / m 2 was produced by closely contacting one surface of the prepreg with the apparatus shown in FIG. 1, and the prepreg E was cut into a length of 10 m and cut along the fibers. The presence or absence of vertical cracks was inspected. Table 1 shows the structure of the prepreg E and the above inspection results.
However, no vertical crack was observed in this prepreg E.

【0054】〔実施例6〕補強シートを有しない以外
は、実施例1と同様にして容積繊維含有率80%、重さ
250g/m2のプリプレグFを製造し、それを長さ10
mに切出し、繊維に沿った縦割れの有無を検査した。こ
の検査に用いられたプリプレグFの構成及び上記検査結
果を表1に示したが、これによると、このプリプレグF
には縦割れは認められなかった。
[Example 6] A prepreg F having a volume fiber content of 80% and a weight of 250 g / m 2 was produced in the same manner as in Example 1 except that the reinforcing sheet was not provided.
It was cut out to m and inspected for vertical cracks along the fiber. The structure of the prepreg F used for this inspection and the above inspection results are shown in Table 1. According to this, this prepreg F
No vertical cracks were observed in.

【0055】〔実施例7〕補強シートを有しない以外
は、実施例1のプリプレグと同じ要領で容積繊維含有率
40%、重さ250g/m2のプリプレグGを製造し、そ
れを長さ10mに切出し、繊維に沿った縦割れの有無を
検査した。この検査に用いられたプリプレグGの構成及
び上記検査結果を表1に示したが、これによると、この
プリプレグGには縦割れは認められなかった。
Example 7 A prepreg G having a volume fiber content of 40% and a weight of 250 g / m 2 was produced in the same manner as the prepreg of Example 1 except that the prepreg G was manufactured, and the length was 10 m. It was cut out and inspected for vertical cracks along the fiber. The structure of the prepreg G used in this inspection and the above inspection results are shown in Table 1. According to this, no vertical cracks were observed in this prepreg G.

【0056】〔実施例8〕PPの代わりに、熱可塑性樹
脂に6−ナイロン(PA6)を使用する以外は、実施例
3と同じ要領で、プリプレグHを製造し、それを長さ1
0mに切出し、繊維に沿った縦割れの有無を検査した。
この検査に用いられたプリプレグHの構成及び上記検査
結果を表1に示したが、これによると、このプリプレグ
Hには縦割れは認められなかった。
[Example 8] A prepreg H was produced in the same manner as in Example 3 except that 6-nylon (PA6) was used as the thermoplastic resin instead of PP, and the length of the prepreg H was adjusted to 1
It was cut out to 0 m and inspected for vertical cracks along the fiber.
The structure of the prepreg H used in this inspection and the above inspection results are shown in Table 1. According to this, no vertical cracks were observed in this prepreg H.

【0057】〔実施例9〕PETの不織布の代わりに補
強シートとしてPA6のネットを使用する以外は、実施
例3と同様にしてプリプレグIを製造し、それを長さ1
0mに切出し、繊維に沿った縦割れの有無を検査した。
この検査に用いられたプリプレグIの構成及び上記検査
結果を表1に示したが、これによると、このプリプレグ
Iには縦割れは認められなかった。
Example 9 A prepreg I was produced in the same manner as in Example 3 except that a PA6 net was used as a reinforcing sheet instead of the PET non-woven fabric, and the prepreg I had a length of 1 mm.
It was cut out to 0 m and inspected for vertical cracks along the fiber.
The structure of the prepreg I used for this inspection and the above inspection results are shown in Table 1. According to this, no vertical cracks were observed in this prepreg I.

【0058】〔実施例10〕PETの不織布の代わりに
補強シートとして20g/m2 パルプ紙を使用する以外
は、実施例3と同様にしてプリプレグJを製造し、それ
を長さ10mに切出し、繊維に沿った縦割れの有無を検
査した。この検査に用いられたプリプレグJの構成及び
上記検査結果を表1に示したが、これによると、このプ
リプレグJには縦割れは認められなかった
Example 10 A prepreg J was produced in the same manner as in Example 3 except that 20 g / m 2 pulp paper was used as a reinforcing sheet instead of the PET non-woven fabric, and it was cut into a length of 10 m, The fibers were inspected for longitudinal cracks. The structure of the prepreg J used for this inspection and the above inspection results are shown in Table 1. According to this, no vertical crack was observed in this prepreg J.

【0059】〔実施例11〕PETの不織布の代わりに
補強シートとして360g/m2 のステンレス製金網を
使用する以外は、実施例3と同様にしてプリプレグKを
製造し、それを長さ10mに切出し、繊維に沿った縦割
れの有無を検査した。この検査に用いられたプリプレグ
Kの構成及び上記検査結果を表1に示したが、これによ
ると、このプリプレグKには縦割れは認められなかっ
た。
[Example 11] A prepreg K was produced in the same manner as in Example 3 except that a 360 g / m 2 stainless steel wire mesh was used as a reinforcing sheet instead of the PET nonwoven fabric, and the prepreg K was made to have a length of 10 m. It was cut out and inspected for vertical cracks along the fiber. The structure of the prepreg K used in this inspection and the above inspection results are shown in Table 1. According to this, no vertical cracks were observed in this prepreg K.

【0060】〔実施例12〕樹脂溶融温度を400℃、
単繊維に炭素繊維、樹脂にポリエーテルエーテルケトン
(PEEK)、補強シートに重さ30g/m2の炭素繊維
マットを使用する以外は、実施例3と同様にしてプリプ
レグLを製造し、それを長さ10mに切出し、繊維に沿
った縦割れの有無を検査した。この検査に用いられたプ
リプレグLの構成及び上記検査結果を表1に示したが、
これによると、このプリプレグLには縦割れは認められ
なかった。
[Embodiment 12] The resin melting temperature is 400 ° C.
A prepreg L was produced in the same manner as in Example 3 except that carbon fiber was used as the single fiber, polyether ether ketone (PEEK) was used as the resin, and a carbon fiber mat having a weight of 30 g / m 2 was used as the reinforcing sheet. It was cut out to a length of 10 m and inspected for vertical cracks along the fiber. The structure of the prepreg L used for this inspection and the above inspection results are shown in Table 1.
According to this, no vertical crack was observed in this prepreg L.

【0061】〔実施例13〕実施例1のプリプレグAの
一方の面に発泡ポリウレタンシートの片面に表面加飾材
が張り合わされた表面材を、さらに密着させたプリプレ
グMを製造し、それを長さ10mに切出し、繊維に沿っ
た縦割れの有無を検査した。この検査に用いられたプリ
プレグMの構成及び上記検査結果を表1に示したが、こ
れによると、このプリプレグMには縦割れは認められな
かった。
[Example 13] A prepreg M was produced by further adhering a surface material having one surface of a foamed polyurethane sheet and a surface decorating material adhered to one surface of the prepreg A of Example 1 to a long length. It was cut to a length of 10 m and inspected for vertical cracks along the fiber. The structure of the prepreg M used for this inspection and the above inspection results are shown in Table 1. According to this, no vertical cracks were observed in this prepreg M.

