JP2000308906A - Heat resisting hard coating covered tool - Google Patents

Heat resisting hard coating covered tool

Info

Publication number
JP2000308906A
JP2000308906A JP11120143A JP12014399A JP2000308906A JP 2000308906 A JP2000308906 A JP 2000308906A JP 11120143 A JP11120143 A JP 11120143A JP 12014399 A JP12014399 A JP 12014399A JP 2000308906 A JP2000308906 A JP 2000308906A
Authority
JP
Japan
Prior art keywords
heat
hard coating
resistant hard
sic
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11120143A
Other languages
Japanese (ja)
Other versions
JP3370291B2 (en
Inventor
Toshihiko Abe
利彦 阿部
Youko Boku
容浩 朴
Hitoshi Hashimoto
等 橋本
Masatoshi Sakurai
正俊 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSG Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
OSG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, OSG Corp filed Critical Agency of Industrial Science and Technology
Priority to JP12014399A priority Critical patent/JP3370291B2/en
Publication of JP2000308906A publication Critical patent/JP2000308906A/en
Application granted granted Critical
Publication of JP3370291B2 publication Critical patent/JP3370291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat resisting hard coating covered tool provided with a hard coating having further excellent heat resistance and oxidation resistance and with excellent wear resistance in high hardness. SOLUTION: This heat resisting hard coating covered tool 10 is provided with a base material 12 made of, for instance, cemented carbide alloy (equivalent product to JISZ10 mainly composed of WC-10Co) and a heat resisting hard coating 14 secured onto a surface of this base material 12. By constituting the material of this heat resisting hard coating 14 from (TixAl1-x-y (SiC)y)N (however, 0.3<=x<=0.7, 0.02<=y<=0.2), the material is excellent in heat resistance, oxidation resistance and wear resistance provided with high hardness, so as to obtain the heat resisting hard coating covered tool 10 excellent in heat resistance, oxidation resistance and wear resistance in high hardness even in high temperature cutting such as dry cutting.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高速度工具鋼、超
硬合金、サーメットまたはCBN焼結体などを母材とす
る工具の表面に耐熱性硬質被膜のコーティングを施した
耐熱硬質被膜被覆工具に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tool coated with a heat-resistant hard coating on a surface of a tool made of a high speed tool steel, a cemented carbide, a cermet or a CBN sintered body as a base material. It is about.

【0002】[0002]

【従来の技術】高速度鋼、超硬合金、サーメットやセラ
ミックスなどを母材とした、エンドミル、ドリル、タッ
プ、フライス切削用スローアウェーチップなどの切削工
具では、その耐熱性や耐摩耗性の向上の為、物理蒸着法
(PVD法)によりTiN、TiCN、TiAlNとい
ったセラミックス硬質被膜を被覆したコーティング工具
が多く用いられるようになっている。PVD法は成膜温
度が500℃と低いため、高速度鋼製工具のコーティン
グに広く用いられている。また、スローアウェーチップ
も、従来のように化学蒸着法( CVD法) を用いると、
被膜と母材との間の界面に反応層が形成され、母材の強
度が低下するのに対し、PVD法では反応層が形成され
ないため母材の強度低下が無く、切れ刃に欠けが発生し
難くなるので、その適用割合が急速に増えつつある。
2. Description of the Related Art Cutting tools such as end mills, drills, taps, and throw-away inserts for milling, which use high-speed steel, cemented carbide, cermet, ceramics, etc. as a base material, have improved heat resistance and wear resistance. Therefore, a coating tool coated with a ceramic hard coating such as TiN, TiCN, or TiAlN by a physical vapor deposition method (PVD method) has come to be used frequently. The PVD method is widely used for coating high-speed steel tools because the film formation temperature is as low as 500 ° C. In addition, the throw-away tip also uses a chemical vapor deposition method (CVD method) as in the past.
A reaction layer is formed at the interface between the coating and the base material, and the strength of the base material is reduced. On the other hand, the reaction layer is not formed by the PVD method, so the strength of the base material is not reduced, and the cutting edge is chipped. The rate of application is increasing rapidly.

【0003】ところで、近年では環境保護への関心が高
まり、切削加工分野において切削油を産業廃棄物として
排出する量を削減するため、乾式切削へ急速に移行しつ
つある。また、高速切削や高硬度材切削に対する需要も
高まり、切削工具には高い耐熱性と耐摩耗性がますます
強く要求されるようになっている。
[0003] In recent years, interest in environmental protection has increased, and in the field of cutting, in order to reduce the amount of cutting oil discharged as industrial waste, dry cutting has been rapidly shifted. In addition, the demand for high-speed cutting and high-hardness material cutting is also increasing, and cutting tools are increasingly required to have high heat resistance and wear resistance.

【0004】現在、最も広く用いられているTiNやT
iCNコーティングが施された工具では、上記のような
乾式切削などの高温切削では、耐酸化性や耐熱性が未だ
十分ではなく、被膜の酸化や硬度低下などによる急速な
摩耗が生じて、工具の切削寿命が短くなるといった問題
があった。このため、近年、耐酸化性に優れ且つ被膜の
硬さも高い(Ti,Al)N被膜が提案されて超硬合金
製切削工具を中心に普及し始めているが、高硬度材の乾
式切削や高速切削の分野では、そのような(Ti,A
l)N被膜でも十分な耐熱性や硬度が得られないという
課題が残されていた。
At present, the most widely used TiN and T
In tools with iCN coating, oxidation resistance and heat resistance are not yet sufficient in high-temperature cutting such as dry cutting as described above, and rapid wear occurs due to oxidation of the coating and a decrease in hardness, resulting in tool wear. There was a problem that the cutting life was shortened. For this reason, in recent years, a (Ti, Al) N film having excellent oxidation resistance and a high film hardness has been proposed and has begun to be widely used mainly in cemented carbide cutting tools. In the field of cutting, such (Ti, A
1) There remains a problem that sufficient heat resistance and hardness cannot be obtained even with an N film.

