JP2000314563A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2000314563A
JP2000314563A JP11125557A JP12555799A JP2000314563A JP 2000314563 A JP2000314563 A JP 2000314563A JP 11125557 A JP11125557 A JP 11125557A JP 12555799 A JP12555799 A JP 12555799A JP 2000314563 A JP2000314563 A JP 2000314563A
Authority
JP
Japan
Prior art keywords
pressure
heat exchanger
air conditioner
indoor
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11125557A
Other languages
Japanese (ja)
Inventor
Yoshinori Iizuka
義典 飯塚
Shoji Katagiri
庄司 片桐
Ichiro Fujibayashi
一朗 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11125557A priority Critical patent/JP2000314563A/en
Publication of JP2000314563A publication Critical patent/JP2000314563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow existing connecting piping to be used as is by providing a pressure-sensing means and a pressure-limiting means when switching a refrigerant from R22 to R410A in an air conditioner of a domestic split heat pump type air conditioner, and operating refrigerating cycle at a set pressure or below the piping thus far. SOLUTION: A compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4 and an outdoor fan 7 are contained in one case to constitute an outdoor unit, and an indoor heat exchanger 6 and an indoor fan 8 are housed in a single case to constitute an indoor unit. The indoor unit is connected to the outdoor unit through connecting piping 5, a refrigerant is replaced from R22 to R410A and filled to constitute a refrigerating cycle. A pressure switch 9 is provided at a discharged pipe of the compressor in association with the replacement of the refrigerant. When a discharging pressure arrives, for example, at 3.16 MPa and the switch 9 is turned off by a main controller, the valve 4 is opened through an expansion valve controller 13. Thus, the discharge pressure is lowered, and conventional connecting piping for the R22 can be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、家庭用セパレート
形ヒートポンプ式の空気調和機に係り、さらに詳細に
は、冷媒をR22からR410Aに切り替える場合に適
用する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a home heat pump type air conditioner, and more particularly, to a technique applied when a refrigerant is switched from R22 to R410A.

【0002】[0002]

【従来の技術】家庭用のセパレート形ヒートポンプ式空
気調和機で使用されている冷媒R22は、オゾン層破壊
物質であるため、代替冷媒であるR410Aに切り替え
なければならない。
2. Description of the Related Art Refrigerant R22 used in a home-use separate heat pump air conditioner is an ozone depleting substance, and must be switched to R410A as an alternative refrigerant.

【0003】一般的に、セパレート形ヒートポンプ式空
気調和機は、図1に示すように、圧縮機1,四方弁2,
室外熱交換器3,膨張弁4,室外熱交換用のファン(以
下、室内ファン)7を一つの箱体にまとめたものを室外
機とし、室内熱交換器6と室内熱交換用のファン(以
下、室外ファン)8を一つの箱体にまとめたものを室内
機とし、室内機と室外機を接続配管5にて接続して冷凍
サイクルを構成している。
Generally, as shown in FIG. 1, a separate type heat pump air conditioner has a compressor 1, a four-way valve 2,
The outdoor heat exchanger 3, the expansion valve 4, and the outdoor heat exchange fan (hereinafter, indoor fan) 7 are combined into a single box as an outdoor unit, and the indoor heat exchanger 6 and the indoor heat exchange fan ( Hereinafter, a unit in which the outdoor fan (8) is integrated into one box is defined as an indoor unit, and the indoor unit and the outdoor unit are connected by the connection pipe 5 to form a refrigeration cycle.

【0004】この冷凍サイクルの能力および使用冷媒に
基づき、安全上(冷凍保安規則関係基準やJIS B8
620「小形冷凍装置の安全基準」など)から設計圧力
値(高圧側定格圧力)が選定され、家庭用ルームエアコ
ンにおいては、65℃の凝縮圧力を基準として、R22
を使用する場合2.75MPa ,R410Aの場合4.
15MPaとなる。
[0004] Based on the capacity of the refrigeration cycle and the refrigerant used, safety (refrigeration security regulation-related standards and JIS B8
620 “safety standards for small refrigeration equipment”), the design pressure value (high-pressure side rated pressure) is selected.
2.75MPa in case of using, 4.10 in case of R410A
15 MPa.

【0005】ここで、従来のR22を使用する空気調和
機で使用されている接続配管は、通常銅パイプの径がφ
6.35,φ9.52,φ12.7などで、肉厚が0.7mm
となっているものが多い。この径と肉厚から、JIS
H3300「銅及び銅合金継目無管」の水圧試験の計算
式に配管の腐れ代を考慮し、配管の設計圧力を算出する
と、φ12.7の配管では3.16MPaとなり、先に述
べたR410Aの設計圧力を満足できない。
Here, the connection pipe used in the conventional air conditioner using R22 usually has a copper pipe having a diameter of φ.
6.35, φ9.52, φ12.7 etc., 0.7mm thick
There are many things. From this diameter and thickness, JIS
When the design pressure of the pipe was calculated in consideration of the decay allowance of the pipe in the calculation formula of the water pressure test of the H3300 “copper and copper alloy seamless pipe”, the pipe pressure of φ12.7 was 3.16 MPa, and the R410A described above The design pressure cannot be satisfied.