【0062】〔実施例14〕同一の補強シートをプリプ
レグの両面に密着させること以外は実施例1と同じ要領
でプリプレグNを製造した。プリプレグNはその一方の
面に重さ10g/m2のPETの、他方の面に20g/m2
のPA6の不織布の補強シートを密着させた。このプリ
プレグを長さ10mに切出し、繊維に沿った縦割れの有
無を検査した。この検査に用いられたプリプレグNの構
成及び上記検査結果を表1に示したが、これによると、
このプリプレグNには縦割れは認められなかった。
Example 14 A prepreg N was produced in the same manner as in Example 1 except that the same reinforcing sheet was adhered to both surfaces of the prepreg. The prepreg N is made of PET having a weight of 10 g / m 2 on one side and 20 g / m 2 on the other side.
The non-woven fabric reinforcing sheet of PA6 was adhered. This prepreg was cut into a length of 10 m and inspected for vertical cracks along the fiber. The structure of the prepreg N used in this inspection and the above inspection results are shown in Table 1. According to this,
No vertical cracks were observed in this prepreg N.

【0063】〔比較例1〕補強シートを有しない以外は
実施例1と同じ要領で重さ350g/m2のプリプレグO
を製造し、それを長さ10mに切出し、その表面に発生
する縦割れの有無を検査した。この検査に用いられたプ
リプレグOの構成及び検査結果を表1に示したが、これ
によると、このプリプレグOには縦割れは認められなか
った。
[Comparative Example 1] A prepreg O having a weight of 350 g / m 2 was prepared in the same manner as in Example 1 except that the reinforcing sheet was not provided.
Was produced, cut into a length of 10 m, and inspected for vertical cracks generated on its surface. The structure of the prepreg O used in this inspection and the inspection results are shown in Table 1. According to this, no vertical cracks were observed in this prepreg O.

【0064】〔比較例2〕補強シートを有しない以外
は、実施例3と同じ要領で重さ200g/m2のプリプレ
グPを製造し、それを長さ10mに切出し、その表面に
発生する縦割れの有無を検査した。この検査に用いられ
たプリプレグPの構成及び検査結果を表1に示したが、
これによると、このプリプレグPには縦割れは認められ
なかった。
[Comparative Example 2] A prepreg P having a weight of 200 g / m 2 was produced in the same manner as in Example 3 except that the reinforcing sheet was not provided. Inspected for cracks. The structure of the prepreg P used for this inspection and the inspection results are shown in Table 1.
According to this, no vertical crack was observed in this prepreg P.

【0065】〔比較例3〕補強シートを有しない以外
は、実施例5と同じ要領で重さ50g/m2のプリプレグ
Qを製造し、それを長さ10mに切出し、その表面に発
生する縦割れの有無を検査した。この検査に用いられた
プリプレグQの構成及び検査結果を表1に示したが、こ
れによると、このプリプレグQには多数の縦割れが発生
した。
[Comparative Example 3] A prepreg Q having a weight of 50 g / m 2 was produced in the same manner as in Example 5 except that the reinforcing sheet was not provided. Inspected for cracks. The structure of the prepreg Q used in this inspection and the inspection results are shown in Table 1. According to this, a large number of vertical cracks were generated in this prepreg Q.

【0066】〔比較例4〕補強シートを有しない以外、
実施例12と同じ要領で容積繊維含有率50%、重さ1
50g/m2のプリプレグQを製造し、それを長さ10m
に切出し、その表面に発生する縦割れの有無を検査し
た。この検査に用いられたプリプレグQの構成及び検査
結果を表1に示したが、これによると、このプリプレグ
Qには縦割れは認められなかった。
[Comparative Example 4] Except that no reinforcing sheet is provided,
In the same manner as in Example 12, 50% by volume fiber content, 1 weight
We manufacture prepreg Q of 50g / m2 and make it 10m long.
It was cut out and inspected for vertical cracks generated on the surface. The structure of the prepreg Q used in this inspection and the inspection results are shown in Table 1. According to this, no vertical cracks were observed in this prepreg Q.

【0067】[0067]

【表1】 [Table 1]

【0068】而して、プリプレグは、隣接する連続繊維
の間隔が粗くなると縦割れが発生するが、本発明に係る
プリプレグは、隣接する連続繊維の間隔が粗くても縦割
れが生じることはないため、プリプレグとしての特性を
損なうことなく、単位面積当たりの重量の軽いプリプレ
グを製造することができる。
Thus, in the prepreg, vertical cracking occurs when the distance between the adjacent continuous fibers becomes coarse, but in the prepreg according to the present invention, the vertical crack does not occur even if the distance between the adjacent continuous fibers becomes rough. Therefore, a prepreg having a light weight per unit area can be manufactured without impairing the characteristics of the prepreg.

【0069】次に、本発明に係るプリプレグを用いた積
層構造体の強度について実施例及び比較例に基づいて具
体的に説明する。
Next, the strength of the laminated structure using the prepreg according to the present invention will be specifically described based on Examples and Comparative Examples.

【0070】〔実施例15〕実施例1で製造したプリプ
レグAを長さ200mmに切断したものを16枚用意
し、それらを上下に隣接するプリプレグA同士の繊維方
向が直交するよう積層し、これを二枚のポリイミドフィ
ルムで挟み、240℃に加熱された二枚の熱板の間に投
入し、 0.5kg/cm2 の圧力で5分間予熱した後、圧力を
開放し、これを60℃に加熱された二枚の熱板の間に投
入し、5kg/cm2 の圧力で5分間加圧冷却して積層構造
体を製造し、その周囲をトリミングして180mm角の
正方形に切出した後、25mmの巾で切断し、巾25m
m、長さ180mmの短冊状の試験片を作成し、それら
に端から1から6までの番号を付け、これらについてJ
IS K−7203に準じて曲げ試験を行った。なお、
試験片板厚みと支持間隔の比は1:32とした。
Example 15 16 pieces of the prepreg A produced in Example 1 were cut into a length of 200 mm, 16 sheets were prepared, and these were laminated so that the fiber directions of vertically adjacent prepregs A were orthogonal to each other. Sandwiched between two polyimide films and put between two hot plates heated to 240 ° C, preheated at a pressure of 0.5 kg / cm 2 for 5 minutes, then released the pressure and heated to 60 ° C. It is put between two hot plates and cooled at a pressure of 5 kg / cm 2 for 5 minutes to produce a laminated structure, the periphery of which is trimmed and cut into a square of 180 mm square, and then with a width of 25 mm. 25m width after cutting
m, 180 mm long strip-shaped test pieces were prepared, numbered 1 to 6 from the end, and J
A bending test was performed according to IS K-7203. In addition,
The ratio between the thickness of the test piece plate and the supporting interval was 1:32.

【0071】この試験結果を表2に示したが、これによ
ると、標準偏差が小さく、どの試験片も略等しい強度を
有しており、この積層構造体には強度むらがないことが
分かった。
The test results are shown in Table 2, which shows that the standard deviation is small and all the test pieces have substantially the same strength, and that this laminated structure has no strength unevenness. .