【0005】[0005]

【発明が解決しようとする課題】これに対し、更に耐熱
性に優れた硬質被膜として(Ti、Al,V)N被膜や
(Ti,Al,Si)CN被膜などが提案されている。
たとえば、特公平5−88309号公報や特開平8−2
09336号公報に記載された硬質被膜がそれである。
しかしながら、上記のような(Ti、Al,V)N被膜
や(Ti,Al,Cr)N被膜では、添加元素が増える
につれて被膜の耐酸化性が低下するといった欠点があっ
た。この耐酸化性を向上させるために上記被膜中の元素
V或いはCrをSiに置換した(Ti,Al,Si)N
被膜が提案されているが、ある程度の耐酸化性の向上は
認められるものの、十分なものとはならないという欠点
があった。
On the other hand, a (Ti, Al, V) N coating and a (Ti, Al, Si) CN coating have been proposed as hard coatings having better heat resistance.
For example, Japanese Patent Publication No. Hei 5-88309 and Japanese Unexamined Patent Publication No.
That is the hard coating described in JP 09336.
However, the (Ti, Al, V) N film and the (Ti, Al, Cr) N film described above have a drawback that the oxidation resistance of the film decreases as the added element increases. In order to improve the oxidation resistance, (Ti, Al, Si) N in which the element V or Cr in the coating is replaced by Si.
Although a coating has been proposed, there is a drawback that the oxidation resistance is improved to some extent but is not sufficient.

【0006】本発明は以上の事情を背景として為された
ものであり、その目的とするところは、さらに耐熱性お
よび耐酸化性に優れかつ高硬度で優れた耐摩耗性を有す
る硬質被膜を備えた耐熱硬質被膜被覆工具を提供するこ
とにある。
The present invention has been made in view of the above circumstances, and has as its object to provide a hard coating having excellent heat resistance and oxidation resistance, high hardness and excellent wear resistance. To provide a heat-resistant hard coating tool.

【0007】[0007]

【課題を解決するための手段】本発明者らは、(Ti,
Al)N被膜の耐熱性をより向上させることを目的とし
てその(Ti,Al)Nを基本としてそれに各種元素や
化合物を添加する検討を重ねた結果、耐熱性向上に効果
のあると考えられる添加元素や化合物を検討するうち
に、(Ti,Al)Nに炭化珪素SiCを添加させる
と、硬さが高くかつ酸化開始温度も高くなることが見い
だされた。一般に、(Ti,Al)Nの耐酸化性は、T
iNよりは良好であるが、800℃以上の高温で急速に
酸化する。急速に酸化する原因は、被膜中のTiO2
成長が耐酸化性の優れたAl2 3 の成長より著しく速
い点にあることが知られている。TiO2 の基本的な成
長機構(成長メカニズム)は、その中の酸素空孔を介し
ての酸素の拡散であると考えられるので、本発明のよう
にSiCを添加するとTiO2 中の酸素空孔濃度が減少
し、その成長速度が遅くなってAl2 3 が形成され易
くなり、その結果、耐酸化性が向上したものと考えられ
るのである。本発明はそのような知見に基づいて為され
たものである。
The present inventors have proposed (Ti,
As a result of repeated studies of adding various elements and compounds based on (Ti, Al) N for the purpose of further improving the heat resistance of the Al) N film, it is considered that the addition is considered to be effective in improving the heat resistance. While studying the elements and compounds, it was found that when silicon carbide SiC was added to (Ti, Al) N, the hardness was high and the oxidation start temperature was high. Generally, the oxidation resistance of (Ti, Al) N is T
Better than iN, but oxidizes rapidly at high temperatures above 800 ° C. It is known that the cause of rapid oxidation is that the growth of TiO 2 in the coating film is significantly faster than the growth of Al 2 O 3 having excellent oxidation resistance. Since the basic growth mechanism (growth mechanism) of TiO 2 is considered to be diffusion of oxygen through oxygen vacancies therein, the addition of SiC as in the present invention results in oxygen vacancies in TiO 2. It is considered that the concentration decreased, the growth rate was slowed, and Al 2 O 3 was easily formed, and as a result, the oxidation resistance was improved. The present invention has been made based on such findings.

【0008】すなわち、本発明の要旨とするところは、
(Tix Al1-x-y SiCy )N(但し、0.3≦x≦
0.7、0.02≦y≦0.2)の組成で示される耐熱
硬質被膜が、耐熱硬質被膜被覆工具の基材の表面に形成
されたことにある。
That is, the gist of the present invention is as follows.
(Ti x Al 1-xy SiC y ) N (however, 0.3 ≦ x ≦
(0.7, 0.02 ≦ y ≦ 0.2) The heat-resistant hard coating represented by the composition of (0.7, 0.02 ≦ y ≦ 0.2) was formed on the surface of the substrate of the tool coated with the heat-resistant hard coating.

【0009】[0009]

【発明の効果】このようにすれば、耐熱硬質被膜が(T
x Al1-x-y SiCy )N(但し、0.3≦x≦0.
7、0.02≦y≦0.2)の組成で構成されているの
で、耐熱性および耐酸化性に優れかつ高硬度で優れた耐
摩耗性を有する硬質被膜を備えた耐熱硬質被膜被覆工具
が得られる。したがって、その耐熱硬質被膜被覆工具で
は、乾式切削などの高温切削においても耐熱性および耐
酸化性に優れかつ高硬度で優れた耐摩耗性が得られる。
In this manner, the heat-resistant hard coating is (T
i x Al 1-xy SiC y ) N ( where, 0.3 ≦ x ≦ 0.
7, 0.02 ≦ y ≦ 0.2), which is a tool coated with a heat-resistant hard coating having a hard coating having excellent heat resistance and oxidation resistance, high hardness and excellent wear resistance. Is obtained. Therefore, the tool coated with a heat-resistant hard film has excellent heat resistance, oxidation resistance, high hardness and excellent wear resistance even in high-temperature cutting such as dry cutting.