【0006】また、配管のフレア継ぎ手部分のJIS
B8607にて3.43Mpaとなっており、同じくR
410Aでは使用不可である。
In addition, JIS for flare joints of piping
It becomes 3.43 Mpa in B8607, and R
It cannot be used in 410A.

【0007】従って、R410Aを使用する場合、設計
圧力の違いからサイクル部品の耐圧向上のため配管の肉
厚を上げなくてはならず、既に設置されている埋め込み
式の配管や、長尺の配管を使用する場合も、新たに配管
を設置し直す必要が生じていた。特に、ハウジングエア
コンの場合は、埋め込み配管や長尺の配管を使用してい
ることが多く、作業性や費用の面から問題となってい
た。
Therefore, when using R410A, the thickness of the piping must be increased in order to improve the pressure resistance of the cycle parts due to the difference in design pressure, and the already installed embedded piping or long piping is required. In the case of using a pipe, it is necessary to newly install a pipe. In particular, in the case of a housing air conditioner, embedded pipes or long pipes are often used, which has been a problem in terms of workability and cost.

【0008】[0008]

【発明が解決しようとする課題】上記の問題から、R4
10A機種にてR22の配管を使用できるような空気調
和機を提供することを課題とする。
From the above problems, R4
An object of the present invention is to provide an air conditioner that can use a pipe of R22 in a 10A model.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明では圧力感知手段と圧力制限手段を設けるこ
とにより、従来の接続配管の設計圧力以下で冷凍サイク
ルを運転させる空気調和機を構築し、従来の接続配管を
使用することを可能にする。
In order to solve the above-mentioned problems, the present invention provides an air conditioner which operates a refrigeration cycle at a pressure lower than the design pressure of a conventional connecting pipe by providing a pressure sensing means and a pressure limiting means. Build and allow to use conventional connecting piping.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施例について説
明する。
Embodiments of the present invention will be described below.

【0011】(1)実施例1の空気調和機を図2に示
す。図2に示すように、圧縮機1,四方弁2,室外熱交
換器3,膨張弁4,室外ファン7を一つの箱体にまとめ
たものを室外機とし、室内熱交換器6と室内ファン8を
一つの箱体にまとめたものを室内機とし、室内機と室外
機をR22用の接続配管5にて接続して冷凍サイクルを
構成し、冷媒R410Aを使用している。
(1) FIG. 2 shows the air conditioner of the first embodiment. As shown in FIG. 2, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, and the outdoor fan 7 are combined into a single box as an outdoor unit, and the indoor heat exchanger 6 and the indoor fan 8 are combined into a single box as an indoor unit, and the indoor unit and the outdoor unit are connected by a connection pipe 5 for R22 to form a refrigeration cycle, and a refrigerant R410A is used.

【0012】そして、圧縮機吐出パイプに圧力スイッチ
9を設けている。圧力スイッチ9は所定の圧力に達した
ところでスイッチがOFFになる装置である。
A pressure switch 9 is provided on the compressor discharge pipe. The pressure switch 9 is a device that is turned off when a predetermined pressure is reached.

【0013】実施例1では、圧力スイッチ9の作動値を
配管の設計圧力(3.16MPa)とした。
In the first embodiment, the operation value of the pressure switch 9 is set to the design pressure of the piping (3.16 MPa).

【0014】図3に実施例1の制御構成を示す。商用電
源10に電源スイッチ11を介して主制御部12を接続
する。この主制御部12にリモコン23,圧力スイッチ
9,膨張弁制御部13,圧縮機制御部14,室内ファン
制御部15,室外ファン制御部16を接続する。リモコ
ン23は各種運転条件を設定するものである。
FIG. 3 shows a control configuration of the first embodiment. A main controller 12 is connected to a commercial power supply 10 via a power switch 11. A remote controller 23, a pressure switch 9, an expansion valve controller 13, a compressor controller 14, an indoor fan controller 15, and an outdoor fan controller 16 are connected to the main controller 12. The remote controller 23 sets various operating conditions.

【0015】以下、実施例1の制御を説明する。Hereinafter, the control of the first embodiment will be described.

【0016】圧縮機1の吐出パイプの圧力が3.16
MPa になると、圧力スイッチ9がOFFになる。
The pressure of the discharge pipe of the compressor 1 is 3.16.
When the pressure reaches MPa, the pressure switch 9 is turned off.

【0017】主制御部12は吐出圧力が3.16MP
a に達したと判断し、膨張弁制御部13に、膨張弁4
を開くように指令を出す。
The main controller 12 has a discharge pressure of 3.16MP.
a has been reached, and the expansion valve controller 13
Command to open.

【0018】膨張弁制御部13は、膨張弁4の開度を
開く。
The expansion valve control unit 13 opens the opening of the expansion valve 4.

