JP2000313693A - Thermal conduction type seed crystal for producing semiconductor single crystal and growth of single crystal by the thermal conduction type seed crystal - Google Patents

Thermal conduction type seed crystal for producing semiconductor single crystal and growth of single crystal by the thermal conduction type seed crystal

Info

Publication number
JP2000313693A
JP2000313693A JP11117809A JP11780999A JP2000313693A JP 2000313693 A JP2000313693 A JP 2000313693A JP 11117809 A JP11117809 A JP 11117809A JP 11780999 A JP11780999 A JP 11780999A JP 2000313693 A JP2000313693 A JP 2000313693A
Authority
JP
Japan
Prior art keywords
seed
crystal
single crystal
melt
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11117809A
Other languages
Japanese (ja)
Inventor
Shoei Kurosaka
昇栄 黒坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP11117809A priority Critical patent/JP2000313693A/en
Publication of JP2000313693A publication Critical patent/JP2000313693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for growing a single crystal by immersing a seed crystal in a melt and pulling and growing the single crystal without causing necking in the production of a semiconductor single crystal by a Czochralski method. SOLUTION: This thermal conduction type seed crystal 10 is constituted of a growing seed 1 whose lower end is immersed in a melt to grow a semiconductor single crystal, a thermal conduction member 2 which is attached to the growing seed 1 and immersed in the melt before the growing seed 1 is immersed in the melt to transfer the heat of the melt to the growing seed 1 and a quartz cylinder 3 for covering the thermal conduction member 2. The thermal conduction member 2 is attached to the growing seed 1 so as to surround the growing seed and has plural slits 2c arranged in the vertical direction from the lower part to the bottom part. The quartz cylinder 3 has the same number of inverted wedge-shaped notch parts as that of the slits 2c and wedge- shaped parts 3b formed between two adjoining notch parts are mutually different in length in the vertical direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チョクラルスキー
法による半導体単結晶の製造時に用いる熱伝導型種結晶
及び該熱伝導型種結晶による単結晶の成長方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermally conductive seed crystal used for producing a semiconductor single crystal by the Czochralski method and a method for growing a single crystal using the thermally conductive seed crystal.

【0002】[0002]

【従来の技術】単結晶シリコンは、一般にチョクラルス
キー法により製造されている。チョクラルスキー法で
は、単結晶製造装置内に設置した石英るつぼに多結晶シ
リコンを充填し、石英るつぼの周囲に設けたヒータによ
って前記多結晶シリコンを加熱溶解して融液とする。そ
して、シードホルダに取り付けた種結晶を融液に浸漬
し、シードホルダ及び石英るつぼを互いに同方向又は逆
方向に回転させながらシードホルダを引き上げて単結晶
シリコンを所定の直径及び長さに成長させる。
2. Description of the Related Art Single crystal silicon is generally manufactured by the Czochralski method. In the Czochralski method, polycrystalline silicon is filled in a quartz crucible provided in a single crystal manufacturing apparatus, and the polycrystalline silicon is heated and melted by a heater provided around the quartz crucible to form a melt. Then, the seed crystal attached to the seed holder is immersed in the melt, and the seed holder is pulled up while rotating the seed holder and the quartz crucible in the same or opposite directions to grow single crystal silicon to a predetermined diameter and length. .

【0003】種結晶を融液に浸漬すると熱応力が発生
し、種結晶に転位が発生する。この転位を除去するた
め、ダッシュネック法を用いて直径3〜4mm程度のネ
ック部を種結晶の下方に形成し、転位をネック部の表面
に逃がす。そして、無転位化が確認された後、肩部を形
成して単結晶を所定の直径まで拡大させ、次いで直胴部
形成に移行する。
When a seed crystal is immersed in a melt, thermal stress is generated and dislocation occurs in the seed crystal. In order to remove the dislocation, a neck portion having a diameter of about 3 to 4 mm is formed below the seed crystal by using a dash neck method, and the dislocation is released to the surface of the neck portion. Then, after the dislocation-free state is confirmed, the shoulder is formed to enlarge the single crystal to a predetermined diameter, and then the process shifts to the formation of a straight body.

【0004】近年、半導体デバイス生産の効率化、歩留
り向上等を目的とした単結晶の大径化あるいは軸方向長
さの増大に伴ってその重量が増大し、ネック部の強度が
限界に近づいている。そのため、従来の結晶引き上げ方
法ではネック部が破断するおそれがあり、安全な単結晶
育成ができない。この対策として本発明者等は、ダッシ
ュネック法によらない単結晶製造方法として特願平10
−51302号(未公開)において単結晶製造用種結晶
及び単結晶製造方法を提案している。この提案における
単結晶製造用種結晶は、一例として図9に示すように、
種結晶を用いて育成用シード11と、上端面に内部に貫
通する貫通孔を有し、かつ下方に開口部を有する中空の
熱伝導用部材12とを製作し、育成用シード11を熱伝
導用部材12の上端面の貫通孔に嵌挿して取着した上、
育成用シード11をシードホルダ5に取着する。熱伝導
用部材12は、図10に示すように育成用シード11よ
りも先に融液6に浸漬されるようにしているので、融液
6の熱は熱伝導用部材12を介して育成用シード11に
伝導され、育成用シード11は十分に高温となった後に
融液6に浸漬される。これにより、育成用シード11に
は熱衝撃による転位が発生せず、熱伝導用部材12に導
入された転位は育成用シード11には伝播しない。この
状態で図11に示すように熱伝導用部材12全体を融液
6に浸漬して溶解した後に育成用シード11を引き上げ
ることにより、その下端にネック部を形成することなく
直ちに単結晶の拡径作業に入り、肩部形成工程に移行す
ることができる。
In recent years, the weight of single crystals has increased with the increase in the diameter or the axial length of single crystals for the purpose of improving the efficiency of semiconductor device production, improving the yield, etc., and the strength of the neck portion has reached the limit. I have. Therefore, the neck portion may be broken by the conventional crystal pulling method, and a safe single crystal growth cannot be performed. As a countermeasure against this, the present inventors have proposed a method for producing a single crystal not using the dash neck method as disclosed in Japanese Patent Application No.
No.-51302 (not disclosed) proposes a seed crystal for producing a single crystal and a method for producing a single crystal. The seed crystal for producing a single crystal in this proposal is, for example, as shown in FIG.
Using the seed crystal, a seed 11 for growth and a hollow heat conducting member 12 having a through hole in the upper end surface and having an opening at the bottom are manufactured, and the seed 11 for heat conduction is produced. After fitting and inserting into the through hole in the upper end surface of the
The growth seed 11 is attached to the seed holder 5. As shown in FIG. 10, the heat conducting member 12 is immersed in the melt 6 before the growing seed 11, so that the heat of the melt 6 is The seed 11 for growth is transmitted to the seed 11 and immersed in the melt 6 after reaching a sufficiently high temperature. As a result, dislocation due to thermal shock does not occur in the growth seed 11, and the dislocation introduced into the heat conducting member 12 does not propagate to the growth seed 11. In this state, as shown in FIG. 11, the entire heat conducting member 12 is immersed in the melt 6 to dissolve it, and then the growing seed 11 is pulled up, thereby immediately expanding the single crystal without forming a neck at the lower end thereof. The work can be started, and the process can proceed to a shoulder forming step.