【0072】〔実施例16〕実施例1で製造した16枚
のプリプレグAを8枚ずつ2組に分け、上下に隣接する
層の繊維方向が直交し、かつ、表面材が接しないよう積
層し加熱溶着させたものを2組作り、それらの表面に露
出している表面材を有するガラス繊維の方向が一致し、
かつ、それらのうち、一方の補強シートが露出している
面が他方の露出していない面と接するよう積層し、それ
らを実施例15と同様に溶着させ、短冊を作成して、こ
れらについて実施例15と同様の曲げ試験を行った。
[Example 16] The 16 prepregs A produced in Example 1 were divided into two groups of 8 sheets each, and laminated so that the fiber directions of vertically adjacent layers were orthogonal to each other and the surface materials were not in contact with each other. Make two sets that are heated and welded, and the direction of the glass fiber having the surface material exposed on their surface is the same,
Further, among them, one of the reinforcing sheets was laminated so that the exposed surface was in contact with the other unexposed surface, and they were welded in the same manner as in Example 15 to prepare strips, and The same bending test as in Example 15 was performed.

【0073】この試験結果を表2に示したが、これによ
ると、標準偏差が小さく、どの試験片も略等しい強度を
有しており、この積層構造体には強度むらがないことが
分かった。
The results of this test are shown in Table 2, which shows that the standard deviation is small and all the test pieces have substantially the same strength, and this laminated structure has no strength unevenness. .

【0074】〔実施例17〕プリプレグCを使用して、
実施例16と同様に積層構造体を製造し、短冊状の試験
片を作成し、実施例15と同様の曲げ試験を行った。こ
の試験結果を表2に示したが、これによると、標準偏差
が小さく、どの試験片も略等しい強度を有しており、こ
の積層構造体には強度むらがないことが分かった。
Example 17 Using prepreg C,
A laminated structure was manufactured in the same manner as in Example 16, a strip-shaped test piece was prepared, and the same bending test as in Example 15 was performed. The test results are shown in Table 2, which shows that the standard deviation is small, all the test pieces have substantially equal strength, and this laminated structure has no strength unevenness.

【0075】〔実施例18〕プリプレグHを使用して、
実施例16と同様に積層構造体を製造し、短冊状の試験
片を作成し、実施例15と同様の曲げ試験を行った。こ
の試験結果を表2に示したが、これによると、標準偏差
が小さく、どの試験片も略等しい強度を有しており、こ
の積層構造体には強度むらがないことが分かった。
Example 18 Using prepreg H,
A laminated structure was manufactured in the same manner as in Example 16, a strip-shaped test piece was prepared, and the same bending test as in Example 15 was performed. The test results are shown in Table 2, which shows that the standard deviation is small, all the test pieces have substantially equal strength, and this laminated structure has no strength unevenness.

【0076】〔実施例19〕プリプレグIを使用して、
実施例16と同様に積層構造体を製造し、短冊状の試験
片を作成し、実施例15と同様の曲げ試験を行った。こ
の試験結果を表2に示したが、これによると、標準偏差
が小さく、どの試験片も略等しい強度を有しており、こ
の積層構造体には強度むらがないことが分かった。
Example 19 Using prepreg I,
A laminated structure was manufactured in the same manner as in Example 16, a strip-shaped test piece was prepared, and the same bending test as in Example 15 was performed. The test results are shown in Table 2, which shows that the standard deviation is small, all the test pieces have substantially equal strength, and this laminated structure has no strength unevenness.

【0077】〔実施例20〕プリプレグLを使用して、
実施例16と同様に積層構造体を製造し、短冊状の試験
片を作成し、実施例15と同様の曲げ試験を行った。こ
の試験結果を表2に示したが、これによると、標準偏差
が小さく、どの試験片も略等しい強度を有しており、こ
の積層構造体には強度むらがないことが分かった。
[Embodiment 20] Using prepreg L,
A laminated structure was manufactured in the same manner as in Example 16, a strip-shaped test piece was prepared, and the same bending test as in Example 15 was performed. The test results are shown in Table 2, which shows that the standard deviation is small, all the test pieces have substantially equal strength, and this laminated structure has no strength unevenness.

【0078】〔比較例5〕プリプレグOを使用して、実
施例15と同様に積層構造体を製造し、短冊状の試験片
を作成し、実施例15と同様の曲げ試験を行った。この
試験結果を表2に示したが、これによると、試験片ごと
に測定値がばらついているため標準偏差が大きく、強度
むらがあることが分かった。
[Comparative Example 5] Using prepreg O, a laminated structure was manufactured in the same manner as in Example 15, strip-shaped test pieces were prepared, and the same bending test as in Example 15 was performed. The test results are shown in Table 2. According to this, it was found that the standard deviation was large and the strength was uneven because the measured values varied from test piece to test piece.

【0079】〔比較例6〕プリプレグPを使用して、実
施例15と同様に積層構造体を製造し、短冊状の試験片
を作成し、実施例15と同様の曲げ試験を行った。この
試験結果を表2に示したが、これによると、試験片ごと
に測定値がばらついているため標準偏差が大きく、強度
むらがあることが分かった。
[Comparative Example 6] Using prepreg P, a laminated structure was manufactured in the same manner as in Example 15, strip-shaped test pieces were prepared, and a bending test similar to that in Example 15 was performed. The test results are shown in Table 2. According to this, it was found that the standard deviation was large and the strength was uneven because the measured values varied from test piece to test piece.

【0080】〔比較例7〕プリプレグRを使用して、実
施例15と同様に積層構造体を製造し、短冊状の試験片
を作成し、実施例15と同様の曲げ試験を行った。この
試験結果を表2に示したが、これによると、試験片ごと
に測定値がばらついているため標準偏差が大きく、強度
むらがあることが分かった。
[Comparative Example 7] Using prepreg R, a laminated structure was manufactured in the same manner as in Example 15, strip-shaped test pieces were prepared, and a bending test similar to that in Example 15 was performed. The test results are shown in Table 2. According to this, it was found that the standard deviation was large and the strength was uneven because the measured values varied from test piece to test piece.

【0081】[0081]

【表2】 [Table 2]

【0082】而して、従来のプリプレグを積層して加熱
圧着した積層構造体においては、その製造過程で連続繊
維が乱れるため、積層構造体の強度にむらが生じるが、
本発明に係る積層構造体においては、補強シートが連続
繊維を挟むようにして保持しているため、繊維が乱れ
ず、強度にむらが生じることがない。
In a conventional laminated structure in which prepregs are laminated and heat-pressed, the continuous fibers are disturbed during the manufacturing process, which causes unevenness in the strength of the laminated structure.
In the laminated structure according to the present invention, since the reinforcing sheet holds the continuous fibers so as to sandwich them, the fibers are not disturbed and the strength is not uneven.

【0083】次に、立体的に成形された本発明に係る積
層構造体の成形品の強度について説明する。
Next, the strength of a three-dimensionally molded laminated structure according to the present invention will be described.

