JP2000311686A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2000311686A
JP2000311686A JP11121404A JP12140499A JP2000311686A JP 2000311686 A JP2000311686 A JP 2000311686A JP 11121404 A JP11121404 A JP 11121404A JP 12140499 A JP12140499 A JP 12140499A JP 2000311686 A JP2000311686 A JP 2000311686A
Authority
JP
Japan
Prior art keywords
oxide film
lithium
secondary battery
ratio
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11121404A
Other languages
Japanese (ja)
Inventor
Yoshimasa Koishikawa
佳正 小石川
Kotaro Kobayashi
康太郎 小林
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP11121404A priority Critical patent/JP2000311686A/en
Publication of JP2000311686A publication Critical patent/JP2000311686A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the cycle life characteristic of a battery by covering the grain surface of an amorphous carbon material as a negative electrode active material with an oxide film. SOLUTION: The grain surface of an amorphous carbon material is covered with an oxide film in a lithium secondary battery using the amorphous carbon material as a negative electrode active material and lithium manganate as a positive electrode active material. This oxide film suppresses the formation of a film inactive for the intrusion/desorption of lithium and does not cause extreme deterioration at a high temperature, and it improves the cycle life characteristic of the lithium secondary battery. When the oxygen/carbon weight ratio (O/C ratio) of the oxide film is below 0.02, the covering effect on the grain surface is small. When the 0/C ratio exceeds 0.07, the oxide film itself impairs the intrusion/desorption of lithium or causes a side reaction with an electrolyte, deterioration occurs on other performance, and the O/C ratio is preferably set to 0.02-0.07.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池に
係り、特に非晶質炭素材を負極活物質としマンガン酸リ
チウムを正極活物質としたリチウム二次電池に関する。
The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery using an amorphous carbon material as a negative electrode active material and lithium manganate as a positive electrode active material.

【0002】[0002]

【従来の技術】従来、再充電可能な二次電池の分野で
は、鉛電池、ニッケル−カドミウム電池、ニッケル−水
素電池等の水溶液系電池が主流であった。しかしなが
ら、地球温暖化や枯渇燃料の問題から電気自動車(E
V)や駆動の一部を電気モーターで補助するハイブリッ
ド自動車が着目され、その電源に用いられる電池にはよ
り高容量で高出力な電池が求められるようになってき
た。このような要求に合致する電源として、高電圧を有
する非水溶液系のリチウム二次電池が注目されている。
2. Description of the Related Art In the field of rechargeable secondary batteries, aqueous batteries such as lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries have hitherto been the mainstream. However, due to global warming and exhausted fuel, electric vehicles (E
V) and hybrid vehicles, in which a part of the drive is assisted by an electric motor, have attracted attention, and batteries with higher capacity and higher output have been demanded for the batteries used for the power sources. As a power source meeting such a demand, a non-aqueous solution type lithium secondary battery having a high voltage has attracted attention.

【0003】リチウム二次電池の負極材には一般的には
炭素材が用いられており、この炭素材は、天然黒鉛や鱗
片状、塊状等の人造黒鉛、メソフェーズピッチ系黒鉛等
の黒鉛系材料とフルフリルアルコール等のフラン樹脂等
を焼成した非晶質炭素材料が用いられている。黒鉛系材
料は不可逆容量が小さく電圧特性も平坦であり高容量で
あることが特徴であるが、サイクル寿命特性が劣るとい
う問題がある。また、合成樹脂を焼成した非晶質炭素は
黒鉛の理論容量値以上の容量が得られサイクル寿命特性
にも優れるという特徴を持つが不可逆容量が大きく、電
池での高容量化が難しいという欠点がある。
[0003] A carbon material is generally used as a negative electrode material of a lithium secondary battery, and this carbon material is a graphite material such as artificial graphite such as natural graphite, scaly or massive, and mesophase pitch graphite. And an amorphous carbon material obtained by firing furan resin such as furfuryl alcohol. Graphite-based materials are characterized by low irreversible capacity, flat voltage characteristics and high capacity, but have the problem of poor cycle life characteristics. Amorphous carbon obtained by calcining a synthetic resin has the characteristic that it has a capacity greater than the theoretical capacity of graphite and has excellent cycle life characteristics, but has the disadvantage that it has a large irreversible capacity and it is difficult to increase the capacity in batteries. is there.