【0005】また、WO97/32059によれば、種
結晶の周囲を石英製の保温管で包囲し、種結晶より先に
前記保温管の下端が融液に浸漬することによって種結晶
を昇温させ、種結晶を融液に浸漬したときの熱衝撃発生
を回避するようにしている。
According to WO 97/32059, the seed crystal is surrounded by a heat insulating tube made of quartz, and the lower end of the heat insulating tube is immersed in the melt prior to the seed crystal to raise the temperature of the seed crystal. In addition, a thermal shock is prevented from occurring when the seed crystal is immersed in the melt.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来技術には下記の問題がある。特願平10−51302
号公報に開示された単結晶製造用種結晶では、熱伝導用
部材12が溶解する過程で熱伝導用部材12と育成用シ
ード11との嵌合部に融液6が侵入して固化することに
より、育成用シード11が有転位化するという問題が発
生している。また、熱伝導用部材12の溶解過程の終盤
において図12及び図13に示すように針状溶解残13
が発生し、育成用シード11の周辺を浮遊する。そし
て、図14に示すようにこの針状溶解残13が育成用シ
ード11に付着すると、育成用シード11が有転位化す
るという問題点も発生している。また、WO97/32
059で用いられている保温管は底面が平坦であるた
め、引き上げ時に底面全体が融液から一挙に離脱し、こ
れにより液面が波立って育成中の単結晶が有転位化する
という問題がある。
However, the above prior art has the following problems. Japanese Patent Application No. 10-51302
In the seed crystal for producing a single crystal disclosed in Japanese Patent Application Laid-Open Publication No. H11-133, the melt 6 penetrates into the fitting portion between the heat conduction member 12 and the growing seed 11 and solidifies in the process of melting the heat conduction member 12. As a result, there is a problem that the seeds 11 for growth grow into dislocations. In addition, at the end of the melting process of the heat conducting member 12, as shown in FIGS.
Occurs and floats around the growing seeds 11. Then, as shown in FIG. 14, when the needle-shaped dissolution residue 13 adheres to the seed 11 for growth, there is also a problem that the seed 11 for growth is dislocated. In addition, WO97 / 32
Since the bottom surface of the heat retention tube used in No. 059 is flat, the entire bottom surface is separated from the melt at once at the time of lifting, which causes a problem that the liquid surface is wavy and the growing single crystal is dislocated. is there.

【0007】本発明は上記従来の問題点に着目してなさ
れたもので、チョクラルスキー法による半導体単結晶の
製造において、種結晶を融液に浸漬した後、ネッキング
を行うことなく単結晶を育成することができ、大重量の
単結晶の引き上げが可能な半導体単結晶製造用熱伝導型
種結晶及び該熱伝導型種結晶による単結晶の成長方法を
提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional problems. In the production of a semiconductor single crystal by the Czochralski method, after immersing a seed crystal in a melt, the single crystal is formed without necking. It is an object of the present invention to provide a thermally conductive seed crystal for producing a semiconductor single crystal, which can be grown and capable of pulling a heavy single crystal, and a method for growing a single crystal using the thermally conductive seed crystal.

【0008】[0008]

【課題を解決するための手段、作用及び効果】上記目的
を達成するため、本発明に係る半導体単結晶製造用熱伝
導型種結晶の第1発明は、下端を融液に浸漬して半導体
単結晶を成長させる育成用シードと、育成用シードの外
側に装着され、育成用シードより先に融液に浸漬して育
成用シードに融液の熱を伝導する熱伝導用部材と、熱伝
導用部材を被覆する石英筒とにより構成されていること
を特徴とする。半導体単結晶製造用熱伝導型種結晶の第
1発明によれば、熱伝導用部材は育成用シードより先に
融液に浸漬されるため、融液の熱は育成用シードに比べ
て容積の大きい熱伝導用部材を介して育成用シードに伝
導される。よって育成用シードは、その下端が融液に接
触する前に熱伝導用部材により十分に予熱されるため、
融液に浸漬する時の熱衝撃が緩和され、転位が発生しな
い。熱伝導用部材に導入された転位は、熱伝導用部材と
不連続面で接触する育成用シードには伝播しない。ま
た、石英筒は融液に浸漬しても溶解せず、結晶の成長も
起こらない。以上により、育成用シードはネック部を形
成して無転位化する必要がなく、そのままの径で直胴部
形成工程に移行できるので、大重量の単結晶の引き上げ
に耐える充分な強度を有する単結晶把持部を容易に形成
でき、生産性を向上できる。
In order to achieve the above object, a first invention of a heat conductive type seed crystal for producing a semiconductor single crystal according to the present invention is to immerse a lower end in a melt to obtain a semiconductor single crystal. A seed for growing a crystal, a member for heat conduction attached to the outside of the seed for growth, and immersed in the melt prior to the seed for growth to conduct heat of the melt to the seed for growth; And a quartz tube covering the member. According to the first aspect of the heat conduction type seed crystal for producing a semiconductor single crystal, the heat conduction member is immersed in the melt before the growth seed, so that the heat of the melt is smaller in volume than the growth seed. It is conducted to the growing seed through a large heat conducting member. Therefore, the seed for growth is sufficiently preheated by the heat conducting member before the lower end thereof comes into contact with the melt,
The thermal shock during immersion in the melt is reduced, and no dislocation occurs. The dislocations introduced into the heat conducting member do not propagate to the seeds for growth that come into contact with the heat conducting member at the discontinuous surface. Further, the quartz tube does not dissolve even when immersed in the melt, and no crystal growth occurs. As described above, the growing seed does not need to form a neck portion to eliminate dislocations, and the process can proceed to the step of forming the straight body portion with the same diameter, so that a single seed having sufficient strength to withstand pulling of a heavy single crystal. The crystal holding part can be easily formed, and the productivity can be improved.

