JP2000312029A - Semiconductor light emitting element and its manufacture - Google Patents

Semiconductor light emitting element and its manufacture

Info

Publication number
JP2000312029A
JP2000312029A JP11871699A JP11871699A JP2000312029A JP 2000312029 A JP2000312029 A JP 2000312029A JP 11871699 A JP11871699 A JP 11871699A JP 11871699 A JP11871699 A JP 11871699A JP 2000312029 A JP2000312029 A JP 2000312029A
Authority
JP
Japan
Prior art keywords
gap
layer
light emitting
substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11871699A
Other languages
Japanese (ja)
Inventor
Akihiko Inoue
明彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP11871699A priority Critical patent/JP2000312029A/en
Publication of JP2000312029A publication Critical patent/JP2000312029A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the light emitting efficiency of a semiconductor light emitting element by epitaxially thickly growing GaP buffer layers on both surfaces of a GaP substrate and a light emitting layer forming section on one of the buffer layers. SOLUTION: On both surface of a thin GaP substrate 1, epitaxially grown thick surface and rear GaP buffer layers 2 and 3 are respectively formed. On the surface buffer layer 2, a semiconductor-laminated section constituting a light emitting layer forming section 9 is provided. The section 9 is formed by successively laminating an n-type layer having a carrier concentration of about 1×10 to 2×10 cm and a thickness of about 25-40 μm, another n-type layer 5 having a carrier concentration of 1×10 to 3×10 cm and a thickness of about 10-15 μm, and a p-type layer 6 having a carrier concentration of about 1×10 to 2×10 cm and a thickness of about 20-25 μm upon another.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、GaP化合物半導
体を用いた緑色から黄色がかった緑色系の半導体発光素
子およびその製法に関する。さらに詳しくは、外部への
光の取出し効率を向上させたGaP化合物からなる半導
体発光素子およびその製法に関する。
The present invention relates to a green to yellowish green semiconductor light emitting device using a GaP compound semiconductor and a method for producing the same. More specifically, the present invention relates to a semiconductor light emitting device made of a GaP compound and having improved light extraction efficiency to the outside, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来のGaP化合物半導体を用いた半導
体発光素子は、図4に示されるように、たとえばn形の
GaPからなる半導体基板21上に、たとえばGaPか
らなるn形層22およびGaPからなるp形層23がそ
れぞれエピタキシャル成長され、そのpn接合により発
光層形成部24が形成されている。そして、その表面側
の一部に主にAuからなるp側電極26、半導体基板2
1の裏面主にAuからなるn側電極27がそれぞれ設け
られ、ウェハからチップ化されている。
2. Description of the Related Art As shown in FIG. 4, a conventional semiconductor light emitting device using a GaP compound semiconductor is formed on an n-type GaP n-type layer 22 and a GaP n-type layer 22 on a semiconductor substrate 21 made of, for example, n-type GaP. Each of the p-type layers 23 is epitaxially grown, and the light emitting layer forming portion 24 is formed by the pn junction. The p-side electrode 26 mainly made of Au and the semiconductor substrate 2
Each of the n-side electrodes 27 mainly made of Au is provided on the back surface of the substrate 1 and is chipped from the wafer.