【0019】膨張弁4が開いたため、吐出圧力は低下
していく。
Since the expansion valve 4 is opened, the discharge pressure decreases.

【0020】吐出圧力が3.16MPa 以下になる
と、圧力スイッチ9は復帰しONとなる。
When the discharge pressure falls below 3.16 MPa, the pressure switch 9 returns and turns on.

【0021】主制御部12は、吐出圧力が3.16M
Pa 以下になったと判断し、膨張弁制御部13に対
し、通常の制御になるよう指令を出す。
The main control unit 12 has a discharge pressure of 3.16M.
It is determined that the pressure has become equal to or less than Pa, and a command is issued to the expansion valve control unit 13 to perform normal control.

【0022】再度圧力スイッチ9が作動したら〜
の制御を行う。
When the pressure switch 9 is actuated again
Control.

【0023】上記の〜の制御によって、吐出圧力は
3.16MPa 以下で制限されることが分かる。従っ
て、実施例1の冷凍サイクルは配管の設計圧力以下で運
転できるため、R22用の接続配管を使用することがで
きる。
It is understood from the above control that the discharge pressure is limited to 3.16 MPa or less. Therefore, since the refrigeration cycle of the first embodiment can be operated at a pressure equal to or lower than the design pressure of the pipe, the connection pipe for R22 can be used.

【0024】図は冷房時を示しているが、暖房時も有効
である。
Although the figure shows cooling, it is also effective for heating.

【0025】(2)次に実施例2について説明する。(2) Next, a second embodiment will be described.

【0026】実施例2では、冷凍サイクルおよび制御部
は実施例1と同じである。
In the second embodiment, the refrigeration cycle and the control unit are the same as those in the first embodiment.

【0027】圧力スイッチ9の作動値は、実施例1と同
様に配管の設計圧力(3.16MPa)とした。以下圧力ス
イッチ9が作動した時の制御を以下に説明する。
The operating value of the pressure switch 9 was set to the design pressure of the piping (3.16 MPa) as in the first embodiment. Hereinafter, control when the pressure switch 9 is operated will be described.

【0028】圧縮機1の吐出パイプの圧力が3.16
MPa になると、圧力スイッチ9がOFFになる。
The pressure of the discharge pipe of the compressor 1 is 3.16.
When the pressure reaches MPa, the pressure switch 9 is turned off.

【0029】主制御部12は吐出圧力が3.16MP
a に達したと判断し、圧縮機制御部14に、圧縮機回
転数を低下するように指令を出す。
The main controller 12 has a discharge pressure of 3.16MP.
a, and issues a command to the compressor control unit 14 to reduce the compressor speed.

【0030】圧縮機制御部14は、圧縮機回転数を低
下させる。
The compressor control section 14 reduces the number of rotations of the compressor.

【0031】圧縮機回転数が低下したため、吐出圧力
は低下していく。
Since the compressor rotation speed has decreased, the discharge pressure has decreased.

【0032】吐出圧力が3.16MPa 以下になる
と、圧力スイッチ9は復帰しONとなる。
When the discharge pressure falls below 3.16 MPa, the pressure switch 9 returns and turns on.

【0033】主制御部12は、吐出圧力が3.16M
Pa 以下になったと判断し、圧縮機制御部14に対
し、通常の制御になるよう指令を出す。
The main control unit 12 determines that the discharge pressure is 3.16M.
It is determined that the pressure has become Pa or less, and a command is issued to the compressor control unit 14 so as to perform normal control.

【0034】再度圧力スイッチ9が作動したら〜
の制御を行う。
When the pressure switch 9 is actuated again
Control.

【0035】上記の〜の制御によって、3.16M
Pa 以下に吐出圧力を制限することができ、R22用
の接続配管を使用できる。
By the above control, 3.16M
The discharge pressure can be limited to Pa or less, and a connection pipe for R22 can be used.

【0036】図は冷房時を示しているが、暖房時も有効
である。
Although the figure shows cooling, it is also effective during heating.

【0037】(3)次に実施例3について説明する。(3) Next, a third embodiment will be described.

【0038】実施例3の冷凍サイクルを図4に示す。実
施例3は圧縮機1,四方弁2,室外熱交換器3,膨張弁
4,接続配管5,室内熱交換器6を順次接続する。そし
て、圧縮機吐出パイプに圧力スイッチ9とバイパス管a
17を出し、圧縮機吸い込みパイプからバイパス管b1
8を出し、さらにバイパス管a17とb18を二方弁1
9で接続する冷凍サイクルとなっている。
FIG. 4 shows a refrigeration cycle of the third embodiment. In the third embodiment, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, the connection pipe 5, and the indoor heat exchanger 6 are sequentially connected. Then, a pressure switch 9 and a bypass pipe a are connected to the compressor discharge pipe.
17 from the compressor suction pipe to the bypass pipe b1
8 and further connect the bypass pipes a17 and b18 to the two-way valve 1.
9 is a refrigeration cycle connected.