【0010】[0010]

【発明の他の態様】ここで、好適には、前記耐熱硬質被
膜被覆工具の基材表面に形成された耐熱硬質被膜は、
0.1〜10μmの範囲内の厚さ、さらに好適には1〜
8μmの範囲内の厚さを有するものである。このように
すれば、耐摩耗性が確実に得られると同時に、基材表面
に対する耐熱硬質被膜の付着強度が十分に得られる。上
記耐熱硬質被膜の厚さが0.1μmを下回る場合にはそ
の耐熱硬質被膜を設けた効果すなわち耐熱耐摩耗性が十
分に得られないようになり、10μmを越えると耐熱硬
質被膜の付着強度が低下し、耐熱硬質被膜にクラックな
どが発生して欠けが発生し易くなる。特に、耐熱硬質被
膜が一層のコーティングにより構成される場合は、上記
と同様の理由により1〜8μmの範囲内の厚さが好まし
い。
In another preferred embodiment of the present invention, the heat-resistant hard coating formed on the substrate surface of the heat-resistant hard coating-coated tool is preferably
Thickness in the range of 0.1 to 10 μm, more preferably 1 to
It has a thickness in the range of 8 μm. In this case, the wear resistance can be reliably obtained, and at the same time, the adhesive strength of the heat-resistant hard coating to the surface of the base material can be sufficiently obtained. When the thickness of the heat-resistant hard coating is less than 0.1 μm, the effect of providing the heat-resistant hard coating, that is, the heat-resistant abrasion resistance cannot be sufficiently obtained. As a result, cracks and the like are generated in the heat-resistant hard coating, and chipping easily occurs. In particular, when the heat-resistant hard film is constituted by one layer, the thickness is preferably in the range of 1 to 8 μm for the same reason as described above.

【0011】また、好適には、前記(Tix Al1-x-y
(SiC)y )N(但し、0.3≦x≦0.7、0.0
2≦y≦0.2)耐熱硬質被膜において、SiCのT
i、Alに対する割合y、すなわちSiCの添加量y
は、2〜20at%(アトミックパーセント)の範囲内
とされる。2at%を下まわるとSiCの添加効果すな
わち耐酸化性が十分に得られなくなり、20at%を越
えると耐熱硬質被膜の基材表面に対する付着強度が低下
する。
Preferably, the (Ti x Al 1 -xy)
(SiC) y ) N (where 0.3 ≦ x ≦ 0.7, 0.0
2 ≦ y ≦ 0.2) In the heat-resistant hard coating, the T
i, the ratio y to Al, that is, the added amount y of SiC
Is in the range of 2 to 20 at% (atomic percent). If the amount is less than 2 at%, the effect of adding SiC, that is, the oxidation resistance, cannot be sufficiently obtained. If the amount exceeds 20 at%, the adhesion strength of the heat-resistant hard coating to the substrate surface decreases.

【0012】また、好適には、前記耐熱硬質被膜は、チ
タン粉末、アルミニウム粉末、およびSiC粉末から成
形されたターゲットを用いるアーク放電式イオンプレー
ティング法により前記基材の表面に固着されたものであ
る。一般に、蒸発物質としてのアルミニウムAlとチタ
ンTiとをイオン化状態で基材表面に向かって飛ばすこ
とによりイオンプレーティングするに際しては、たとえ
ばホローカソードを用いたイオンプレーティング法で
は、Ti、AlとSiCが溶解してしまうために相対的
に低融点のAl(660℃程度の融点)の方が相対的に
高融点のTi(1675℃程度の融点)よりも多量に飛
ばされる傾向にあってAl含有量のコントロールも困難
であるが、上記のように、チタン粉末、アルミニウム粉
末、およびSiC粉末からホットプレスなどにより成形
されたターゲットを陰極(エバポレータ)として用いる
アーク放電式イオンプレーティングでは、ターゲットの
アークが当たる部分(アークスポット)が飛ばされるの
で、そのターゲットの構成成分と略同様の成分の耐熱硬
質被膜が基材表面に固着される利点がある。すなわち、
(Ti,Al)Nの耐熱性をより向上させることを目的
とする本発明者らによる研究では、チタン粉末、アルミ
ニウム粉末、およびSiC粉末から成形されたターゲッ
トを用いるアーク放電方式イオンプレーティング法によ
り、工具基材の表面に硬質被膜を設けると、その硬質被
膜中には、ターゲットを構成する成分比(成分濃度)に
ほぼ等しい値でSiCが含有され、優れた耐熱性、耐酸
化性、および耐摩耗性を有する耐熱硬質被膜が容易に得
られるという事実が見いだされたのである。
Preferably, the heat-resistant hard coating is fixed to the surface of the base material by an arc discharge ion plating method using a target formed from titanium powder, aluminum powder, and SiC powder. is there. Generally, when aluminum Al and titanium Ti as evaporating substances are ion-plated by flying them toward the substrate surface in an ionized state, for example, in an ion plating method using a hollow cathode, Ti, Al and SiC are mixed. Al having a relatively low melting point (melting point of about 660 ° C.) tends to be scattered in a larger amount than Ti having a relatively high melting point (melting point of about 1675 ° C.) due to dissolution. However, as described above, in arc discharge ion plating using a target formed by hot pressing or the like from titanium powder, aluminum powder, and SiC powder as a cathode (evaporator), the arc of the target is Since the hit part (arc spot) is skipped, the structure of the target is There is an advantage that heat hard coating ingredients and substantially the same components are affixed to the substrate surface. That is,
In a study by the present inventors for the purpose of further improving the heat resistance of (Ti, Al) N, an arc discharge ion plating method using a target formed from titanium powder, aluminum powder, and SiC powder was used. When a hard coating is provided on the surface of a tool base material, SiC is contained in the hard coating at a value substantially equal to the component ratio (component concentration) constituting the target, and excellent heat resistance, oxidation resistance, and It has been found that a heat-resistant hard coating having wear resistance can be easily obtained.