【0003】従来GaPを用いた緑色系の半導体発光素
子は、GaP基板上に液相成長などにより形成され、G
aPが発光する光を吸収しないため、pn接合部で発光
して基板側に進んだ光も吸収されないでその側面から出
る光や、基板側で反射した光も利用でき、GaPが間接
遷移型半導体で内部発光効率は低いものの、外部への取
出し効率である外部微分量子効率は比較的よいと考えら
れていた。しかし、GaP基板の結晶性がよくないた
め、光の取出しが必ずしも充分ではなく、この光の取出
し効率を向上させるため、図5に示されるように、Ga
P基板21上にGaPバッファ層25を液相成長法によ
り厚く形成すると共に、GaP基板を薄く研磨してGa
P基板21の厚さのチップ全体の厚さに対する割合を減
少させることにより、発光素子チップ(以下、LEDチ
ップという)の側面からより多くの光を取り出す方策が
とられる場合がある。これは、半導体層はその周囲の空
気などより屈折率が相当大きく、半導体層の表面側で全
反射して、積層された半導体層の上面から正面側に光を
取り出しにくいと共に、ランプ型発光素子などでは、椀
状の凹部にLEDチップがダイボンディングされ、横に
でた光も凹部の内壁により正面側に反射して利用できる
ということに基づいている。
Conventionally, a green semiconductor light emitting device using GaP is formed on a GaP substrate by liquid phase growth or the like.
Since aP does not absorb the light emitted, light emitted at the pn junction and traveling to the substrate side is not absorbed and light emitted from the side surface or light reflected on the substrate side can be used. Although the internal luminous efficiency was low, the external differential quantum efficiency, which is the extraction efficiency to the outside, was considered to be relatively good. However, since the crystallinity of the GaP substrate is not good, the light extraction is not always sufficient. To improve the light extraction efficiency, as shown in FIG.
The GaP buffer layer 25 is formed thick on the P substrate 21 by liquid phase epitaxy, and the GaP substrate is
By reducing the ratio of the thickness of the P substrate 21 to the thickness of the entire chip, a measure may be taken to extract more light from the side surface of a light emitting element chip (hereinafter, referred to as an LED chip). This is because the refractive index of the semiconductor layer is considerably larger than that of the surrounding air, etc., and it is difficult to extract light from the upper surface of the laminated semiconductor layer to the front side by total reflection at the surface side of the semiconductor layer and also to obtain a lamp-type light emitting element. In this method, the LED chip is die-bonded to the bowl-shaped recess, and the light emitted from the side is reflected by the inner wall of the recess toward the front side and can be used.

【0004】[0004]

【発明が解決しようとする課題】従来のGaP層を成長
した半導体発光素子は、前述のように、GaP基板によ
る光の損失の影響をできるだけ避けるため、液相成長法
によるGaPバッファ層を設けることが考えられてい
る。しかし、液相成長法による半導体層の成長は、Ga
融液に接触させながら温度を徐々に下げることにより結
晶成長をさせており、800℃程度まで温度が下がると
成長しなくなる。そのため、1回の液相成長法により成
長する半導体層の厚さは、100〜150μm程度であ
る。このバッファ層を厚くすればするほど、結晶性の悪
いGaP基板を薄くすることができ、外部微分量子効率
を上昇させることができるが、前述のように1回の液相
成長法により成長することができる厚さには限界がある
ため、バッファ層の厚さを厚くしようとすると、バッフ
ァ層を成長する液相成長を2回以上繰り返さなければな
らず、工数が多くかかりコストアップになるという問題
がある。
As described above, in a conventional semiconductor light emitting device having a GaP layer grown thereon, a GaP buffer layer is provided by a liquid phase growth method in order to minimize the influence of light loss due to a GaP substrate. Is considered. However, the growth of the semiconductor layer by the liquid phase epitaxy is based on Ga
Crystal growth is carried out by gradually lowering the temperature while making contact with the melt. When the temperature is lowered to about 800 ° C., growth stops. Therefore, the thickness of the semiconductor layer grown by one liquid phase growth method is about 100 to 150 μm. The thicker the buffer layer, the thinner the GaP substrate with poor crystallinity and the higher the external differential quantum efficiency. However, as described above, it is necessary to grow the substrate by a single liquid phase growth method. However, since there is a limit to the thickness of the buffer layer, if the thickness of the buffer layer is to be increased, the liquid phase growth for growing the buffer layer must be repeated twice or more, which increases the number of steps and increases the cost. There is.