【0004】正極材にはリチウム遷移金属酸化物が用い
られており、中でも容量やサイクル特性等のバランスか
らコバルト酸リチウムが用いられているが、原料である
コバルトの資源量が少なくコスト高となることから、電
気自動車やハイブリッド自動車用電池の材料としてマン
ガン酸リチウムが有望視され開発が進められている。
[0004] Lithium transition metal oxide is used for the positive electrode material. Among them, lithium cobalt oxide is used because of its balance in capacity and cycle characteristics. However, the amount of resources of cobalt as a raw material is small and the cost is high. Therefore, lithium manganate is promising as a material for batteries for electric vehicles and hybrid vehicles, and is being developed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、マンガ
ン酸リチウムを正極材に用いた二次電池の高温下でのサ
イクル寿命や保存時の寿命は、電気自動車への用途を想
定した場合必ずしも十分とはいえない。すなわち、常温
下に比べ50°C程度の高温下でもサイクル寿命が極端
に短くなる。
However, the cycle life and storage life of a secondary battery using lithium manganate as a positive electrode material at a high temperature are not always sufficient when used for an electric vehicle. I can't say. That is, the cycle life becomes extremely short even at a high temperature of about 50 ° C. as compared with the normal temperature.

【0006】これに対し、マンガン酸リチウム結晶中の
マンガン原子の一部をコバルトやクロム等の異種金属で
置換することにより、サイクル寿命特性を向上させるこ
とが種々提案されており、一応の効果は認められている
ものの、これも十分とはいえない。
On the other hand, various proposals have been made to improve the cycle life characteristics by replacing a part of the manganese atoms in the lithium manganate crystal with a dissimilar metal such as cobalt or chromium. Although recognized, this is not enough.

【0007】本発明は上記事案に鑑み、非晶質炭素を負
極にマンガン酸リチウムを正極に用いたリチウム二次電
池において、サイクル寿命特性を改善したリチウム二次
電池を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a lithium secondary battery using amorphous carbon as a negative electrode and lithium manganate as a positive electrode, the lithium secondary battery having improved cycle life characteristics. .

【0008】[0008]

【課題を解決するための手段】上記目的を解決するため
に、本発明は、非晶質炭素材を負極活物質としマンガン
酸リチウムを正極活物質としたリチウム二次電池におい
て、前記非晶質炭素材は粒子表面が酸化膜で被覆されて
いることを特徴とする。本発明では、粒子表面を酸化膜
で被覆した非晶質炭素を負極活物質とする。この酸化膜
は、リチウムの挿入/脱離に対して不活性な被膜の形成
を抑制すると共に、高温下でも極端な劣化を招くことが
ないので、リチウム二次電池のサイクル寿命特性を改善
することができる。このとき、酸素膜の酸素の炭素に対
する重量比(O/C比)=0.02未満では粒子表面を
被覆した効果が少なく、O/C比=0.07を越えると
酸素被膜自身がリチウムの挿入/脱離を妨げたり、電解
液等と副反応を起こし他の性能面での劣化が生じるの
で、O/C比を0.02以上0.07以下とすることが
好ましい。
To achieve the above object, the present invention provides a lithium secondary battery comprising an amorphous carbon material as a negative electrode active material and lithium manganate as a positive electrode active material. The carbon material is characterized in that the particle surface is coated with an oxide film. In the present invention, amorphous carbon having a particle surface coated with an oxide film is used as a negative electrode active material. This oxide film suppresses the formation of a film that is inactive against lithium insertion / desorption, and does not cause extreme deterioration even at high temperatures, so that the cycle life characteristics of the lithium secondary battery can be improved. Can be. At this time, if the weight ratio (O / C ratio) of oxygen to carbon (O / C ratio) of the oxygen film is less than 0.02, the effect of coating the particle surface is small, and if the O / C ratio exceeds 0.07, the oxygen coating itself becomes lithium. The O / C ratio is preferably set to 0.02 or more and 0.07 or less, since the insertion / desorption is prevented or a side reaction occurs with an electrolytic solution or the like to cause deterioration in other performance aspects.