【0084】〔実施例21〕実施例2で製造したプリプ
レグBを長さ200mmに切断したものを16枚用意
し、それらを隣接するプリプレグB同士の繊維方向が直
交するよう積層し、これを二枚のポリイミドフィルムで
挟み、240℃に加熱された二枚の熱板の間に投入し、
0.5kg/cm2 の圧力で5分間予熱した後、圧力を開放
し、これを60℃に加熱され、図2に示されるような断
面コの字型に成形し得る金型中に投入し、5kg/cm2
圧力で5分間加圧した後冷却して図2に示されるような
積層構造体の成形品6を得た。
Example 21 16 pieces of the prepreg B produced in Example 2 were cut to a length of 200 mm, 16 sheets were prepared, and these were laminated so that the fiber directions of adjacent prepregs B were orthogonal to each other. It is sandwiched by a sheet of polyimide film and placed between two hot plates heated to 240 ° C.
After preheating at a pressure of 0.5 kg / cm 2 for 5 minutes, the pressure is released, and this is heated to 60 ° C. and charged into a mold capable of forming a U-shaped cross section as shown in FIG. After pressurizing at a pressure of 5 kg / cm 2 for 5 minutes and then cooling, a molded product 6 having a laminated structure as shown in FIG. 2 was obtained.

【0085】この成形品6を切断線62で切断し、連絡
部60と側壁部61とから巾15mm長さ100mmの
試験片を、それぞれ6本ずつ切出し、実施例15と同様
の曲げ試験を行い、部位別にその平均と標準偏差を求め
た。この試験に用いられた成形品6の上記試験結果を表
3に示したが、これによると、標準偏差が小さく、この
成形品6には、連絡部60と側壁部61の強度差が測定
誤差と認められる程度しかなく、この成形品6には強度
むらがないことが分かった。
This molded product 6 was cut along a cutting line 62, and six test pieces each having a width of 15 mm and a length of 100 mm were cut out from the connecting portion 60 and the side wall portion 61, and the same bending test as in Example 15 was performed. The average and standard deviation of each part were calculated. The above-mentioned test results of the molded product 6 used in this test are shown in Table 3. According to this, the standard deviation is small, and in this molded product 6, the strength difference between the connecting portion 60 and the side wall portion 61 is a measurement error. It was found that this molded product 6 had no strength unevenness.

【0086】〔実施例22〕実施例2で製造した16枚
のプリプレグBを8枚ずつ2組に分け、隣接する層の繊
維方向が直交し、かつ、補強シートが接しないよう積層
し加熱溶着させたものを2組作り、それらの表面に露出
している補強シートを有するガラス繊維の方向が一致
し、かつ、それらのうち、一方の補強シートが露出して
いる面が他方の露出していない面と接するよう積層し、
それを実施例21の成形品と同様に成形し、これについ
て実施例21と同様の曲げ試験を行った。
[Example 22] The 16 prepregs B manufactured in Example 2 were divided into 2 groups of 8 sheets each, and the layers were laminated such that the fiber directions of the adjacent layers were orthogonal to each other and the reinforcing sheets were not in contact with each other, and heat-welded. 2 sets of the above-mentioned ones are made, and the directions of the glass fibers having the reinforcing sheet exposed on the surfaces thereof are aligned with each other, and the surface where one of the reinforcing sheets is exposed is exposed on the other side. Laminate so that it contacts the non-exposed surface
It was molded in the same manner as the molded product of Example 21, and the same bending test as in Example 21 was performed on this.

【0087】この試験に用いられた成形品の上記試験結
果を表3に示したが、これによると、標準偏差が小さ
く、この成形品には、連絡部と側壁部の強度差が測定誤
差と認められる程度しかなく、この成形品には強度むら
がないことが分かった。
The test results of the molded product used in this test are shown in Table 3. According to this, the standard deviation is small, and the molded product has a difference in strength between the connecting portion and the side wall portion as a measurement error. It was found that there was no unevenness in the strength of this molded product.

【0088】〔実施例23〕実施例6で製造したプリプ
レグFを実施例22の成形品と同様に積層成形し、これ
について実施例21と同様の曲げ試験を行った。この試
験に用いられた成形品の上記試験結果を表3に示した
が、これによると、標準偏差が小さく、この成形品に
は、連絡部と側壁部の強度差が測定誤差と認められる程
度しかなく、この成形品には強度むらがないことが分か
った。
[Example 23] The prepreg F produced in Example 6 was laminated and molded in the same manner as the molded product of Example 22, and the same bending test as in Example 21 was performed. The test results of the molded product used in this test are shown in Table 3. According to this, the standard deviation is small, and the strength difference between the connecting portion and the side wall of this molded product is recognized as a measurement error. It was found that this molded product had no strength unevenness.

【0089】〔実施例24〕実施例7で製造したプリプ
レグGを実施例22の成形品と同様に積層成形し、これ
について実施例21と同様の曲げ試験を行った。この試
験に用いられた成形品の上記試験結果を表3に示した
が、これによると、標準偏差が小さく、この成形品に
は、連絡部と側壁部の強度差が測定誤差と認められる程
度しかなく、この成形品には強度むらがないことが分か
った。
Example 24 The prepreg G produced in Example 7 was laminated and molded in the same manner as the molded product of Example 22, and the same bending test as in Example 21 was conducted. The test results of the molded product used in this test are shown in Table 3. According to this, the standard deviation is small, and the strength difference between the connecting portion and the side wall of this molded product is recognized as a measurement error. It was found that this molded product had no strength unevenness.

【0090】〔実施例25〕実施例8で製造したプリプ
レグHを実施例22の成形品と同様に積層成形し、これ
について実施例21と同様の曲げ試験を行った。この試
験に用いられた成形品の上記試験結果を表3に示した
が、これによると、標準偏差が小さく、この成形品に
は、連絡部と側壁部の強度差が測定誤差と認められる程
度しかなく、この成形品には強度むらがないことが分か
った。
Example 25 The prepreg H produced in Example 8 was laminated and molded in the same manner as the molded product of Example 22, and the same bending test as in Example 21 was conducted. The above-mentioned test results of the molded product used in this test are shown in Table 3. According to this, the standard deviation is small, and the strength difference between the connecting portion and the side wall of this molded product is recognized as a measurement error. It was found that this molded product had no strength unevenness.

【0091】〔実施例26〕実施例9で製造したプリプ
レグIを実施例22の成形品造体と同様に積層成形し、
これについて実施例21と同様の曲げ試験を行った。こ
の試験に用いられた成形品の上記試験結果を表3に示し
たが、これによると、標準偏差が小さく、この成形品に
は、連絡部と側壁部の強度差が測定誤差と認められる程
度しかなく、この成形品には強度むらがないことが分か
った。
Example 26 The prepreg I produced in Example 9 was laminated and molded in the same manner as the molded article structure of Example 22,
The same bending test as in Example 21 was performed on this. The test results of the molded product used in this test are shown in Table 3. According to this, the standard deviation is small, and the strength difference between the connecting portion and the side wall of this molded product is recognized as a measurement error. It was found that this molded product had no strength unevenness.