【0009】また、本発明に係る半導体単結晶製造用熱
伝導型種結晶の第2発明は、熱伝導型種結晶の第1発明
において、熱伝導用部材は、育成用シードを取り巻くよ
うに装着し、かつ下部から下端部にわたって上下方向に
複数のスリットを設けたことを特徴とする。半導体単結
晶製造用熱伝導型種結晶の第2発明によれば、熱伝導用
部材には複数のスリットを上下方向に設けたので、これ
らのスリットを通して育成用シードの融液への着液状況
や単結晶の成長状況を観察でき、結晶引き上げ時の作業
性が良い。また、熱伝導用部材の下部はスリットにより
複数個に分割されていることになり、結晶引き上げ時に
熱伝導用部材の下部に成長する結晶もこのスリットによ
り複数個に分割される。したがって、熱伝導用部材の下
部に成長する結晶が石英筒に誘導され易くなり、融液か
らの離脱の石英筒による制御が容易となる。
In a second aspect of the present invention, there is provided a heat conduction type seed crystal for producing a semiconductor single crystal, wherein the heat conduction member is mounted so as to surround a growing seed. In addition, a plurality of slits are provided in a vertical direction from a lower portion to a lower end portion. According to the second aspect of the heat conduction type seed crystal for producing a semiconductor single crystal, since a plurality of slits are provided in the heat conduction member in the up-down direction, the state in which the seed for growing is applied to the melt through these slits. And the growth state of the single crystal can be observed, and the workability in pulling the crystal is good. Further, the lower part of the heat conducting member is divided into a plurality of parts by the slit, and the crystal growing at the lower part of the heat conducting member at the time of pulling the crystal is also divided by the slit. Therefore, the crystal that grows below the heat conducting member is easily guided to the quartz tube, and the separation from the melt can be easily controlled by the quartz tube.

【0010】本発明に係る半導体単結晶製造用熱伝導型
種結晶の第3発明は、熱伝導型種結晶の第2発明におい
て、石英筒は熱伝導用部材のスリットの数と同数の逆楔
形の切り欠き部を有し、隣接する2個の切り欠き部の間
に形成される楔形部は上下方向の長さが互いに異なるこ
とを特徴とする。半導体単結晶製造用熱伝導型種結晶の
第3発明によれば、石英筒に設けた複数個の楔形部の上
下方向長さを互いに異なるようにしたので、融液に浸漬
した種結晶を無転位のまま引き上げる過程で各楔形部の
下端が融液から離脱するタイミングが互いにずれる。し
たがって、融液を波立たせずに種結晶を無転位のまま引
き上げることができる。また、石英筒の各楔形部は下方
に向かって融液との接触面積が小さくなるので、熱伝導
用部材の下部に成長する結晶と融液との接触面積が減じ
られ、よって成長結晶の融液からの離脱時の液切れがよ
く、波立ちはごく小さくなり、したがって更に無転位化
が容易となる。
A third invention of a heat conduction type seed crystal for producing a semiconductor single crystal according to the present invention is the heat conduction type seed crystal according to the second invention, wherein the quartz cylinder has an inverted wedge shape having the same number as the number of slits of the heat conduction member. And the wedge-shaped portions formed between two adjacent notches have different vertical lengths. According to the third aspect of the heat conduction type seed crystal for producing a semiconductor single crystal, since the vertical lengths of the plurality of wedge-shaped portions provided in the quartz cylinder are different from each other, the seed crystal immersed in the melt can be used. In the process of pulling up with dislocations, the timings at which the lower ends of the wedge-shaped portions separate from the melt are shifted from each other. Therefore, the seed crystal can be pulled up without dislocation without rippling the melt. In addition, since the contact area of each wedge-shaped portion of the quartz cylinder with the melt decreases downward, the contact area between the crystal growing under the heat conducting member and the melt is reduced, and thus the fusion of the grown crystal is reduced. The liquid is easily drained when it is detached from the liquid, and the ripples are extremely small, so that dislocation-free is further facilitated.

【0011】本発明に係る半導体単結晶製造用熱伝導型
種結晶の第4発明は、熱伝導型種結晶の第3発明におい
て、石英筒の複数の切り欠き部の上端位置を熱伝導用部
材のスリットの位置と一致させたことを特徴とする。半
導体単結晶製造用熱伝導型種結晶の第4発明によれば、
石英筒に設けた切り欠き部の上端位置と熱伝導用部材に
設けたスリットの位置とが一致するため、熱伝導用部材
のスリットは石英筒によって覆われることがなく、石英
筒を装着した状態で育成用シードを観察できる。これに
より、単結晶引き上げ時の作業性を向上できる。
According to a fourth aspect of the present invention, there is provided a heat conduction type seed crystal for producing a semiconductor single crystal, wherein the heat conduction type seed crystal according to the third invention is provided with a heat conduction member. The position of the slit is matched. According to the fourth invention of the heat conduction type seed crystal for producing a semiconductor single crystal,
Since the upper end position of the notch provided in the quartz tube and the position of the slit provided in the heat conducting member match, the slit of the heat conducting member is not covered by the quartz tube, and the quartz tube is attached. You can observe the seeds for growth. Thereby, workability at the time of pulling a single crystal can be improved.