【0005】本発明は、このような状況に鑑みてなされ
たもので、バッファ層を液相成長法により成長する工程
を1回で行いながら、半導体チップ全体の厚さに対する
バッファ層の厚さの比率を上げることにより、外部への
光の取出し効率を向上させ、GaP半導体を用いた黄色
から緑色系の半導体発光素子の外部微分量子効率を向上
させることができる半導体発光素子およびその製法を提
供することを目的とする。
[0005] The present invention has been made in view of such a situation, and the thickness of the buffer layer relative to the thickness of the entire semiconductor chip is increased while performing the step of growing the buffer layer by the liquid phase growth method in one step. Provided are a semiconductor light emitting device and a method for manufacturing the same, which can improve the light extraction efficiency to the outside by increasing the ratio and improve the external differential quantum efficiency of a yellow to green semiconductor light emitting device using a GaP semiconductor. The purpose is to:

【0006】[0006]

【課題を解決するための手段】本発明による半導体発光
素子は、GaP基板と、該GaP基板の両面に厚くエピ
タキシャル成長されたGaPからなるバッファ層と、該
バッファ層の一方側にエピタキシャル成長され、GaP
からなるn形層およびp形層を有し発光層形成部を構成
する半導体積層部とからなっている。
According to the present invention, there is provided a semiconductor light emitting device comprising: a GaP substrate; a buffer layer made of GaP which is epitaxially grown on both sides of the GaP substrate; and a GaP substrate which is epitaxially grown on one side of the buffer layer.
And a semiconductor laminated portion having an n-type layer and a p-type layer, and constituting a light emitting layer forming portion.

【0007】この構造にすることにより、GaP基板の
両面に液相成長法によりエピタキシャル成長された結晶
性がよく厚いGaP層が設けられているため、GaP基
板自身を薄くすることができ、横からの光の取出し効率
を向上させることができる。
[0007] With this structure, the GaP substrate has a good crystallinity and a thick GaP layer epitaxially grown by the liquid phase epitaxy on both surfaces of the GaP substrate. Light extraction efficiency can be improved.

【0008】本発明の半導体発光素子の製法は、GaP
基板の少なくとも裏面側をメルトバックして薄くすると
共に、該薄くされたGaP基板の両面にGaPからなる
バッファ層をエピタキシャル成長し、該GaP基板の表
面側のバッファ層の表面に、発光層形成部を構成するn
形層およびp形層を含む半導体積層部を液相成長法によ
りエピタキシャル成長することを特徴とする。
The manufacturing method of the semiconductor light emitting device of the present invention is GaP.
At least the back side of the substrate is melted back to make it thinner, and a buffer layer made of GaP is epitaxially grown on both sides of the thinned GaP substrate, and a light emitting layer forming part is formed on the surface of the buffer layer on the front side of the GaP substrate. Constituent n
The semiconductor laminated portion including the p-type layer and the p-type layer is epitaxially grown by a liquid phase growth method.

【0009】この製法にすることにより、バッファ層を
成長する際に、結晶性のよくないGaP基板をメルトバ
ックにより薄くするため、GaP材料が無駄にならない
と共に、その表面だけでなく裏面にもバッファ層をエピ
タキシャル成長しているため、1回の液相成長による同
じ時間で両面に厚く結晶生のよいGaP層を成長するこ
とができる。そのため、全体の厚さは変わらなくても、
従来のGaP基板は非常に薄くなり、結晶性のよいGa
Pからなるバッファ層が厚く形成され、光の減衰を大幅
に削減することができ、外部微分量子効率を向上させる
ことができる。
According to this manufacturing method, when growing a buffer layer, a GaP substrate having poor crystallinity is thinned by meltback, so that the GaP material is not wasted and the buffer is formed not only on the front surface but also on the back surface. Since the layer is epitaxially grown, a thick GaP layer with good crystallinity can be grown on both surfaces in the same time by one liquid phase growth. Therefore, even if the overall thickness does not change,
The conventional GaP substrate is very thin and has good crystallinity.
Since the buffer layer made of P is formed thick, light attenuation can be greatly reduced, and external differential quantum efficiency can be improved.