【0013】[0013]

【発明の好適な実施の形態】図1は、本発明の一実施例
の耐熱硬質被膜被覆工具10の一例を説明する要部拡大
断面図である。この耐熱硬質被膜被覆工具10は、フラ
イスカッタ、エンドミル、タップ、ダイスなどの切削工
具である。耐熱硬質被膜被覆工具10は、たとえば超硬
合金製(WC−10Coを主成分とするJISZ10相
当品)の基材12と、その基材12の表面上に固着され
た耐熱硬質被膜14とを備えている。この耐熱硬質被膜
14の材質は、(Tix Al1-x-y (SiC)y )N
(但し、0.3≦x≦0.7、0.02≦y≦0.2)
から構成されることにより、耐熱性および耐酸化性に優
れかつ高硬度で優れた耐摩耗性が備えられているので、
乾式切削などの高温切削においても耐熱硬質被膜被覆工
具10の耐熱性および耐酸化性に優れかつ高硬度で優れ
た耐摩耗性が得られるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an enlarged sectional view of an essential part for explaining an example of a heat-resistant hard coating tool 10 according to one embodiment of the present invention. The heat-resistant hard film-coated tool 10 is a cutting tool such as a milling cutter, an end mill, a tap, and a die. The heat-resistant hard film-coated tool 10 includes, for example, a base material 12 made of a cemented carbide (equivalent to JISZ10 containing WC-10Co as a main component) and a heat-resistant hard film 14 fixed on the surface of the base material 12. ing. The material of the heat-resistant hard coating 14, (Ti x Al 1-xy (SiC) y) N
(However, 0.3 ≦ x ≦ 0.7, 0.02 ≦ y ≦ 0.2)
By being composed of, since it has excellent heat resistance and oxidation resistance, and has excellent wear resistance with high hardness,
Even in high-temperature cutting such as dry cutting, the heat-resistant hard film-coated tool 10 is excellent in heat resistance and oxidation resistance, and has high hardness and excellent wear resistance.

【0014】上記(Tix Al1-x-y (SiC)y )N
から成る耐熱硬質被膜14は、0.1〜10μmの範囲
内の厚さ、さらに好適には1〜8μmの範囲内の厚さを
有するものであり、その耐摩耗性が確実に得られると同
時に、基材12の表面に対する耐熱硬質被膜の付着強度
が十分に得られるようになっている。また、上記耐熱硬
質被膜14において、SiCのTi、Alに対する割合
y、すなわちSiCの添加量(含有量)yは、2〜20
at%(アトミックパーセント)の範囲内とされるとと
もに、Tiの添加量(含有量)xは30〜70at%の
範囲内とされている。これにより、SiCの含有量yに
関連した耐熱硬質被膜14の耐酸化性および被膜付着強
度と上記Tiの含有量xに関連した耐熱硬質被膜14の
靭性および耐酸化性が両立させられている。
[0014] The (Ti x Al 1-xy ( SiC) y) N
The heat-resistant hard coating 14 having a thickness in the range of 0.1 to 10 μm, more preferably a thickness in the range of 1 to 8 μm. In addition, sufficient adhesion strength of the heat-resistant hard coating to the surface of the substrate 12 can be obtained. In the heat-resistant hard coating 14, the ratio y of SiC to Ti and Al, that is, the added amount (content) y of SiC is 2 to 20.
At% (atomic percentage), and the addition amount (content) x of Ti is within a range of 30 to 70 at%. As a result, the oxidation resistance and the film adhesion strength of the heat-resistant hard coating 14 related to the SiC content y and the toughness and oxidation resistance of the heat-resistant hard coating 14 related to the Ti content x are made compatible.

【0015】上記耐熱硬質被膜被覆工具10は、たとえ
ば以下に説明する工程を経て製造される。先ず、研削加
工などによって切削工具としての基本形状に成形された
基材12は、チタン粉末、アルミニウム粉末、およびS
iC粉末からホットプレスなどにより成形されたターゲ
ット(陰極或いはカソード電極)を用いるアーク放電式
イオンプレーティング装置の基板ホルダーに固定され
る。この基板ホルダーは自転可能に設けられているとと
もに基板加熱用に設けられたヒーターにより加熱される
ようになっている。次いで、上記基板ホルダおよびター
ゲットを収容するチャンバー内がたとえば6.70×10-3Pa
程度まで排気され、ヒーターにより基材12の温度が 5
00℃まで加熱される。その後、エンドミルに-1000V程度
の電位が印加され、アーク放電が開始されて基材12の
表面が十分に洗浄された後、電位が-200V 程度まで落さ
れるとともにN2 ガスが1000cc/minの割合でチャンパ内
へ流される。このようなプレーティング工程において
は、ターゲットにアークが飛ばされ、そのターゲットの
うちのアークが当たる部位(アークスポート)が蒸発さ
せられるとともにイオン化されて基材12に向かって飛
ばされ、その基材12の表面上にそのターゲットの構成
材料と同様の材質の耐熱硬質被膜14がたとえば0.1
〜10μmの範囲内の厚さ、さらに好適には1〜8μm
の範囲内の厚さで固着される。
The tool 10 coated with a heat-resistant hard coating is manufactured, for example, through the steps described below. First, the base material 12 formed into a basic shape as a cutting tool by grinding or the like is made of titanium powder, aluminum powder, and S powder.
It is fixed to a substrate holder of an arc discharge ion plating apparatus using a target (cathode or cathode electrode) formed from iC powder by hot pressing or the like. The substrate holder is rotatably provided and is heated by a heater provided for heating the substrate. Next, the inside of the chamber accommodating the substrate holder and the target is, for example, 6.70 × 10 −3 Pa
And the temperature of the substrate 12 is reduced to 5 by the heater.
Heat to 00 ° C. Thereafter, an end mill potential of about -1000V is applied, after which the arc discharge is started the surface of the substrate 12 is sufficiently cleaned, the N 2 gas with potential is dropped to about -200V of 1000 cc / min Flowed into the champers at a ratio. In such a plating step, an arc is blown to the target, and a portion (arcsport) of the target which is struck by the arc is vaporized and ionized and is blown toward the base material 12. A heat-resistant hard coating 14 made of the same material as the constituent material of the target, for example, 0.1
Thickness in the range of 10 to 10 μm, more preferably 1 to 8 μm
The thickness is fixed within the range.