【0039】次に実施例3の制御構成を図5に示す。商
用電源10に電源スイッチ11を介して主制御部12を
接続する。この主制御部12に運転設定用のリモコン2
3,圧力スイッチ9,膨張弁制御部13,圧縮機制御部
14,室内ファン制御部15,室外ファン制御部16、
そして二方弁制御部20を接続する。
FIG. 5 shows a control configuration according to the third embodiment. A main controller 12 is connected to a commercial power supply 10 via a power switch 11. The main control unit 12 has a remote control 2 for operation setting.
3, pressure switch 9, expansion valve control unit 13, compressor control unit 14, indoor fan control unit 15, outdoor fan control unit 16,
Then, the two-way valve control unit 20 is connected.

【0040】圧力スイッチ9の作動値は、実施例1と同
様に配管の設計圧力(3.16MPa)とした。以下、圧力
スイッチ9が作動したときの制御を示す。
The operating value of the pressure switch 9 was set to the design pressure of the piping (3.16 MPa) as in the first embodiment. Hereinafter, control when the pressure switch 9 operates will be described.

【0041】圧縮機1の吐出パイプの圧力が3.16
MPa になると、圧力スイッチ9がOFFになる。
The pressure of the discharge pipe of the compressor 1 is 3.16.
When the pressure reaches MPa, the pressure switch 9 is turned off.

【0042】主制御部12は吐出圧力が3.16MP
a に達したと判断し、二方弁制御部20に二方弁19
を開くように指令を出す。
The main controller 12 has a discharge pressure of 3.16MP.
a has been reached, and the two-way valve controller 20
Command to open.

【0043】二方弁制御部20は、二方弁19を開
く。
The two-way valve controller 20 opens the two-way valve 19.

【0044】二方弁19が開いたため、吐出側と吸い
込み側がバイパスされ、高圧な冷媒は吸い込み側の低圧
な方へと流れていく。従って、吐出圧力は低下してい
く。
Since the two-way valve 19 is opened, the discharge side and the suction side are bypassed, and the high-pressure refrigerant flows toward the low-pressure side of the suction side. Therefore, the discharge pressure decreases.

【0045】吐出圧力が3.16MPa 以下になる
と、圧力スイッチ9は復帰しONとなる。
When the discharge pressure falls below 3.16 MPa, the pressure switch 9 returns and turns on.

【0046】主制御部12は、吐出圧力が3.16M
Pa 以下になったと判断し、二方弁制御部20に対
し、二方弁19を閉じるように指令を出す。
The main control unit 12 determines that the discharge pressure is 3.16M.
It is determined that the pressure has become Pa or less, and a command is issued to the two-way valve control unit 20 to close the two-way valve 19.

【0047】再度圧力スイッチ9が作動したら〜
の制御を行う。
When the pressure switch 9 is operated again
Control.

【0048】上記の〜の制御によって、吐出圧力は
3.16MPa 以下で制限されることが分かる。従っ
て、実施例3の冷凍サイクルは配管の設計圧力以下で機
能するため、R22用の接続配管を使用することができ
る。
It is understood from the above control that the discharge pressure is limited to 3.16 MPa or less. Therefore, since the refrigeration cycle of the third embodiment functions at or below the design pressure of the pipe, the connection pipe for R22 can be used.

【0049】図は冷房時を示しているが、暖房時も有効
である。
Although the figure shows cooling, it is also effective during heating.

【0050】(4)次に実施例4について説明する。(4) Next, a fourth embodiment will be described.

【0051】実施例4では、冷凍サイクルおよび制御構
成は実施例1と同じである。
In the fourth embodiment, the refrigeration cycle and the control configuration are the same as those in the first embodiment.

【0052】圧力スイッチ9の作動値は、実施例1と同
様に配管の設計圧力(3.16MPa)とした。以下、圧力
スイッチ9が作動した時の制御を説明する。
The operating value of the pressure switch 9 was set to the design pressure of the piping (3.16 MPa) as in the first embodiment. Hereinafter, control when the pressure switch 9 operates will be described.

【0053】圧縮機1の吐出パイプの圧力が3.16
MPa になると、圧力スイッチ9がOFFになる。
The pressure of the discharge pipe of the compressor 1 is 3.16.
When the pressure reaches MPa, the pressure switch 9 is turned off.

【0054】主制御部12は吐出圧力が3.16MP
a に達したと判断する。冷房時は室外熱交換器3にて
冷媒の凝縮が行われるため、室外ファン制御部17に回
転数を上げるように指令を出す。
The main controller 12 has a discharge pressure of 3.16MP.
It is determined that a has been reached. At the time of cooling, the refrigerant is condensed in the outdoor heat exchanger 3, so that the outdoor fan control unit 17 is instructed to increase the rotation speed.

【0055】室外ファン制御部16は、室外ファン7
の回転数を上げる。
The outdoor fan controller 16 controls the outdoor fan 7
Increase the number of revolutions.