【0010】[0010]

【発明の実施の形態】つぎに、図面を参照しながら本発
明の半導体発光素子およびその製法について説明をす
る。
Next, a semiconductor light emitting device of the present invention and a method of manufacturing the same will be described with reference to the drawings.

【0011】本発明の半導体発光素子は、図1にその一
実施形態の半導体発光素子チップ(以下、LEDチップ
という)の断面説明図が示されるように、GaP基板1
が薄くされてその両面に厚くエピタキシャル成長された
GaPからなる表面バッファ層2および裏面バッファ層
3が設けられている。そして、表面バッファ層2の上
に、GaPからなるn形層5およびp形層6を有し発光
層形成部9を構成する半導体積層部が設けられている。
FIG. 1 is a cross-sectional view of a semiconductor light emitting device chip (hereinafter referred to as an LED chip) according to an embodiment of the present invention.
The surface buffer layer 2 and the back surface buffer layer 3 made of GaP, which are made thick and epitaxially grown on both sides thereof, are provided. Then, on the surface buffer layer 2, a semiconductor laminated portion having an n-type layer 5 and a p-type layer 6 made of GaP and constituting a light emitting layer forming portion 9 is provided.

【0012】GaP基板1は、最初は300μm程度の
ものが用いられるが、メルトバックにより、50〜60
μm程度の厚さに薄くされる。そのメルトバックに引き
続き液相成長によりGaPからなるバッファ層2、3の
成長により、表面バッファ層2が、キャリア濃度が1×
1017〜3×1017-3程度で、50μm程度の厚さ
に、裏面バッファ層3が、キャリア濃度が1×1017
3×1017cm-3程度で、150μm程度の厚さにそれ
ぞれ成長される。同じ時間の成長でありながら、この表
面バッファ層2が薄く、裏面バッファ層3が厚く形成さ
れるのは、図3に示されるように、ウェハの表面を上に
した場合、2枚のウェハに挟まれた領域のGa融液中で
は、上の方ほどGaPの濃度が濃くなるからである。
As the GaP substrate 1, a substrate having a thickness of about 300 μm is used at first.
The thickness is reduced to about μm. Following the meltback, the buffer layers 2 and 3 made of GaP are grown by liquid phase growth, so that the surface buffer layer 2 has a carrier concentration of 1 ×.
In 10 17 ~3 × 10 17 m about -3 to about 50μm thick, the back surface buffer layer 3, a carrier concentration of 1 × 10 17 ~
Each is grown to a thickness of about 150 μm at about 3 × 10 17 cm −3 . Although the front buffer layer 2 is formed thin and the back buffer layer 3 is formed thick even when the growth is performed for the same period of time, as shown in FIG. This is because, in the Ga melt in the interposed region, the GaP concentration becomes higher toward the upper side.

【0013】発光層形成部9は、図1に示される例で
は、キャリア濃度が1×1017〜2×1017cm-3程度
で、25〜40μm程度の厚さのn+ 形層4と、キャリ
ア濃度が1×1016〜3×1016cm-3程度で、10〜
15μm程度の厚さのn- 形層5と、キャリア濃度が1
×1018〜2×1018cm-3程度で、20〜25μm程
度の厚さのp形層6とからなっている。
In the example shown in FIG. 1, the light emitting layer forming section 9 has an n + -type layer 4 having a carrier concentration of about 1 × 10 17 to 2 × 10 17 cm -3 and a thickness of about 25 to 40 μm. The carrier concentration is about 1 × 10 16 to 3 × 10 16 cm −3 ,
An n -type layer 5 having a thickness of about 15 μm and a carrier concentration of 1
In × 10 18 ~2 × 10 18 cm about -3, it is made of p-type layer 6 which a thickness of about 20 to 25 m.