【0016】図2は、上記(Tix Al1-x-y ( Si
C) y ) Nから成る耐熱硬質被膜14において、それに
含まれるSiCの値yすなわちその含有量at%(アト
ミックパーセント)と耐酸化性との間の関係を求めた実
験結果を示している。この実験例では、JIS Z10の
超硬合金製の基板上に、イオンプレーティング法により
Ti:Al=1:1(原子比、at比)でSiCの添加量
(at%)を、0、1、2、10、20、30とした耐
熱硬質被膜14を、バイアス電圧を―200V とし、チ
ャンバー内への窒素流量を1000cc/minとし
て、膜厚3.5〜3.8μm に成膜した6種類の試料を
作成し、それら6種類の試料の酸化開始温度を以下の酸
化試験条件を用いて決定したものである。この酸化試験
では、熱重量分析装置が用いられ、以下の試験条件下で
試料の重量変化の発生が判定されたときの温度がその試
料の酸化開始温度として求められたものである。
FIG. 2 shows the above (Ti x Al 1-xy (Si
C) shows the result of an experiment in which the relationship between the value y of SiC contained in the heat-resistant hard coating 14 made of y ) N, that is, the content at% (atomic percent), and the oxidation resistance is shown. In this experimental example, the addition amount (at%) of SiC was set to 0, 1 by Ti: Al = 1: 1 (atomic ratio, at ratio) by ion plating on a cemented carbide substrate of JIS Z10. Six types of heat-resistant hard films 14 of 2, 10, 20, and 30 were formed with a bias voltage of -200 V, a nitrogen flow rate into the chamber of 1000 cc / min, and a film thickness of 3.5 to 3.8 μm. Were prepared, and the oxidation onset temperatures of these six types of samples were determined using the following oxidation test conditions. In this oxidation test, a thermogravimetric analyzer was used, and the temperature at which the occurrence of weight change of the sample was determined under the following test conditions was determined as the oxidation start temperature of the sample.

【0017】(酸化試験条件) 温度範囲:室温〜1400℃ 昇温速度:10℃/min 雰囲気:大気(Oxidation test conditions) Temperature range: room temperature to 1400 ° C. Temperature rising rate: 10 ° C./min Atmosphere: air

【0018】図2に示す実験結果によれば、耐熱硬質被
膜14におけるSiCの添加量が0.1at%を上まわ
ると酸化開始温度が上昇し、2at%を越えると、酸化
開始温度はSiCの添加量が零である場合と比較して、
約100℃上昇した。さらに、SiCの添加量を10a
t%に増加させた場合には酸化開始温度は1190℃、
SiCの添加量を20at%に増加させた場合には酸化
開始温度は1240℃となり、その添加量を20at%
よりもさらに増加すると酸化開始温度が飽和傾向となっ
た。すなわち、耐熱硬質被膜14におけるSiCの添加
量が2.0at%を下回ると、SiCを含有させた効果
が十分に認められず、20at%を上回ると、SiCの
添加効果が飽和するのである。
According to the experimental results shown in FIG. 2, the oxidation start temperature rises when the addition amount of SiC in the heat-resistant hard coating 14 exceeds 0.1 at%, and when the addition amount exceeds 2 at%, the oxidation start temperature increases. Compared to the case where the addition amount is zero,
The temperature rose by about 100 ° C. Further, the added amount of SiC is set to 10a.
When it is increased to t%, the oxidation start temperature is 1190 ° C.,
When the addition amount of SiC was increased to 20 at%, the oxidation start temperature was 1240 ° C., and the addition amount was 20 at%.
When the temperature further increased, the oxidation start temperature tended to be saturated. That is, if the amount of SiC added to the heat-resistant hard coating 14 is less than 2.0 at%, the effect of including SiC is not sufficiently recognized, and if it exceeds 20 at%, the effect of adding SiC is saturated.

【0019】図3は、前記(Tix Al1-x-y ( Si
C) y ) Nから成る耐熱硬質被膜14において、それに
含まれるSiCの値yすなわちその含有量at%(アト
ミックパーセント)と被膜付着強度(N)との関係を求
めた実験結果を示している。この実験例では、JIS Z
10の超硬合金製の基板上に、イオンプレーティング法
によりTi:Al=1:1(原子比、at比)でSiCの
添加量(at%)を、0、1、2、10、20、30と
した耐熱硬質被膜14を、バイアス電圧を―200V と
し、チャンバー内への窒素流量を1000cc/min
として、膜厚3.5〜3.8μm に成膜した6種類の試
料を作成し、それら6種類の試料の被膜付着強度を測定
したものである。この被膜付着強度では、スイス国CS
EM社製の被膜付着強度測定用センサ付自動スクラッチ
試験機を用いて測定が行われた。
FIG. 3 shows the (Ti x Al 1-xy (Si
C) shows the results of an experiment in which the relationship between the value y of SiC contained in the heat-resistant hard coating 14 made of y ) N, that is, the content at% (atomic percent), and the coating adhesion strength (N) is obtained. In this experimental example, JIS Z
On a cemented carbide substrate of No. 10, the addition amount (at%) of SiC was set to 0, 1, 2, 10, 20 by Ti: Al = 1: 1 (atomic ratio, at ratio) by ion plating. , 30 with a bias voltage of -200 V and a nitrogen flow rate of 1000 cc / min into the chamber.
In this example, six kinds of samples having a film thickness of 3.5 to 3.8 μm were prepared, and the film adhesion strengths of the six kinds of samples were measured. This film adhesion strength, Swiss CS
The measurement was performed using an automatic scratch tester equipped with a sensor for measuring the film adhesion strength manufactured by EM.

【0020】図3に示す実験結果によれば、耐熱硬質被
膜14におけるSiCの添加量が0.1at%を上まわ
ると被膜付着強度が上昇した効果が認められ、20at
%を越えると、被膜付着強度が比較的急速に低下し、3
0at%となると、20at%の場合よりも75(N)
以上低下する。この被膜付着強度を十分に得るために
は、SiCの添加量が20at%以下の範囲とすること
が望まれる。したがって、耐酸化性および被膜付着強度
の両者を考慮すると、図2および図3に示す実験結果か
ら、耐熱硬質被膜14におけるSiCの添加量は2.0
〜20at%の範囲内が望まれる。このため、耐熱硬質
被膜14を構成する成分の組成は、(Ti x Al1-x-y
(SiC)y )Nにおいて、0.02≦y≦0.2とい
う条件式を満足する事が必要である。
According to the experimental results shown in FIG.
The added amount of SiC in the film 14 exceeds 0.1 at%.
Then, the effect of increasing the coating adhesion strength was observed, and 20 at
%, The coating adhesion strength decreases relatively rapidly,
When it becomes 0 at%, it becomes 75 (N) more than the case of 20 at%.
Or more. In order to obtain sufficient film adhesion strength
Means that the amount of SiC added is within the range of 20 at% or less.
Is desired. Therefore, oxidation resistance and film adhesion strength
Considering both, the experimental results shown in FIGS.
It was found that the amount of SiC added to the heat-resistant hard coating 14 was 2.0
It is desired to be within the range of 2020 at%. For this reason, heat-resistant hard
The composition of the components constituting the coating 14 is (Ti xAl1-xy
(SiC)y) In N, 0.02 ≦ y ≦ 0.2
It is necessary to satisfy the conditional expression.