【0056】ファン回転数が上がったため、室外熱交
換器3を通過する風量が増え、熱交換量が増加する。従
って、凝縮熱交換器内の冷媒温度が低下し、冷媒は凝縮
圧力を低下させる。これによって、吐出圧力も低下して
いく。
Since the rotation speed of the fan has increased, the amount of air passing through the outdoor heat exchanger 3 increases, and the amount of heat exchange increases. Therefore, the temperature of the refrigerant in the condensing heat exchanger decreases, and the refrigerant lowers the condensing pressure. As a result, the discharge pressure also decreases.

【0057】吐出圧力が3.16MPa 以下になる
と、圧力スイッチ9は復帰しONとなる。
When the discharge pressure falls below 3.16 MPa, the pressure switch 9 returns and turns on.

【0058】主制御部12は、吐出圧力が3.16M
Pa 以下になったと判断し、室外ファン制御部16に
対し、通常の制御になるよう指令を出す。
The main control unit 12 determines that the discharge pressure is 3.16M.
It is determined that the pressure has become Pa or less, and a command is issued to the outdoor fan control unit 16 so that normal control is performed.

【0059】再度圧力スイッチ9が作動したら〜
の制御を行う。
When the pressure switch 9 is actuated again
Control.

【0060】上記、〜の制御によって、3.16M
Pa 以下に吐出圧力を制限することができ、R22用
の接続配管を使用できる。
By the above control, 3.16M
The discharge pressure can be limited to Pa or less, and a connection pipe for R22 can be used.

【0061】図は冷房時を示しているが、暖房時も有効
であり、暖房時は冷媒の凝縮は室内熱交換器6で行われ
るため、室内ファン8を調節する。
Although the figure shows the time of cooling, it is also effective at the time of heating. At the time of heating, the refrigerant is condensed in the indoor heat exchanger 6, so that the indoor fan 8 is adjusted.

【0062】(5)次に実施例5について説明する。(5) Next, a fifth embodiment will be described.

【0063】実施例5の冷凍サイクルを図6に示す。実
施例5は圧縮機1,四方弁2,室外熱交換器3,膨張弁
4,接続配管5,室内熱交換器6を順次接続する。そし
て、室外熱交換器3の出口にパイプ温度測定用の室外温
度センサ21,室内熱交換器6の出口に室内温度センサ
22を取り付ける。
FIG. 6 shows a refrigeration cycle of the fifth embodiment. In the fifth embodiment, a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, a connection pipe 5, and an indoor heat exchanger 6 are sequentially connected. Then, an outdoor temperature sensor 21 for measuring pipe temperature is attached to an outlet of the outdoor heat exchanger 3, and an indoor temperature sensor 22 is attached to an outlet of the indoor heat exchanger 6.

【0064】冷房時、冷媒は室外熱交換器3によって凝
縮し、熱交換器出口から出ていく。その時の熱交換器出
口温度は、凝縮圧力に応じた凝縮温度となっている。こ
こで、凝縮圧力は圧縮機吐出圧力とほぼ同じであるた
め、室外熱交換器出口温度から圧縮機吐出圧力を推定す
ることができる。
During cooling, the refrigerant is condensed by the outdoor heat exchanger 3 and exits from the heat exchanger outlet. The heat exchanger outlet temperature at that time is a condensing temperature corresponding to the condensing pressure. Here, since the condensing pressure is almost the same as the compressor discharge pressure, the compressor discharge pressure can be estimated from the outdoor heat exchanger outlet temperature.

【0065】また、暖房時は室内熱交換器6にて凝縮す
るため、室内熱交換器出口温度から圧縮機吐出圧力が推
定できる。
Further, during heating, since the refrigerant is condensed in the indoor heat exchanger 6, the compressor discharge pressure can be estimated from the indoor heat exchanger outlet temperature.

【0066】ここで、配管の設計圧力(3.16MPa)
から、R410Aの凝縮温度を求めると、51.5℃と
なる。
Here, the design pressure of the piping (3.16 MPa)
From this, the condensation temperature of R410A is determined to be 51.5 ° C.

【0067】次に実施例5の制御構成を図7に示す。商
用電源10に電源スイッチ11を介して主制御部12を
接続する。この主制御部12に運転設定用のリモコン2
3,膨張弁制御部13,圧縮機制御部14,室内ファン
制御部15,室外ファン制御部16、そして室外温度セ
ンサ21,室内温度センサ22を接続する。
Next, the control configuration of the fifth embodiment is shown in FIG. A main controller 12 is connected to a commercial power supply 10 via a power switch 11. The main control unit 12 has a remote control 2 for operation setting.
3, the expansion valve control unit 13, the compressor control unit 14, the indoor fan control unit 15, the outdoor fan control unit 16, the outdoor temperature sensor 21, and the indoor temperature sensor 22 are connected.

【0068】実施例5の冷房時の制御を以下に示す。The control during cooling in the fifth embodiment will be described below.

【0069】主制御部12は、常に室外温度センサ2
1の温度を検知している。
The main control unit 12 always controls the outdoor temperature sensor 2
1 is detected.