【0092】〔実施例27〕実施例12で製造したプリ
プレグLを実施例22の成形品と同様に積層成形し、こ
れについて実施例21と同様の曲げ試験を行った。この
試験に用いられた成形品の上記試験結果を表3に示した
が、これによると、標準偏差が小さく、この成形品に
は、連絡部と側壁部の強度差が測定誤差と認められる程
度しかなく、この成形品には強度むらがないことが分か
った。
Example 27 The prepreg L produced in Example 12 was laminated and molded in the same manner as the molded product of Example 22, and the same bending test as in Example 21 was conducted. The test results of the molded product used in this test are shown in Table 3. According to this, the standard deviation is small, and the strength difference between the connecting portion and the side wall of this molded product is recognized as a measurement error. It was found that this molded product had no strength unevenness.

【0093】〔実施例28〕単繊維にガラス繊維、熱可
塑性樹脂にPPを使用して、巾200mm、容積繊維含
有率50%、重さ240g/m2の従来型のプリプレグで
ある、プリプレグXを製造し、それを長さ200mmに
切断したものを17枚と、200mm角の正方形の10
g/m2のPET製の不織布の補強シートを16枚用意
し、プリプレグXと不織布とを交互に、不織布を挟んで
隣接するプリプレグXの繊維方向が互いに直交するよう
に積層して配置し、これを実施例22の成形品と同じ要
領で積層成形し、これについて実施例21と同様の曲げ
試験を行った。
[Example 28] Prepreg X, which is a conventional prepreg having a width of 200 mm, a volume fiber content of 50%, and a weight of 240 g / m 2 , using glass fiber as a single fiber and PP as a thermoplastic resin, Was manufactured and cut into a length of 200 mm, 17 pieces, and a square of 200 mm square 10
Sixteen reinforcing sheets of PET non-woven fabric made of PET of g / m 2 were prepared, and the prepreg X and the non-woven fabric were alternately laminated and arranged so that the fiber directions of the prepregs X adjacent to each other with the non-woven fabric interposed therebetween were orthogonal to each other, This was laminated and molded in the same manner as the molded product of Example 22, and the same bending test as in Example 21 was performed on this.

【0094】この試験に用いられたプリプレグXの構成
を表4に、また、成形品の上記試験結果を表3に示した
が、これによると、標準偏差が小さく、この成形品に
は、連絡部と側壁部の強度差が測定誤差と認められる程
度しかなく、この成形品には強度むらがないことが分か
った。
The composition of the prepreg X used in this test is shown in Table 4 and the test results of the molded product are shown in Table 3. According to this, the standard deviation is small, and this molded product is informed. It was found that there was no unevenness in strength in this molded product because the difference in strength between the side wall and the side wall was only recognized as a measurement error.

【0095】〔実施例29〕実施例28と同じ要領で重
さ250g/m2の従来型のプリプレグであるプリプレグ
Yを製造し、そのプリプレグYと、実施例2で製造され
たプリプレグBとを長さ200mmで8枚ずつ切り出
し、プリプレグBとプリプレグYとを交互に、隣接する
プリプレグ同士の繊維方向が互いに直交し、かつ、補強
シートが露出しないよう積層し、これを実施例22の成
形品と同じ要領で積層成形し、これについて実施例1と
同様の曲げ試験を行った。
Example 29 In the same manner as in Example 28, a conventional prepreg Y having a weight of 250 g / m 2 was produced, and the prepreg Y and the prepreg B produced in Example 2 were produced. Eight pieces each having a length of 200 mm were cut out, and prepregs B and prepregs Y were alternately laminated so that the fiber directions of the adjacent prepregs were orthogonal to each other and the reinforcing sheet was not exposed. Laminated molding was performed in the same manner as described above, and the same bending test as in Example 1 was performed on this.

【0096】この試験に用いられたプリプレグYの構成
を表4に、また、成形品の上記試験結果を表3に示した
が、これによると、標準偏差が小さく、この成形品に
は、連絡部と側壁部の強度差が測定誤差と認められる程
度しかなく、この成形品には強度むらがないことが分か
った。
The constitution of the prepreg Y used in this test is shown in Table 4, and the test results of the molded product are shown in Table 3. According to this, the standard deviation is small, and this molded product is informed. It was found that there was no unevenness in strength in this molded product because the difference in strength between the side wall and the side wall was only recognized as a measurement error.

【0097】〔比較例8〕実施例29で製造したプリプ
レグYを、実施例22の成形品と同様に積層成形し、こ
れについて実施例1の成形品と同様の曲げ試験を行っ
た。この試験に用いられた成形品の試験結果を表3に示
したが、これによると、試験片ごとに測定値にばらつき
があるため標準偏差が大きく、この成形品には、連絡部
と側壁部との間で強度差が生じることが分かった。
Comparative Example 8 The prepreg Y produced in Example 29 was laminated and molded in the same manner as the molded product of Example 22, and the same bending test as that of the molded product of Example 1 was performed. The test results of the molded product used in this test are shown in Table 3. According to this, the standard deviation is large because the measured values vary from test piece to test piece. It was found that there was a difference in strength between

【0098】[0098]

【表3】 [Table 3]

【0099】而して、従来のプリプレグから成る成形品
においては、それを変形させると、連続繊維の配列が乱
れるため、強度が損なわれて強度にむらが生じるが、本
発明に係る成形品においては、連続繊維は補強シートに
挟まれて保持されているため、積層構造体自体を立体的
に変形させることにより、連続繊維が折り曲げられて
も、その配列が乱れることがないので、強度が損なわれ
ることがない。
Thus, in the case of a conventional molded article made of prepreg, when it is deformed, the arrangement of continuous fibers is disturbed, resulting in loss of strength and uneven strength. Since the continuous fibers are held by being sandwiched between the reinforcing sheets, even if the continuous fibers are bent by three-dimensionally deforming the laminated structure itself, the arrangement of the continuous fibers is not disturbed. Never be

【0100】次に、本発明に係る積層構造体に他の材料
を接着剤を用いて接着する場合の接着性について説明す
る。
Next, the adhesiveness when another material is adhered to the laminated structure according to the present invention by using an adhesive will be described.

【0101】〔実施例30〕実施例15のプリプレグB
を積層して成る積層構造体の補強シートが露出している
面に接着剤(ストラクトボンドXA−7175三井東圧
化学株式会社製)を塗布し、そこに発泡ポリウレタンシ
ートの片面に表面加飾材が張り合わされた発泡ウレタン
シートの、発泡ウレタンシート側を貼り付けた。
[Example 30] Prepreg B of Example 15
Adhesive (Structbond XA-7175, manufactured by Mitsui Toatsu Chemicals, Inc.) is applied to the exposed surface of the reinforcing sheet of the laminated structure formed by stacking, and the surface decoration material is applied to one side of the foamed polyurethane sheet. The urethane foam sheet side of the laminated urethane foam sheet was attached.