【0009】[0009]

【発明の実施の形態】以下、本発明が適用されるリチウ
ム二次電池の実施例について、実施例の効果を確認する
ために作製した比較例と比較しつつ詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a lithium secondary battery to which the present invention is applied will be described in detail while comparing with a comparative example manufactured to confirm the effects of the embodiments.

【0010】(実施例1) <電池の作製方法> [負極] まず、負極を作製するために、非晶質炭素粒子
を80°Cの乾燥空気流中に所定時間分散させ、非晶質
炭素の粒子表面に酸化膜を形成した。この酸化膜の酸素
に対する重量比(O/C比)を0.01とした。なお、
O/C比はXPS(Xray Photoelectron Spectroscop
y、X線光電子分光分析)により測定した。
(Example 1) <Method of Manufacturing Battery> [Negative Electrode] First, in order to manufacture a negative electrode, amorphous carbon particles were dispersed in a dry air stream at 80 ° C. for a predetermined time. An oxide film was formed on the surface of the particles. The weight ratio (O / C ratio) of this oxide film to oxygen was set to 0.01. In addition,
O / C ratio is XPS (Xray Photoelectron Spectroscop)
y, X-ray photoelectron spectroscopy).

【0011】粒子表面に酸化膜を形成した負極活物質と
しての非晶質炭素粉末90重量部に対し、結着剤として
ポリフッ化ビニリデンを負極活物質に対し10重量部添
加し、これに分散溶媒としてN−メチルピロリドンを添
加、混練したスラリを厚さ10μmの圧延銅箔の両面に
塗布、その後乾燥、プレス、裁断することにより厚さ7
0μmの負極を得た。
To 90 parts by weight of the amorphous carbon powder as the negative electrode active material having an oxide film formed on the particle surface, 10 parts by weight of polyvinylidene fluoride as a binder was added to the negative electrode active material, and the dispersion solvent was added thereto. The slurry obtained by adding and kneading N-methylpyrrolidone was applied to both sides of a rolled copper foil having a thickness of 10 μm, and then dried, pressed and cut to a thickness of 7 μm.
A negative electrode of 0 μm was obtained.

【0012】[正極] 正極活物質としてのマンガン酸リ
チウム(Li/Mn組成比=0.58)に、導電材とし
て正極活物質100重量部に対して10重量部の鱗片状
黒鉛と結着剤としてポリフッ化ビニリデンを5重量部添
加し、これに分散溶媒としてN−メチルピロリドンを添
加、混練したスラリを厚さ20μmのアルミニウム箔の
両面に塗布、その後乾燥、プレス、裁断することにより
厚さ70μmの正極を得た。
[Positive Electrode] Lithium manganate (Li / Mn composition ratio = 0.58) as a positive electrode active material, 10 parts by weight of flake graphite with respect to 100 parts by weight of a positive electrode active material as a conductive material, and a binder 5 parts by weight of polyvinylidene fluoride, N-methylpyrrolidone as a dispersing solvent was added thereto, and the kneaded slurry was applied to both sides of a 20-μm-thick aluminum foil, and then dried, pressed and cut to a thickness of 70 μm. Was obtained.

【0013】[電池の作製] 上記のようにして作製した
正負極を、厚さ25μmのポリエチレン製セパレータを
介して捲回して電極群とし、電極群を円筒形の電池容器
に挿入、電解液を所定量注入後上蓋をかしめ封口するこ
とにより円筒形リチウム二次電池を得た。電解液にはエ
チレンカーボネートとジメチルカーボネートとの混合溶
液中に6フッ化リン酸リチウム(LiPF)を1モル
/リットル溶解したものを用いた。このリチウム二次電
池の容量は4.0Ahである。
[Preparation of Battery] The positive and negative electrodes prepared as described above are wound through a 25 μm-thick polyethylene separator to form an electrode group. The electrode group is inserted into a cylindrical battery container, and the electrolytic solution is discharged. After pouring a predetermined amount, the upper lid was swaged and sealed to obtain a cylindrical lithium secondary battery. As the electrolytic solution, a solution prepared by dissolving 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) in a mixed solution of ethylene carbonate and dimethyl carbonate was used. The capacity of this lithium secondary battery is 4.0 Ah.