【0021】一方、前記(Tix Al1-x-y ( SiC)
y ) Nから成る耐熱硬質被膜14において、本発明者等
の実験によれば、Tiの含有量xは30at%未満では
耐熱硬質被膜14に十分な靭性が得られず、70at%
を超えると、その耐熱硬質被膜14に十分な耐酸化性が
得られない。このため、耐熱硬質被膜14を構成する成
分の組成は、(Tix Al1-x-y (SiC)y )Nにお
いて、0.3≦x≦0.7という条件式を満足する事が
必要である。したがって、前記SiCの含有量yに関連
した耐熱硬質被膜14の耐酸化性および被膜付着強度と
上記Tiの含有量xに関連した耐熱硬質被膜14の靭性
および耐酸化性を考慮すると、(TixAl1-x-y (S
iC)y )Nにおいて、0.3≦x≦0.7、0.02
≦y≦0.2という条件式を満足する事が必要となる。
On the other hand, the (Ti x Al 1-xy (SiC)
y ) In the heat-resistant hard coating 14 made of N, according to the experiments by the present inventors, if the content x of Ti is less than 30 at%, sufficient toughness cannot be obtained in the heat-resistant hard coating 14, and 70 at%
If it exceeds, the heat-resistant hard coating 14 cannot have sufficient oxidation resistance. Therefore, the composition of components constituting the heat-resistant hard coating 14, in (Ti x Al 1-xy ( SiC) y) N, it is necessary to satisfy the condition that 0.3 ≦ x ≦ 0.7 . Therefore, considering the oxidation resistance and the coating adhesion strength of the heat-resistant hard coating 14 related to the SiC content y and the toughness and oxidation resistance of the heat-resistant hard coating 14 related to the Ti content x, (Ti x Al 1-xy (S
iC) y ) N, 0.3 ≦ x ≦ 0.7, 0.02
It is necessary to satisfy the conditional expression of ≦ y ≦ 0.2.

【0022】他方、前記(Tix Al1-x-y ( SiC)
y ) Nから成る耐熱硬質被膜14において、本発明者等
の実験によれば、その膜厚が0.1μm未満では十分な
耐摩耗性が得られず、10μmを超えると、耐熱硬質被
膜14の付着強度が低下し、かつその耐熱硬質被膜14
にクラックが入って欠けが発生し易くなる。このため、
基材12上にアーク放電式イオンプレーティング法によ
り固着される耐熱硬質被膜14の膜厚は、0.1〜10
μmの範囲内、さらに好適には、1〜8μmの膜厚範囲
内が望ましい。
On the other hand, (Ti x Al 1-xy (SiC)
y ) In the heat-resistant hard coating 14 made of N, according to experiments by the present inventors, if the film thickness is less than 0.1 μm, sufficient wear resistance cannot be obtained, and if it exceeds 10 μm, the heat-resistant hard coating 14 Adhesive strength is reduced and the heat resistant hard coating 14
Cracks tend to occur, causing chipping. For this reason,
The thickness of the heat-resistant hard coating 14 fixed on the base material 12 by the arc discharge ion plating method is 0.1 to 10
The thickness is preferably in the range of μm, more preferably in the range of 1 to 8 μm.

【0023】表1は、発明の耐熱硬質被膜被覆工具10
の性能を従来例或いは比較例と比較して示す実験値であ
る。本実験例では、従来例1としてTi0.5 Al0.5
から成る被膜を備えた工具が、従来例2として(Ti
0.4 Al0.4 0.2 )Nから成る被膜を備えた工具が、
従来例3として(Ti0.4 Al0.4 Cr0.2 )Nから成
る被膜を備えた工具が、従来例4として(Ti0.48Al
0.48Si0.04)Nから成る被膜を備えた工具がそれぞれ
用意され、本発明の実施例1として(Ti0.49Al0.49
(SiC) 0.02 )Nから成る被膜を備えた工具が、実施
例2として(Ti 0.5 Al0.4 ( SiC) 0.1 ) Nから
成る被膜を備えた工具が、実施例3として(Ti0.3
0.6 ( SiC) 0.1 ) Nから成る被膜を備えた工具
が、実施例4として(Ti0.45Al0.45( SiC)
0.1 ) Nから成る被膜を備えた工具が、実施例5とし
て(Ti0.4 Al0.4(SiC) 0.2 ) Nから成る被膜を
備えた工具がそれぞれ用意され、比較例1として(Ti
0.495 Al0.495(SiC) 0.01) Nから成る被膜を備え
た工具が、比較例2として(Ti0.35Al0.35( Si
C) 0.3) Nから成る被膜を備えた工具がそれぞれ用意
されている。
Table 1 shows the heat-resistant hard-coated tool 10 of the invention.
The experimental values show the performance of
You. In this experimental example, Ti0.5Al0.5N
A tool provided with a coating consisting of
0.4Al0.4V0.2A) a tool with a coating of N
Conventional example 3 (Ti0.4Al0.4Cr0.2) N
A tool provided with a coating having a thickness of0.48Al
0.48Si0.04Each tool with a coating of N
Prepared as (Example 1) of the present invention (Ti0.49Al0.49
 (SiC)0.02 ) Tools with a coating of N
Example 2 (Ti 0.5Al0.4(SiC)0.1) From N
A tool provided with a coating consisting of (Ti0.3A
l0.6(SiC)0.1) Tools with a coating of N
However, as Example 4, (Ti0.45Al0.45(SiC)
 0.1A tool provided with a coating consisting of N
(Ti0.4Al0.4(SiC)0.2) N film
Provided tools were prepared, and as Comparative Example 1, (Ti
0.495Al0.495(SiC)0.01) With a coating of N
Tool as Comparative Example 2 (Ti0.35Al0.35(Si
C)0.3) Tools with N coating are available
Have been.