【0014】このLEDチップを製造するには、図2に
示されるように、1100℃程度の高温まで耐えられる
材質で作られた、たとえばカーボンボート11にGaP
基板1を載せるための段差12を設けておき、この段差
部12にGaP基板1を載置したときに、GaP基板1
の裏面にもGa融液15が接するように開口部13が設
けられたボートを使用し、たとえば900℃でGaPと
Ga融液を別部分で接触させて飽和融液を作りGaP基
板1に流し込む。そして、基板温度を1000〜105
0℃程度に上げると、Ga融液15が未飽和状態となる
ため、GaP基板1がメルトバックされGa融液中に溶
解して薄くなる。この際、Ga融液15は、Pの濃度が
高いほど軽くなるため上層に集まりやすく、上層、すな
わちGaP基板1の裏面側は飽和状態で、表面側はGa
融液15が未飽和状態になりやすい。そのため、前述の
温度を維持すると、GaP基板1の裏面側(図の下側)
はある一定のメルトバックで停止し、GaP基板1の表
面側は比較的多くメルトバックされてGaP基板1が薄
くなる。
To manufacture this LED chip, as shown in FIG. 2, a carbon boat 11 made of a material that can withstand a high temperature of about 1100 ° C.
A step 12 for mounting the substrate 1 is provided, and when the GaP substrate 1 is mounted on the step 12, the GaP substrate 1
Using a boat provided with an opening 13 so that the Ga melt 15 is also in contact with the back surface of the substrate, GaP and Ga melt are brought into contact with each other at 900 ° C. to form a saturated melt and poured into the GaP substrate 1. . Then, the substrate temperature is set to 1000 to 105
When the temperature is raised to about 0 ° C., the Ga melt 15 becomes unsaturated, so that the GaP substrate 1 is melted back and dissolved in the Ga melt to become thin. At this time, the higher the concentration of P, the lighter the Ga melt 15 is, the lighter it becomes, and the easier it is to gather in the upper layer.
The melt 15 is likely to be in an unsaturated state. Therefore, when the above-described temperature is maintained, the back side of the GaP substrate 1 (the lower side in the figure)
Stops at a certain meltback, and the surface side of the GaP substrate 1 is melted back relatively much, so that the GaP substrate 1 becomes thin.

【0015】メルトバックにより、GaP基板1が30
0μm程度から50〜60μm程度になった後、基板温
度を1〜3℃/分程度の割合で降温させる。そうする
と、Ga融液15が過飽和状態になってGaPの結晶が
GaP基板1に成長する。これを基板温度が800℃程
度になるまで続けることにより、図1に示されるよう
に、表面バッファ層2が50μm程度成長し、GaP基
板1の裏面に裏面バッファ層3が150μm程度成長す
る。そして、室温まで基板温度をさげてから取り出す
(800℃より低い温度では成長しない)。この表面バ
ッファ層2が薄く、裏面バッファ層3が厚くなるのは、
前述のように、比重の関係でGa融液15の上層(Ga
P基板1の裏面側)がGaP濃度が高く、下層(GaP
基板1の表面側)がGaP濃度が低いためである。
Due to the melt back, the GaP substrate 1 has 30
After the thickness is reduced from about 0 μm to about 50 to 60 μm, the substrate temperature is decreased at a rate of about 1 to 3 ° C./min. Then, the Ga melt 15 becomes supersaturated, and GaP crystals grow on the GaP substrate 1. By continuing this until the substrate temperature becomes about 800 ° C., as shown in FIG. 1, the front buffer layer 2 grows about 50 μm, and the back buffer layer 3 grows about 150 μm on the back surface of the GaP substrate 1. Then, the substrate temperature is lowered to room temperature and then taken out (the substrate is not grown at a temperature lower than 800 ° C.). The reason why the front surface buffer layer 2 is thin and the back surface buffer layer 3 is thick is as follows.
As described above, the upper layer of the Ga melt 15 (Ga
The backside of the P substrate 1) has a high GaP concentration, and the lower layer (GaP
This is because the GaP concentration of the surface side of the substrate 1) is low.