【0014】(実施例2〜8)非晶質炭素の粒子表面に
形成した酸素膜のO/C比を次表1に示すように変化さ
せて、実施例2〜実施例8に用いる負極を作製した。負
極以外は実施例1と同様の正極、セパレータ、電解液を
用い、同様の方法によりリチウム二次電池を組み立て
た。
Examples 2 to 8 The negative electrodes used in Examples 2 to 8 were changed by changing the O / C ratio of the oxygen film formed on the surface of the amorphous carbon particles as shown in Table 1 below. Produced. A lithium secondary battery was assembled by the same method using the same positive electrode, separator, and electrolyte as in Example 1 except for the negative electrode.

【0015】[0015]

【表1】 [Table 1]

【0016】(比較例1)酸化膜の形成処理を施してい
ない非晶質炭素(O/C比=0)を用い、それ以外は実
施例1と同様の正極、セパレータ、電解液を用い、同様
の方法によりリチウム二次電池を組み立てた。
(Comparative Example 1) Amorphous carbon (O / C ratio = 0) not subjected to an oxide film forming process was used. A lithium secondary battery was assembled in the same manner.

【0017】<試験・評価> [試験] 次に、このようにして作製した実施例及び比較
例の各電池について、高温サイクル寿命試験及び出力試
験を行った。高温サイクル寿命試験では、初期容量安定
化運転後に50°Cの雰囲気にて1時間率(1C)で定
電流定電圧充電(上限電圧4.1V)を4時間した後、
1時間率(1C)でDOD=40%(24分)だけ放電
する条件とした。寿命判定は初期容量の80%とした。
また、出力試験では、満充電状態から1A、3A、6A
の各電流値で放電し、5秒目の電圧を測定、この電流−
電圧特性から求めた。また、酸化膜の形成処理を施して
いない非晶質炭素粉末を負極に用いた比較例1の電池の
出力を100とし各実施例の電池の出力比を算出した。
<Test / Evaluation> [Test] Next, a high-temperature cycle life test and an output test were performed on the batteries of the examples and the comparative examples thus manufactured. In the high-temperature cycle life test, after the initial capacity stabilization operation, constant-current constant-voltage charging (upper limit voltage: 4.1 V) was performed for 4 hours at an hourly rate (1 C) in an atmosphere of 50 ° C.
The conditions were such that DOD = 40% (24 minutes) at 1 hour rate (1C). The life was determined to be 80% of the initial capacity.
In the output test, 1A, 3A, 6A
Discharge at each current value of, and measure the voltage at 5 seconds.
It was determined from the voltage characteristics. In addition, the output ratio of the battery of Comparative Example 1 using the amorphous carbon powder not subjected to the oxide film forming process for the negative electrode was set to 100, and the output ratio of the battery of each example was calculated.

【0018】[試験結果] 表2、図1及び図2に高温サ
イクル寿命試験及び出力試験の試験結果を示す。
[Test Results] Table 2, FIG. 1 and FIG. 2 show test results of a high-temperature cycle life test and an output test.

【0019】[0019]

【表2】 [Table 2]