【0024】上記11種類の工具(試料)は、WC−1
0Coの組成のJIS Z10相当の超硬合金製で、直
径10.0mm、刃長25.0mm、全長80.0m
m、4枚刃エンドミルに、アーク放電式イオンプレーテ
ィング法で表1に示すような膜厚の耐熱硬質被膜が形成
されている。表1には、これらの試料(エンドミル)の
被膜硬度の測定値、酸化開始温度、および以下の切削条
件で切削試験を行ったときの外周二番面の最大摩耗量が
0.1mmに達するまでの切削長さの測定値が示されて
いる。
The above 11 types of tools (samples) are WC-1
It is made of cemented carbide having a composition of 0Co and equivalent to JIS Z10, a diameter of 10.0 mm, a blade length of 25.0 mm, and a total length of 80.0 m.
m, a heat-resistant hard coating having a film thickness as shown in Table 1 was formed on the four-flute end mill by an arc discharge ion plating method. Table 1 shows the measured values of the coating hardness of these samples (end mills), the oxidation start temperature, and the maximum wear amount of the outer peripheral second face when the cutting test was performed under the following cutting conditions until 0.1 mm. The cut length measurements are shown.

【0025】(切削条件) 被削材:SKD 11(硬さ:60HRC ) 切削速度:118m/min 送り量:0.042mm/t 切込み量:AD(Axial depth) =10.0mm、RD(Radi
us depth)=0.1mm 切削油:乾式(エアーブロー) 切削長さ:39.2m
(Cutting conditions) Work material: SKD 11 (hardness: 60 HRC) Cutting speed: 118 m / min Feed amount: 0.042 mm / t Cutting depth: AD (Axial depth) = 10.0 mm, RD (Radi
us depth) = 0.1mm Cutting oil: dry type (air blow) Cutting length: 39.2m

【0026】[0026]

【表1】 [Table 1]

【0027】表1から明らかなように、SiC添加量が
2at%以上20at%以下である実施例1乃至5で
は、従来例1乃至4と同等以上の硬さおよび酸化開始温
度が得られると同時に、外周二番面の最大摩耗量が0.
1mmに達するまでの切削長さは従来例や比較例より延
び、寿命が延びることが分かる。
As is apparent from Table 1, in Examples 1 to 5 in which the amount of SiC added is 2 at% or more and 20 at% or less, the hardness and oxidation start temperature equivalent to or higher than those of the conventional examples 1 to 4 are obtained. , The maximum wear amount of the outer peripheral second surface is 0.
It can be seen that the cutting length until reaching 1 mm is longer than that of the conventional example and the comparative example, and the life is extended.

【0028】以上、本発明の一実施例である耐熱硬質被
膜被覆工具10を図面に基づいて説明したが、本発明は
その他の態様においても適用される。
As described above, the heat-resistant hard film-coated tool 10 according to one embodiment of the present invention has been described with reference to the drawings. However, the present invention can be applied to other embodiments.

【0029】たとえば、前述の耐熱硬質被膜被覆工具1
0の基材12は超硬合金製であったが、高速度工具鋼、
サーメット、CBN焼結体など種々の工具材料を採用す
ることができる。
For example, the above-mentioned tool 1 coated with a heat-resistant hard coating
0 was made of cemented carbide,
Various tool materials such as a cermet and a CBN sintered body can be adopted.

【0030】また、前述の耐熱硬質被膜被覆工具10の
耐熱硬質被膜14は単層であったが、複数層が積層され
たものでもよい。
Although the heat-resistant hard coating 14 of the heat-resistant hard coating-coated tool 10 is a single layer, it may be a laminate of a plurality of layers.

【0031】また、前述の耐熱硬質被膜被覆工具10の
耐熱硬質被膜14はアーク放電式イオンプレーティング
法を用いて基材12の表面に固着されていたが、他の形
式のイオンプレーティング法やスパッタリング法が用い
られてもよい。
The heat-resistant hard coating 14 of the heat-resistant hard coating tool 10 is fixed to the surface of the substrate 12 by using an arc discharge ion plating method. A sputtering method may be used.

【0032】なお、上述したのはあくまでも本発明の一
実施例であり、本発明は当業者の知識に基づいて種々の
変更、改良を加えた態様で実施することができる。
The above is merely an embodiment of the present invention, and the present invention can be implemented in various modified and improved forms based on the knowledge of those skilled in the art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の耐熱硬質被膜被覆工具の構
成を説明する要部を拡大した断面図である。
FIG. 1 is an enlarged sectional view of a main part for explaining a configuration of a tool coated with a heat-resistant hard film according to an embodiment of the present invention.

【図2】図1の耐熱硬質被膜被覆工具の耐熱硬質被膜に
おいて、実験により得られたSiC添加量と酸化開始温
度との関係を示す図である。
FIG. 2 is a view showing the relationship between the amount of SiC added and the oxidation start temperature obtained by experiments in the heat-resistant hard coating of the heat-resistant hard coating tool shown in FIG.

【図3】図1の耐熱硬質被膜被覆工具の耐熱硬質被膜に
おいて、実験により得られたSiC添加量と被膜付着強
度との関係を示す図である。
FIG. 3 is a view showing the relationship between the amount of SiC added and the film adhesion strength obtained by experiments in the heat-resistant hard coating of the heat-resistant hard coating tool shown in FIG.

【符号の説明】 10:耐熱硬質被膜被覆工具 12:基材 14:耐熱硬質被膜[Explanation of Signs] 10: Heat-resistant hard coating tool 12: Base material 14: Heat-resistant hard coating