【0012】また、本発明に係る熱伝導型種結晶による
単結晶の成長方法の第1発明は、下部から下端部にわた
って上下方向にスリットを有する熱伝導用部材を育成用
シードの外側に装着し、更に熱伝導用部材を逆楔形の切
り欠き部を有する石英筒で被覆し、熱伝導用部材のスリ
ットと石英筒の切り欠き部の上端位置とを一致させて熱
伝導型種結晶を構成し、シードホルダに取着した前記熱
伝導型種結晶の育成用シードの下端が融液に浸漬される
高さまで熱伝導型種結晶を下降させ、この後に育成用シ
ードの下端に単結晶を成長させながら引き上げる方法と
している。熱伝導型種結晶による単結晶の成長方法の第
1発明によれば、熱伝導型種結晶を育成用シードの下端
が融液に浸漬される高さまでしか下降させないので、育
成用シードと熱伝導用部材との嵌合部は融液に浸漬され
ない。したがって、育成用シードと熱伝導用部材との嵌
合部に融液が侵入せず、また、熱伝導用部材をすべて溶
解したときに発生する針状溶解残の浮遊も起こらないた
め、育成用シードの有転位化を防止できる。そして、育
成用シードには融液浸漬時の熱衝撃による転位の発生が
ないので、ネッキングを必要とせず、直ちに肩部形成工
程に移行できる。したがって、育成用シードの径のまま
単結晶を引き上げることができるので、大重量に耐える
充分な強度を有する単結晶を容易に製造でき、生産性を
向上できる。
In a first aspect of the present invention, there is provided a method for growing a single crystal using a heat-conducting seed crystal, wherein a heat-conducting member having a vertically extending slit extending from a lower portion to a lower end portion is mounted outside a growing seed. Further, the heat conducting member is covered with a quartz cylinder having an inverted wedge-shaped notch, and the slit of the heat conducting member is aligned with the upper end position of the notch of the quartz cylinder to form a heat conducting seed crystal. The heat conduction type seed crystal attached to the seed holder is lowered to a height at which the lower end of the growth seed for the heat conduction type seed crystal is immersed in the melt, and thereafter, a single crystal is grown at the lower end of the growth seed. While pulling up. According to the first aspect of the method for growing a single crystal using a heat-conductive seed crystal, the lower end of the seed for growth is lowered only to a height at which the seed for growth is immersed in the melt. The fitting part with the member for use is not immersed in the melt. Therefore, the melt does not penetrate into the fitting portion between the seed for growth and the member for heat conduction, and the floating needle-like residue generated when all the members for heat conduction are dissolved does not occur. Dislocation of the seed can be prevented. Since the seeds for growth do not generate dislocations due to thermal shock during immersion in the melt, necking is not required, and the process can immediately proceed to the shoulder forming step. Therefore, since the single crystal can be pulled up with the diameter of the seed for growth, a single crystal having sufficient strength to withstand a large weight can be easily manufactured, and productivity can be improved.

【0013】本発明に係る熱伝導型種結晶による単結晶
の成長方法の第2発明は、上記熱伝導型種結晶による単
結晶の成長方法の第1発明において、単結晶の引き上げ
に伴って熱伝導用部材の下端に育成される結晶の成長量
を、石英筒の切り欠き部の間に形成され、かつ下方に向
かって融液との接触が減少する楔形部で誘導し、楔形部
の下端で融液から切り離す方法としている。熱伝導型種
結晶による単結晶の成長方法の第2発明によれば、熱伝
導用部材の融液への浸漬により溶解残存部下端に成長す
る結晶は、単結晶の引き上げに伴って、熱伝導用部材の
外側にある石英筒の楔形部が下方に向かうにつれて融液
(6)との接触面積が減少することにより誘導されて楔形
となり、楔形部の下端で融液を波立たせることなく融液
から離脱する。したがって、育成用シードの下部に成長
する単結晶を無転位のまま引き上げることができる。
The second invention of the method for growing a single crystal using a heat conduction type seed crystal according to the present invention is the first invention of the method for growing a single crystal using a heat conduction type seed crystal according to the first invention. The amount of the crystal grown at the lower end of the conducting member is guided by the wedge-shaped portion formed between the cutouts of the quartz cylinder and decreasing in contact with the melt downward, and the lower end of the wedge-shaped portion is guided. To separate from the melt. According to the second invention of the method for growing a single crystal using a heat conduction type seed crystal, the crystal that grows at the lower end of the remaining melted portion by immersing the heat conduction member in the melt is thermally conductive as the single crystal is pulled up. As the wedge-shaped part of the quartz cylinder on the outside of the
As the contact area with (6) is reduced, it is induced to form a wedge, and detaches from the melt without waving at the lower end of the wedge. Therefore, the single crystal growing under the seed for growth can be pulled up without dislocation.

【0014】[0014]

【発明の実施の形態】以下に、実施形態について図面を
参照して詳細に説明する。本発明に係わる半導体単結晶
製造用熱伝導型種結晶は、育成用シード、熱伝導用部
材、石英筒で構成されている。育成用シード1は図1に
示すように、通常の種結晶とほぼ同等の直径を有する上
部1aと、上部1aより大径の下部1bとをテーパ部1
cで接続してなり、上部1aには図示しないシードホル
ダに取着される係止部1dが設けられている。
Embodiments of the present invention will be described below in detail with reference to the drawings. The heat conductive type seed crystal for producing a semiconductor single crystal according to the present invention includes a seed for growing, a heat conductive member, and a quartz tube. As shown in FIG. 1, the seed 1 for growth comprises an upper portion 1a having a diameter substantially equal to that of a normal seed crystal and a lower portion 1b having a larger diameter than the upper portion 1a.
The upper portion 1a is provided with a locking portion 1d attached to a seed holder (not shown).

【0015】熱伝導用部材2は育成用シード1と同一の
材料からなり、図2(a)及び図2(a)の底面図であ
る図2(b)に示すように、下方に開口した略中空円柱
状をなし、この熱伝導用部材2の内部に設けられ、かつ
図1に示した育成用シード1の下部1bを収容する大径
穴2aと、熱伝導用部材2の上端面に設けられ、かつ育
成用シード1のテーパ部1cが挿嵌されるテーパ穴2b
とを有している。また熱伝導用部材2は、大径穴2aの
下端から軸方向に平行な複数個の(本実施形態では、4
個の)スリット2cを備えている。スリット2cの幅W
は、熱伝導用部材2を育成用シード1に嵌着したときに
育成用シード1の下部1bを観察するに十分な寸法とす
る。
The heat conducting member 2 is made of the same material as the seed 1 for growth, and is opened downward as shown in FIG. 2 (a) and FIG. 2 (b) which is a bottom view of FIG. 2 (a). A large-diameter hole 2a which has a substantially hollow cylindrical shape, is provided inside the heat conducting member 2, and accommodates the lower portion 1b of the growing seed 1 shown in FIG. A tapered hole 2b provided and into which the tapered portion 1c of the growing seed 1 is inserted.
And The heat conducting member 2 includes a plurality of members (4 in this embodiment) parallel to the axial direction from the lower end of the large-diameter hole 2a.
) Slits 2c. Width W of slit 2c
Has a size sufficient for observing the lower portion 1b of the seed 1 for growth when the member 2 for heat conduction is fitted to the seed 1 for growth.