【0102】この積層構造体と化粧材との接着面を剥離
破壊させようと試みたが、発泡ポリウレタンシートと表
面加飾材とが界面剥離してしまい、積層構造体と発泡ウ
レタンシートとの間は剥離することはできず、その接着
力は強固であることが分かった。
An attempt was made to peel and destroy the adhesive surface between the laminated structure and the decorative material, but the polyurethane foam sheet and the surface decorating material were separated at the interface, so that the laminated structure and the urethane foam sheet were separated from each other. It could not be peeled off, and its adhesive strength was found to be strong.

【0103】〔比較例9〕比較例1のプリプレグYを使
用し、実施例30と同様に積層して成形して成る積層構
造体の表面に実施例30と同様に、接着剤を塗布し、そ
こに化粧板の発泡ウレタンシート側を貼り付けた。この
積層構造体と化粧材との接着面を剥離破壊させたとこ
ろ、その界面は容易に剥離してしまい、接着力が弱かっ
たことが分かった。
[Comparative Example 9] Using the prepreg Y of Comparative Example 1, the surface of the laminated structure formed by laminating and molding in the same manner as in Example 30 was coated with an adhesive as in Example 30. The urethane foam sheet side of the decorative plate was attached there. When the adhesive surface between the laminated structure and the decorative material was peeled and destroyed, it was found that the interface easily peeled and the adhesive strength was weak.

【0104】[0104]

【表4】 [Table 4]

【0105】而して、接着剤で他の材料を接着すると
き、従来の補強シートを有しない積層構造体において
は、積層構造体側の接着面が平滑な樹脂層であるため、
接着剤がその表面に馴染まず、強固に接着することはで
きなかったが、本発明に係る積層構造体においては、接
着面に設けられた補強シートの表面に細かい凹凸がある
ので、その積層構造体の接着面に接着剤を塗布すると、
その表面の凹凸に接着剤が入り込んで馴染み、密着性を
向上させるため、他の材料を強固に接着接合させること
ができる。
Thus, when another material is adhered with an adhesive, in a conventional laminated structure having no reinforcing sheet, the adhesive surface on the laminated structure side is a smooth resin layer.
The adhesive did not adapt to the surface and could not be firmly adhered, but in the laminated structure according to the present invention, since the surface of the reinforcing sheet provided on the adhesion surface has fine irregularities, the laminated structure If you apply adhesive to the adhesive surface of your body,
Since the adhesive enters into the unevenness of the surface and becomes familiar with it and improves the adhesiveness, it is possible to firmly adhere and bond other materials.

【0106】[0106]

【発明の効果】本発明に係るプレプリグ、それを用いて
成る積層構造体は叙上の如く構成されるので、本発明に
よるときは、プレプリグ中の連続繊維が乱れることがな
いため、部分的な強度のばらつき防止することができ、
強度を損なうことなく立体的に成形することができ、ま
た、必要に応じて性能を損なわずに単位当たりの重量を
軽くすることができ、さらに、何ら特別な表面処理を施
さずとも他材料と容易に接着接合できるものである。
Since the prepreg according to the present invention and the laminated structure using the prepreg are constructed as described above, the continuous fiber in the prepreg is not disturbed according to the present invention. It is possible to prevent variations in strength,
It can be molded three-dimensionally without sacrificing strength, and can reduce the weight per unit without sacrificing performance as needed.In addition, it can be molded with other materials without any special surface treatment. It can be easily adhesively bonded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る、プリプレグの製造方法の実施例
を示す説明図。
FIG. 1 is an explanatory view showing an embodiment of a method for manufacturing a prepreg according to the present invention.

【図2】本発明に係る積層構造体の成形品の実施例を示
す斜視図。
FIG. 2 is a perspective view showing an example of a molded product of a laminated structure according to the present invention.

【符号の説明】[Explanation of symbols]

1 プリプレグ製造装置 2 補強シート 3 ガイドロール 4 圧着ロール 5 プリプレグ 6 成形品 60 連絡部 61 側壁部 62 切断線 DESCRIPTION OF SYMBOLS 1 Prepreg manufacturing apparatus 2 Reinforcement sheet 3 Guide roll 4 Crimping roll 5 Prepreg 6 Molded product 60 Contact part 61 Side wall part 62 Cutting line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B32B 5/28 A 7421−4F 27/00 E 8413−4F // B29K 101:12 105:06 B29L 9:00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B32B 5/28 A 7421-4F 27/00 E 8413-4F // B29K 101: 12 105: 06 B29L 9:00