───────────────────────────────────────────────────── フロントページの続き (72)発明者 朴 容浩 宮城県仙台市宮城野区幸町2−9−33 (72)発明者 橋本 等 宮城県仙台市太白区郡山3−11−19 (72)発明者 櫻井 正俊 愛知県豊川市白雲町三丁目21番地の27 Fターム(参考) 3C046 FF03 FF05 FF10 FF21 FF24 FF25 FF32 FF34 FF35 FF40 FF42 FF47 FF55 4K029 AA02 AA04 BA54 BC10 BD05 CA04 DB08 EA01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasuhiro Park 2-9-33, Saimachi, Miyagino-ku, Sendai City, Miyagi Prefecture (72) Inventor, etc. 3-11-19 Koriyama, Taishiro-ku, Sendai City, Miyagi Prefecture (72) Inventor Masatoshi Sakurai 27F Term of 3-chome, Shiroun-cho, Toyokawa-shi, Aichi Prefecture (reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (Tix Al1-x-y ( SiC) y ) N(
但し、各々の構成比が、0.3≦x≦0.7、0.02
≦y≦0.2) の組成で示される耐熱硬質被膜が、基材
の表面に形成された耐熱硬質被膜被覆工具。
[Claim 1] (Ti x Al 1-xy ( SiC) y) N (
However, the respective composition ratios are 0.3 ≦ x ≦ 0.7, 0.02
≦ y ≦ 0.2) A tool coated with a heat-resistant hard coating, wherein a heat-resistant hard coating represented by the following composition is formed on the surface of a substrate.
【請求項2】 前記耐熱硬質被膜は、0.1〜10μm
の厚みに形成されたものである請求項1の耐熱硬質被膜
被覆工具。
2. The heat-resistant hard coating has a thickness of 0.1 to 10 μm.
The heat-resistant hard film-coated tool according to claim 1, wherein the tool is formed to have a thickness of:
【請求項3】 前記耐熱硬質被膜は、チタン粉末、アル
ミニウム粉末、およびSiC粉末から成形されたターゲ
ットを用いるアーク放電式イオンプレーティング法によ
り前記基材の表面に固着されたものである請求項1また
は2の耐熱硬質被膜被覆工具。
3. The heat-resistant hard coating is fixed to the surface of the base material by an arc discharge ion plating method using a target formed from a titanium powder, an aluminum powder, and a SiC powder. Or 2) a tool coated with a heat-resistant hard coating.
JP12014399A 1999-04-27 1999-04-27 Heat-resistant hard coating tool Expired - Lifetime JP3370291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12014399A JP3370291B2 (en) 1999-04-27 1999-04-27 Heat-resistant hard coating tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12014399A JP3370291B2 (en) 1999-04-27 1999-04-27 Heat-resistant hard coating tool

Publications (2)

Publication Number Publication Date
JP2000308906A true JP2000308906A (en) 2000-11-07
JP3370291B2 JP3370291B2 (en) 2003-01-27

Family

ID=14779040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12014399A Expired - Lifetime JP3370291B2 (en) 1999-04-27 1999-04-27 Heat-resistant hard coating tool

Country Status (1)

Country Link
JP (1) JP3370291B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000508A1 (en) * 2003-06-27 2005-01-06 Sumitomo Electric Industries, Ltd. Surface-coated high hardness material for tool
JP2006336032A (en) * 2005-05-31 2006-12-14 Osg Corp Hard laminated film, and hard laminated film coating tool
WO2011058636A1 (en) * 2009-11-12 2011-05-19 オーエスジー株式会社 Tool coated with hard coating
US8697229B2 (en) 2008-07-14 2014-04-15 Osg Corporation Hard coating film and hard coating film coated working tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2149624B1 (en) 2008-07-31 2012-08-08 Sulzer Metaplas GmbH Multilayer film-coated member and method for producing it

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103231079A (en) * 2003-06-27 2013-08-07 住友电气工业株式会社 Cut-in type grinding tool
EP1640089A1 (en) * 2003-06-27 2006-03-29 Sumitomo Electric Industries, Ltd. Surface-coated high hardness material for tool
EP1640089A4 (en) * 2003-06-27 2008-07-16 Sumitomo Electric Industries Surface-coated high hardness material for tool
US7524569B2 (en) 2003-06-27 2009-04-28 Sumitomo Electric Industries, Ltd. Surface-coated high hardness material for tool
US7794860B2 (en) 2003-06-27 2010-09-14 Sumitomo Electric Industries, Ltd. Surface-coated high hardness material for tool
WO2005000508A1 (en) * 2003-06-27 2005-01-06 Sumitomo Electric Industries, Ltd. Surface-coated high hardness material for tool
JP2006336032A (en) * 2005-05-31 2006-12-14 Osg Corp Hard laminated film, and hard laminated film coating tool
JP4672442B2 (en) * 2005-05-31 2011-04-20 オーエスジー株式会社 Hard laminate coating and hard laminate coating tool
DE102006000259B4 (en) * 2005-05-31 2018-02-22 Osg Corp. Multi-layer hard material layer and use in a coated with the multi-layer hard layer tool
US8697229B2 (en) 2008-07-14 2014-04-15 Osg Corporation Hard coating film and hard coating film coated working tool
WO2011058636A1 (en) * 2009-11-12 2011-05-19 オーエスジー株式会社 Tool coated with hard coating
CN102791409A (en) * 2009-11-12 2012-11-21 Osg株式会社 Hard coating and tool coated with hard coating
US8932707B2 (en) 2009-11-12 2015-01-13 Osg Corporation Hard film and hard film coated tool

Also Published As

Publication number Publication date
JP3370291B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
JP5096715B2 (en) Hard coating and hard coating tool
JP5297388B2 (en) Surface coated cutting tool
JP3248897B2 (en) Hard coating tool
JP4704335B2 (en) Surface coated cutting tool
WO2005053887A1 (en) Surface-coated cutting tool
JP3248898B2 (en) Hard coating tool
KR100667639B1 (en) Surface-coated high hardness material for tool
JP2002113604A (en) Cutting tool
JP2004114268A (en) Coated cutting tool
JPH07300649A (en) Hard film excellent in wear resistance and oxidation resistance and high hardness member
JP5261981B2 (en) Coated cutting tool
JP5559131B2 (en) Hard coating and hard coating tool
JP3370291B2 (en) Heat-resistant hard coating tool
JP3586218B2 (en) Coated cutting tool
JP2005138208A (en) Surface coated cutting tool and its manufacturing method
JP2004066361A (en) Coated cutting tool
JP2008105107A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JPH10317123A (en) Crystalline oriented hard coated member
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP4456905B2 (en) Surface coated cutting tool
JP3859658B2 (en) Surface-coated throw-away tip
JP3351054B2 (en) Hard coating with excellent oxidation and abrasion resistance
JPH08199338A (en) Coated hard alloy
JP2003145316A (en) Tool for machining nonferrous metal
JP2000017423A (en) Tool coated with high toughness hard laminated coating

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141115

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term