【0016】石英筒3は図3に示すように、熱伝導用部
材2の上面と外周面とを被覆する高純度石英製の部材か
らなり、円筒部分の下部には複数個の(実施形態では4
個の)切り欠き部3aが設けられている。切り欠き部3
aは下端が幅広で、かつ上方に向かって次第に幅が狭く
なる逆楔形であって、切り欠き部3aの個数は熱伝導用
部材2のスリット2cの数と同一である。また、切り欠
き部3aの上端は、石英筒3を熱伝導用部材2にかぶせ
たとき熱伝導用部材2のスリット2cと一致する位置に
配設されている。これらの切り欠き部の間には楔形部3
bが形成されるが、互いに隣接する楔形部3bの軸方向
長さは異なっている。また、石英筒3の上端には育成用
シード1の上部1aを通す穴3cが設けられている。な
お、本発明に係る石英筒3の素材の石英は、高純度で、
透明タイプ及び不透明タイプなどがあり、いずれでもよ
い。
As shown in FIG. 3, the quartz cylinder 3 is made of a member made of high-purity quartz that covers the upper surface and the outer peripheral surface of the heat conducting member 2, and a plurality of (in the embodiment, 4
Cutouts 3a are provided. Notch 3
a has an inverted wedge shape in which the lower end is wide and gradually narrows upward, and the number of the cutouts 3 a is the same as the number of the slits 2 c of the heat conducting member 2. The upper end of the notch 3a is provided at a position corresponding to the slit 2c of the heat conducting member 2 when the quartz tube 3 is covered with the heat conducting member 2. A wedge-shaped portion 3 is provided between these notches.
b are formed, but the wedge-shaped portions 3b adjacent to each other have different axial lengths. The upper end of the quartz tube 3 is provided with a hole 3c through which the upper part 1a of the growing seed 1 passes. The quartz used as the material of the quartz tube 3 according to the present invention has high purity,
There are a transparent type and an opaque type, and any type may be used.

【0017】育成用シード1に熱伝導用部材2を嵌着
し、熱伝導用部材2に石英筒3をかぶせると、図4に示
す熱伝導型種結晶10が完成する。
When the heat conducting member 2 is fitted to the growing seed 1 and the quartz tube 3 is put on the heat conducting member 2, the heat conducting type seed crystal 10 shown in FIG. 4 is completed.

【0018】図5〜図8に、本発明の熱伝導型種結晶を
使用して単結晶を引き上げる際の手順を示す。図5に示
すように、熱伝導型種結晶10を引き上げ軸4の下端に
繋着したシードホルダ5に取着し、融液6に向かって下
降させると、熱伝導型種結晶10の熱伝導用部材2の下
端と石英筒3の一部すなわち楔形部のうち軸方向長さの
長い部分がまず融液6に接触し、次いで石英筒3の各楔
形部が融液6に接触する。このとき、熱伝導用部材2の
融液浸漬部が円滑に溶解し続ける融液温度を維持するよ
うに、熱伝導用部材2の溶解状況を観察しながらヒータ
電力及び石英るつぼ回転数を調整する。この間、熱伝導
用部材2の溶解を通じて融液6の温度が熱伝導用部材2
から育成用シード1に伝導されるので、育成用シード1
の温度はこの育成用シード1を単体で融液6の表面に近
接させた場合よりも著しく高温域まで上昇し、融液6と
育成用シード1との温度差は極めて小さくなる。
FIGS. 5 to 8 show a procedure for pulling a single crystal using the heat conduction type seed crystal of the present invention. As shown in FIG. 5, the heat conduction type seed crystal 10 is attached to the seed holder 5 connected to the lower end of the pull-up shaft 4, and is lowered toward the melt 6. The lower end of the use member 2 and a part of the quartz cylinder 3, that is, a part of the wedge-shaped part having a long axial length, first contacts the melt 6, and then each wedge-shaped part of the quartz cylinder 3 contacts the melt 6. At this time, the heater power and the quartz crucible rotation number are adjusted while observing the melting state of the heat conduction member 2 so that the melt temperature of the heat immersion part of the heat conduction member 2 continues to be smoothly melted. . During this time, the temperature of the melt 6 through the melting of the heat conducting member 2 is reduced.
From the seed for growth 1
Temperature rises to a remarkably high temperature range as compared with the case where the seed for growth 1 alone is brought close to the surface of the melt 6, and the temperature difference between the melt 6 and the seed for growth 1 becomes extremely small.

【0019】引き上げ軸4を更に下降させると、図6に
示すように育成用シード1が融液6に浸漬される。この
ときまでに育成用シード1は熱伝導用部材2を介して融
液6から十分な熱伝導を受けているので、融液浸漬時の
熱衝撃が大幅に緩和され、転位は導入されない。そし
て、この状態で育成用シード1の直径が変動しない温度
を維持するように融液温度を調整する。なお、育成用シ
ード1と熱伝導用部材2との嵌着部は融液6に浸漬させ
ない。
When the lifting shaft 4 is further lowered, the seeds 1 for growth are immersed in the melt 6 as shown in FIG. By this time, since the growth seed 1 has received sufficient heat conduction from the melt 6 via the heat conduction member 2, the thermal shock at the time of immersion in the melt is greatly reduced, and no dislocation is introduced. Then, in this state, the temperature of the melt is adjusted so as to maintain a temperature at which the diameter of the growing seed 1 does not change. The fitting portion between the growing seed 1 and the heat conducting member 2 is not immersed in the melt 6.