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】一平面上に一方向に引き揃えて配列した連
続繊維に熱可塑性樹脂を含浸して成る少なくとも一層の
繊維強化シートと、少なくとも一層の多孔性の柔軟な補
強シートとを積層して成るプリプレグ。
1. A laminate of at least one layer of a fiber reinforced sheet obtained by impregnating continuous fibers arranged in one direction in a plane with a thermoplastic resin, and at least one layer of a porous flexible reinforcing sheet. Prepreg consisting of.
【請求項2】繊維強化シート中の連続繊維の容積含有率
が40%以上80%以下である請求項1記載のプリプレ
グ。
2. The prepreg according to claim 1, wherein the volume content of continuous fibers in the fiber reinforced sheet is 40% or more and 80% or less.
【請求項3】連続繊維が、太さ3〜25μmの単繊維を
100〜20000本集束し、一方向に引き揃えてなる
請求項1または2記載のプリプレグ。
3. The prepreg according to claim 1 or 2, wherein the continuous fibers are formed by bundling 100 to 20,000 single fibers having a thickness of 3 to 25 μm and aligning them in one direction.
【請求項4】連続繊維の相互の間隔が0〜100mmに
なるよう整列配置された状態で、束相互の間隔が変動し
ないように、補強シートに拘束される請求項1ないし3
のいずれか一に記載のプリプレグ。
4. The reinforcing sheet is constrained so that the distance between the bundles does not fluctuate while the continuous fibers are aligned and arranged so that the distance between them is 0 to 100 mm.
Prepreg according to any one of.
【請求項5】溶融状態にある熱可塑性樹脂の溶融粘度
が、剪断速度が1/秒以上100/秒以下の範囲で10
00ポイズ以上5000ポイズ以下である請求項1ない
し4のいずれか一に記載のプリプレグ。
5. A thermoplastic resin in a molten state has a melt viscosity of 10 at a shear rate of 1 / sec or more and 100 / sec or less.
The prepreg according to any one of claims 1 to 4, which has a poise of at least 00 and no more than 5000 poise.
【請求項6】請求項1ないし5のいずれかに記載のプリ
プレグをその繊維配向方向を順次変えて適宜の枚数積層
し、加熱圧着して成る積層構造体。
6. A laminated structure comprising the prepreg according to any one of claims 1 to 5, which is laminated by laminating an appropriate number of sheets while sequentially changing the fiber orientation direction and thermocompression bonding.
【請求項7】少なくとも一方の面に補強シートを露出さ
せたことを特徴とする請求項6記載の積層構造体。
7. The laminated structure according to claim 6, wherein a reinforcing sheet is exposed on at least one surface.
【請求項8】一平面上に一方向に引き揃えられた連続繊
維に熱可塑性樹脂を含浸してなる繊維強化樹脂シートを
繊維配向方向を順次変えて多孔性の柔軟な補強シートと
交互に、適宜の数枚積層し、加熱圧着して成る積層構造
体。
8. A fiber-reinforced resin sheet obtained by impregnating continuous fibers aligned in one direction in a plane with a thermoplastic resin, and alternately changing the fiber orientation direction with a porous flexible reinforcing sheet, A laminated structure formed by laminating an appropriate number of sheets and thermocompression bonding.
【請求項9】少なくとも一方の面に補強シートが露出す
るよう積層し、加熱圧着して成る請求項8記載の積層構
造体。
9. The laminated structure according to claim 8, wherein the reinforcing sheet is laminated such that the reinforcing sheet is exposed on at least one surface, and is thermocompression bonded.
【請求項10】請求項1ないし5のいずれかに記載のプ
リプレグと、一平面上に一方向に引き揃えられた連続繊
維に熱可塑性樹脂を含浸して成る繊維強化樹脂シートと
を繊維配向方向を順次変えて適宜の枚数及び順序で積層
し、加熱圧着して成る積層構造体。
10. A fiber orientation direction comprising the prepreg according to any one of claims 1 to 5 and a fiber reinforced resin sheet obtained by impregnating continuous fibers aligned in one direction on one plane with a thermoplastic resin. A laminated structure formed by sequentially changing the number of layers and laminating the layers in an appropriate number and order, followed by thermocompression bonding.
【請求項11】少なくとも一方の面に補強シートが露出
するよう積層し、加熱圧着して成る請求項10記載の積
層構造体。
11. The laminated structure according to claim 10, wherein the reinforcing sheet is laminated such that the reinforcing sheet is exposed on at least one surface, and is thermocompression bonded.
【請求項12】請求項1ないし5のいずれかに記載のプ
リプレグ、一平面上に一方向に引き揃えられた連続繊維
に熱可塑性樹脂を含浸して成る繊維強化樹脂シート、及
び多孔性の柔軟な補強シートを繊維配向を順次変えて適
宜の枚数及び順序で積層し、加熱圧着して成る積層構造
体。
12. A prepreg according to any one of claims 1 to 5, a fiber reinforced resin sheet obtained by impregnating continuous fibers aligned in one direction on one plane with a thermoplastic resin, and a porous soft material. A laminated structure formed by stacking various reinforcing sheets in an appropriate number and order by sequentially changing the fiber orientation and thermocompression bonding.
【請求項13】少なくとも一方の面に補強シートが露出
するよう積層し、加熱圧着して成る請求項12記載の積
層構造体。
13. The laminated structure according to claim 12, wherein the reinforcing sheet is laminated so that the reinforcing sheet is exposed on at least one surface, and is thermocompression bonded.
【請求項14】少なくとも一方の面に表面加飾材を積層
して成る請求項1ないし13のいずれか一に記載のプリ
プレグまたは積層構造体。
14. The prepreg or laminated structure according to claim 1, wherein the surface decoration material is laminated on at least one surface.
【請求項15】補強シートが不織布、織布、もしくはネ
ットであり、その材質が合成樹脂繊維、天然繊維、無機
質繊維、金属繊維もしくはこれらの繊維の混合物である
請求項1ないし14のいずれか一に記載のプリプレグま
たは積層構造体。
15. The reinforcing sheet is a non-woven fabric, a woven fabric or a net, and the material thereof is synthetic resin fiber, natural fiber, inorganic fiber, metal fiber or a mixture of these fibers. The prepreg or laminated structure according to.
【請求項16】補強シートが合成樹脂シート又は金属箔
であり、パンチング加工されている請求項1ないし15
のいずれか一に記載のプリプレグまたは積層構造体。
16. The reinforcing sheet is a synthetic resin sheet or a metal foil, which is punched.
The prepreg or the laminated structure according to any one of 1.
【請求項17】熱可塑性樹脂の流動可能温度以上に加熱
された請求項7から16いずれか一に記載の積層構造体
をプレス金型によりスタンピング成形してなる積層構造
体成形品。
17. A laminated structure molded article obtained by stamping molding the laminated structure according to any one of claims 7 to 16 heated to a temperature at which the thermoplastic resin can flow or higher.
【請求項18】請求項7から16いずれか一に記載の積
層構造体を熱可塑性樹脂の流動可能温度以上に加熱し、
プレス金型によりスタンピング成形することを特徴とす
る積層構造体の成形方法。
18. The laminated structure according to any one of claims 7 to 16 is heated to a temperature at which the thermoplastic resin can flow or higher,
A method for forming a laminated structure, comprising performing stamping forming with a press die.
JP6165613A 1993-08-05 1994-07-18 Prepreg and laminated structure Pending JPH0797465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6165613A JPH0797465A (en) 1993-08-05 1994-07-18 Prepreg and laminated structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-194734 1993-08-05
JP19473493 1993-08-05
JP6165613A JPH0797465A (en) 1993-08-05 1994-07-18 Prepreg and laminated structure

Publications (1)

Publication Number Publication Date
JPH0797465A true JPH0797465A (en) 1995-04-11

Family

ID=26490281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6165613A Pending JPH0797465A (en) 1993-08-05 1994-07-18 Prepreg and laminated structure

Country Status (1)

Country Link
JP (1) JPH0797465A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020910A1 (en) * 2005-08-18 2007-02-22 Teijin Techno Products Limited Isotopic fiber-reinforced thermoplastic resin sheet, and process for production and molded plate thereof
KR100814861B1 (en) * 2004-04-30 2008-03-20 (주)삼박 Articles manufactured using thermoplastic compound plate-shaped material
JP2008529849A (en) * 2005-02-21 2008-08-07 エアバス・ドイチュラント・ゲーエムベーハー Fiber composite structural element and method for manufacturing fiber composite structural element
JP2014004797A (en) * 2012-06-27 2014-01-16 Fukui Prefecture Composite material for molding and method for producing the same
JP2014529536A (en) * 2011-08-29 2014-11-13 サイテク・テクノロジー・コーポレーシヨン Interlaminar reinforcement of thermoplastic resin
WO2015083820A1 (en) * 2013-12-06 2015-06-11 三菱レイヨン株式会社 Laminated substrate using fiber-reinforced thermoplastic plastic, and molded product manufacturing method using same
JP2015217626A (en) * 2014-05-19 2015-12-07 王子ホールディングス株式会社 Multilayer molded article
CN105415436A (en) * 2015-12-11 2016-03-23 苏州米达思精密电子有限公司 Production process of glue retraction reinforced sheet
JP2017500501A (en) * 2013-12-16 2017-01-05 ボーグワーナー インコーポレーテッド Composite tensioner arm or guide for timing drive
WO2017122797A1 (en) * 2016-01-14 2017-07-20 日東電工株式会社 Method for manufacturing surface-modified thermoplastic resin, method for manufacturing bonded structure, bonded structure, thermal transfer surface-modified sheet, thermoplastic resin with thermal transfer surface-modified sheet, and surface-modified thermoplastic resin
WO2017209300A1 (en) * 2016-06-03 2017-12-07 積水化学工業株式会社 Sheet and rod-shaped member
KR20180044258A (en) * 2015-06-16 2018-05-02 레오나르트 쿠르츠 스티프퉁 운트 코. 카게 METHOD FOR MANUFACTURING PLASTIC PRODUCTS, PLASTIC MOLDINGS AND MOLDINGS
JP2020090103A (en) * 2014-10-24 2020-06-11 ポルシェ アンデュストリ Strands driven by electrostatic methods
JP2020175511A (en) * 2019-04-15 2020-10-29 フクビ化学工業株式会社 Metal foil-cfrp laminated sheet