【0020】[評価] 非晶質炭素粉末表面の酸素量をO
/C比=0.02以上0.07以下とした実施例2〜7
の電池は、50°Cの高温下においていずれも150サ
イクル以上の良好なサイクル寿命が見られた。またこれ
らの実施例の電池は、酸化膜の形成処理を施さない比較
例1の電池に対し85%以上の出力を維持した。実施例
1の電池では、サイクル寿命の向上は見られるものの、
他の実施例の電池が比較例1の電池に対し倍以上のサイ
クル寿命を示すのに対し、サイクル寿命の向上が3割程
度とそれ程大きくはなかった。実施例8の電池では、サ
イクル寿命は大きく向上しているが、出力の低下も大き
くなっている。これは、O/C比=0.08となると形
成した被膜により電極抵抗が急激に大きくなることによ
ると考えられる。一方、比較例1の電池は70サイクル
程度のサイクル寿命であり、酸化膜を形成した各実施例
の電池に対し大きく劣っていた。
[Evaluation] The amount of oxygen on the surface of the amorphous carbon
Examples 2 to 7 where the / C ratio was 0.02 or more and 0.07 or less
All of the batteries exhibited a good cycle life of 150 cycles or more at a high temperature of 50 ° C. In addition, the batteries of these examples maintained an output of 85% or more as compared with the batteries of Comparative Example 1 in which the oxide film was not formed. In the battery of Example 1, although the cycle life was improved,
While the batteries of the other examples exhibited a cycle life more than twice that of the battery of Comparative Example 1, the improvement in the cycle life was not so large at about 30%. In the battery of Example 8, the cycle life was greatly improved, but the output was also greatly reduced. This is considered to be due to the fact that when the O / C ratio is 0.08, the electrode resistance is rapidly increased due to the formed film. On the other hand, the battery of Comparative Example 1 had a cycle life of about 70 cycles, and was significantly inferior to the batteries of Examples in which an oxide film was formed.

【0021】以上の結果から、粒子表面を酸化膜で被覆
した非晶質炭素粉末を負極に用いたリチウム二次電池で
は、実施例2〜7の電池のように、O/C比が0.02
以上0.07以下の場合に、出力を低下させずに、大幅
にサイクル寿命が向上することが分かった。また、この
酸化膜はリチウムの挿入/脱離に対して不活性な被膜の
形成を抑制するので、サイクル寿命を改善することがで
きる。しかも、この酸化膜は50°Cの高温下でも極端
な劣化をしないから保存時にも有効と考えられる。
From the above results, in the lithium secondary battery using the amorphous carbon powder in which the particle surface is coated with the oxide film as the negative electrode, the O / C ratio is 0.1% as in the batteries of Examples 2 to 7. 02
It was found that when the value was 0.07 or less, the cycle life was significantly improved without lowering the output. Further, the oxide film suppresses the formation of a film that is inactive against insertion / desorption of lithium, so that the cycle life can be improved. In addition, since this oxide film does not undergo extreme deterioration even at a high temperature of 50 ° C., it is considered to be effective during storage.

【0022】なお、本実施形態では、電解液にエチレン
カーボネートとジメチルカーボネートの混合溶液中へ6
フッ化リン酸リチウムを1モル/リットル溶解したもの
を使用したが、電解液には特に制限はなく通常用いられ
ている電解液でも本実施形態と同等の効果が確認されて
いる。すなわち、一般的なリチウム塩を電解質とし、こ
れを有機溶媒に溶解した電解液を使用しても本発明を適
用することができ、これらリチウム塩や有機溶媒にも制
限ない。例えば、電解質としては、LiClO 、Li
AsF、LiPF、LiBF、LiB(C
、CHSOLi、CFSOLi等や
これらの混合物を使用することができる。また、有機溶
媒としては、プロピレンカーボネート、エチレンカーボ
ネート、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、γ−ブチロラクトン、テトラヒドロフラン、
1,3−ジオキソラン、4−メチル−1,3−ジオキソ
ラン、ジエチルエーテル、スルホラン、メチルスルホラ
ン、アセトニトリル、プロピオニトリル等又はこれら2
種類以上の混合溶媒を使用することができる。
In this embodiment, the electrolyte is ethylene.
Into a mixed solution of carbonate and dimethyl carbonate 6
1 mol / liter of lithium fluorophosphate dissolved
Was used, but there is no particular limitation on the electrolytic solution and it is usually used.
The same effect as this embodiment was confirmed with the electrolyte
I have. That is, a general lithium salt is used as the electrolyte,
The present invention is also applicable to the use of an electrolyte in which
It can control these lithium salts and organic solvents.
No limit. For example, as the electrolyte, LiClO 4, Li
AsF6, LiPF6, LiBF4, LiB (C
6H5)4, CH3SO3Li, CF3SO3Li, etc.
These mixtures can be used. In addition, organic solvents
As the medium, propylene carbonate, ethylene carbonate
Nate, 1,2-dimethoxyethane, 1,2-diethoxy
Cietan, γ-butyrolactone, tetrahydrofuran,
1,3-dioxolan, 4-methyl-1,3-dioxo
Run, diethyl ether, sulfolane, methyl sulfora
, Acetonitrile, propionitrile, etc. or these 2
More than one type of mixed solvent can be used.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
非晶質炭素の粒子表面を酸化膜で被覆するようにし、こ
の酸化膜がリチウムの挿入/脱離に対して不活性な被膜
の形成を抑制すると共に、高温下でも極端な劣化を招か
ないので、リチウム二次電池のサイクル寿命特性を改善
することができる、という効果を得ることができる。
As described above, according to the present invention,
Since the surface of the amorphous carbon particles is covered with an oxide film, which suppresses the formation of a film that is inactive against lithium insertion / desorption, it does not cause extreme deterioration even at high temperatures. Thus, the effect that the cycle life characteristics of the lithium secondary battery can be improved can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例及び比較例の電池の高温サイクル寿命試
験結果のO/C比とサイクル数との関係を示すグラフで
ある。
FIG. 1 is a graph showing the relationship between the O / C ratio and the number of cycles in the high-temperature cycle life test results of the batteries of Examples and Comparative Examples.