【0020】育成用シード1を融液6になじませた後、
熱伝導型種結晶10を上昇させると、図7に示すように
育成用シード1及び熱伝導用部材2のそれぞれの下端に
結晶が成長する。このうち、育成用シード1の下端に成
長するシリコン成長部7には転位が導入されていないの
で、ネッキング工程に入る必要がなく、図8に示すよう
に直ちに肩部8の形成工程に移行し、次いで通常のプロ
セスと同様に単結晶を育成する。一方、熱伝導用部材2
の下端に成長するシリコン成長部9は石英筒3に設けら
れた楔形部が融液との接触を徐々に減少させることによ
り成長を誘導するので、融液6との接触面積は次第に減
少していき、融液6からの離脱を容易にする。また、石
英筒3に対してシリコンは成長しない。このため、熱伝
導用部材2の溶解残存部下端に成長した結晶は、石英筒
3の各楔形部3bが融液6から離脱するのとほぼ同時に
融液6から切り離される。なおかつ、石英筒3の楔形部
3bは軸方向長さが互いに異なるので、個々の楔形部下
端における融液6からの離脱のタイミングが同時でな
く、従って融液面の振動は極めて微小なものに抑えられ
る。
After the growing seed 1 has been blended into the melt 6,
When the heat conduction type seed crystal 10 is raised, crystals grow at the lower ends of the seeds 1 for growth and the members 2 for heat conduction, respectively, as shown in FIG. Of these, since no dislocation has been introduced into the silicon growth portion 7 that grows at the lower end of the seed 1 for growth, there is no need to enter the necking step, and the process immediately proceeds to the step of forming the shoulder 8 as shown in FIG. Then, a single crystal is grown as in a normal process. On the other hand, the heat conducting member 2
Since the silicon growth portion 9 growing at the lower end of the crystal is guided by the wedge-shaped portion provided in the quartz cylinder 3 by gradually reducing the contact with the melt, the contact area with the melt 6 gradually decreases. This facilitates separation from the melt 6. Also, silicon does not grow on the quartz tube 3. For this reason, the crystal grown at the lower end of the dissolved residual portion of the heat conducting member 2 is separated from the melt 6 almost at the same time when each wedge-shaped portion 3 b of the quartz tube 3 separates from the melt 6. In addition, since the wedge-shaped portions 3b of the quartz cylinder 3 have different axial lengths, the timing of separation from the melt 6 at the lower ends of the individual wedge-shaped portions is not simultaneous, so that the vibration of the melt surface is extremely small. Can be suppressed.

【0021】上記実施形態においては、熱伝導用部材の
融液への浸漬、溶解により育成用シードへの熱伝導が十
分に行われ、融液に接触する前に育成用シードの温度を
上昇させることができる。その結果、育成用シードが着
液したときの熱衝撃が緩和され、転位が導入されること
なく育成用シードを浸漬させることができる。この位置
から熱伝導型種結晶を上昇させると、育成用シードと熱
伝導用部材とのそれぞれの下端に結晶が成長するが、熱
伝導用部材の外側には下方に向かって融液との接触が徐
々に小さくなる楔形部を備えた石英筒があるため、熱伝
導用部材の下端から下方に向かう結晶成長が石英筒に誘
導され、その断面積が次第に縮小する。また、前記石英
筒は隣接する楔形部の軸方向長さが異なるため、短い部
位から順次融液から離脱することになる。従って、石英
筒と熱伝導用部材の下端に成長した結晶とが融液から離
脱するときの融液振動は最小限に抑えられ、育成用シー
ドの下端に成長している単結晶のみが着液している状態
をつくり出す。育成用シードは無転位状態で着液してい
るので、ネッキング工程を経ずに直接肩部形成工程に移
行することができる。ネッキングを行わないため、種結
晶の断面積がそのまま維持され、この断面積で育成単結
晶を支持することができる。前記WO97/32059
では保温管の底面が平坦であるため、単結晶の育成に際
して前記保温管が融液から離脱したとき融液の波立ちが
起こり、育成中の単結晶が有転位化するおそれがある
が、本発明ではそのおそれは皆無である。さらに、ヒー
ター電力や、石英るつぼ回転数を調整すれば、なお離脱
の制御が容易となる。
In the above embodiment, the heat conduction member is immersed and melted in the melt to sufficiently conduct heat conduction to the growth seed, and the temperature of the growth seed is increased before coming into contact with the melt. be able to. As a result, the thermal shock when the seed for growth is immersed is reduced, and the seed for growth can be immersed without introducing dislocation. When the heat conduction type seed crystal is raised from this position, crystals grow at the respective lower ends of the growth seed and the heat conduction member, but contact the melt downward on the outside of the heat conduction member. Since there is a quartz cylinder having a wedge-shaped portion in which is gradually reduced, crystal growth directed downward from the lower end of the heat conducting member is guided to the quartz cylinder, and the cross-sectional area thereof is gradually reduced. Further, since the adjacent wedge-shaped portions of the quartz cylinder have different axial lengths, the quartz tubes are sequentially separated from the melt from a short portion. Therefore, the melt vibration when the quartz tube and the crystal grown at the lower end of the heat conducting member are separated from the melt is minimized, and only the single crystal growing at the lower end of the seed for growth is immersed. Create a state that you are doing. Since the seeds for growth are immersed in a dislocation-free state, it is possible to directly shift to the shoulder forming step without going through the necking step. Since necking is not performed, the cross-sectional area of the seed crystal is maintained as it is, and the cross-sectional area can support the grown single crystal. WO 97/32059
Since the bottom surface of the heat retaining tube is flat in the case, when the heat retaining tube separates from the melt during the growth of the single crystal, the melt may undulate, and the single crystal during the growth may be dislocated. Then there is no fear. Further, if the heater power and the number of rotations of the quartz crucible are adjusted, the detachment can be easily controlled.

【0022】以上説明したように本発明によれば、次の
効果が得られる。 (1)育成用シードが十分に予熱された後、融液に浸漬
されるので、熱衝撃による転位の導入が起こらず、ダッ
シュ法によるネッキング工程が不要となる。従って、単
結晶の最小径は種結晶の直径にほぼ等しい値となり、引
き上げ可能な単結晶重量が増大するので、生産性を向上
できる。 (2)熱伝導型種結晶の上部を融液に浸漬しないので、
育成用シードと熱伝導用部材との嵌合部に融液が侵入し
て育成用シードが有転位化したり、熱伝導用部材の溶解
時に発生する針状溶解残が育成用シードに付着して有転
位化するなどの問題が解決され、高品質の単結晶を製造
できる。
As described above, according to the present invention, the following effects can be obtained. (1) Since the growth seed is sufficiently preheated and then immersed in the melt, the introduction of dislocation due to thermal shock does not occur, and the necking step by the dash method becomes unnecessary. Therefore, the minimum diameter of the single crystal is substantially equal to the diameter of the seed crystal, and the weight of the single crystal that can be pulled increases, so that productivity can be improved. (2) Since the upper part of the heat conduction type seed crystal is not immersed in the melt,
The melt penetrates into the fitting portion between the seed for growth and the member for heat conduction, and the seed for growth is dislocated, or needle-like dissolution residue generated when the member for heat conduction is melted adheres to the seed for growth. Problems such as dislocations are solved, and a high-quality single crystal can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】育成用シードの斜視図である。FIG. 1 is a perspective view of a growing seed.