【0070】主制御部12は、室外温度センサ21の
温度が51.5℃ になると、吐出圧力が3.16MPa
に達したと判断し、膨張弁制御部13に、膨張弁4を開
くよう指令を出す。
When the temperature of the outdoor temperature sensor 21 reaches 51.5 ° C., the main controller 12 sets the discharge pressure to 3.16 MPa.
Is reached, and a command is issued to the expansion valve control unit 13 to open the expansion valve 4.

【0071】膨張弁制御部13は、膨張弁4の開度を
開く。
The expansion valve controller 13 opens the opening of the expansion valve 4.

【0072】絞りが開いたため、吐出圧力は低下し、
熱交換器出口温度も低下する。
Since the throttle was opened, the discharge pressure decreased,
The heat exchanger outlet temperature also decreases.

【0073】吐出圧力が3.16MPa 以下になる
と、熱交換器出口温度も51.5℃ 以下となる。
When the discharge pressure becomes 3.16 MPa or less, the heat exchanger outlet temperature also becomes 51.5 ° C. or less.

【0074】主制御部12は温度センサ21の値か
ら、吐出圧力が3.16MPa 以下になったと判断し、
膨張弁制御部13に対し、通常の制御になるよう指令を
出す。
The main controller 12 determines from the value of the temperature sensor 21 that the discharge pressure has become equal to or less than 3.16 MPa.
A command is issued to the expansion valve controller 13 so that normal control is performed.

【0075】再度温度センサが51.5℃を検知した
ら〜の制御を行う。
When the temperature sensor detects 51.5 ° C. again, the following control is performed.

【0076】上記の〜の制御によって、吐出圧力は
配管の設計圧力以下で制限されることが分かる。従っ
て、実施例5の冷凍サイクルは配管の設計圧力以下で機
能するため、R22用の接続配管を使用することができ
る。
It can be seen from the above control that the discharge pressure is limited below the design pressure of the piping. Therefore, since the refrigeration cycle of the fifth embodiment functions at or below the design pressure of the piping, the connection piping for R22 can be used.

【0077】暖房時は、〜において室内温度センサ
の値を検知すれば良い。
At the time of heating, the value of the indoor temperature sensor may be detected in.

【0078】また、図は冷房時を示しているが、暖房時
も有効である。
Although the figure shows cooling, heating is also effective.

【0079】[0079]

【発明の効果】本発明によって、R410Aを使用した
空気調和機において、圧縮機吐出圧力を配管の設計圧力
以下に制限することができたため、R410A対応の接
続配管を使用することなく、R22の接続配管を使用可
能な空気調和機を提供できる。
According to the present invention, in the air conditioner using R410A, the discharge pressure of the compressor can be limited to the design pressure of the pipe or less, so that the connection of R22 can be performed without using the connection pipe corresponding to R410A. An air conditioner that can use piping can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般的な空気調和機を示す図である。FIG. 1 is a diagram showing a general air conditioner.

【図2】実施例1の空気調和機を示す図である。FIG. 2 is a diagram illustrating an air conditioner according to a first embodiment.

【図3】実施例1の制御構成を示す図である。FIG. 3 is a diagram illustrating a control configuration according to the first embodiment.

【図4】実施例3の空気調和機を示す図である。FIG. 4 is a diagram illustrating an air conditioner according to a third embodiment.

【図5】実施例3の制御構成を示す図である。FIG. 5 is a diagram illustrating a control configuration according to a third embodiment.

【図6】実施例5の空気調和機を示す図である。FIG. 6 is a diagram illustrating an air conditioner according to a fifth embodiment.