【図2】実施例及び比較例の電池の出力試験結果のO/
C比と出力比との関係を示すグラフである。
FIG. 2 shows O / O of output test results of batteries of Examples and Comparative Examples.
It is a graph which shows the relationship between C ratio and output ratio.

フロントページの続き (72)発明者 弘中 健介 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H003 AA04 BB01 BC01 BC05 BD04 5H014 AA01 CC01 CC07 EE08 HH01 5H029 AJ05 AK03 AL06 AM03 AM05 AM07 BJ13 HJ01 HJ12 Continuation of the front page (72) Inventor Kensuke Hironaka 2-7-7 Nihonbashi Honcho, Chuo-ku, Tokyo F-term in Shin-Kobe Electric Co., Ltd. 5H003 AA04 BB01 BC01 BC05 BD04 5H014 AA01 CC01 CC07 EE08 HH01 5H029 AJ05 AK03 AL06 AM03 AM05 AM07 BJ13 HJ01 HJ12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非晶質炭素材を負極活物質としマンガン
酸リチウムを正極活物質としたリチウム二次電池におい
て、前記非晶質炭素材は粒子表面が酸化膜で被覆されて
いることを特徴とするリチウム二次電池。
1. A lithium secondary battery using an amorphous carbon material as a negative electrode active material and lithium manganate as a positive electrode active material, wherein the amorphous carbon material has a particle surface coated with an oxide film. Lithium secondary battery.
【請求項2】 前記酸素膜の酸素の炭素に対する重量比
(O/C比)は、0.02以上0.07以下であること
を特徴とする請求項1に記載のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein a weight ratio (O / C ratio) of oxygen to carbon in the oxygen film is 0.02 or more and 0.07 or less.
JP11121404A 1999-04-28 1999-04-28 Lithium secondary battery Pending JP2000311686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11121404A JP2000311686A (en) 1999-04-28 1999-04-28 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11121404A JP2000311686A (en) 1999-04-28 1999-04-28 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2000311686A true JP2000311686A (en) 2000-11-07