【図2】熱伝導用部材を示し、(a)は斜視図、(b)
は底面図である。
2A and 2B show a heat conducting member, wherein FIG. 2A is a perspective view and FIG.
Is a bottom view.

【図3】石英筒の斜視図である。FIG. 3 is a perspective view of a quartz tube.

【図4】熱伝導型種結晶の斜視図である。FIG. 4 is a perspective view of a heat conduction type seed crystal.

【図5】熱伝導型種結晶を使用して単結晶を引き上げる
際の手順の説明図で、熱伝導型種結晶を融液に近接させ
た状態を示す。
FIG. 5 is an explanatory view of a procedure for pulling a single crystal using a heat conduction type seed crystal, and shows a state where the heat conduction type seed crystal is brought close to a melt.

【図6】同、熱伝導型種結晶を融液に浸漬した状態の説
明図である。
FIG. 6 is an explanatory view of a state where the heat conduction type seed crystal is immersed in a melt.

【図7】同、熱伝導型種結晶の引き上げを開始した状態
の説明図である。
FIG. 7 is an explanatory view of a state in which the pulling of the heat conduction type seed crystal is started.

【図8】同、熱伝導型種結晶の育成用シード下端に単結
晶を育成している状態の説明図である。
FIG. 8 is an explanatory view showing a state in which a single crystal is grown at the lower end of a seed for growing a thermally conductive seed crystal.

【図9】従来技術に係わる種結晶を融液に近接させた状
態の説明図である。
FIG. 9 is an explanatory view of a state where a seed crystal according to a conventional technique is brought close to a melt.

【図10】同、種結晶の熱伝導用部材の下部を融液に浸
漬した状態の説明図である。
FIG. 10 is an explanatory view showing a state in which a lower part of a heat conducting member of a seed crystal is immersed in a melt.

【図11】同、種結晶の熱伝導用部材全体を融液に浸漬
した状態の説明図である。
FIG. 11 is an explanatory view showing a state where the entire heat conducting member of the seed crystal is immersed in a melt.

【図12】同、育成用シードの周りに針状溶解残が発生
した状態の説明図である。
FIG. 12 is an explanatory diagram of a state in which needle-like dissolution residues have occurred around a seed for growing.

【図13】同、育成用シードの周りに針状溶解残が浮遊
している状態の説明図である。
FIG. 13 is an explanatory view showing a state in which needle-like dissolved residues are floating around a seed for growth.

【図14】同、育成用シードに針状溶解残が付着した状
態の説明図である。
FIG. 14 is an explanatory view showing a state where needle-like dissolution residues adhere to the seeds for growth.

【符号の説明】[Explanation of symbols]