【図7】実施例5の制御構成を示す図である。FIG. 7 is a diagram illustrating a control configuration according to a fifth embodiment.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四方弁、3…室外熱交換器、4…膨張
弁、5…接続配管、6…室内熱交換器、7…室外ファ
ン、8…室内ファン、9…圧力スイッチ、10…商用電
源、11…電源スイッチ、12…主制御部、13…膨張
弁制御部、14…圧縮機制御部、15…室内ファン制御
部、16…室外ファン制御部、17…バイパス管a、1
8…バイパス管b、19…二方弁、20…二方弁制御
部、21…室外温度センサ、22…室内温度センサ、2
3…リモコン。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... 4-way valve, 3 ... Outdoor heat exchanger, 4 ... Expansion valve, 5 ... Connection piping, 6 ... Indoor heat exchanger, 7 ... Outdoor fan, 8 ... Indoor fan, 9 ... Pressure switch, 10 ... Commercial power supply, 11 ... Power switch, 12 ... Main control unit, 13 ... Expansion valve control unit, 14 ... Compressor control unit, 15 ... Indoor fan control unit, 16 ... Outdoor fan control unit, 17 ... Bypass pipe a, 1
8: bypass pipe b, 19: two-way valve, 20: two-way valve control unit, 21: outdoor temperature sensor, 22: indoor temperature sensor, 2
3. Remote control.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】圧縮機,四方弁,室外熱交換器,絞り装
置,室外熱交換用のファンを一つの箱体にまとめたもの
を室外機とし、室内熱交換器と室内熱交換用のファンを
一つの箱体にまとめたものを室内機とし、室内機と室外
機を接続配管にて接続して冷凍サイクルを構成する空気
調和機において、冷媒R410Aを使用し、圧力感知装
置を取り付け、設定の圧力に達した所で、圧力制限手段
を使用し、吐出圧力を低下させ、任意の制限圧力以下で
運転が可能なことを特徴とする空気調和機。
An outdoor unit comprising a compressor, a four-way valve, an outdoor heat exchanger, an expansion device, and a fan for outdoor heat exchange in a single box, and an indoor heat exchanger and a fan for indoor heat exchange. In the air conditioner that constitutes a refrigeration cycle by connecting the indoor unit and the outdoor unit with a connection pipe, using a refrigerant R410A, installing a pressure sensing device, and setting An air conditioner characterized in that, when the pressure reaches a pressure, the discharge pressure is reduced by using pressure limiting means, and operation can be performed at an arbitrary pressure or lower.
【請求項2】上記請求項1において、圧力感知装置とし
て、圧力スイッチ,圧力センサ、またはそれらの組み合
わせを用い、所定の圧力に達した所で、圧力制限手段と
して、絞り装置開度制御,圧縮機回転数制御,室内外熱
交換器の風量増減、またはそれらの組み合わせを用い
て、吐出圧力を低下させ、任意の制限圧力以下で運転が
可能なことを特徴とする空気調和機。
2. The pressure sensing device according to claim 1, wherein a pressure switch, a pressure sensor, or a combination thereof is used as the pressure sensing device. An air conditioner characterized by being able to operate at an arbitrary pressure or lower by reducing the discharge pressure by using machine speed control, increasing / decreasing the air volume of an indoor / outdoor heat exchanger, or a combination thereof.
【請求項3】上記請求項1において、圧力感知装置とし
て、圧縮機吐出温度又は、冷媒の凝縮する熱交換器の出
口温度、またはそれらの組み合わせの温度を温度センサ
にて検知し、その温度から推定される所定の圧力に達し
た所で、圧力制限手段として、絞り装置開度制御,圧縮
機回転数制御,室内外熱交換器の風量増減,圧縮機吐出
パイプと吸い込みパイプのバイパス、またはそれらの組
み合わせを用いて、吐出圧力を低下させ、任意の制限圧
力以下で運転が可能なことを特徴とする空気調和機。
3. A pressure sensor according to claim 1, wherein the temperature sensor detects a compressor discharge temperature, an outlet temperature of a heat exchanger in which a refrigerant condenses, or a temperature of a combination thereof. When the estimated predetermined pressure is reached, the pressure limiting means may be a throttle device opening control, a compressor rotation speed control, an air flow increase / decrease of an indoor / outdoor heat exchanger, a bypass of a compressor discharge pipe and a suction pipe, or any of them. An air conditioner characterized in that the discharge pressure is reduced by using a combination of the above, and the operation can be performed at an arbitrary limited pressure or less.
【請求項4】上記請求項1において、絞り装置として、
膨張弁開度制御,圧縮機回転数制御,室内外熱交換器の
風量増減、またはそれらの組み合わせを用いて、吐出圧
力を低下させ、任意の制限圧力以下で運転が可能なこと
を特徴とする空気調和機。
4. The squeezing device according to claim 1, wherein
The discharge pressure is reduced by using expansion valve opening control, compressor rotation speed control, airflow increase / decrease of indoor / outdoor heat exchangers, or a combination of these, and operation can be performed at an arbitrary pressure or lower. Air conditioner.
【請求項5】上記請求項2において、任意の制限圧力と
して3.16MPa 以下としたことを特徴とする空気調
和機。
5. An air conditioner according to claim 2, wherein the arbitrary limiting pressure is 3.16 MPa or less.
【請求項6】上記請求項3において、冷房時室外熱交換
器の出口パイプの温度を検知、暖房時は室内熱交換器の
出口パイプ温度を検知し、検知温度を51.5℃ とした
ことを特徴とする空気調和機。
6. The method according to claim 3, wherein the temperature of the outlet pipe of the outdoor heat exchanger during cooling is detected, and the temperature of the outlet pipe of the indoor heat exchanger is detected during heating, and the detected temperature is 51.5 ° C. An air conditioner characterized by the following.
JP11125557A 1999-05-06 1999-05-06 Air conditioner Pending JP2000314563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11125557A JP2000314563A (en) 1999-05-06 1999-05-06 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11125557A JP2000314563A (en) 1999-05-06 1999-05-06 Air conditioner

Publications (1)

Publication Number Publication Date
JP2000314563A true JP2000314563A (en) 2000-11-14

Family

ID=14913155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11125557A Pending JP2000314563A (en) 1999-05-06 1999-05-06 Air conditioner

Country Status (1)