【0016】その後、今度はGaP基板1の表面バッフ
ァ層2の側のみがGa融液に接触するように液相成長装
置に入れて、接触させるGa融液の不純物濃度やドーパ
ントを変えて順次接触させることにより、前述のキャリ
ア濃度および厚さにn+ 形GaP層4、n- 形GaP層
5、およびp形GaP層6を成長し、発光層形成部9を
積層する。
Thereafter, the GaP substrate 1 is placed in a liquid phase growth apparatus so that only the surface buffer layer 2 side of the GaP substrate 1 comes into contact with the Ga melt. By doing so, the n + -type GaP layer 4, the n -type GaP layer 5, and the p-type GaP layer 6 are grown to the above-described carrier concentration and thickness, and the light-emitting layer forming section 9 is laminated.

【0017】Ga融液の前述の性質を利用すれば、図3
に示されるように、たとえばカーボンボート11を多段
に重ねてGaP層基板1を各ボート11に載置してGa
融液と接触させ、同様に最初温度を上げてGaP層基板
1をメルトバックし、その後温度を徐々に下げることに
より、多数のGaP基板1の表裏両面に一度にGaP層
からなるバッファ層2、3を液相成長法により厚く成長
することができる。
By utilizing the aforementioned properties of the Ga melt, FIG.
As shown in FIG. 2, for example, the carbon boats 11 are stacked in multiple stages, and the GaP layer
By bringing the GaP layer substrate 1 into contact with the melt, the temperature is first raised and the GaP layer substrate 1 is melted back, and then the temperature is gradually lowered. 3 can be grown thick by a liquid phase growth method.

【0018】本発明によれば、GaP層基板の表面側の
みならず、裏面側にもGaP層がバッファ層として液相
成長法により設けられているため、結晶性がよく光の損
失が少ない半導体層を厚く成長することができる。しか
も、基板の両面に設けられているため、同時に成長する
ことができ、1回の成長工程の短時間で厚いエピタキシ
ャル成長層を得ることができる。その結果、チップ全体
の厚さに対する結晶性のよいGaP層の厚さの割合が大
きくなり、LEDチップの側面からも効率よく光を取り
出すことができ、外部微分量子効率を大幅に向上させる
ことができる。この場合、成長前にGaP基板1を薄く
しておくことにより、より一層結晶性の悪いGaP基板
の比率を小さくすることができる。
According to the present invention, the GaP layer is provided not only on the front side but also on the back side of the GaP layer substrate by the liquid phase growth method as a buffer layer, so that the semiconductor has good crystallinity and low light loss. Layers can be grown thick. In addition, since they are provided on both surfaces of the substrate, they can be grown simultaneously, and a thick epitaxial growth layer can be obtained in a short time in one growth step. As a result, the ratio of the thickness of the GaP layer having good crystallinity to the thickness of the entire chip is increased, light can be efficiently extracted from the side of the LED chip, and the external differential quantum efficiency can be greatly improved. it can. In this case, by making the GaP substrate 1 thin before growth, the ratio of the GaP substrate having poorer crystallinity can be further reduced.

【0019】さらに本発明の製法によれば、バッファ層
を成長する前に、その成長装置で温度を上昇させるだけ
で、結晶性のよくないGaP基板1をメルトバックして
薄くすることができ、わざわざGaP基板を機械的化学
的に研磨しなくても簡単に薄くすることができると共
に、そのメルトバックしたGaPを新たなエピタキシャ
ル成長の材料として利用することができる。その結果、
GaP材料を無駄にすることなく結晶性の優れたGaP
層を厚く形成することができる。そのため、成長工数お
よび成長材料を大幅に減らすことができ、非常にコスト
ダウンをしながら外部微分量子効率の高い高特性の半導
体発光素子を安価に得ることができる。
Further, according to the manufacturing method of the present invention, the GaP substrate 1 having poor crystallinity can be melt-backed and thinned just by increasing the temperature in the growth apparatus before growing the buffer layer. The thickness of the GaP substrate can be easily reduced without mechanically and chemically polishing the GaP substrate, and the melted-back GaP can be used as a new material for epitaxial growth. as a result,
GaP with excellent crystallinity without wasting GaP material
The layer can be formed thick. Therefore, the number of growth steps and the growth material can be significantly reduced, and a semiconductor light emitting device having high external differential quantum efficiency and high characteristics can be obtained at a low cost while significantly reducing the cost.