1,11…育成用シード、2,12…熱伝導用部材、2
c…スリット、3…石英筒、3a…切り欠き部、3b…
楔形部、5…シードホルダ、6…融液、7,9…シリコ
ン成長部、 10…熱伝導型種結晶。
1,11: seed for growing, 2,12: member for heat conduction, 2
c: slit, 3: quartz cylinder, 3a: cutout, 3b ...
Wedge-shaped portion, 5: seed holder, 6: melt, 7, 9: silicon growth portion, 10: heat conduction type seed crystal.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 下端を融液(6) に浸漬して半導体単結晶
を成長させる育成用シード(1) と、育成用シード(1) の
外側に装着され、育成用シード(1) より先に融液(6) に
浸漬して育成用シード(1) に融液(6) の熱を伝導する熱
伝導用部材(2) と、熱伝導用部材(2) を被覆する石英筒
(3) とにより構成されたことを特徴とする半導体単結晶
製造用熱伝導型種結晶。
A seed for growing a semiconductor single crystal by immersing a lower end of the seed in a melt; and a seed mounted on the outside of the seed for growing, wherein the seed is located ahead of the seed for growing. A heat conducting member (2) that conducts the heat of the melt (6) to the seed for growth (1) by immersing it in the melt (6), and a quartz tube that covers the heat conducting member (2)
(3) A thermally conductive seed crystal for producing a semiconductor single crystal, comprising:
【請求項2】 請求項1記載の半導体単結晶製造用熱伝
導型種結晶において、熱伝導用部材(2) は、育成用シー
ド(1) を取り巻くように装着し、かつ下部から下端部に
わたって上下方向に複数のスリット(2c)を設けたことを
特徴とする半導体単結晶製造用熱伝導型種結晶。
2. The heat conduction type seed crystal for producing a semiconductor single crystal according to claim 1, wherein the heat conduction member (2) is mounted so as to surround the growing seed (1), and extends from a lower portion to a lower end portion. A thermally conductive seed crystal for producing a semiconductor single crystal, wherein a plurality of slits (2c) are provided in a vertical direction.
【請求項3】 請求項2記載の半導体単結晶製造用熱伝
導型種結晶において、石英筒(3) は熱伝導用部材(2) の
スリット(2c)の数と同数の逆楔形の切り欠き部(3a)を有
し、隣接する2個の切り欠き部(3a)の間に形成される楔
形部(3b)は上下方向の長さが互いに異なることを特徴と
する半導体単結晶製造用熱伝導型種結晶。
3. The heat conduction type seed crystal for producing a semiconductor single crystal according to claim 2, wherein the quartz cylinder (3) has the same number of inverted wedge-shaped notches as the number of slits (2c) of the heat conduction member (2). A wedge-shaped portion (3b) formed between two adjacent notches (3a) having different lengths in the vertical direction. Conductive seed crystal.
【請求項4】 請求項3記載の半導体単結晶製造用熱伝
導型種結晶において、石英筒(3) の複数の切り欠き部(3
a)の上端位置を熱伝導用部材(2) のスリット(2c)の位置
と一致させたことを特徴とする半導体単結晶製造用熱伝
導型種結晶。
4. A heat conduction type seed crystal for producing a semiconductor single crystal according to claim 3, wherein the plurality of notches (3) of the quartz cylinder (3) are provided.
A thermally conductive seed crystal for producing a semiconductor single crystal, characterized in that the upper end of (a) is aligned with the position of the slit (2c) of the thermally conductive member (2).
【請求項5】 下部から下端部にわたって上下方向にス
リット(2c)を有する熱伝導用部材(2) を育成用シード
(1) の外側に装着し、更に熱伝導用部材(2) を逆楔形の
切り欠き部(3a)を有する石英筒(3) で被覆し、熱伝導用
部材(2) のスリット(2c)と石英筒(3) の切り欠き部(3a)
の上端位置とを一致させて熱伝導型種結晶(10)を構成
し、シードホルダ(5) に取着した前記熱伝導型種結晶(1
0)の育成用シード(1) の下端が融液(6) に浸漬される高
さまで熱伝導型種結晶(10)を下降させ、この後に育成用
シード(1) の下端に単結晶を成長させながら引き上げる
ことを特徴とする熱伝導型種結晶による単結晶の成長方
法。
5. A seed for growing a heat conducting member (2) having a slit (2c) in a vertical direction from a lower portion to a lower end portion.
(1), and the heat conducting member (2) is further covered with a quartz tube (3) having an inverted wedge-shaped notch (3a), and the slit (2c) of the heat conducting member (2) is provided. And notch (3a) of quartz tube (3)
A heat conduction type seed crystal (10) is formed by matching the upper end position of the heat conduction type seed crystal (10) and attached to the seed holder (5).
The heat-conductive seed crystal (10) is lowered to a level where the lower end of the seed (1) for growth of (0) is immersed in the melt (6), and then a single crystal is grown on the lower end of the seed (1) for growth. A method of growing a single crystal using a heat conductive seed crystal, wherein the single crystal is pulled while being pulled.
【請求項6】 請求項5記載の熱伝導型種結晶による単
結晶の成長方法において、単結晶の引き上げに伴って熱
伝導用部材(2) の下端に育成される結晶の成長量を、石
英筒(3) の切り欠き部(3a)の間に形成され、かつ下方に
向かって融液(6) との接触が減少する楔形部(3b)で誘導
し、楔形部(3b)の下端で融液(6) から切り離すことを特
徴とする熱伝導型種結晶による単結晶の成長方法。
6. The method for growing a single crystal using a heat-conductive seed crystal according to claim 5, wherein the amount of crystal grown at the lower end of the heat-conducting member (2) as the single crystal is pulled is reduced by quartz. It is guided by a wedge-shaped part (3b) formed between the notch part (3a) of the cylinder (3) and decreasing the contact with the melt (6) downward, and is guided by a lower end of the wedge-shaped part (3b). A method for growing a single crystal using a heat-conducting seed crystal, comprising separating the single crystal from a melt (6).
JP11117809A 1999-04-26 1999-04-26 Thermal conduction type seed crystal for producing semiconductor single crystal and growth of single crystal by the thermal conduction type seed crystal Pending JP2000313693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11117809A JP2000313693A (en) 1999-04-26 1999-04-26 Thermal conduction type seed crystal for producing semiconductor single crystal and growth of single crystal by the thermal conduction type seed crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11117809A JP2000313693A (en) 1999-04-26 1999-04-26 Thermal conduction type seed crystal for producing semiconductor single crystal and growth of single crystal by the thermal conduction type seed crystal

Publications (1)

Publication Number Publication Date
JP2000313693A true JP2000313693A (en) 2000-11-14

Family

ID=14720813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11117809A Pending JP2000313693A (en) 1999-04-26 1999-04-26 Thermal conduction type seed crystal for producing semiconductor single crystal and growth of single crystal by the thermal conduction type seed crystal

Country Status (1)

Country Link
JP (1) JP2000313693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506358A (en) * 2013-01-23 2016-03-03 エルジー・シルトロン・インコーポレーテッド Single crystal ingot, manufacturing apparatus and method for the ingot
TWI722308B (en) * 2017-08-09 2021-03-21 日商互應化學工業股份有限公司 Manufacturing method of multi-layered printed wiring board and multi-layered printed wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506358A (en) * 2013-01-23 2016-03-03 エルジー・シルトロン・インコーポレーテッド Single crystal ingot, manufacturing apparatus and method for the ingot
DE112013006489B4 (en) 2013-01-23 2018-07-05 Lg Siltron Incorporated Single crystal ingot, apparatus and method of making the same
TWI722308B (en) * 2017-08-09 2021-03-21 日商互應化學工業股份有限公司 Manufacturing method of multi-layered printed wiring board and multi-layered printed wiring board

Similar Documents

Publication Publication Date Title
JP4142332B2 (en) Single crystal silicon manufacturing method, single crystal silicon wafer manufacturing method, single crystal silicon manufacturing seed crystal, single crystal silicon ingot, and single crystal silicon wafer
TWI324643B (en)
JP3841863B2 (en) Method of pulling silicon single crystal
KR100799362B1 (en) Method for producing silicon single crystal
TW201002876A (en) Method for growing silicon single crystal
US6056818A (en) Method of manufacturing a silicon monocrystal, and method of holding the same
JP2000313693A (en) Thermal conduction type seed crystal for producing semiconductor single crystal and growth of single crystal by the thermal conduction type seed crystal
JPH09208364A (en) Production of silicon single crystal
KR100582237B1 (en) Method of producing a silicon monocrystal
JPH04104988A (en) Growth of single crystal
JPH09235186A (en) Seed crystal for lifting single crystal and lifting of single crystal with the seed crystal
JPH0340987A (en) Growing method for single crystal
JP2723249B2 (en) Crystal growing method and crucible for crystal growing
JP2000154091A (en) Production of silicon single crystal and seed holder therefor
JP4330230B2 (en) Single crystal growth method
JPH1179883A (en) Production of single crystal and seed crystal for single crystal production
JP2004269335A (en) Production method for single crystal
JP2011225408A (en) Method for manufacturing silicon single crystal
JPH0680493A (en) Method for crystal growth and crucible for use therefor
JPH11209197A (en) Production of silicon single crystal
JPH0725694A (en) Graphite crucible for growing semiconductor single crystal
JP4273820B2 (en) Single crystal pulling method
JP4389465B2 (en) Single crystal pulling method
JPH09165297A (en) Growth of silicon single crystal and its seed crystal
JPH11349398A (en) Production of silicon single crystal