Country Link
JP (1) JP2000314563A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151386A (en) * 2006-12-15 2008-07-03 Toshiba Kyaria Kk Air conditioner
JP2008151454A (en) * 2006-12-19 2008-07-03 Toshiba Kyaria Kk Air conditioner
JP2010008041A (en) * 2009-10-09 2010-01-14 Mitsubishi Electric Corp Air conditioner
WO2010104709A3 (en) * 2009-03-13 2011-01-13 Carrier Corporation Heat pump and method of operation
JP2013117373A (en) * 2013-03-18 2013-06-13 Mitsubishi Electric Corp Refrigeration cycle device and refrigeration cycle control method
JP2016183855A (en) * 2016-06-30 2016-10-20 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device
CN111174336A (en) * 2020-01-09 2020-05-19 珠海格力电器股份有限公司 Air conditioner external unit, air conditioner and air conditioner control method
US10753661B2 (en) 2014-09-26 2020-08-25 Waterfurnace International, Inc. Air conditioning system with vapor injection compressor
US10866002B2 (en) 2016-11-09 2020-12-15 Climate Master, Inc. Hybrid heat pump with improved dehumidification
US10871314B2 (en) 2016-07-08 2020-12-22 Climate Master, Inc. Heat pump and water heater
US10935260B2 (en) 2017-12-12 2021-03-02 Climate Master, Inc. Heat pump with dehumidification
US11506430B2 (en) 2019-07-15 2022-11-22 Climate Master, Inc. Air conditioning system with capacity control and controlled hot water generation
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151386A (en) * 2006-12-15 2008-07-03 Toshiba Kyaria Kk Air conditioner
JP2008151454A (en) * 2006-12-19 2008-07-03 Toshiba Kyaria Kk Air conditioner
WO2010104709A3 (en) * 2009-03-13 2011-01-13 Carrier Corporation Heat pump and method of operation
US8578724B2 (en) 2009-03-13 2013-11-12 Carrier Corporation Heat pump and method of operation
JP2010008041A (en) * 2009-10-09 2010-01-14 Mitsubishi Electric Corp Air conditioner
JP2013117373A (en) * 2013-03-18 2013-06-13 Mitsubishi Electric Corp Refrigeration cycle device and refrigeration cycle control method
US11927377B2 (en) 2014-09-26 2024-03-12 Waterfurnace International, Inc. Air conditioning system with vapor injection compressor
US10753661B2 (en) 2014-09-26 2020-08-25 Waterfurnace International, Inc. Air conditioning system with vapor injection compressor
US11480372B2 (en) 2014-09-26 2022-10-25 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
JP2016183855A (en) * 2016-06-30 2016-10-20 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device
US10871314B2 (en) 2016-07-08 2020-12-22 Climate Master, Inc. Heat pump and water heater
US11448430B2 (en) 2016-07-08 2022-09-20 Climate Master, Inc. Heat pump and water heater
US11435095B2 (en) 2016-11-09 2022-09-06 Climate Master, Inc. Hybrid heat pump with improved dehumidification
US10866002B2 (en) 2016-11-09 2020-12-15 Climate Master, Inc. Hybrid heat pump with improved dehumidification
US10935260B2 (en) 2017-12-12 2021-03-02 Climate Master, Inc. Heat pump with dehumidification
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
US11953239B2 (en) 2018-08-29 2024-04-09 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
US11506430B2 (en) 2019-07-15 2022-11-22 Climate Master, Inc. Air conditioning system with capacity control and controlled hot water generation
CN111174336A (en) * 2020-01-09 2020-05-19 珠海格力电器股份有限公司 Air conditioner external unit, air conditioner and air conditioner control method
CN111174336B (en) * 2020-01-09 2024-04-05 珠海格力电器股份有限公司 Air conditioner external unit, air conditioner and air conditioner control method

Similar Documents

Publication Publication Date Title
JP3051382B2 (en) Steam line pressure control system and pressure control method
US6655161B1 (en) Air conditioner and control method thereof
JP5263522B2 (en) Refrigeration equipment
EP2806233A1 (en) Refrigeration device
JP2002228281A (en) Air conditioner
JP2007218532A (en) Air conditioner
JP2000314563A (en) Air conditioner
JPH06201176A (en) Air-conditioner
JP3290251B2 (en) Air conditioner
JP4830399B2 (en) Air conditioner
JP3143142B2 (en) Refrigeration equipment
JP2002147819A (en) Refrigeration unit
JP2925715B2 (en) Refrigeration equipment
JP2002162126A (en) Air conditioner
JPH07190455A (en) Refrigerating/air-conditioning system
JP3838267B2 (en) Air conditioner
JP4774858B2 (en) Air conditioner
JPH022064B2 (en)
KR100287859B1 (en) Heat pump and operating method thereof
KR100502308B1 (en) By-pass apparatus and method for controlling of multi type air-conditioner thereof
JP7467827B2 (en) Air conditioners
JP5956839B2 (en) Air conditioner
KR102510223B1 (en) Air conditioner and a method controling the same
JP2002243240A (en) Refrigerating device
WO2022249437A1 (en) Heat pump device and hot water supply device