【0020】なお、前述の例では、発光層形成部9がn
+ 形層、n- 形層、およびp形層の積層工程であった
が、単純なn形層とp形層だけの構造など、他の構造で
もよい。
In the above-described example, the light emitting layer forming portion 9 is n
Although the lamination process of the + -type layer, the n -type layer, and the p-type layer has been described, other structures such as a structure having only a simple n-type layer and a p-type layer may be used.

【0021】[0021]

【発明の効果】本発明によれば、バッファ層の成長工程
の工数および成長材料を大幅に減らすことができ、コス
トダウンに大きく寄与すると共に、外部への光の取出し
効率(外部微分量子効率)が20%以上向上し、安価で
高特性の黄色から緑色系の半導体発光素子が得られる。
According to the present invention, the number of steps in the growth process of the buffer layer and the material to be grown can be greatly reduced, which greatly contributes to the cost reduction and the light extraction efficiency to the outside (external differential quantum efficiency). Is improved by 20% or more, and an inexpensive and high-performance yellow to green semiconductor light emitting device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体発光素子の一実施形態のLED
チップの断面説明図である。
FIG. 1 shows an LED according to an embodiment of the semiconductor light emitting device of the present invention.
FIG. 3 is an explanatory sectional view of a chip.

【図2】図1のバッファ層を成長する装置の一例の説明
図である。
FIG. 2 is an explanatory diagram of an example of an apparatus for growing the buffer layer of FIG.

【図3】図2のボートを多段に積層して、一度に多数の
ウェハの両面にバッファ層を成長する例の説明図であ
る。
3 is an explanatory diagram of an example in which the boats of FIG. 2 are stacked in multiple stages and buffer layers are grown on both surfaces of a large number of wafers at a time.

【図4】従来のGaP層を用いたLEDチップの構造例
の説明図である。
FIG. 4 is an explanatory diagram of a structural example of an LED chip using a conventional GaP layer.

【図5】従来のLEDチップで外部微分量子効率を向上
させるLEDチップの構造例を示す図である。
FIG. 5 is a diagram showing an example of the structure of an LED chip that improves external differential quantum efficiency with a conventional LED chip.

【符号の説明】[Explanation of symbols]

1 GaP基板 2 表面バッファ層 3 裏面バッファ層 4 n+ 形GaP層 5 n- 形GaP層 6 p形GaP層 9 発光層形成部REFERENCE SIGNS LIST 1 GaP substrate 2 front buffer layer 3 back buffer layer 4 n + -type GaP layer 5 n --type GaP layer 6 p-type GaP layer 9 light-emitting layer forming part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 GaP基板と、該GaP基板の両面に厚
くエピタキシャル成長されたGaPからなるバッファエ
ピタキシャル成長層と、該バッファエピタキシャル成長
層の一方側にエピタキシャル成長され、GaPからなる
n形層およびp形層を有し発光層形成部を構成する半導
体積層部とからなる半導体発光素子。
1. A semiconductor device comprising: a GaP substrate; a buffer epitaxial growth layer of GaP thickly grown on both sides of the GaP substrate; and an n-type layer and a p-type layer of GaP epitaxially grown on one side of the buffer epitaxial growth layer. A semiconductor light emitting element comprising: a light emitting layer forming portion;
【請求項2】 GaP基板の少なくとも裏面側をエッチ
バックして薄くすると共に、該薄くされたGaP基板の
両面にGaPからなるバッファ層をエピタキシャル成長
し、該GaP基板の表面側のバッファ層の表面に、発光
層形成部を構成するn形層およびp形層を含む半導体積
層部を液相成長法によりエピタキシャル成長することを
特徴とする半導体発光素子の製法。
At least the back surface of the GaP substrate is etched back to make it thinner, and a buffer layer made of GaP is epitaxially grown on both surfaces of the thinned GaP substrate. A method of manufacturing a semiconductor light emitting device, comprising: epitaxially growing a semiconductor laminated portion including an n-type layer and a p-type layer constituting a light emitting layer forming portion by a liquid phase epitaxy method.
JP11871699A 1999-04-26 1999-04-26 Semiconductor light emitting element and its manufacture Pending JP2000312029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11871699A JP2000312029A (en) 1999-04-26 1999-04-26 Semiconductor light emitting element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11871699A JP2000312029A (en) 1999-04-26 1999-04-26 Semiconductor light emitting element and its manufacture