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814861B1 (en) * 2004-04-30 2008-03-20 (주)삼박 Articles manufactured using thermoplastic compound plate-shaped material
KR100814860B1 (en) * 2004-04-30 2008-03-20 (주)삼박 Thermoplastic compound plate-shaped material, method for manufacturing the same
JP2008529849A (en) * 2005-02-21 2008-08-07 エアバス・ドイチュラント・ゲーエムベーハー Fiber composite structural element and method for manufacturing fiber composite structural element
US8551381B2 (en) 2005-02-21 2013-10-08 Airbus Deutschland Gmbh Fiber composite component and method for the production of a fiber composite component
WO2007020910A1 (en) * 2005-08-18 2007-02-22 Teijin Techno Products Limited Isotopic fiber-reinforced thermoplastic resin sheet, and process for production and molded plate thereof
US9545760B2 (en) 2005-08-18 2017-01-17 Teijin Limited Isotropic fiber-reinforced thermoplastic resin sheet, and process for production and molded plate thereof
JP2014529536A (en) * 2011-08-29 2014-11-13 サイテク・テクノロジー・コーポレーシヨン Interlaminar reinforcement of thermoplastic resin
JP2014004797A (en) * 2012-06-27 2014-01-16 Fukui Prefecture Composite material for molding and method for producing the same
WO2015083820A1 (en) * 2013-12-06 2015-06-11 三菱レイヨン株式会社 Laminated substrate using fiber-reinforced thermoplastic plastic, and molded product manufacturing method using same
US11752728B2 (en) 2013-12-06 2023-09-12 Mitsubishi Chemical Corporation Laminated substrate using fiber-reinforced thermoplastic plastic, and molded product manufacturing method using same
US10919259B2 (en) 2013-12-06 2021-02-16 Mitsubishi Chemical Corporation Laminated substrate using fiber-reinforced thermoplastic plastic, and molded product manufacturing method using same
JP5915780B2 (en) * 2013-12-06 2016-05-11 三菱レイヨン株式会社 Laminated substrate using fiber reinforced thermoplastics
EP3078485A4 (en) * 2013-12-06 2016-11-02 Mitsubishi Rayon Co Laminated substrate using fiber-reinforced thermoplastic plastic, and molded product manufacturing method using same
JPWO2015083820A1 (en) * 2013-12-06 2017-03-16 三菱レイヨン株式会社 Laminated substrate using fiber reinforced thermoplastics
JP2017500501A (en) * 2013-12-16 2017-01-05 ボーグワーナー インコーポレーテッド Composite tensioner arm or guide for timing drive
JP2015217626A (en) * 2014-05-19 2015-12-07 王子ホールディングス株式会社 Multilayer molded article
JP2020090103A (en) * 2014-10-24 2020-06-11 ポルシェ アンデュストリ Strands driven by electrostatic methods
KR20180044258A (en) * 2015-06-16 2018-05-02 레오나르트 쿠르츠 스티프퉁 운트 코. 카게 METHOD FOR MANUFACTURING PLASTIC PRODUCTS, PLASTIC MOLDINGS AND MOLDINGS
JP2018518403A (en) * 2015-06-16 2018-07-12 レオンハード クルツ シュティフトゥング ウント コー. カーゲー Manufacturing method of plastic molded product, plastic molded product, and mold
US11260567B2 (en) 2015-06-16 2022-03-01 Leonhard Kurz Stiftung & Co. Kg Method for producing a plastic molded article, plastic molded article and mold
CN105415436A (en) * 2015-12-11 2016-03-23 苏州米达思精密电子有限公司 Production process of glue retraction reinforced sheet
WO2017122797A1 (en) * 2016-01-14 2017-07-20 日東電工株式会社 Method for manufacturing surface-modified thermoplastic resin, method for manufacturing bonded structure, bonded structure, thermal transfer surface-modified sheet, thermoplastic resin with thermal transfer surface-modified sheet, and surface-modified thermoplastic resin
JP2017128722A (en) * 2016-01-14 2017-07-27 日東電工株式会社 Manufacturing method of surface modified thermoplastic resin, manufacturing method of conjugate structure, conjugate structure, thermal transfer surface modified sheet, thermoplastic resin with thermal transfer surface modified sheet and surface modified thermoplastic resin
WO2017209300A1 (en) * 2016-06-03 2017-12-07 積水化学工業株式会社 Sheet and rod-shaped member
JPWO2017209300A1 (en) * 2016-06-03 2019-05-09 積水化学工業株式会社 Sheet and rod member
JP2020175511A (en) * 2019-04-15 2020-10-29 フクビ化学工業株式会社 Metal foil-cfrp laminated sheet

Similar Documents

Publication Publication Date Title
EP0595607B1 (en) Composite molded article and method for making same
EP0266224B1 (en) Process for the manufacture of laminated elements
JP3821467B2 (en) Reinforcing fiber base material for composite materials
US8101106B2 (en) Moulding material
JPH0797465A (en) Prepreg and laminated structure
WO2003046057A1 (en) Fiber-reinforced thermoplastic resin sheet, structural material comprising the same, and process for producing fiber-reinforced thermoplastic resin sheet
CZ285662B6 (en) Composite board of cellular core and at least one cover layer and process for producing thereof
JP2543743B2 (en) Method of making a molded article using a sandwich structure
JP3631994B2 (en) Long fiber reinforced thermoplastic resin sheet and composite molded body reinforced by the sheet
EP0637510A1 (en) Prepreg and laminate structure
JP3272519B2 (en) Laminated body and method for producing the same
JP2002105223A (en) Paperless prepreg and manufacturing method
CN113382848A (en) Composite laminated resin and fiberglass structure
CN109715371B (en) Fiber-reinforced foam material
JPH04339635A (en) Fiber-reinforced synthetic resin complex and its molding method
JP3972874B2 (en) FRP concrete anticorrosion panel and manufacturing method thereof
JPH05269909A (en) Fiber reinforced resin molded product
US5585455A (en) Reinforcement composites for thermosetting polymer systems
EP3587477B1 (en) Ultra-thin pre-preg sheets and composite materials thereof
JP3363599B2 (en) High strength composite paper
JP3368999B2 (en) Laminated molded product and method for producing the same
JP2005307564A (en) Frp sheet for repairing/reinforcement and manufacturing method thereof
JPH03222734A (en) Unidirectionally arranged reinforcing fiber sheet and manufacture thereof
JPH05147169A (en) Laminate and manufacture thereof
JPH09314713A (en) Composite molding