Family

ID=14810348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11121404A Pending JP2000311686A (en) 1999-04-28 1999-04-28 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2000311686A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161076A (en) * 2009-01-07 2010-07-22 Qinghua Univ Anode material for lithium ion secondary battery, and fabricating method thereof
US9966603B2 (en) 2013-03-29 2018-05-08 Nec Corporation Negative electrode carbon material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
US9972829B2 (en) 2013-03-29 2018-05-15 Nec Corporation Negative electrode carbon material for lithium secondary battery and method for manufacturing the same, and negative electrode for lithium secondary battery, and lithium secondary battery
CN108713152A (en) * 2016-02-04 2018-10-26 西门子股份公司 The method for determining the aging of electrochemical storage device
WO2023090444A1 (en) * 2021-11-22 2023-05-25 旭カーボン株式会社 Negative electrode active material for secondary battery, and secondary battery using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922696A (en) * 1995-07-06 1997-01-21 Matsushita Electric Ind Co Ltd Electrode for secondary battery and manufacture thereof
JPH09320590A (en) * 1996-05-30 1997-12-12 Petoca:Kk Lithium ton secondary battery negative electrode material and its manufacture
JPH10214625A (en) * 1997-01-29 1998-08-11 Toyota Central Res & Dev Lab Inc Negative electrode for lithium secondary cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922696A (en) * 1995-07-06 1997-01-21 Matsushita Electric Ind Co Ltd Electrode for secondary battery and manufacture thereof
JPH09320590A (en) * 1996-05-30 1997-12-12 Petoca:Kk Lithium ton secondary battery negative electrode material and its manufacture
JPH10214625A (en) * 1997-01-29 1998-08-11 Toyota Central Res & Dev Lab Inc Negative electrode for lithium secondary cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161076A (en) * 2009-01-07 2010-07-22 Qinghua Univ Anode material for lithium ion secondary battery, and fabricating method thereof
US9966603B2 (en) 2013-03-29 2018-05-08 Nec Corporation Negative electrode carbon material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
US9972829B2 (en) 2013-03-29 2018-05-15 Nec Corporation Negative electrode carbon material for lithium secondary battery and method for manufacturing the same, and negative electrode for lithium secondary battery, and lithium secondary battery
CN108713152A (en) * 2016-02-04 2018-10-26 西门子股份公司 The method for determining the aging of electrochemical storage device
CN108713152B (en) * 2016-02-04 2021-05-25 劳斯莱斯德国有限两合公司 Method for determining aged SOH of lithium ion battery
WO2023090444A1 (en) * 2021-11-22 2023-05-25 旭カーボン株式会社 Negative electrode active material for secondary battery, and secondary battery using same

Similar Documents

Publication Publication Date Title
JP5162825B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5286200B2 (en) Lithium ion secondary battery
JP5142452B2 (en) Non-aqueous electrolyte secondary battery charge / discharge control method
JP4985524B2 (en) Lithium secondary battery
JP5874430B2 (en) Non-aqueous electrolyte secondary battery and method for producing the same, and method for producing lithium transition metal composite oxide for non-aqueous electrolyte secondary battery
JP2011070789A (en) Nonaqueous electrolyte secondary battery
JP2008084832A (en) Nonaqueous electrolyte secondary battery
JP2009129797A (en) Nonaqueous electrolyte battery
JP2007335143A (en) Lithium ion secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JP2004014405A (en) Non-aqueous electrolyte secondary battery
JP2009037740A (en) Nonaqueous electrolyte secondary battery
JP2009277395A (en) Nonaqueous secondary battery, and nonaqueous secondary battery system
JP5216973B2 (en) Non-aqueous secondary battery and non-aqueous secondary battery system
KR20180083432A (en) Negative electrode material for Li ion secondary battery and production method thereof, negative electrode for Li ion secondary battery and Li ion secondary battery
JP2002151154A (en) Lithium secondary battery
JP4810794B2 (en) Nonaqueous electrolyte secondary battery
JP4984390B2 (en) Non-aqueous electrolyte secondary battery charging method
JP2000311686A (en) Lithium secondary battery
JP7182198B2 (en) Nonaqueous electrolyte secondary battery, electrolyte solution, and method for manufacturing nonaqueous electrolyte secondary battery
EP1052719B1 (en) Lithium secondary battery
JP4158212B2 (en) Method for producing lithium secondary battery and method for producing positive electrode active material for lithium secondary battery
JP2001143689A (en) Lithium secondary cell
JP2000311716A (en) Lithium secondary battery
JP2005243448A (en) Nonaqueous electrolyte secondary battery