Publications (1)

Publication Number Publication Date
JP2000312029A true JP2000312029A (en) 2000-11-07

Family

ID=14743336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11871699A Pending JP2000312029A (en) 1999-04-26 1999-04-26 Semiconductor light emitting element and its manufacture

Country Status (1)

Country Link
JP (1) JP2000312029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231087A (en) * 2011-04-27 2012-11-22 Mitsubishi Chemicals Corp Method of manufacturing nitride-based led
CN102820344A (en) * 2012-08-06 2012-12-12 厦门理工学院 Gallium, arsenic and phosphorus/gallium phosphide yellow light narrow-band detector and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231087A (en) * 2011-04-27 2012-11-22 Mitsubishi Chemicals Corp Method of manufacturing nitride-based led
CN102820344A (en) * 2012-08-06 2012-12-12 厦门理工学院 Gallium, arsenic and phosphorus/gallium phosphide yellow light narrow-band detector and manufacturing method thereof
CN102820344B (en) * 2012-08-06 2015-04-08 厦门理工学院 Gallium, arsenic and phosphorus/gallium phosphide yellow light narrow-band detector and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3973799B2 (en) Gallium nitride compound semiconductor light emitting device
US20020050601A1 (en) Semiconductor light-emitting device and method of manufacturing the same
TWI751143B (en) LED epitaxial wafer based on patterned Si substrate and preparation method thereof
KR101874593B1 (en) Iii-v light emitting device including a light extracting structure
JP2004512688A (en) Method of manufacturing a GaN-based semiconductor device
WO2013131449A1 (en) Methods for manufacturing isolated deep trench and high-voltage led chip
JPH09186364A (en) Nitride iii-v compound semiconductor device and its manufacturing method
US20070105260A1 (en) Nitride-based semiconductor device and production method thereof
JPH1051030A (en) Group iii nitride semiconductor light-emitting element
JP2010098068A (en) Light emitting diode, manufacturing method thereof, and lamp
CN113224212A (en) Multicolor-stacked step-type backlight Micro-LED display device and preparation method thereof
JP4121551B2 (en) Light emitting device manufacturing method and light emitting device
JP2007049062A (en) Semiconductor light emitting element, lighting system employing it, and process for fabricating semiconductor light emitting element
JP4313478B2 (en) AlGaInP light emitting diode
JP2000312029A (en) Semiconductor light emitting element and its manufacture
JPH08255929A (en) Fabrication of semiconductor light emitting element
JPH0851235A (en) Manufacture of semiconductor light emitting element
JPH10321907A (en) Light-emitting semiconductor element and its manufacture
JPH11354837A (en) Light emitting diode and fabrication thereof
JP4565320B2 (en) Method for manufacturing light emitting device
JP2001015805A (en) AlGaInP LIGHT-EMITTING ELEMENT AND EPITAXIAL WAFER THEREFOR
JPH0883928A (en) Semiconductor light emitting element and manufacture thereof
JPH06302858A (en) Substrate for gap red light emitting element and manufacture thereof
JPH0766450A (en) Light emitting diode device and its manufacture
US20230207736A1 (en) Light emitting diode with vertical structure and manufacturing method thereof